content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def load_structure(query, reduce=True, strip='solvent&~@/pseudoBonds'): """ Load a structure in Chimera. It can be anything accepted by `open` command. Parameters ========== query : str Path to molecular file, or special query for Chimera's open (e.g. pdb:3pk2). reduce : bool Add hydrogens to structure. Defaults to True. strip : str Chimera selection spec that will be removed. Defaults to solvent&~@/pseudoBonds (solvent that is not attached to a metal ion). """ print('Opening', query) chimera.runCommand('open ' + query) m = chimera.openModels.list()[0] m.setAllPDBHeaders({}) if strip: print(' Removing {}...'.format(strip)) chimera.runCommand('del ' + strip) if reduce: print(' Adding hydrogens...') chimera.runCommand('addh') return m
d91ceeba36eb04e33c238ab2ecb88ba2cc1928c7
3,657,342
from re import T def is_into_keyword(token): """ INTO判定 """ return token.match(T.Keyword, "INTO")
337fb0062dc4288aad8ac715efcca564ddfad113
3,657,343
from typing import Union def exp( value: Union[Tensor, MPCTensor, int, float], iterations: int = 8 ) -> Union[MPCTensor, float, Tensor]: """Approximates the exponential function using a limit approximation. exp(x) = lim_{n -> infty} (1 + x / n) ^ n Here we compute exp by choosing n = 2 ** d for some large d equal to iterations. We then compute (1 + x / n) once and square `d` times. Args: value: tensor whose exp is to be calculated iterations (int): number of iterations for limit approximation Ref: https://github.com/LaRiffle/approximate-models Returns: MPCTensor: the calculated exponential of the given tensor """ result = (value / 2**iterations) + 1 for _ in range(iterations): result = result * result return result
9cfbb63d39d41e92b506366244ec6e77d52162b2
3,657,344
def isDllInCorrectPath(): """ Returns True if the BUFFY DLL is present and in the correct location (...\<BTS>\Mods\<BUFFY>\Assets\). """ return IS_DLL_IN_CORRECT_PATH
ea31391d41ba04b27df70124a65fdb48791cce57
3,657,346
import time def time_remaining(event_time): """ Args: event_time (time.struct_time): Time of the event. Returns: float: Time remaining between now and the event, in seconds since epoch. """ now = time.localtime() time_remaining = time.mktime(event_time) - time.mktime(now) return time_remaining
cb3dfcf916cffc3b45f215f7642aeac8a1d6fef7
3,657,347
def _repeat(values, count): """Produces a list of lists suitable for testing interleave. Args: values: for each element `x` the result contains `[x] * x` count: determines how many times to repeat `[x] * x` in the result Returns: A list of lists of values suitable for testing interleave. """ return [[value] * value for value in np.tile(values, count)]
46aa7899e7ed536525b7a94675edf89958f6f37f
3,657,348
from functools import reduce def P2D_l_TAN(df, cond, attr): # P(attr | 'target', cond) """Calcule la probabilité d'un attribut sachant la classe et un autre attribut. Parameters ---------- df : pandas.DataFrame La base d'examples. cond : str Le nom de l'attribut conditionnant. attr : str Le nom de l'attribut conditionné. Returns ------- dict of (int, number): (dict of number: float) Un dictionnaire associant au couple (`t`, `c`), de classe `t` et de valeur d'attribut conditionnant `c`, un dictionnaire qui associe à la valeur `a` de l'attribut conditionné la probabilité .. math:: P(attr=a|target=t,cond=c). """ joint_target_cond_attr = getJoint(df, ['target', cond, attr]) joint_target_cond = getJoint(df, ['target', cond]) raw_dico = dict(divide(joint_target_cond_attr, joint_target_cond)) dicos = [{(k_t, k_c): {k_a: proba}} for (k_t, k_c, k_a), proba in raw_dico.items()] res = {} reduce(reduce_update, [res] + dicos) return res
88affcaea0368c400ccd25356d97a25c9a88a15e
3,657,349
def has_no_jump(bigram, peaks_groundtruth): """ Tell if the two components of the bigram are same or successive in the sequence of valid peaks or not For exemple, if groundtruth = [1,2,3], [1,1] or [2,3] have no jump but [1,3] has a jump. bigram : the bigram to judge peaks_groundtruth : the list of valid peaks Return boolean """ assert len(bigram) == 2 if len(set(bigram)) == 1: return True sorted_groundtruth = sorted(peaks_groundtruth) sorted_peaks = sorted(list(bigram)) begin = sorted_groundtruth.index(sorted_peaks[0]) end = begin+len(sorted_peaks) return sorted_peaks == sorted_groundtruth[begin:end]
e334c389436d5cda2642f8ac7629b64074dcd0e0
3,657,350
import base64 def Base64WSDecode(s): """ Return decoded version of given Base64 string. Ignore whitespace. Uses URL-safe alphabet: - replaces +, _ replaces /. Will convert s of type unicode to string type first. @param s: Base64 string to decode @type s: string @return: original string that was encoded as Base64 @rtype: bytes @raise Base64DecodingError: If length of string (ignoring whitespace) is one more than a multiple of four. """ s = RawString(s) # Base64W decode can only work with strings s = ''.join(s.splitlines()) s = str(s.replace(" ", "")) # kill whitespace, make string (not unicode) d = len(s) % 4 if d == 1: raise kzr_errors.Base64DecodingError() elif d == 2: s += "==" elif d == 3: s += "=" s = RawBytes(s) try: return base64.urlsafe_b64decode(s) except TypeError: # Decoding raises TypeError if s contains invalid characters. raise kzr_errors.Base64DecodingError()
67db2d3f298e0220411f224299dcb20feeba5b3e
3,657,351
def make_window(): """create the window""" window = Tk() window.title("Pac-Man") window.geometry("%dx%d+%d+%d" % ( WINDOW_WIDTH, WINDOW_HEIGHT, X_WIN_POS, Y_WIN_POS ) ) window = window return window
1e9ecb5acf91e75797520c54be1087d24392f190
3,657,352
def hasf(e): """ Returns a function which if applied with `x` tests whether `x` has `e`. Examples -------- >>> filter(hasf("."), ['statement', 'A sentence.']) ['A sentence.'] """ return lambda x: e in x
ac9ce7cf2ed2ee8a050acf24a8d0a3b95b7f2d50
3,657,354
def borehole_model(x, theta): """Given x and theta, return matrix of [row x] times [row theta] of values.""" return f
9ccfd530ff162d5f2ec786757ec03917f3367635
3,657,355
def findNodesOnHostname(hostname): """Return the list of nodes name of a (non-dmgr) node on the given hostname, or None Function parameters: hostname - the hostname to check, with or without the domain suffix """ m = "findNodesOnHostname:" nodes = [] for nodename in listNodes(): if hostname.lower() == getNodeHostname(nodename).lower(): sop(m, "Found node %s which is on %s" % (nodename, hostname)) nodes.append(nodename) #endif #endfor # Not found - try matching without domain - z/OS systems might not have domain configured shorthostname = hostname.split(".")[0].lower() for nodename in listNodes(): shortnodehostname = getNodeHostname(nodename).split(".")[0].lower() if shortnodehostname == shorthostname: if nodename in nodes : sop(m, "Node name %s was already found with the domain attached" % nodename) else : nodes.append(nodename) sop(m, "Found node %s which is on %s" % (nodename, hostname)) #endif #endif #endfor if len(nodes) == 0 : sop(m,"WARNING: Unable to find any node with the hostname %s (not case-sensitive)" % hostname) sop(m,"HERE are the hostnames that your nodes think they're on:") for nodename in listNodes(): sop(m,"\tNode %s: hostname %s" % (nodename, getNodeHostname(nodename))) #endfor return None else : return nodes #endif
3a4f28d5fa8c72388cb81d40913e517d343834f0
3,657,356
def MakeControlClass( controlClass, name = None ): """Given a CoClass in a generated .py file, this function will return a Class object which can be used as an OCX control. This function is used when you do not want to handle any events from the OCX control. If you need events, then you should derive a class from both the activex.Control class and the CoClass """ if name is None: name = controlClass.__name__ return new_type("OCX" + name, (Control, controlClass), {})
634544543027b1870bb72544517511d4f7b08e39
3,657,357
def obtenTipoNom(linea): """ Obtiene por ahora la primera palabra del título, tendría que regresar de que se trata""" res = linea.split('\t') return res[6].partition(' ')[0]
73edc42c5203b7ebd0086876096cdd3b7c65a54c
3,657,358
def histogramfrom2Darray(array, nbins): """ Creates histogram of elements from 2 dimensional array :param array: input 2 dimensional array :param nbins: number of bins so that bin size = (maximum value in array - minimum value in array) / nbins the motivation for returning this array is for the purpose of easily plotting with matplotlib :return: list of three elements: list[0] = length nbins list of integers, a histogram of the array elements list[1] = length nbins list of values of array element types, values of the lower end of the bins list[2] = [minimum in list, maximum in list] this is just good to know sometimes. """ #find minimum minimum = np.min(array) #find maximu maximum = np.max(array) #compute bin size binsize = (maximum - minimum) / nbins #create bin array bins = [minimum + binsize * i for i in range(nbins)] histo = [0 for b in range(nbins)] for x in array: for y in x: #find the lower end of the affiliated bin ab = y - (minimum + fmod(y - minimum, binsize)) histo[int(ab/binsize)-1] += 1 return [histo, bins, [minimum, maximum]]
2c377b926b4708b6a6b29d400ae82b8d2931b938
3,657,359
def build_pert_reg(unsupervised_regularizer, cut_backg_noise=1.0, cut_prob=1.0, box_reg_scale_mode='fixed', box_reg_scale=0.25, box_reg_random_aspect_ratio=False, cow_sigma_range=(4.0, 8.0), cow_prop_range=(0.0, 1.0),): """Build perturbation regularizer.""" if unsupervised_regularizer == 'none': unsup_reg = None augment_twice = False elif unsupervised_regularizer == 'mt': unsup_reg = regularizers.IdentityRegularizer() augment_twice = False elif unsupervised_regularizer == 'aug': unsup_reg = regularizers.IdentityRegularizer() augment_twice = True elif unsupervised_regularizer == 'cutout': unsup_reg = regularizers.BoxMaskRegularizer( cut_backg_noise, cut_prob, box_reg_scale_mode, box_reg_scale, box_reg_random_aspect_ratio) augment_twice = False elif unsupervised_regularizer == 'aug_cutout': unsup_reg = regularizers.BoxMaskRegularizer( cut_backg_noise, cut_prob, box_reg_scale_mode, box_reg_scale, box_reg_random_aspect_ratio) augment_twice = True elif unsupervised_regularizer == 'cowout': unsup_reg = regularizers.CowMaskRegularizer( cut_backg_noise, cut_prob, cow_sigma_range, cow_prop_range) augment_twice = False elif unsupervised_regularizer == 'aug_cowout': unsup_reg = regularizers.CowMaskRegularizer( cut_backg_noise, cut_prob, cow_sigma_range, cow_prop_range) augment_twice = True else: raise ValueError('Unknown supervised_regularizer \'{}\''.format( unsupervised_regularizer)) return unsup_reg, augment_twice
37d60049146c876d423fea6615cf43975f1ae389
3,657,360
def part_5b_avg_std_dev_of_replicates_analysis_completed(*jobs): """Check that the initial job data is written to the json files.""" file_written_bool_list = [] all_file_written_bool_pass = False for job in jobs: data_written_bool = False if job.isfile( f"../../src/engines/gomc/averagesWithinReplicatez.txt" ) and job.isfile(f"../../src/engines/gomc/setAverages.txt"): data_written_bool = True file_written_bool_list.append(data_written_bool) if False not in file_written_bool_list: all_file_written_bool_pass = True return all_file_written_bool_pass
f238382e18de32b86598d5daa13f92af01311d3d
3,657,361
