content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def hot(df, hot_maps, drop_cold=True, ret_hots_only=False, verbose=False):
"""
df: pd.DataFrame
hot_maps: list(dict)
hot_map: dict
key: str column in df
value: one_hot vector for unique row value
---
returns dataframe
"""
if verbose:
print(f"hot_df cols: {df.columns}")
ret = []
for i, (col_name, hot_map) in enumerate(hot_maps.items()):
ret.append(hot_col(df[col_name], hot_map))
if ret_hots_only:
return ret
ret = pd.concat([df] + ret, axis=1)
if drop_cold:
ret = ret.drop(list(hot_maps.keys()), axis=1)
return ret | b0912ae22aa3ee34acde76e89c5f926c9d309492 | 4,418 |
def menu(function_text):
"""
Decorator for plain-text handler
:param function_text: function which set as handle in bot class
:return:
"""
def wrapper(self, bot, update):
self.text_menu(bot, update)
function_text(self, bot, update)
return wrapper | dc68a46aaf402cd5ce3bd832a0f2a661b5cbc71b | 4,419 |
def create_delete_classes(system_id_or_identifier, **kwargs):
"""Create classes for a classification system.
:param system_id_or_identifier: The id or identifier of a classification system
"""
if request.method == "DELETE":
data.delete_classes(system_id_or_identifier)
return {'message': f'Classes of {system_id_or_identifier} deleted'}, 204
if request.method == "POST":
args = request.get_json()
errors = ClassMetadataForm().validate(args)
if errors:
return abort(400, str(errors))
classes = data.insert_classes(system_id_or_identifier=system_id_or_identifier, classes_files_json=args['classes'])
result = ClassesSchema(exclude=['classification_system_id']).dump(classes, many=True)
return jsonify(result), 201 | 4f48ebb7fe80854d255f47fb795e83b54f9f60b3 | 4,420 |
def add_latents_to_dataset_using_tensors(args, sess, tensors, data):
""" Get latent representations from model.
Args:
args: Arguments from parser in train_grocerystore.py.
sess: Tensorflow session.
tensors: Tensors used for extracting latent representations.
data: Data used during epoch.
Returns:
Data dictionary filled with latent representations.
"""
latents = sess.run(tensors['latents'], feed_dict={tensors['x']: data['features']} )
data['latents'] = latents
if args.use_private:
latents_ux = sess.run(tensors['latents_ux'], feed_dict={tensors['x']: data['features']} )
data['latents_ux'] = latents_ux
if args.use_text:
all_captions = load_captions(data['captions'], data['labels'])
latents_uw = sess.run(tensors['latents_uw'],
feed_dict={tensors['captions']: all_captions})
data['latents_uw'] = latents_uw
if args.use_iconic:
batch_size = args.batch_size
n_examples = len(data['iconic_image_paths'])
n_batches = int(np.ceil(n_examples/batch_size))
latents_ui = np.zeros([n_examples, args.z_dim])
for i in range(n_batches):
start = i * batch_size
end = start + batch_size
if end > n_examples:
end = n_examples
iconic_images = load_iconic_images(data['iconic_image_paths'][start:end])
latents_ui[start:end] = sess.run(tensors['latents_ui'],
feed_dict={tensors['iconic_images']: iconic_images})
data['latents_ui'] = latents_ui
return data | 550c7c878b43737b5fcabbb007062774f404b0b3 | 4,422 |
def normal_distribution_parameter_estimation(data):
"""
Notice: Unbiased Estimation Adopted. Line 115.
:param data: a list, each element is a real number, the value of some attribute
eg: [0.46, 0.376, 0.264, 0.318, 0.215, 0.237, 0.149, 0.211]
:return miu: the estimation of miu of the normal distribution based on 'data'
eg: 0.27875
:return sigma: the estimation of sigma of the normal distribution based on 'data'
eg: 0.10092394590553255
"""
miu = np.mean(data) # estimate miu of the normal distribution
sigma = 0 # initial sigma
data_num = len(data) # the number of data
# estimate sigma of the normal distribution
for each_data in data:
sigma = sigma + (each_data-miu) ** 2
sigma = sigma/(data_num-1) # unbiased estimation adopted!!
sigma = sigma ** 0.5
return miu, sigma | ce8ca8010f98fdd2067285fea4779507fe7e958b | 4,423 |
def compose(chosung, joongsung, jongsung=u''):
"""This function returns a Hangul letter by composing the specified chosung, joongsung, and jongsung.
@param chosung
@param joongsung
@param jongsung the terminal Hangul letter. This is optional if you do not need a jongsung."""
if jongsung is None: jongsung = u''
try:
chosung_index = CHOSUNGS.index(chosung)
joongsung_index = JOONGSUNGS.index(joongsung)
jongsung_index = JONGSUNGS.index(jongsung)
except Exception as e:
raise NotHangulException('No valid Hangul character can be generated using given combination of chosung, joongsung, and jongsung.')
return chr(0xAC00 + chosung_index * NUM_JOONGSUNGS * NUM_JONGSUNGS + joongsung_index * NUM_JONGSUNGS + jongsung_index) | 047d0cf68a558d795a5bf71b0ebe686a41208af7 | 4,425 |
from typing import Dict
from typing import List
def generate_markdown_metadata(metadata_obj: Dict[str, str]) -> List[str]:
"""generate_markdown_metadata
Add some basic metadata to the top of the file
in HTML tags.
"""
metadata: List[str] = ["<!---"]
passed_metadata: List[str] = [
f" {key}: {value}" for key, value in metadata_obj.items()
]
metadata.extend(passed_metadata)
metadata.append(f" Tags:")
metadata.append("--->")
metadata.append(f"# Diary for