def exportFlatClusterData(filename, root_dir, dataset_name, new_row_header,new_column_header,xt,ind1,ind2,display): """ Export the clustered results as a text file, only indicating the flat-clusters rather than the tree """ filename = string.replace(filename,'.pdf','.txt') export_text = export.ExportFile(filename) column_header = string.join(['UID','row_clusters-flat']+new_column_header,'\t')+'\n' ### format column-names for export export_text.write(column_header) column_clusters = string.join(['column_clusters-flat','']+ map(str, ind2),'\t')+'\n' ### format column-flat-clusters for export export_text.write(column_clusters) ### The clusters, dendrogram and flat clusters are drawn bottom-up, so we need to reverse the order to match #new_row_header = new_row_header[::-1] #xt = xt[::-1] try: elite_dir = getGOEliteExportDir(root_dir,dataset_name) except Exception: elite_dir = None elite_columns = string.join(['InputID','SystemCode']) try: sy = systemCodeCheck(new_row_header) except Exception: sy = None ### Export each row in the clustered data matrix xt i=0 cluster_db={} export_lines = [] for row in xt: id = new_row_header[i] if sy == '$En:Sy': cluster = 'cluster-'+string.split(id,':')[0] elif sy == 'S' and ':' in id: cluster = 'cluster-'+string.split(id,':')[0] elif sy == 'Sy' and ':' in id: cluster = 'cluster-'+string.split(id,':')[0] else: cluster = 'c'+str(ind1[i]) try: cluster_db[cluster].append(new_row_header[i]) except Exception: cluster_db[cluster] = [new_row_header[i]] export_lines.append(string.join([new_row_header[i],str(ind1[i])]+map(str, row),'\t')+'\n') i+=1 ### Reverse the order of the file export_lines.reverse() for line in export_lines: export_text.write(line) export_text.close() ### Export GO-Elite input files allGenes={} for cluster in cluster_db: export_elite = export.ExportFile(elite_dir+'/'+cluster+'.txt') if sy==None: export_elite.write('ID\n') else: export_elite.write('ID\tSystemCode\n') for id in cluster_db[cluster]: if sy == '$En:Sy': id = string.split(id,':')[1] ids = string.split(id,' ') if 'ENS' in ids[0]: id = ids[0] else: id = ids[-1] sc = 'En' elif sy == 'Sy' and ':' in id: id = string.split(id,':')[1] ids = string.split(id,' ') sc = 'Sy' elif sy == 'En:Sy': id = string.split(id,' ')[0] sc = 'En' elif sy == 'Ae': l = string.split(id,':') if len(l)==2: id = string.split(id,':')[0] ### Use the Ensembl if len(l) == 3: id = string.split(id,':')[1] ### Use the Ensembl sc = 'En' else: sc = sy if sy == 'S': if ':' in id: id = string.split(id,':')[-1] sc = 'Ae' try: export_elite.write(id+'\t'+sc+'\n') except Exception: export_elite.write(id+'\n') ### if no System Code known allGenes[id]=[] export_elite.close() try: if storeGeneSetName != None: if len(storeGeneSetName)>0 and 'driver' not in justShowTheseIDs: exportCustomGeneSet(storeGeneSetName,species,allGenes) print 'Exported geneset to "StoredGeneSets"' except Exception: pass ### Export as CDT file filename = string.replace(filename,'.txt','.cdt') if display: try: exportJTV(filename, new_column_header, new_row_header) except Exception: pass export_cdt = export.ExportFile(filename) column_header = string.join(['UNIQID','NAME','GWEIGHT']+new_column_header,'\t')+'\n' ### format column-names for export export_cdt.write(column_header) eweight = string.join(['EWEIGHT','','']+ ['1']*len(new_column_header),'\t')+'\n' ### format column-flat-clusters for export export_cdt.write(eweight) ### Export each row in the clustered data matrix xt i=0; cdt_lines=[] for row in xt: cdt_lines.append(string.join([new_row_header[i]]*2+['1']+map(str, row),'\t')+'\n') i+=1 ### Reverse the order of the file cdt_lines.reverse() for line in cdt_lines: export_cdt.write(line) export_cdt.close() return elite_dir, filename
f9ade521b67c87518741fb56fb1c80df0961065a
3,657,362
def indent_multiline(s: str, indentation: str = " ", add_newlines: bool = True) -> str: """Indent the given string if it contains more than one line. Args: s: String to indent indentation: Indentation to prepend to each line. add_newlines: Whether to add newlines surrounding the result if indentation was added. """ lines = s.splitlines() if len(lines) <= 1: return s lines_str = "\n".join(f"{indentation}{line}" for line in lines) if add_newlines: return f"\n{lines_str}\n" else: return lines_str
62eb2fc7c3f3b493a6edc009692f472e50e960f7
3,657,363
from typing import Optional def _get_property(self, key: str, *, offset: int = 0) -> Optional[int]: """Get a property from the location details. :param key: The key for the property :param offset: Any offset to apply to the value (if found) :returns: The property as an int value if found, None otherwise """ value = self.location_details.get(key) if value is None: return None return int(value[0]) + offset
8d2c35a88810db5255cfb0ca9d7bfa6345ff3276
3,657,364
def pca_normalization(points): """Projects points onto the directions of maximum variance.""" points = np.transpose(points) pca = PCA(n_components=len(np.transpose(points))) points = pca.fit_transform(points) return np.transpose(points)
753bea2546341fc0be3e7cf4fd444b3ee93378f9
3,657,365
def _reformTrend(percs, inits): """ Helper function to recreate original trend based on percent change data. """ trend = [] trend.append(percs[0]) for i in range(1, len(percs)): newLine = [] newLine.append(percs[i][0]) #append the date for j in range(1, len(percs[i])): #for each term on date level = float(trend[i-1][j]) * percs[i][j].numerator / percs[i][j].denominator #level is the prev level * %change newLine.append(level) trend.append(newLine) return trend
1f6c8bbb4786b53ea2c06643108ff50691b6f89c
3,657,366
def PET_initialize_compression_structure(N_axial,N_azimuthal,N_u,N_v): """Obtain 'offsets' and 'locations' arrays for fully sampled PET compressed projection data. """ descriptor = [{'name':'N_axial','type':'uint','value':N_axial}, {'name':'N_azimuthal','type':'uint','value':N_azimuthal}, {'name':'N_u','type':'uint','value':N_u}, {'name':'N_v','type':'uint','value':N_v}, { 'name':'offsets','type':'array','value':None, 'dtype':np.int32,'size':(N_azimuthal,N_axial), 'order':'F' }, { 'name':'locations','type':'array','value':None, 'dtype':np.uint16, 'size':(3,N_u * N_v * N_axial * N_azimuthal),'order':'F' }, ] r = call_c_function(niftyrec_c.PET_initialize_compression_structure, descriptor) if not r.status == status_success(): raise ErrorInCFunction( "The execution of 'PET_initialize_compression_structure' was unsuccessful.", r.status, 'niftyrec_c.PET_initialize_compression_structure') return [r.dictionary['offsets'],r.dictionary['locations']]
1f879517182462d8b66886aa43a4103a05a5b6f9
3,657,367
def get_client_from_user_settings(settings_obj): """Same as get client, except its argument is a DropboxUserSettingsObject.""" return get_client(settings_obj.owner)
4b2c2e87310464807bf6f73d1ff8d7b7c21731ff
3,657,368
def train_student( model, dataset, test_data, test_labels, nb_labels, nb_teachers, stdnt_share, lap_scale, ): """This function trains a student using predictions made by an ensemble of teachers. The student and teacher models are trained using the same neural network architecture. :param dataset: string corresponding to mnist, cifar10, or svhn :param nb_teachers: number of teachers (in the ensemble) to learn from :return: True if student training went well """ # Call helper function to prepare student data using teacher predictions stdnt_dataset = prepare_student_data( model, dataset, test_data, test_labels, nb_labels, nb_teachers, stdnt_share, lap_scale, ) # Unpack the student dataset stdnt_data, stdnt_labels, stdnt_test_data, stdnt_test_labels = stdnt_dataset # Prepare checkpoint filename and path filename = str(dataset) + "_" + str(nb_teachers) + "_student.ckpt" stdnt_prep = PrepareData(stdnt_data, stdnt_labels) stdnt_loader = DataLoader(stdnt_prep, batch_size=64, shuffle=False) stdnt_test_prep = PrepareData(stdnt_test_data, stdnt_test_labels) stdnt_test_loader = DataLoader(stdnt_test_prep, batch_size=64, shuffle=False) # Start student training train(model, stdnt_loader, stdnt_test_loader, ckpt_path, filename) # Compute final checkpoint name for student student_preds = softmax_preds( model, nb_labels, stdnt_test_loader, ckpt_path + filename ) # Compute teacher accuracy precision = accuracy(student_preds, stdnt_test_labels) print("\nPrecision of student after training: " + str(precision)) return True
de8db38bde151f5dd65b93a0c8a44c2289351f81
3,657,369
import numpy def create_transition_matrix_numeric(mu, d, v): """ Use numerical integration. This is not so compatible with algopy because it goes through fortran. Note that d = 2*h - 1 following Kimura 1957. The rate mu is a catch-all scaling factor. The finite distribution v is assumed to be a stochastic vector. @param mu: scales the rate matrix @param d: dominance (as opposed to recessiveness) of preferred states. @param v: numpy array defining a distribution over states @return: transition matrix """ # Construct the numpy matrix whose entries # are differences of log equilibrium probabilities. # Everything in this code block is pure numpy. F = numpy.log(v) e = numpy.ones_like(F) S = numpy.outer(e, F) - numpy.outer(F, e) # Create the rate matrix Q and return its matrix exponential. # Things in this code block may use algopy if mu and d # are bundled with truncated Taylor information. D = d * numpy.sign(S) pre_Q = numpy.vectorize(numeric_fixation)(0.5*S, D) pre_Q = mu * pre_Q Q = pre_Q - algopy.diag(algopy.sum(pre_Q, axis=1)) P = algopy.expm(Q) return P
a60a3da34089fffe2a48cc282ea4cbb528454fd6
3,657,370
def channelmap(stream: Stream, *args, **kwargs) -> FilterableStream: """https://ffmpeg.org/ffmpeg-filters.html#channelmap""" return filter(stream, channelmap.__name__, *args, **kwargs)
8293e9004fd4dfb7ff830e477dcee4de5d163a5d
3,657,372
def test_token(current_user: DBUser = Depends(get_current_user)): """ Test access-token """ return current_user
1ceb90c1321e358124520ab5b1b1ecb07de4619d
3,657,373
def process_label_imA(im): """Crop a label image so that the result contains all labels, then return separate images, one for each label. Returns a dictionary of images and corresponding labels (for choosing colours), also a scene bounding box. Need to run shape statistics to determine the number of labels and the IDs """ # stuff to figure out which way we slice, etc isoidx = check_isotropy(im) otheridx = [0, 1, 2] otheridx.remove(isoidx) direction = get_direction(im, isoidx) sp = im.GetSpacing() sp = str2ds(sp) spacing = [sp[i] for i in otheridx] slthickness = sp[isoidx] labstats = sitk.LabelShapeStatisticsImageFilter() labstats.Execute(im) labels = labstats.GetLabels() boxes = [labstats.GetBoundingBox(i) for i in labels] # Need to compute bounding box for all labels, as # this will set the row/colums # boxes are corner and size - this code assumes 3D corners = [(x[0], x[1], x[2]) for x in boxes] othercorner = [(x[0] + x[3] - 1, x[1] + x[4] - 1, x[2] + x[5] - 1) for x in boxes] sizes = [(x[3], x[4], x[5]) for x in boxes] all_low_x = [C[0] for C in corners] all_low_y = [C[1] for C in corners] all_low_z = [C[2] for C in corners] low_x = min(all_low_x) low_y = min(all_low_y) low_z = min(all_low_z) lowcorner = (low_x, low_y, low_z) all_high_x = [C[0] for C in othercorner] all_high_y = [C[1] for C in othercorner] all_high_z = [C[2] for C in othercorner] high_x = max(all_high_x) high_y = max(all_high_y) high_z = max(all_high_z) highcorner = (high_x, high_y, high_z) allsize = (highcorner[0] - lowcorner[0] + 1, highcorner[1] - lowcorner[1] + 1, highcorner[2] - lowcorner[2] + 1) # corners [otheridx] and size[otheridx] should be all the same newcorners = [list(x) for x in corners] newsizes = [list(x) for x in sizes] a = otheridx[0] b = otheridx[1] for f in range(len(newcorners)): newcorners[f][a] = lowcorner[a] newcorners[f][b] = lowcorner[b] newsizes[f][a] = allsize[a] newsizes[f][b] = allsize[b] ims = [sitk.RegionOfInterest(im, allsize, lowcorner) == labels[i] for i in range(len(labels))] imcrop = sitk.RegionOfInterest(im, allsize, lowcorner) return({'rois': ims, 'labels': labels, 'original': im, 'cropped': imcrop})
66e89e84d773d102c8fe7a6d10dd0604b52d9862
3,657,375
def render_graphs(csv_data, append_titles=""): """ Convenience function. Gets the aggregated `monthlies` data from `aggregate_monthly_data(csv_data)` and returns a dict of graph titles mapped to rendered SVGs from `monthly_total_precip_line()` and `monthly_avg_min_max_temp_line()` using the `monthlies` data. """ monthlies = aggregate_monthly_data(csv_data) return { graph.config.title: graph.render() for graph in [ monthly_total_precip_line(monthlies, append_titles), monthly_avg_min_max_temp_line(monthlies, append_titles), monthly_max_temps_box(monthlies, append_titles), ] }
c2258faf759c2fd91e55fea06384d5f7ec030154
3,657,376
import traceback def _get_location(): """Return the location as a string, accounting for this function and the parent in the stack.""" return "".join(traceback.format_stack(limit=STACK_LIMIT + 2)[:-2])
f36037a440d2e8f3613beed217a758bc0cfa752d
3,657,377
def start_session(): """do nothing here """ return Response.failed_response('Error')
b8c58ec837c5a77c35cb6682c6c405489cf512c0
3,657,379
def _combine_keras_model_with_trill(embedding_tfhub_handle, aggregating_model): """Combines keras model with TRILL model.""" trill_layer = hub.KerasLayer( handle=embedding_tfhub_handle, trainable=False, arguments={'sample_rate': 16000}, output_key='embedding', output_shape=[None, 2048] ) input1 = tf.keras.Input([None]) trill_output = trill_layer(input1) final_out = aggregating_model(trill_output) final_model = tf.keras.Model( inputs=input1, outputs=final_out) return final_model
97bf695e6b083dfefcad1d2c8ac24b54687047fd
3,657,380
def phases(times, names=[]): """ Creates named phases from a set of times defining the edges of hte intervals """ if not names: names = range(len(times)-1) return {names[i]:[times[i], times[i+1]] for (i, _) in enumerate(times) if i < len(times)-1}
0e56dcf57a736e4555cae02b8f79b827c17e1d38
3,657,381
def smesolve(H, rho0, times, c_ops=[], sc_ops=[], e_ops=[], _safe_mode=True, args={}, **kwargs): """ Solve stochastic master equation. Dispatch to specific solvers depending on the value of the `solver` keyword argument. Parameters ---------- H : :class:`qutip.Qobj`, or time dependent system. System Hamiltonian. Can depend on time, see StochasticSolverOptions help for format. rho0 : :class:`qutip.Qobj` Initial density matrix or state vector (ket). times : *list* / *array* List of times for :math:`t`. Must be uniformly spaced. c_ops : list of :class:`qutip.Qobj`, or time dependent Qobjs. Deterministic collapse operator which will contribute with a standard Lindblad type of dissipation. Can depend on time, see StochasticSolverOptions help for format. sc_ops : list of :class:`qutip.Qobj`, or time dependent Qobjs. List of stochastic collapse operators. Each stochastic collapse operator will give a deterministic and stochastic contribution to the eqaution of motion according to how the d1 and d2 functions are defined. Can depend on time, see StochasticSolverOptions help for format. e_ops : list of :class:`qutip.Qobj` single operator or list of operators for which to evaluate expectation values. kwargs : *dictionary* Optional keyword arguments. See :class:`qutip.stochastic.StochasticSolverOptions`. Returns ------- output: :class:`qutip.solver.Result` An instance of the class :class:`qutip.solver.Result`. """ if "method" in kwargs and kwargs["method"] == "photocurrent": print("stochastic solver with photocurrent method has been moved to " "it's own function: photocurrent_mesolve") return photocurrent_mesolve(H, rho0, times, c_ops=c_ops, sc_ops=sc_ops, e_ops=e_ops, _safe_mode=_safe_mode, args=args, **kwargs) if isket(rho0): rho0 = ket2dm(rho0) if isinstance(e_ops, dict): e_ops_dict = e_ops e_ops = [e for e in e_ops.values()] else: e_ops_dict = None sso = StochasticSolverOptions(True, H=H, state0=rho0, times=times, c_ops=c_ops, sc_ops=sc_ops, e_ops=e_ops, args=args, **kwargs) if _safe_mode: _safety_checks(sso) if sso.solver_code == 120: return _positive_map(sso, e_ops_dict) sso.LH = liouvillian(sso.H, c_ops=sso.sc_ops + sso.c_ops) * sso.dt if sso.method == 'homodyne' or sso.method is None: if sso.m_ops is None: sso.m_ops = [op + op.dag() for op in sso.sc_ops] sso.sops = [spre(op) + spost(op.dag()) for op in sso.sc_ops] if not isinstance(sso.dW_factors, list): sso.dW_factors = [1] * len(sso.m_ops) elif len(sso.dW_factors) != len(sso.m_ops): raise Exception("The len of dW_factors is not the same as m_ops") elif sso.method == 'heterodyne': if sso.m_ops is None: m_ops = [] sso.sops = [] for c in sso.sc_ops: if sso.m_ops is None: m_ops += [c + c.dag(), -1j * c - c.dag()] sso.sops += [(spre(c) + spost(c.dag())) / np.sqrt(2), (spre(c) - spost(c.dag())) * -1j / np.sqrt(2)] sso.m_ops = m_ops if not isinstance(sso.dW_factors, list): sso.dW_factors = [np.sqrt(2)] * len(sso.sops) elif len(sso.dW_factors) == len(sso.m_ops): pass elif len(sso.dW_factors) == len(sso.sc_ops): dW_factors = [] for fact in sso.dW_factors: dW_factors += [np.sqrt(2) * fact, np.sqrt(2) * fact] sso.dW_factors = dW_factors elif len(sso.dW_factors) != len(sso.m_ops): raise Exception("The len of dW_factors is not the same as sc_ops") elif sso.method == "photocurrent": raise NotImplementedError("Moved to 'photocurrent_mesolve'") else: raise Exception("The method must be one of None, homodyne, heterodyne") sso.ce_ops = [QobjEvo(spre(op)) for op in sso.e_ops] sso.cm_ops = [QobjEvo(spre(op)) for op in sso.m_ops] sso.LH.compile() [op.compile() for op in sso.sops] [op.compile() for op in sso.cm_ops] [op.compile() for op in sso.ce_ops] if sso.solver_code in [103, 153]: sso.imp = 1 - sso.LH * 0.5 sso.imp.compile() sso.solver_obj = SMESolver sso.solver_name = "smesolve_" + sso.solver res = _sesolve_generic(sso, sso.options, sso.progress_bar) if e_ops_dict: res.expect = {e: res.expect[n] for n, e in enumerate(e_ops_dict.keys())} return res
4a27d54d2ca390bb3e4ac88ec2119633481df529
3,657,382
def harmonic_vector(n): """ create a vector in the form [1,1/2,1/3,...1/n] """ return np.array([[1.0 / i] for i in range(1, n + 1)], dtype='double')
6f2a94e0a54566db614bb3c4916e1a8538783862
3,657,383
import copy def get_install_task_flavor(job_config): """ Pokes through the install task's configuration (including its overrides) to figure out which flavor it will want to install. Only looks at the first instance of the install task in job_config. """ project, = job_config.get('project', 'ceph'), tasks = job_config.get('tasks', dict()) overrides = job_config.get('overrides', dict()) install_overrides = overrides.get('install', dict()) project_overrides = install_overrides.get(project, dict()) first_install_config = dict() for task in tasks: if task.keys()[0] == 'install': first_install_config = task.values()[0] or dict() break first_install_config = copy.deepcopy(first_install_config) deep_merge(first_install_config, install_overrides) deep_merge(first_install_config, project_overrides) return get_flavor(first_install_config)
11fcefe3df17acfbce395949aa615d8292585fb6
3,657,384
def equalize_hist(image, nbins=256): """Return image after histogram equalization. Parameters ---------- image : array Image array. nbins : int Number of bins for image histogram. Returns ------- out : float array Image array after histogram equalization. Notes ----- This function is adapted from [1]_ with the author's permission. References ---------- .. [1] http://www.janeriksolem.net/2009/06/histogram-equalization-with-python-and.html .. [2] http://en.wikipedia.org/wiki/Histogram_equalization """ image = img_as_float(image) cdf, bin_centers = cumulative_distribution(image, nbins) out = np.interp(image.flat, bin_centers, cdf) return out.reshape(image.shape)
ea990cee9bef0e2edc41e2c5279f52b98d2a4d89
3,657,385
def add9336(rh): """ Adds a 9336 (FBA) disk to virtual machine's directory entry. Input: Request Handle with the following properties: function - 'CHANGEVM' subfunction - 'ADD9336' userid - userid of the virtual machine parms['diskPool'] - Disk pool parms['diskSize'] - size of the disk in blocks or bytes. parms['fileSystem'] - Linux filesystem to install on the disk. parms['mode'] - Disk access mode parms['multiPW'] - Multi-write password parms['readPW'] - Read password parms['vaddr'] - Virtual address parms['writePW'] - Write password Output: Request Handle updated with the results. Return code - 0: ok, non-zero: error """ rh.printSysLog("Enter changeVM.add9336") results, blocks = generalUtils.cvtToBlocks(rh, rh.parms['diskSize']) if results['overallRC'] != 0: # message already sent. Only need to update the final results. rh.updateResults(results) if results['overallRC'] == 0: parms = [ "-T", rh.userid, "-v", rh.parms['vaddr'], "-t", "9336", "-a", "AUTOG", "-r", rh.parms['diskPool'], "-u", "1", "-z", blocks, "-f", "1"] hideList = [] if 'mode' in rh.parms: parms.extend(["-m", rh.parms['mode']]) else: parms.extend(["-m", 'W']) if 'readPW' in rh.parms: parms.extend(["-R", rh.parms['readPW']]) hideList.append(len(parms) - 1) if 'writePW' in rh.parms: parms.extend(["-W", rh.parms['writePW']]) hideList.append(len(parms) - 1) if 'multiPW' in rh.parms: parms.extend(["-M", rh.parms['multiPW']]) hideList.append(len(parms) - 1) results = invokeSMCLI(rh, "Image_Disk_Create_DM", parms, hideInLog=hideList) if results['overallRC'] != 0: # SMAPI API failed. rh.printLn("ES", results['response']) rh.updateResults(results) # Use results from invokeSMCLI if (results['overallRC'] == 0 and 'fileSystem' in rh.parms): # Install the file system results = installFS( rh, rh.parms['vaddr'], rh.parms['mode'], rh.parms['fileSystem'], "9336") if results['overallRC'] == 0: results = isLoggedOn(rh, rh.userid) if (results['overallRC'] == 0 and results['rs'] == 0): # Add the disk to the active configuration. parms = [ "-T", rh.userid, "-v", rh.parms['vaddr'], "-m", rh.parms['mode']] results = invokeSMCLI(rh, "Image_Disk_Create", parms) if results['overallRC'] == 0: rh.printLn("N", "Added dasd " + rh.parms['vaddr'] + " to the active configuration.") else: # SMAPI API failed. rh.printLn("ES", results['response']) rh.updateResults(results) # Use results from invokeSMCLI rh.printSysLog("Exit changeVM.add9336, rc: " + str(rh.results['overallRC'])) return rh.results['overallRC']
bb7168d5b0ee084b15e8ef91633d5554669cf83f
3,657,386
def get_related(user, kwargs): """ Get related model from user's input. """ for item in user.access_extra: if item[1] in kwargs: related_model = apps.get_model(item[0], item[1]) kwargs[item[1]] = related_model.objects.get(pk=get_id(kwargs[item[1]])) return kwargs
6b2ce081d1f61da734d26ef6f3c25e4da871b9ee
3,657,388
def make_logical(n_tiles=1): """ Make a toy dataset with three labels that represent the logical functions: OR, XOR, AND (functions of the 2D input). """ pat = np.array([ # X X Y Y Y [0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [1, 0, 1, 1, 0], [1, 1, 1, 0, 1] ], dtype=int) N, E = pat.shape D = 2 L = E - D pat2 = np.zeros((N, E)) pat2[:, 0:L] = pat[:, D:E] pat2[:, L:E] = pat[:, 0:D] pat2 = np.tile(pat2, (n_tiles, 1)) np.random.shuffle(pat2) Y = np.array(pat2[:, 0:L], dtype=float) X = np.array(pat2[:, L:E], dtype=float) return X, Y
e2d936db7ae0d9ea8b0f1654e89a32b5b8c247cc
3,657,389
def get_idmap_etl( p_idmap: object, p_etl_id: str, p_source_table: object =None ): """ Генерирует скрипт ETL для таблицы Idmap :param p_idmap: объект класса Idmap :param p_etl_id: id etl процесса :param p_source_table: таблица источник, которую требуется загрузить в idmap (если не указана, возвращается лист с etl всех таблиц источников) """ l_source_table_id=None if p_source_table: l_source_table_id=p_source_table.id l_etl=[] l_idmap_nk_column=None l_idmap_rk_column=None l_etl_column=None for i_attribute in _get_table_attribute_property(p_table=p_idmap): if i_attribute.attribute_type==C_RK: l_idmap_rk_column=i_attribute.id if i_attribute.attribute_type==C_NK: l_idmap_nk_column=i_attribute.id if i_attribute.attribute_type==C_ETL_ATTR: l_etl_column=i_attribute.id for i_source_table in p_idmap.entity.source_table: if l_source_table_id and l_source_table_id!=i_source_table.id: # пропускаем таблицу источник, если не она указана continue l_column_nk_sql="" # формируем скрипт для конкатенации натуральных ключей # сортируем список натуральных ключей по наименованию l_source_attribute_nk=sorted(p_idmap.source_attribute_nk, key=lambda nk: nk.name) for i_column_nk in l_source_attribute_nk: if i_source_table.id==i_column_nk.source_table.id: l_column_nk_sql=l_column_nk_sql+"CAST("+'"'+str(i_column_nk.id)+'"'+" AS VARCHAR(4000))\n\t\t||'@@'||\n\t\t" l_column_nk_sql=l_column_nk_sql[:-14] l_source_id=i_source_table.source.source_id # генерируем etl для каждой таблицы источника l_etl.append( Connection().dbms.get_idmap_etl( p_idmap_id=p_idmap.id, p_idmap_rk_id=l_idmap_rk_column, p_idmap_nk_id=l_idmap_nk_column, p_etl_id=l_etl_column, p_etl_value=p_etl_id, p_source_table_id=i_source_table.id, p_attribute_nk=l_column_nk_sql, p_source_id=l_source_id, p_max_rk=str(p_idmap.max_rk) ) ) return l_etl
0e24b4cbb5ea935c871cae3338094292c9ebfd02
3,657,390
def gs_tie(men, women, preftie): """ Gale-shapley algorithm, modified to exclude unacceptable matches Inputs: men (list of men's names) women (list of women's names) pref (dictionary of preferences mapping names to list of sets of preferred names in sorted order) Output: dictionary of stable matches """ rank = {} for w in women: rank[w] = {} i = 1 for m in preftie[w]: rank[w][tuple(m)] = i i += 1 #print(rank) prefpointer = {} for m in men: prefpointer[m] = 0 freemen = set(men) S = {} while(freemen) and prefpointer[m] < len(preftie[m]): m = freemen.pop() w = preftie[m][prefpointer[m]] w = tuple(w) #print(m + ' ' + str(w)) prefpointer[m] += 1 #print(m + ' ' + str(prefpointer[m])) for i in range(len(w)): if w[i] not in S: S[w[i]] = m #print(w[i]) else: mprime = S[w[i]] if m in rank[w[i]] and rank[w[i]][m] < rank[w[i]][mprime]: S[w[i]] = m freemen.add(mprime) else: freemen.add(m) #print(S) return S
b5dbe7047e3e6be7f0d288e49f8dae25a94db318
3,657,391
def is_iterable(value): """Return True if the object is an iterable type.""" return hasattr(value, '__iter__')
55e1ecc9b264d39aaf5cfcbe89fdc01264191d95
3,657,392
def get_search_app_by_model(model): """ :returns: a single search app (by django model) :param model: django model for the search app :raises LookupError: if it can't find the search app """ for search_app in get_search_apps(): if search_app.queryset.model is model: return search_app raise LookupError(f'search app for {model} not found.')
0670fe754df65b02d5dfc502ba3bd0a3a802370c
3,657,393
def prct_overlap(adata, key_1, key_2, norm=False, ax_norm="row", sort_index=False): """ % or cell count corresponding to the overlap of different cell types between 2 set of annotations/clusters. Parameters ---------- adata: AnnData objet key_1: observational key corresponding to one cell division/ one set of clusters key_2: bservational key corresponding to one cell division/ one set of clusters norm: normalise the ratio to the cell numbers given the total number of cells per cluster in key_1 Return ------ Table containing the ratio of cells within a cluster """ data_1 = adata.obs[key_1].tolist() data_2 = adata.obs[key_2].tolist() count = {k:[] for k in list(set(data_1))} #count = {k:[] for k in sorted(list(set(data_1)))} i = 0 for index in data_1: count[index].append(data_2[i]) i += 1 total_matrix = [] for key, value in count.items(): value = sorted(value) curr_key_list = [] for element in sorted(list(set(data_2))): curr_count = 0 for v in value: if element == v: curr_count += 1 curr_key_list.append(curr_count) curr_sum = sum(curr_key_list) #total_matrix.append([x/curr_sum for x in curr_key_list]) total_matrix.append(curr_key_list) if norm and ax_norm == "row": total_matrix = [] for key, value in count.items(): value = sorted(value) curr_key_list = [] for element in sorted(list(set(data_2))): curr_count = 0 for v in value: if element == v: curr_count += 1 curr_key_list.append(curr_count) curr_sum = sum(curr_key_list) total_matrix.append([x/curr_sum for x in curr_key_list]) elif norm: print("""error in the argument ax_norm or it is col and I haven't figure out how to make it for mow. , here is the heatmap with no normalisation""") if sort_index: data_heatmap = pd.DataFrame(data=np.matrix(total_matrix), index=list(set(data_1)), columns=sorted(list(set(data_2)))).sort_index() else: data_heatmap = pd.DataFrame(data=np.matrix(total_matrix), index=list(set(data_1)), columns=sorted(list(set(data_2)))) return(data_heatmap)
77a8382af77e8842a99211af58d6a6f85de6a50e
3,657,394
def keep_category(df, colname, pct=0.05, n=5): """ Keep a pct or number of every levels of a categorical variable Parameters ---------- pct : float Keep at least pct of the nb of observations having a specific category n : int Keep at least n of the variables having a specific category Returns -------- Returns an index of rows to keep """ tokeep = [] nmin = df.groupby(colname).apply(lambda x: x.sample( max(1, min(x.shape[0], n, int(x.shape[0] * pct)))).index) for index in nmin: tokeep += index.tolist() return pd.Index(tokeep)
3db00aa6bdea797827a693c8e12bbf942a55ec35
3,657,395
def remove_scope_from_name(name, scope): """ Args: name (str): full name of the tf variable with all the scopes Returns: (str): full name of the variable with the scope removed """ result = name.split(scope)[1] result = result[1:] if result[0] == '/' else result return result.split(":")[0]
aa70042a2f57185a0f5e401d182a02e5654eb2b0
3,657,396
async def get_timers_matching(ctx, name_str, channel_only=True, info=False): """ Interactively get a guild timer matching the given string. Parameters ---------- name_str: str Name or partial name of a group timer in the current guild or channel. channel_only: bool Whether to match against the groups in the current channel or those in the whole guild. info: bool Whether to display some summary info about the timer in the selector. Returns: Timer Raises ------ cmdClient.lib.UserCancelled: Raised if the user manually cancels the selection. cmdClient.lib.ResponseTimedOut: Raised if the user fails to respond to the selector within `120` seconds. """ # Get the full timer list if channel_only: timers = ctx.client.interface.get_channel_timers(ctx.ch.id) else: timers = ctx.client.interface.get_guild_timers(ctx.guild.id) # If there are no timers, quit early if not timers: return None # Build a list of matching timers name_str = name_str.strip() timers = [timer for timer in timers if name_str.lower() in timer.name.lower()] if len(timers) == 0: return None elif len(timers) == 1: return timers[0] else: if info: select_from = [timer.oneline_summary() for timer in timers] else: select_from = [timer.name for timer in timers] try: selected = await ctx.selector("Multiple matching groups found, please select one.", select_from) except ResponseTimedOut: raise ResponseTimedOut("Group selection timed out.") from None except UserCancelled: raise UserCancelled("User cancelled group selection.") from None return timers[selected]
48e94d2930f48b47b033ec024246065206a2bebb
3,657,397
import random def comprehension_array(size=1000000): """Fills an array that is handled by Python via list comprehension.""" return [random() * i for i in range(size)]
e3ccdc992e5b741cf6f164c93d36f2e45d59a590
3,657,398
def alignment(alpha, p, treatment): """Alignment confounding function. Reference: Blackwell, Matthew. "A selection bias approach to sensitivity analysis for causal effects." Political Analysis 22.2 (2014): 169-182. https://www.mattblackwell.org/files/papers/causalsens.pdf Args: alpha (np.array): a confounding values vector p (np.array): a propensity score vector between 0 and 1 treatment (np.array): a treatment vector (1 if treated, otherwise 0) """ assert p.shape[0] == treatment.shape[0] adj = alpha * (1 - p) * treatment + alpha * p * (1 - treatment) return adj
8097dbcd62ba934b31b1f8a9e72fd906109b5181
3,657,399
def percentiles(a, pcts, axis=None): """Like scoreatpercentile but can take and return array of percentiles. Parameters ---------- a : array data pcts : sequence of percentile values percentile or percentiles to find score at axis : int or None if not None, computes scores over this axis Returns ------- scores: array array of scores at requested percentiles first dimension is length of object passed to ``pcts`` """ scores = [] try: n = len(pcts) except TypeError: pcts = [pcts] n = 0 for i, p in enumerate(pcts): if axis is None: score = stats.scoreatpercentile(a.ravel(), p) else: score = np.apply_along_axis(stats.scoreatpercentile, axis, a, p) scores.append(score) scores = np.asarray(scores) if not n: scores = scores.squeeze() return scores
0e7217ec3e36a361a6747729543cd694912a2874
3,657,400
import json def single_request(gh,kname='CVE exploit',page=1,per_page=50): """ 解析单页仓库数据,获取CVE和exp标记 :return cve_list:list, cve id in each page by searching github.com """ cve=dict() url="https://api.github.com/search/repositories?q={key_name}&sort=updated&order=desc&page={page}&per_page={per_page}".format(key_name=kname,page=page,per_page=per_page) r=gh.call_to_the_api(url) if r: content=r.text js=json.loads(content) items=js['items'] total_count=js['total_count'] cve_add=single_parser(gh,items) if cve_add: cve={**cve,**cve_add} return total_count,cve else: return False,False
5fdd3fe28f0e973fb9d854e20b8ce77ed109d3c6
3,657,401
def stuff_context(sites, rup, dists): """ Function to fill a rupture context with the contents of all of the other contexts. Args: sites (SiteCollection): A SiteCollection object. rup (RuptureContext): A RuptureContext object. dists (DistanceContext): A DistanceContext object. Returns: RuptureContext: A new RuptureContext whose attributes are all of the elements of the three inputs. """ ctx = RuptureContext() for name in [name for name in vars(sites) if not name.startswith("__")]: setattr(ctx, name, getattr(sites, name)) for name in [name for name in vars(rup) if not name.startswith("__")]: setattr(ctx, name, getattr(rup, name)) for name in [name for name in vars(dists) if not name.startswith("__")]: setattr(ctx, name, getattr(dists, name)) return ctx
9c197a41414a875942a6df22c03899c3e936967f
3,657,403
def number_to_float(value): """The INDI spec allows a number of different number formats, given any, this returns a float :param value: A number string of a float, integer or sexagesimal :type value: String :return: The number as a float :rtype: Float """ # negative is True, if the value is negative negative = value.startswith("-") if negative: value = value.lstrip("-") # Is the number provided in sexagesimal form? if value == "": parts = [0, 0, 0] elif " " in value: parts = value.split(" ") elif ":" in value: parts = value.split(":") elif ";" in value: parts = value.split(";") else: # not sexagesimal parts = [value, "0", "0"] # Any missing parts should have zero if len(parts) == 2: # assume seconds are missing, set to zero parts.append("0") assert len(parts) == 3 number_strings = list(x if x else "0" for x in parts) # convert strings to integers or floats number_list = [] for part in number_strings: try: num = int(part) except ValueError: num = float(part) number_list.append(num) floatvalue = number_list[0] + (number_list[1]/60) + (number_list[2]/360) if negative: floatvalue = -1 * floatvalue return floatvalue
8b754a32848b3e697e0f82dbee4a1c35c560f1be
3,657,404
def spg_line_search_step_length(current_step_length, delta, f_old, f_new, sigma_one=0.1, sigma_two=0.9): """Return next step length for line search.""" step_length_tmp = (-0.5 * current_step_length ** 2 * delta / (f_new - f_old - current_step_length * delta)) next_step_length = 0 if sigma_one <= step_length_tmp <= sigma_two * current_step_length: next_step_length = step_length_tmp else: next_step_length = 0.5 * current_step_length return next_step_length
844cccdfe1ec3f9c2c287384284ceb2ac3530e8e
3,657,405
def calc_pv_invest(area, kw_to_area=0.125, method='EuPD'): """ Calculate PV investment cost in Euro Parameters ---------- area : float Photovoltaic area kw_to_area : float , optional Ratio of peak power to area (default: 0.125) For instance, 0.125 means 0.125 kWp / m2 area (http://www.solaranlagen-portal.com/photovoltaik/leistung) method : str, optional Method to calculate cost (default: 'EuPD') Options: - 'sap': Based on: Solaranlagenportal http://www.solaranlagen-portal.com/photovoltaik/kosten - 'EuPD': Based on: EuPD Research, Photovoltaik-Preismonitor Deutschland: German PV ModulePriceMonitor. Returns ------- pv_invest : float Investcost into PV system in Euro """ assert method in ['sap', 'EuPD'], 'Unknown method' assert area > 0, 'Area has to be larger than zero.' assert kw_to_area > 0, 'kWp / area ratio has to be larger than zero.' if method == 'sap': kw_peak = area * kw_to_area # kW peak load # kw_peak * (spec_price + spec_install_cost) + inverter cost pv_invest = kw_peak * (1100 + 120) + 2000 if method == 'EuPD': kw_peak = area * kw_to_area # kW peak load # kw_peak * (spec_cost) + inverter cost pv_invest = kw_peak * 1400 + 2000 return pv_invest
2de9ee05580bc9d41522272a06cd97aaf3f5bc55
3,657,407
def samps2ms(samples: float, sr: int) -> float: """samples to milliseconds given a sampling rate""" return (samples / sr) * 1000.0
49e07ee02984bf0e9a0a54715ef6b6e5a3c87798
3,657,409
def nice_year(dt, lang=None, bc=False): """Format a datetime to a pronounceable year. For example, generate 'nineteen-hundred and eighty-four' for year 1984 Args: dt (datetime): date to format (assumes already in local timezone) lang (string): the language to use, use Mycroft default language if not provided bc (bool) pust B.C. after the year (python does not support dates B.C. in datetime) Returns: (str): The formatted year string """ return lingua_franca.format.nice_year(dt, lang, bc)
641195195023ecca030f6cd8d12ff9a3fc9c989c
3,657,410
def get_results(job_id): """ Get the result of the job based on its id """ try: job = Job.fetch(job_id, connection=conn) if job.is_finished: return jsonify({ "status": "finished", "data": job.result }), 200 elif job.is_failed: return jsonify({ "status": "failed" }), 200 else: return jsonify({ "status": "in-progress" }), 200 except NoSuchJobError: return jsonify({ "msg": "job id does not exist" }), 404
ada9042cd4d7961415ec274a68631f6e9af81fad
3,657,411
def get_clean_dict(obj: HikaruBase) -> dict: """ Turns an instance of a HikaruBase into a dict without values of None This function returns a Python dict object that represents the hierarchy of objects starting at ``obj`` and recusing into any nested objects. The returned dict **does not** include any key/value pairs where the value of the key is None or empty. If you wish to instead have a dict with all key/value pairs even when there is no useful value then you should use the dataclasses module's ``asdict()`` function on obj. :param obj: some api_version_group of subclass of HikaruBase :return: a dict representation of the obj instance, but if any value in the dict was originally None, that key:value is removed from the returned dict, hence it is a minimal representation :raises TypeError: if the supplied obj is not a HikaruBase (dataclass), or if obj is not an instance of a HikaruBase subclass """ if not isinstance(obj, HikaruBase): raise TypeError("obj must be a kind of HikaruBase") initial_dict = asdict(obj) clean_dict = _clean_dict(initial_dict) return clean_dict
3daca47b6d8c42fca8856221f39b635791eb0fce
3,657,412
def generate_html_frieze(type, value): """ Gets the data to be able to generate the frieze. Calls the function to actually generate HTML. Input: - Type (session or dataset) of the second input - A SQLAlchemy DB session or a dataset (list of mappings) Output: - The HTML to be displayed """ if type == "session": session = value mappings = list(get_all_mappings(session)) elif type == "dataset": mappings = value holes_raw = calc_all_holes("dataset", mappings) holes = [] for hole in holes_raw: holes.append( { "devices_id": -1000, "id": -1000, "iova": None, "phys_addr": hole[0], "size": hole[1], } ) for hole in holes: hole["devices_id"] = -1 try: mappings = add_device_info(mappings, session) except: session = create_session() mappings = add_device_info(mappings, session) mappings_as_dict = [] for m in mappings: mappings_as_dict.append(m.__dict__) memory_state = sorted( mappings_as_dict + holes, key=lambda mapping: mapping["phys_addr"] ) memory_state = unify_common_space(memory_state) html_frieze = create_html_from_memory_state(memory_state, session) return html_frieze
ddf914d9d710e60af48a6dc687a9e3961ab0cf94
3,657,413
from typing import Optional import re def instantiate_model(model_to_train: str, dataset_directory: str, performance_directory: str, gpu: Optional[bool] = None): """ A function to create the instance of the imported Class, Classifier. Args: model_to_train (str): name of the pretrained model to train dataset directory (str): Directory containing the data performance directory (str): The directory where the generated text, checkpoints model_stats will be saved. gpu (bool): Boolean indicating availability of a GPU Returns: None. """ file = get_latest_exp(performance_directory) if file is not None: filename = re.findall('\\\\([^\\\\]+)\.txt', file) exp_no = int((re.findall('_([0-9]+)', filename[0]))[0]) exp_no += 1 else: exp_no = 1 Model = Classifier(exp_no, model_to_train, dataset_directory, performance_directory, gpu=gpu) return Model
8053053b5e77f1c74404826e7335b05bece8b99f
3,657,415
def generate_hmac_key(): """ Generates a key for use in the :func:`~securitylib.advanced_crypto.hmac` function. :returns: :class:`str` -- The generated key, in byte string. """ return generate_secret_key(HMAC_KEY_MINIMUM_LENGTH)
877cf9fbe56b6715f1744839ce83ac1abf9d7da8
3,657,416
def uscensus(location, **kwargs): """US Census Provider Params ------ :param location: Your search location you want geocoded. :param benchmark: (default=4) Use the following: > Public_AR_Current or 4 > Public_AR_ACSYYYY or 8 > Public_AR_Census2010 or 9 :param vintage: (default=4) Use the following: > Current_Current or 4 > Census2010_Current or 410 > ACS2013_Current or 413 > ACS2014_Current or 414 > ACS2015_Current or 415 > Current_ACS2015 or 8 > Census2010_ACS2015 or 810 > ACS2013_ACS2015 or 813 > ACS2014_ACS2015 or 814 > ACS2015_ACS2015 or 815 > Census2010_Census2010 or 910 > Census2000_Census2010 or 900 :param method: (default=geocode) Use the following: > geocode > reverse API Reference ------------- https://geocoding.geo.census.gov/geocoder/Geocoding_Services_API.pdf """ return get(location, provider='uscensus', **kwargs)
bd73acb87f27e3f14d0b1e22ebd06b91fcec9d85
3,657,418
def reco_source_position_sky(cog_x, cog_y, disp_dx, disp_dy, focal_length, pointing_alt, pointing_az): """ Compute the reconstructed source position in the sky Parameters ---------- cog_x: `astropy.units.Quantity` cog_y: `astropy.units.Quantity` disp: DispContainer focal_length: `astropy.units.Quantity` pointing_alt: `astropy.units.Quantity` pointing_az: `astropy.units.Quantity` Returns ------- """ src_x, src_y = disp_to_pos(disp_dx, disp_dy, cog_x, cog_y) return camera_to_sky(src_x, src_y, focal_length, pointing_alt, pointing_az)
14b7fee325bc8a571a13d257f046cd0e7bf838db
3,657,420
def segment_annotations(table, num, length, step=None): """ Generate a segmented annotation table by stepping across the audio files, using a fixed step size (step) and fixed selection window size (length). Args: table: pandas DataFrame Annotation table. num: int Number of segments length: float Selection length in seconds. step: float Selection step size in seconds. If None, the step size is set equal to the selection length. Returns: df: pandas DataFrame Annotations table """ if step is None: step = length segs = [] for n in range(num): # select annotations that overlap with segment t1 = n * step t2 = t1 + length a = table[(table.start < t2) & (table.end > t1)].copy() if len(a) > 0: # shift and crop annotations a['start'] = a['start'].apply(lambda x: max(0, x - t1)) a['end'] = a['end'].apply(lambda x: min(length, x - t1)) a['sel_id'] = n #map to segment segs.append(a) df = pd.concat(segs) df.set_index(keys=['sel_id'], inplace=True, append=True) df = df.swaplevel() df = df.sort_index() return df
4b1bb8298113b43716fcd5f7d2a27b244f63829c
3,657,421
def get_vdw_style(vdw_styles, cut_styles, cutoffs): """Get the VDW_Style section of the input file Parameters ---------- vdw_styles : list list of vdw_style for each box, one entry per box cut_styles : list list of cutoff_style for each box, one entry per box. For a box with vdw_style == 'none', the cutoff style is None cutoffs : list list with cutoffs for each box, one entry per box For a box with vdw_style == 'none', the cutoff is None """ assert len(vdw_styles) == len(cut_styles) assert len(vdw_styles) == len(cutoffs) valid_vdw_styles = ["lj", "none"] valid_cut_styles = {vstyle: [] for vstyle in valid_vdw_styles} valid_cut_styles["lj"].append("cut") valid_cut_styles["lj"].append("cut_tail") valid_cut_styles["lj"].append("cut_switch") valid_cut_styles["lj"].append("cut_shift") valid_cut_styles["none"].append(None) for vdw_style in vdw_styles: if vdw_style not in valid_vdw_styles: raise ValueError( "Unsupported vdw_style: {}. Supported options " "include {}".format(vdw_style, vdw_styles) ) for cut_style, vdw_style in zip(cut_styles, vdw_styles): if cut_style not in valid_cut_styles[vdw_style]: raise ValueError( "Unsupported cutoff style: {}. Supported " "options for the selected vdw_style ({}) include " "{}".format(cut_style, vdw_style, valid_cut_styles[vdw_style]) ) for cut_style, cutoff in zip(cut_styles, cutoffs): if cut_style == "cut_switch": if not isinstance(cutoff, np.ndarray) or len(cutoff) != 2: raise ValueError( 'Style "cut_switch" requires an inner ' "and outer cutoff. Use the " "cutoffs=[inner_cut,outer_cut] " "kwargs option." ) inp_data = """ # VDW_Style""" for vdw_style, cut_style, cutoff in zip(vdw_styles, cut_styles, cutoffs): if vdw_style == "none": inp_data += """ {vdw_style}""".format( vdw_style=vdw_style ) else: if cut_style == "cut_switch": inner_cutoff = cutoff[0] outer_cutoff = cutoff[1] inp_data += """ {vdw_style} {cut_style} {inner_cutoff} {outer_cutoff}""".format( vdw_style=vdw_style, cut_style=cut_style, inner_cutoff=inner_cutoff, outer_cutoff=outer_cutoff, ) else: inp_data += """ {vdw_style} {cut_style} {cutoff}""".format( vdw_style=vdw_style, cut_style=cut_style, cutoff=cutoff ) inp_data += """ !------------------------------------------------------------------------------ """ return inp_data
5cd0825d73e11c4fcb8ecce0526493414842697c
3,657,422
def freduce(x, axis=None): """ Reduces a spectrum to positive frequencies only Works on the last dimension (contiguous in c-stored array) :param x: numpy.ndarray :param axis: axis along which to perform reduction (last axis by default) :return: numpy.ndarray """ if axis is None: axis = x.ndim - 1 siz = list(x.shape) siz[axis] = int(np.floor(siz[axis] / 2 + 1)) return np.take(x, np.arange(0, siz[axis]), axis=axis)
8d13e66a18ef950422af49a68012605cf0d03947
3,657,424
import json def sort_shipping_methods(request): """Sorts shipping methods after drag 'n drop. """ shipping_methods = request.POST.get("objs", "").split('&') assert (isinstance(shipping_methods, list)) if len(shipping_methods) > 0: priority = 10 for sm_str in shipping_methods: sm_id = sm_str.split('=')[1] sm_obj = ShippingMethod.objects.get(pk=sm_id) sm_obj.priority = priority sm_obj.save() priority = priority + 10 result = json.dumps({ "message": _(u"The shipping methods have been sorted."), }, cls=LazyEncoder) return HttpResponse(result, content_type='application/json')
307ecef020ac296982a7006ce1392cb807461546
3,657,426
def appendRecordData(record_df, record): """ Args: record_df (pd.DataFrame): record (vcf.model._Record): Returns: (pd.DataFrame): record_df with an additional row of record (SNP) data. """ # Alternate allele bases if len(record.ALT) == 0: alt0, alt1 = np.nan, np.nan elif len(record.ALT) == 1: alt0, alt1 = record.ALT[0], np.nan varIdentifier = pd.Series(record.ID, name="varIdentifier") df = pd.DataFrame( data = {"refBase": record.REF, "altAllele0": alt0, "altAllele1": alt1}, index = varIdentifier) record_df = record_df.append(df, ignore_index=False) return record_df
0904b317e1925743ed9449e1fcb53aaafa2ffc81
3,657,427
def get_removed_channels_from_file(fn): """ Load a list of removed channels from a file. Raises ------ * NotImplementedError if the file format isn't supported. Parameters ---------- fn : str Filename Returns ------- to_remove : list of str List of channels to remove. """ assert isinstance(fn, str) if fn.endswith('.mat'): # try: data = loadmat(fn) # except: for old .mat files in hdf5 format... assert('CHANNAMES' in data), f"{fn} must contain CHANNAMES!" assert('CHANACTIVE' in data), f"{fn} must contain CHANACTIVE!" channel_active = data['CHANACTIVE'].flatten() channel_names = np.array( [str(i[0]) for i in data['CHANNAMES'].flatten()], ) idx = np.argwhere(channel_active == 0).flatten() return channel_names[idx].tolist() else: raise NotImplementedError(f"Cannot load file: {fn}")
ac3cbeb83c7f1305adf343ce26be3f70f8ae48e8
3,657,428
def invertHomogeneous(M, range_space_homogeneous=False, A_property=None): """ Return the inverse transformation of a homogeneous matrix. A homogenous matrix :math:`M` represents the transformation :math:`y = A x + b` in homogeneous coordinates. More precisely, ..math: M \tilde{x} = \left[ \begin{matrix} A & b \\ \end{matrix} \right] \left[ \begin{matrix} x \\ 1 \end{matrix} \right] Its inverse is the homogeneous matrix that represents the transformation :math:`x = A^{-1} ( y - b )`. Parameters ---------- M : numpy array of float, shape (num_dims, num_dims + 1) or (num_dims + 1, num_dims + 1) Matrix representing an affine transformation in homogeneous coordinates. if ``M.shape == (num_dims + 1, num_dims + 1)``, its last row is :math:`[0 1]` so that its output is also in homogeneous coordinates. range_space_homogeneous : bool, optional If True, the output has an extra row :math:`[ 0 1 ]` appended to the bottom so that its range space is also expressed in homogeneous coordinates. A_property : {'diag', 'ortho'}, optional Special property of the submatrix `A` that could make inversion easier. If no argument is given, this function just calls `m.np.linalg.pinv`. Returns ------- M_inverse : numpy array of float, shape (num_dims, num_dims + 1) or (num_dims + 1, num_dims + 1) Inverse transformation corresponding to input `M`. """ if A_property is None: invert = m.np.pinv elif A_property == 'diag': def invert(x): return m.np.diag(1 / m.np.diag(A)) elif A_property == 'ortho': invert = m.np.transpose else: err_str = f"Can't parse keyword argument 'A_property={A_property}'" raise ValueError(err_str) A, b = fromHomogeneous(M) A_inverse = invert(A) b_inverse = -A_inverse @ b M_inverse = homogeneousMatrix( A_inverse, b_inverse, range_space_homogeneous=range_space_homogeneous ) return M_inverse
ea9039c935c82686291145652f762eb79404e417
3,657,429
import requests def show_department(department_id): """ Returns rendered template to show department with its employees. :param department_id: department id :return: rendered template to show department with its employees """ url = f'{HOST}api/department/{department_id}' department = requests.get(url).json() return render_template('department.html', department=department)
170318ea40a4f7355fab77f2aeaaad682b9fab2f
3,657,431
def archive_scan(): """ Returns converted to a dictionary of functions to apply to parameters of archive_scan.py """ # Dictionary of default values setter, type converters and other applied functions d_applied_functions = { 'favor': [bool_converter, favor_default], 'cnn': [bool_converter], 'gpd': [bool_converter], 'model-name': [apply_default_model_name], 'weights': [apply_default_weights], 'features-number': [int_converter], 'waveform-duration': [float_converter], 'start': [utc_datetime_converter, start_date_default], 'end': [utc_datetime_converter, end_date_default], 'database': [database_filler], 'threshold': [threshold_converter], 'batch-size': [int_converter], 'frequency': [float_converter], 'trace-size': [float_converter, trace_size_converter], 'shift': [int_converter], 'generate-s-files': [string_trimmer], 'detections-for-event': [int_converter], 'generate-waveforms': [string_trimmer], 'register-events': [string_trimmer], 'no-filter': [bool_converter], 'no-detrend': [bool_converter], 'trace-normalization': [bool_converter], 'wavetool-waveforms': [bool_converter], 'detection-stations': [bool_converter], 'plot-positives': [bool_converter], 'silence-wavetool': [bool_converter], 'plot-positives-original': [bool_converter], 'print-scores': [bool_converter], 'print-precision': [int_converter], 'combine-events-range': [float_converter], 'time': [bool_converter], 'cpu': [bool_converter], 'print-files': [bool_converter], 'channel-order': [channel_order_converter], 'print-params': [bool_converter], } return d_applied_functions
71aa3d2c17e880a152529de09b0614dfd619e7da
3,657,432
def esOperador(o): """"retorna true si 'o' es un operador""" return o == "+" or o == "-" or o == "/" or o == "*"
7e1088b641dee7cad2594159c4a34cf979362458
3,657,433
def valid_identity(identity): """Determines whether or not the provided identity is a valid value.""" valid = (identity == "homer") or (identity == "sherlock") return valid
9865d19802b596d1d5fdce6ff8d236678da29ee6
3,657,434
def is_align_flow(*args): """ is_align_flow(ea) -> bool """ return _ida_nalt.is_align_flow(*args)
40aa1fb7d86083bc3ace94c6913eb9b4b5ab200e
3,657,435
import time def avro_rdd(ctx, sqlContext, hdir, date=None, verbose=None): """ Parse avro-snappy files on HDFS :returns: a Spark RDD object """ if date == None: date = time.strftime("year=%Y/month=%-m/day=%-d", time.gmtime(time.time()-60*60*24)) path = '%s/%s' % (hdir, date) elif len(str(date)) == 8: # YYYYMMDD ddd = dt.strptime(str(date), "%Y%m%d") date = time.strftime("year=%Y/month=%-m/day=%-d", ddd.utctimetuple()) path = '%s/%s' % (hdir, date) else: path = hdir if date: path = '%s/%s' % (hdir, date) print("### hdir", path, type(path)) if isinstance(path, list): afiles = path else: # get avro files from HDFS afiles = avro_files(path, verbose=verbose) print("### avro_files", afiles) # define newAPIHadoopFile parameters, java classes aformat="org.apache.avro.mapreduce.AvroKeyInputFormat" akey="org.apache.avro.mapred.AvroKey" awrite="org.apache.hadoop.io.NullWritable" aconv="org.apache.spark.examples.pythonconverters.AvroWrapperToJavaConverter" rdd = [] # load data from HDFS if len(afiles) == 0: rdd = ctx.emptyRDD() else: rdd = ctx.union([ctx.newAPIHadoopFile(f, aformat, akey, awrite, aconv) for f in afiles]) # the records are stored as [(dict, None), (dict, None)], therefore we take first element # and assign them to new rdd avro_rdd = rdd.map(lambda x: x[0]) records = avro_rdd.take(1) # take function will return list of records if verbose: print("### avro records", records, type(records)) return avro_rdd
caa923e4b6186e106a59764cbb61f908858acd70
3,657,436
import random def generate_gesture_trace(position): """ 生成手势验证码轨迹 :param position: :return: """ x = [] y = [] for i in position: x.append(int(i.split(',')[0])) y.append(int(i.split(',')[1])) trace_x = [] trace_y = [] for _ in range(0, 2): tepx = [x[_], x[_ + 1], x[_ + 2]] tepy = [y[_], y[_ + 1], y[_ + 2]] [a, b, c] = get_func(tepx, tepy) if _ == 0: for i in range(x[0], x[1]): trace_x.append(i) trace_y.append(a * i * i + b * i + c) for i in range(x[1], x[2]): trace_x.append(i) if random.randint(1, 5) == 1: trace_y.append((((float)(y[2] - y[1])) / (x[2] - x[1])) * (i - x[1]) + y[1] + random.randint(-1, 1)) else: trace_y.append((((float)(y[2] - y[1])) / (x[2] - x[1])) * (i - x[1]) + y[1]) else: for i in range(x[2], x[3]): trace_x.append(i) trace_y.append(a * i * i + b * i + c) trace_x = [int(i) for i in trace_x] trace_y = [int(i) for i in trace_y] last_trace_x = [] last_trace_y = [] plot_line(trace_x, trace_y, [0, 280], [0, 158]) xx = 0 while xx < len(trace_x) - 1: last_trace_x.append(trace_x[xx]) last_trace_y.append(trace_y[xx]) xx += random.randint(1, 4) last_trace_x.append(trace_x[-1]) last_trace_y.append(trace_y[-1]) timestamp_list = [] timestamp = random.randint(180, 220) for i in range(len(last_trace_x)): t = random.randint(5, 10) timestamp += t timestamp_list.append(timestamp) i += 1 trace = [{ 'p': ','.join([str(last_trace_x[0]), str(last_trace_y[0])]), 't': 1 }] for i in range(len(last_trace_x)): trace.append({ 'p': ','.join([str(last_trace_x[i]), str(last_trace_y[i])]), 't': timestamp_list[i] }) trace.append({ 'p': ','.join([str(last_trace_x[-1]), str(last_trace_y[-1])]), 't': timestamp_list[-1] + random.randint(50, 100) }) return x[3] - x[0], trace
3281cf9e99175190e2855ac98593f67473703c77
3,657,437
def mad_daub_noise_est(x, c=0.6744): """ Estimate the statistical dispersion of the noise with Median Absolute Deviation on the first order detail coefficients of the 1d-Daubechies wavelets transform. """ try: _, cD = pywt.wavedec(x, pywt.Wavelet('db3'), level=1) except ValueError: cD = pywt.wavedec(x, pywt.Wavelet('db3'), level=0) return mad(cD, c=c)
3811d490e344cd4029e5b7f018823ad02c27e3dd
3,657,439
import unicodedata import re def slugify(value, allow_unicode=False): """ Convert to ASCII if 'allow_unicode' is False. Convert spaces to hyphens. Remove characters that aren't alphanumerics, underscores, or hyphens. Convert to lowercase. Also strip leading and trailing whitespace. From Django's "django/template/defaultfilters.py". Copied from: https://github.com/django/django/blob/a6b3938afc0204093b5356ade2be30b461a698c5/django/utils/text.py#L394 """ value = str(value) if allow_unicode: value = unicodedata.normalize('NFKC', value) else: value = unicodedata.normalize('NFKD', value).encode('ascii', 'ignore').decode('ascii') value = re.sub(r'[^\w\s-]', '', value.lower()).strip() return re.sub(r'[-\s]+', '-', value)
3fc85ffec7faa3b4df2d1556dfd7b1d7c3e9920e
3,657,440
import json def get_categories() -> dict: """ :return: dictionary with a hirachy of all categories """ with open("../src/categories.json", "r", encoding="utf-8") as f: return json.load(f)
90a442840550f3251137b2f9ff8fb5581d8d49e5
3,657,441
def get_ax(rows=1, cols=1, size=16): """Return a Matplotlib Axes array to be used in all visualizations in the notebook. Provide a central point to control graph sizes. Adjust the size attribute to control how big to render images """ _, ax = plt.subplots(rows, cols, figsize=(size*cols, size*rows)) return ax ### LOAD VALIDATION SET
97acc81878076c030287840a0bbacccbde0e50a8
3,657,443
def createSynthModel(): """Return the modeling mesh, the porosity distribution and the parametric mesh for inversion. """ # Create the synthetic model world = mt.createCircle(boundaryMarker=-1, segments=64) tri = mt.createPolygon([[-0.8, -0], [-0.5, -0.7], [0.7, 0.5]], isClosed=True, area=0.0015) c1 = mt.createCircle(radius=0.2, pos=[-0.2, 0.5], segments=32, area=0.0025, marker=3) c2 = mt.createCircle(radius=0.2, pos=[0.32, -0.3], segments=32, area=0.0025, marker=3) poly = mt.mergePLC([world, tri, c1, c2]) poly.addRegionMarker([0.0, 0, 0], 1, area=0.0015) poly.addRegionMarker([-0.9, 0, 0], 2, area=0.0015) c = mt.createCircle(radius=0.99, segments=16, start=np.pi, end=np.pi*3) [poly.createNode(p.pos(), -99) for p in c.nodes()] mesh = pg.meshtools.createMesh(poly, q=34.4, smooth=[1, 10]) mesh.scale(1.0/5.0) mesh.rotate([0., 0., 3.1415/3]) mesh.rotate([0., 0., 3.1415]) petro = pg.solver.parseArgToArray([[1, 0.9], [2, 0.6], [3, 0.3]], mesh.cellCount(), mesh) # Create the parametric mesh that only reflect the domain geometry world = mt.createCircle(boundaryMarker=-1, segments=32, area=0.0051) paraMesh = pg.meshtools.createMesh(world, q=34.0, smooth=[1, 10]) paraMesh.scale(1.0/5.0) return mesh, paraMesh, petro
aa63ce6c8b633530efb17add4d902da30c62689c
3,657,445
def edits_dir(): """ Return the directory for the editable files (used by the website). """ return _mkifnotexists("")
eb882c04e3269496a610103908453a73e4a7ae5f
3,657,446
def convolve_hrf(X, onsets, durations, n_vol, tr, ops=100): """ Convolve each X's column iteratively with HRF and align with the timeline of BOLD signal parameters: ---------- X[array]: [n_event, n_sample] onsets[array_like]: in sec. size = n_event durations[array_like]: in sec. size = n_event n_vol[int]: the number of volumes of BOLD signal tr[float]: repeat time in second ops[int]: oversampling number per second Returns: --------- X_hrfed[array]: the result after convolution and alignment """ assert np.ndim(X) == 2, 'X must be a 2D array' assert X.shape[0] == len(onsets) and X.shape[0] == len(durations), \ 'The length of onsets and durations should be matched with the number of events.' assert ops in (10, 100, 1000), 'Oversampling rate must be one of the (10, 100, 1000)!' # unify the precision decimals = int(np.log10(ops)) onsets = np.round(np.asarray(onsets), decimals=decimals) durations = np.round(np.asarray(durations), decimals=decimals) tr = np.round(tr, decimals=decimals) n_clipped = 0 # the number of clipped time points earlier than the start point of response onset_min = onsets.min() if onset_min > 0: # The earliest event's onset is later than the start point of response. # We supplement it with zero-value event to align with the response. X = np.insert(X, 0, np.zeros(X.shape[1]), 0) onsets = np.insert(onsets, 0, 0, 0) durations = np.insert(durations, 0, onset_min, 0) onset_min = 0 elif onset_min < 0: print("The earliest event's onset is earlier than the start point of response.\n" "We clip the earlier time points after hrf_convolution to align with the response.") n_clipped = int(-onset_min * ops) # do convolution in batches for trade-off between speed and memory batch_size = int(100000 / ops) bat_indices = np.arange(0, X.shape[-1], batch_size) bat_indices = np.r_[bat_indices, X.shape[-1]] vol_t = (np.arange(n_vol) * tr * ops).astype(int) # compute volume acquisition timing n_time_point = int(((onsets + durations).max()-onset_min) * ops) X_hrfed = np.zeros([n_vol, 0]) for idx, bat_idx in enumerate(bat_indices[:-1]): X_bat = X[:, bat_idx:bat_indices[idx+1]] # generate X raw time course X_tc = np.zeros((n_time_point, X_bat.shape[-1]), dtype=np.float32) for i, onset in enumerate(onsets): onset_start = int(onset * ops) onset_end = int(onset_start + durations[i] * ops) X_tc[onset_start:onset_end, :] = X_bat[i, :] # generate hrf kernel hrf = spm_hrf(tr, oversampling=tr*ops) hrf = hrf[:, np.newaxis] # convolve X raw time course with hrf kernal X_tc_hrfed = convolve(X_tc, hrf, method='fft') X_tc_hrfed = X_tc_hrfed[n_clipped:, :] # downsample to volume timing X_hrfed = np.c_[X_hrfed, X_tc_hrfed[vol_t, :]] print('hrf convolution: sample {0} to {1} finished'.format(bat_idx+1, bat_indices[idx+1])) return X_hrfed
d035b47ffafe0ac3d7e1446d4d36dc2f707363bd
3,657,448
def flatten(x, params): """ Plain ol' 2D flatten :param x: input tensor :param params: {dict} hyperparams (sub-selection) :return: output tensor """ return layers.Flatten()(x)
6db829641681ab48f75b23894f9a4a3250250cec
3,657,449
def xml_unescape(text): """ Do the inverse of `xml_escape`. Parameters ---------- text: str The text to be escaped. Returns ------- escaped_text: str """ return unescape(text, xml_unescape_table)
2e53d8bc617ad70fd22bb5dd82cd34db366b80a4
3,657,450
def tseb_pt(T_air, T_rad, u, p, z, Rs_1, Rs24, vza, zs, aleafv, aleafn, aleafl, adeadv, adeadn, adeadl, albedo, ndvi, lai, clump, hc, time, t_rise, t_end, leaf_width, a_PT_in=1.32, iterations=35): """Priestley-Taylor TSEB Calculates the Priestley Taylor TSEB fluxes using a single observation of composite radiometric temperature and using resistances in series. Parameters ---------- T_air : ee.Image Air temperature (Kelvin). T_rad : ee.Image Radiometric composite temperature (Kelvin). u : ee.Image Wind speed above the canopy (m s-1). p : ee.Image Atmospheric pressure (kPa) z : ee.Image Elevation (m) Rs_1 : ee.Image Overpass insolation (w m-2) Rs24 : ee.Image Daily insolation (w m-2) vza : float View Zenith Angle (radians). zs : ee.Image Solar Zenith Angle (radians). aleafv : ee.Image aleafn : ee.Image aleafl : ee.Image adeadv : ee.Image adeadn : ee.Image adeadl : ee.Image albedo : ee.Image ndvi : ee.Image Normalized Difference Vegetation Index lai : ee.Image Effective Leaf Area Index (m2 m-2). clump : ee.Image hc : ee.Image Canopy height (m). time t_rise : ee.Image t_end : ee.Image leaf_width : ee.Image Average/effective leaf width (m) a_PT_in : float, optional Priestley Taylor coefficient for canopy potential transpiration (the default is 1.32). iterations: int, optional Number of iterations of main calculation (the default is 35) Returns ------- ET : ee.Image Evapotranspiration (mm). References ---------- .. [Norman1995] J.M. Norman, W.P. Kustas, & K.S. Humes (1995), Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature, Agricultural and Forest Meteorology, Volume 77, Issues 3-4, Pages 263-293, http://dx.doi.org/10.1016/0168-1923(95)02265-Y. .. [Kustas1999] W.P. Kustas, & J.M. Norman (1999), Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover, Agricultural and Forest Meteorology, Volume 94, Issue 1, Pages 13-29, http://dx.doi.org/10.1016/S0168-1923(99)00005-2. """ # print('\nINPUTS') # print('T_rad: {:20.14f}'.format(float(utils.image_value(T_rad).values()[0]))) # print('T_air: {:20.14f}'.format(float(utils.image_value(T_air).values()[0]))) # print('u: {:20.14f}'.format(float(utils.image_value(u).values()[0]))) # print('Rs_1: {:20.14f}'.format(float(utils.image_value(Rs_1).values()[0]))) # print('Rs24: {:20.14f}'.format(float(utils.image_value(Rs24).values()[0]))) # # print('vza: {:20.14f}'.format(float(utils.image_value(vza).values()[0]))) # print('zs: {:20.14f}'.format(float(utils.image_value(zs).values()[0]))) # print('albedo: {:20.14f}'.format(float(utils.image_value(albedo).values()[0]))) # print('ndvi: {:20.14f}'.format(float(utils.image_value(ndvi).values()[0]))) # print('lai: {:20.14f}'.format(float(utils.image_value(lai).values()[0]))) # print('clump: {:20.14f}'.format(float(utils.image_value(clump).values()[0]))) # print('hc: {:20.14f}'.format(float(utils.image_value(hc).values()[0]))) # print('time: {:20.14f}'.format(float(utils.image_value(time).values()[0]))) # print('t_rise: {:20.14f}'.format(float(utils.image_value(t_rise).values()[0]))) # print('t_end: {:20.14f}'.format(float(utils.image_value(t_end).values()[0]))) # ************************************************************************ # Correct Clumping Factor f_green = 1. # LAI for leaf spherical distribution F = lai.expression('lai * clump', {'lai': lai, 'clump': clump}) # Fraction cover at nadir (view=0) fc = F.expression('1.0 - exp(-0.5 * F)', {'F': F}) \ .clamp(0.01, 0.9) # LAI relative to canopy projection only lai_c = lai.expression('lai / fc', {'lai': lai, 'fc': fc}) # Houborg modification (according to Anderson et al. 2005) fc_q = lai \ .expression('1 - (exp(-0.5 * F / cos(vza)))', {'F': F, 'vza': vza}) \ .clamp(0.05, 0.90) # Brutsaert (1982) z0m = hc.expression('hc * 0.123', {'hc': hc}) # CGM - add(0) is to mimic numpy copy, check if needed z0h = z0m.add(0) d_0 = hc.expression('hc * (2.0 / 3.0)', {'hc': hc}) # Correction of roughness parameters for bare soils (F < 0.1) d_0 = d_0.where(F.lte(0.1), 0.00001) z0m = z0m.where(F.lte(0.1), 0.01) z0h = z0h.where(F.lte(0.1), 0.0001) # Correction of roughness parameters for water bodies # (NDVI < 0 and albedo < 0.05) water_mask = ndvi.lte(0).And(albedo.lte(0.05)) d_0 = d_0.where(water_mask, 0.00001) z0m = z0m.where(water_mask, 0.00035) z0h = z0h.where(water_mask, 0.00035) # Check to avoid division by 0 in the next computations z0h = z0h.where(z0h.eq(0), 0.001) z0m = z0m.where(z0m.eq(0), 0.01) # DEADBEEF # z_u = ee.Number(50.0) # z_t = ee.Number(50.0) z_u = ee.Image.constant(50.0) z_t = ee.Image.constant(50.0) # z_u = lai.multiply(0).add(50) # z_t = lai.multiply(0).add(50) # Parameters for In-Canopy Wind Speed Extinction leaf = lai.expression( '(0.28 * (F ** (0.66667)) * (hc ** (0.33333)) * ' '(leaf_width ** (-0.33333)))', {'F': F, 'hc': hc, 'leaf_width': leaf_width}) leaf_c = lai.expression( '(0.28 * (lai_c ** (0.66667)) * (hc ** (0.33333)) * ' '(leaf_width ** (-0.33333)))', {'lai_c': lai_c, 'hc': hc, 'leaf_width': leaf_width}) leaf_s = lai.expression( '(0.28 * (0.1 ** (0.66667)) * (hc ** (0.33333)) * ' '(leaf_width ** (-0.33333)))', {'hc': hc, 'leaf_width': leaf_width}) # ************************************************************************ # Atmospheric Parameters # Saturation vapour pressure [kPa] (FAO56 3-8) e_s = T_air.expression( '0.6108 * exp((17.27 * (T_air - 273.16)) / ((T_air - 273.16) + 237.3))', {'T_air': T_air}) # Slope of the saturation vapor pressure [kPa] (FAO56 3-9) Ss = T_air.expression( '4098. * e_s / (((T_air - 273.16) + 237.3) ** 2)', {'e_s': e_s, 'T_air': T_air}) # Latent heat of vaporization (~2.45 at 20 C) [MJ kg-1] (FAO56 3-1) lambda1 = T_air.expression( '(2.501 - (2.361e-3 * (T_air - 273.16)))', {'T_air': T_air}) # Psychrometric constant [kPa C-1] (FAO56 3-10) g = p.expression('1.615E-3 * p / lambda1', {'p': p, 'lambda1': lambda1}) # ************************************************************************ # Initialization of a_PT = albedo.multiply(0).add(a_PT_in) # a_PT = ee.Image.constant(a_PT_in) # a_PT = mask.multiply(a_PT) # CGM - This was also being computed inside albedo_separation function below # Commented out from here for now. # e_atm = T_air.expression( # '1.0 - (0.2811 * (exp(-0.0003523 * ((T_air - 273.16) ** 2))))', # {'T_air': T_air}) Rs_c, Rs_s, albedo_c, albedo_s = tseb_utils.albedo_separation( albedo, Rs_1, F, fc, aleafv, aleafn, aleafl, adeadv, adeadn, adeadl, zs) # CGM - Moved emissivity calculation to separate function. # I removed the Rs0 check. e_atm = tseb_utils.emissivity(T_air) # p = T_air.expression( # '101.3 * (((T_air - (0.0065 * z)) / T_air) ** 5.26)', # {'T_air': T_air, 'z': z}) # Density of air? (kg m-3) r_air = T_air.expression( '101.3 * (((T_air - (0.0065 * z)) / T_air) ** 5.26) / 1.01 / T_air / 0.287', {'T_air': T_air, 'z': z}) cp = ee.Number(1004.16) # cp = ee.Image.constant(1004.16) # Assume neutral conditions on first iteration (use T_air for Ts and Tc) # CGM - Using lai for F to match Python code u_attr = tseb_utils.compute_u_attr( u=u, d0=d_0, z0m=z0m, z_u=z_u, fm=0) r_ah = tseb_utils.compute_r_ah( u_attr=u_attr, d0=d_0, z0h=z0h, z_t=z_t, fh=0) # CGM - Why is this function is passing "lai" to "F"? r_s = tseb_utils.compute_r_s( u_attr=u_attr, T_s=T_air, T_c=T_air, hc=hc, F=lai, d0=d_0, z0m=z0m, leaf=leaf, leaf_s=leaf_s, fm_h=0) r_x = tseb_utils.compute_r_x( u_attr=u_attr, hc=hc, F=lai, d0=d_0, z0m=z0m, xl=leaf_width, leaf_c=leaf_c, fm_h=0) # r_ah, r_s, r_x, u_attr = tseb_utils.compute_resistance( # u, T_air, T_air, hc, lai, d_0, z0m, z0h, z_u, z_t, leaf_width, leaf, # leaf_s, leaf_c, 0, 0, 0) T_c = T_air # DEADBEEF - In IDL, this calculation is in C, not K? T_s = lai.expression( '((T_rad - 273.16) - (fc_q * (T_c - 273.16))) / (1 - fc_q) + 273.16', {'T_rad': T_rad, 'T_c': T_c, 'fc_q': fc_q}) # T_s = lai.expression( # '(T_rad - (fc_q * T_c)) / (1 - fc_q)', # {'T_rad': T_rad, 'T_c': T_c, 'fc_q': fc_q}) # CGM - Initialize to match T_air shape # This doesn't seem to do anything, commenting out for now # H_iter = T_air.multiply(0).add(200.16) EF_s = T_air.multiply(0) # print('\nF: {:20.14f}'.format(float(utils.image_value(F).values()[0]))) # print('fc: {:20.14f}'.format(float(utils.image_value(fc).values()[0]))) # print('lai_c: {:20.14f}'.format(float(utils.image_value(lai_c).values()[0]))) # print('fc_q: {:20.14f}'.format(float(utils.image_value(fc_q).values()[0]))) # print('z0h: {:20.14f}'.format(float(utils.image_value(z0h).values()[0]))) # print('z0m: {:20.14f}'.format(float(utils.image_value(z0m).values()[0]))) # print('leaf: {:20.14f}'.format(float(utils.image_value(leaf).values()[0]))) # print('leaf_c: {:20.14f}'.format(float(utils.image_value(leaf_c).values()[0]))) # print('leaf_s: {:20.14f}'.format(float(utils.image_value(leaf_s).values()[0]))) # print('e_s: {:20.14f}'.format(float(utils.image_value(e_s).values()[0]))) # print('Ss: {:20.14f}'.format(float(utils.image_value(Ss).values()[0]))) # print('lambda1: {:20.14f}'.format(float(utils.image_value(lambda1).values()[0]))) # print('p: {:20.14f}'.format(float(utils.image_value(p).values()[0]))) # print('z: {:20.14f}'.format(float(utils.image_value(z).values()[0]))) # print('g: {:20.14f}'.format(float(utils.image_value(g).values()[0]))) # print('a_PT: {:20.14f}'.format(float(utils.image_value(a_PT).values()[0]))) # print('Rs_c: {:20.14f}'.format(float(utils.image_value(Rs_c).values()[0]))) # print('Rs_s: {:20.14f}'.format(float(utils.image_value(Rs_s).values()[0]))) # print('albedo_c: {:20.14f}'.format(float(utils.image_value(albedo_c).values()[0]))) # print('albedo_s: {:20.14f}'.format(float(utils.image_value(albedo_s).values()[0]))) # print('e_atm: {:20.14f}'.format(float(utils.image_value(e_atm).values()[0]))) # print('r_air: {:20.14f}'.format(float(utils.image_value(r_air).values()[0]))) # print('cp: {:20.14f}'.format(float(cp.getInfo()))) # print('d_0: {:20.14f}'.format(float(utils.image_value(d_0).values()[0]))) # print('z0m: {:20.14f}'.format(float(utils.image_value(z0m).values()[0]))) # print('z0h: {:20.14f}'.format(float(utils.image_value(z0h).values()[0]))) # print('u_attr: {:20.14f}'.format(float(utils.image_value(u_attr).values()[0]))) # print('r_ah: {:20.14f}'.format(float(utils.image_value(r_ah).values()[0]))) # print('r_s: {:20.14f}'.format(float(utils.image_value(r_s).values()[0]))) # print('r_x: {:20.14f}'.format(float(utils.image_value(r_x).values()[0]))) # print('T_c: {:20.14f}'.format(float(utils.image_value(T_c).values()[0]))) # print('T_s: {:20.14f}'.format(float(utils.image_value(T_s).values()[0]))) # print('EF_s: {:20.14f}'.format(float(utils.image_value(EF_s).values()[0]))) # print('Iterations: {}'.format(iterations)) # ************************************************************************ # Start Loop for Stability Correction and Water Stress def iter_func(n, prev): # Extract inputs from previous iteration a_PT_iter = ee.Image(ee.Dictionary(prev).get('a_PT')) EF_s_iter = ee.Image(ee.Dictionary(prev).get('EF_s')) r_ah_iter = ee.Image(ee.Dictionary(prev).get('r_ah')) r_s_iter = ee.Image(ee.Dictionary(prev).get('r_s')) r_x_iter = ee.Image(ee.Dictionary(prev).get('r_x')) T_c_iter = ee.Image(ee.Dictionary(prev).get('T_c')) T_s_iter = ee.Image(ee.Dictionary(prev).get('T_s')) u_attr_iter = ee.Image(ee.Dictionary(prev).get('u_attr')) Rn_c = tseb_utils.compute_Rn_c( albedo_c, T_air, T_c_iter, T_s_iter, e_atm, Rs_c, F) Rn_s = tseb_utils.compute_Rn_s( albedo_s, T_air, T_c_iter, T_s_iter, e_atm, Rs_s, F) Rn = Rn_c.add(Rn_s) # Rn_s, Rn_c, Rn = tseb_utils.compute_Rn( # albedo_c, albedo_s, T_air, T_c_iter, T_s_iter, e_atm, Rs_c, Rs_s, F) G = tseb_utils.compute_G0( Rn, Rn_s, albedo, ndvi, t_rise, t_end, time, EF_s_iter) LE_c = albedo \ .expression( 'f_green * (a_PT * Ss / (Ss + g)) * Rn_c', {'f_green': f_green, 'a_PT': a_PT_iter, 'Ss': Ss, 'g': g, 'Rn_c': Rn_c}) \ .max(0) H_c = albedo.expression( 'Rn_c - LE_c', {'Rn_c': Rn_c, 'LE_c': LE_c}) T_c_iter = tseb_utils.temp_separation_tc( H_c, fc_q, T_air, T_rad, r_ah_iter, r_s_iter, r_x_iter, r_air, cp) T_s_iter = tseb_utils.temp_separation_ts(T_c_iter, fc_q, T_air, T_rad) T_ac = tseb_utils.temp_separation_tac( T_c_iter, T_s_iter, fc_q, T_air, r_ah_iter, r_s_iter, r_x_iter) # T_c_iter, T_s_iter, T_ac = tseb_utils.temp_separation( # H_c, fc_q, T_air, T_rad, r_ah_iter, r_s_iter, r_x_iter, r_air, cp) H_s = albedo.expression( 'r_air * cp * (T_s - T_ac) / r_s', {'r_air': r_air, 'cp': cp, 'T_s': T_s_iter, 'T_ac': T_ac, 'r_s': r_s_iter}) H_c = albedo.expression( 'r_air * cp * (T_c - T_ac) / r_x', {'r_air': r_air, 'cp': cp, 'T_c': T_c_iter, 'T_ac': T_ac, 'r_x': r_x_iter}) H = albedo.expression('H_s + H_c', {'H_s': H_s, 'H_c': H_c}) LE_s = albedo.expression( 'Rn_s - G - H_s', {'Rn_s': Rn_s, 'G': G, 'H_s': H_s}) LE_c = albedo.expression('Rn_c - H_c', {'Rn_c': Rn_c, 'H_c': H_c}) # CGM - Is there a reason this isn't up with the H calculation? H = H.where(H.eq(0), 10.0) # CGM - This wont doing anything at this position in the code. # Commenting out for now. # r_ah_iter = r_ah_iter.where(r_ah_iter.eq(0), 10.0) # CGM - This doesn't seem to do anything, commenting out for now # mask_iter = H_iter.divide(H).lte(1.05).And(H_iter.divide(H).gte(0.95)) # chk_iter = np.sum(mask_iter) / np.size(mask_iter) fh = tseb_utils.compute_stability_fh( H, T_rad, u_attr_iter, r_air, z_t, d_0, cp) fm = tseb_utils.compute_stability_fm( H, T_rad, u_attr_iter, r_air, z_u, d_0, z0m, cp) fm_h = tseb_utils.compute_stability_fm_h( H, T_rad, u_attr_iter, r_air, hc, d_0, z0m, cp) # CGM - z0h is not used in this function, should it be? # fm, fh, fm_h = tseb_utils.compute_stability( # H, T_rad, r_air, cp, u_attr, z_u, z_t, hc, d_0, z0m, z0h) u_attr_iter = tseb_utils.compute_u_attr( u=u, d0=d_0, z0m=z0m, z_u=z_u, fm=fm) r_ah_iter = tseb_utils.compute_r_ah( u_attr=u_attr_iter, d0=d_0, z0h=z0h, z_t=z_t, fh=fh) r_s_iter = tseb_utils.compute_r_s( u_attr=u_attr_iter, T_s=T_s_iter, T_c=T_c_iter, hc=hc, F=lai, d0=d_0, z0m=z0m, leaf=leaf, leaf_s=leaf_s, fm_h=fm_h) # CGM - Why is this function is passing "lai" to "F"? r_x_iter = tseb_utils.compute_r_x( u_attr=u_attr_iter, hc=hc, F=lai, d0=d_0, z0m=z0m, xl=leaf_width, leaf_c=leaf_c, fm_h=fm_h) # r_ah_iter, r_s_iter, r_x_iter, u_attr_iter = tseb_utils.compute_resistance( # u, T_s_iter, T_c_iter, hc, lai, d_0, z0m, z0h, z_u, z_t, # leaf_width, leaf, leaf_s, leaf_c, fm, fh, fm_h) a_PT_iter = a_PT_iter \ .where(LE_s.lte(0), a_PT_iter.subtract(0.05)) \ .where(a_PT_iter.lte(0), 0.01) den_s = albedo.expression('Rn_s - G', {'Rn_s': Rn_s, 'G': G}) den_s = den_s.updateMask(den_s.neq(0)) # den_s[den_s == 0.] = np.nan EF_s_iter = albedo.expression( 'LE_s / den_s', {'LE_s': LE_s, 'den_s': den_s}) return ee.Dictionary({ 'a_PT': a_PT_iter, 'EF_s': EF_s_iter, 'G': G, 'H_c': H_c, 'H_s': H_s, 'LE_c': LE_c, 'LE_s': LE_s, 'Rn_c': Rn_c, 'Rn_s': Rn_s, 'r_ah': r_ah_iter, 'r_s': r_s_iter, 'r_x': r_x_iter, 'T_ac': T_ac, 'T_c': T_c_iter, 'T_s': T_s_iter, 'u_attr': u_attr_iter}) # Iterate the function n times # CGM - Iteration count is an input to the function input_images = ee.Dictionary({ 'a_PT': a_PT, 'EF_s': EF_s, 'G': ee.Image(0), 'H_c': ee.Image(0), 'H_s': ee.Image(0), 'LE_c': ee.Image(0), 'LE_s': ee.Image(0), 'Rn_c': ee.Image(0), 'Rn_s': ee.Image(0), 'r_ah': r_ah, 'r_s': r_s, 'r_x': r_x, 'T_ac': ee.Image(0), 'T_c': T_c, 'T_s': T_s, 'u_attr': u_attr }) iter_output = ee.Dictionary( ee.List.sequence(1, iterations).iterate(iter_func, input_images)) # Unpack the iteration output a_PT = ee.Image(iter_output.get('a_PT')) Rn_c = ee.Image(iter_output.get('Rn_c')) Rn_s = ee.Image(iter_output.get('Rn_s')) G = ee.Image(iter_output.get('G')) H_c = ee.Image(iter_output.get('H_c')) H_s = ee.Image(iter_output.get('H_s')) LE_c = ee.Image(iter_output.get('LE_c')) LE_s = ee.Image(iter_output.get('LE_s')) # T_ac = ee.Image(iter_output.get('T_ac')) # T_c = ee.Image(iter_output.get('T_c')) # T_s = ee.Image(iter_output.get('T_s')) # r_ah = ee.Image(iter_output.get('r_ah')) # r_s = ee.Image(iter_output.get('r_s')) # r_x = ee.Image(iter_output.get('r_x')) # print('\na_PT: {:20.14f}'.format(utils.image_value(a_PT).values()[0])) # print('Rn_c: {:20.14f}'.format(utils.image_value(Rn_c).values()[0])) # print('Rn_s: {:20.14f}'.format(utils.image_value(Rn_s).values()[0])) # print('G: {:20.14f}'.format(utils.image_value(G).values()[0])) # print('H_c: {:20.14f}'.format(utils.image_value(H_c).values()[0])) # print('H_s: {:20.14f}'.format(utils.image_value(H_s).values()[0])) # print('LE_c: {:20.14f}'.format(utils.image_value(LE_c).values()[0])) # print('LE_s: {:20.14f}'.format(utils.image_value(LE_s).values()[0])) # print('r_ah: {:20.14f}'.format(utils.image_value(r_ah).values()[0])) # print('r_s: {:20.14f}'.format(utils.image_value(r_s).values()[0])) # print('r_x: {:20.14f}'.format(utils.image_value(r_x).values()[0])) # print('T_ac: {:20.14f}'.format(utils.image_value(T_ac).values()[0])) # print('T_c: {:20.14f}'.format(utils.image_value(T_c).values()[0])) # print('T_s: {:20.14f}'.format(utils.image_value(T_s).values()[0])) # ************************************************************************ # Check Energy Balance Closure ind = a_PT.lte(0.01) LE_s = LE_s.where(ind, 1.0) LE_c = LE_c.where(ind, 1.0) G = G.where(ind, Rn_s.subtract(H_s)) ind = LE_s.gt(Rn_s) LE_s = LE_s.where(ind, Rn_s) H_s = H_s.where(ind, Rn_s.subtract(G).subtract(LE_s)) # CGM - Check order of operations ind = LE_c.gt(Rn_c.add(100)) # CGM - Not used below since LE_c is recomputed LE_c = LE_c.where(ind, Rn_c.add(100)) H_c = H_c.where(ind, -100) LE_s = albedo.expression( 'Rn_s - G - H_s', {'Rn_s': Rn_s, 'G': G, 'H_s': H_s}) LE_c = albedo.expression('Rn_c - H_c', {'Rn_c': Rn_c, 'H_c': H_c}) # The latent heat of vaporization is 2.45 MJ kg-1 # Assume Rs24 is still in W m-2 day-1 and convert to MJ kg-1 # CGM - Leaving out scaling value for now ET = albedo \ .expression( '((LE_c + LE_s) / Rs_1) * (Rs24 / 2.45) * scaling', {'LE_c': LE_c, 'LE_s': LE_s, 'Rs_1': Rs_1, 'Rs24': Rs24.multiply(0.0864 / 24.0), 'scaling': 1}) \ .max(0.01) # print('\nRn_c: {:20.14f}'.format(utils.image_value(Rn_c).values()[0])) # print('Rn_s: {:20.14f}'.format(utils.image_value(Rn_s).values()[0])) # print('G: {:20.14f}'.format(utils.image_value(G).values()[0])) # print('H_c: {:20.14f}'.format(utils.image_value(H_c).values()[0])) # print('H_s: {:20.14f}'.format(utils.image_value(H_s).values()[0])) # print('LE_c: {:20.14f}'.format(utils.image_value(LE_c).values()[0])) # print('LE_s: {:20.14f}'.format(utils.image_value(LE_s).values()[0])) # print('\nET: {:20.14f}'.format(utils.image_value(ET).values()[0])) return ET
6851b00f27b1819e79ce7ed625074c37ac35298f
3,657,451
def GetPrivateIpv6GoogleAccessTypeMapper(messages, hidden=False): """Returns a mapper from text options to the PrivateIpv6GoogleAccess enum. Args: messages: The message module. hidden: Whether the flag should be hidden in the choice_arg """ help_text = """ Sets the type of private access to Google services over IPv6. PRIVATE_IPV6_GOOGLE_ACCESS_TYPE must be one of: bidirectional Allows Google services to initiate connections to GKE pods in this cluster. This is not intended for common use, and requires previous integration with Google services. disabled Default value. Disables private access to Google services over IPv6. outbound-only Allows GKE pods to make fast, secure requests to Google services over IPv6. This is the most common use of private IPv6 access. $ gcloud alpha container clusters create \ --private-ipv6-google-access-type=disabled $ gcloud alpha container clusters create \ --private-ipv6-google-access-type=outbound-only $ gcloud alpha container clusters create \ --private-ipv6-google-access-type=bidirectional """ return arg_utils.ChoiceEnumMapper( '--private-ipv6-google-access-type', messages.NetworkConfig.PrivateIpv6GoogleAccessValueValuesEnum, _GetPrivateIPv6CustomMappings(), hidden=hidden, help_str=help_text)
9aa87977be9d0888d572c70d07535c9ec0b9d8f4
3,657,452
def calc_director(moi): """ Calculate the director from a moment of inertia. The director is the dominant eigenvector of the MOI tensor Parameters: ----------- moi : list 3x3 array; MOItensor Returns: -------- director : list 3 element list of director vector """ w, v = np.linalg.eig(moi) director = v[:, np.argmin(w)] return director
28f8b3446f83759704d426653dc8f7812e71e900
3,657,453
def _solve_upper_triangular(A, b): """ Solves Ax=b when A is upper triangular. """ return solve_triangular(A, b, lower=False)
5c33d5d10922172a133a478bdfdcb8cf7cd83120
3,657,454
def check_create_account_key(key): """ Returns the user_id if the reset key is valid (matches a user_id and that user does not already have an account). Otherwise returns None. """ query = sqlalchemy.text(""" SELECT user_id FROM members WHERE create_account_key = :k AND user_id NOT IN (SELECT user_id FROM users) """) result = flask.g.db.execute(query, k=key).first() if result is not None: return result['user_id'] else: return None
b02a710d443410b5b60c31a030d056f3282a5747
3,657,455
def _crc16(data, start = _CRC16_START) : """Compute CRC16 for bytes/bytearray/memoryview data""" crc = start for b in data : crc ^= b << 8 for _ in range(8) : crc = ((crc << 1) & 0xFFFF) ^ _CRC16_POLY if crc & 0x8000 else (crc << 1) return crc
e6e33471601d3126ac7873b61e23f843349e8e90
3,657,457
import json def load_json(): """Load the translation dictionary.""" try: with open(JSON_FILENAME, "r", encoding="utf8") as file: known_names = json.load(file) if "version" in known_names: if known_names.get("version") < JSON_VERSION: print("Unkown version: {}, current version: {}".format( known_names.get("version"), JSON_VERSION)) raise Exception( "Version mismatch. Backup the file and recreate.") else: print("No version number found") known_names = {} except FileNotFoundError: known_names = {} return known_names
d263411d0c0aae7bba30f92c5af22dd7ff596542
3,657,458
def get_username() -> str: """ Prompts the user to enter a username and then returns it :return: The username entered by the user """ while True: print("Please enter your username (without spaces)") username = input().strip() if ' ' not in username: return username
1a18a229908b86c32a0822c068b5b9081cc9fdc3
3,657,459
def condition(f): """ Decorator for conditions """ @wraps(f) def try_execute(*args, **kwargs): try: res, m = f(*args, **kwargs) m.conditions_results.append(res) return m except Exception as e: raise ConditionError(e) return try_execute
fb05645861c7aa234f894cc8eee3689e1f1293c9
3,657,460
def get_spatial_anomalies( coarse_obs_path, fine_obs_rechunked_path, variable, connection_string ) -> xr.Dataset: """Calculate the seasonal cycle (12 timesteps) spatial anomaly associated with aggregating the fine_obs to a given coarsened scale and then reinterpolating it back to the original spatial resolution. The outputs of this function are dependent on three parameters: * a grid (as opposed to a specific GCM since some GCMs run on the same grid) * the time period which fine_obs (and by construct coarse_obs) cover * the variable Parameters ---------- coarse_obs : xr.Dataset Coarsened to a GCM resolution. Chunked along time. fine_obs_rechunked_path : xr.Dataset Original observation spatial resolution. Chunked along time. variable: str The variable included in the dataset. Returns ------- seasonal_cycle_spatial_anomalies : xr.Dataset Spatial anomaly for each month (i.e. of shape (nlat, nlon, 12)) """ # interpolate coarse_obs back to the original scale [coarse_obs, fine_obs_rechunked] = load_paths([coarse_obs_path, fine_obs_rechunked_path]) obs_interpolated, _ = regrid_dataset( ds=coarse_obs, ds_path=coarse_obs_path, target_grid_ds=fine_obs_rechunked.isel(time=0), variable=variable, connection_string=connection_string, ) # use rechunked fine_obs from coarsening step above because that is in map chunks so it # will play nice with the interpolated obs schema_maps_chunks.validate(fine_obs_rechunked[variable]) # calculate difference between interpolated obs and the original obs spatial_anomalies = obs_interpolated - fine_obs_rechunked # calculate seasonal cycle (12 time points) seasonal_cycle_spatial_anomalies = spatial_anomalies.groupby("time.month").mean() return seasonal_cycle_spatial_anomalies
54dc830e9eb6b7440abf5857141ab369d8d45358
3,657,461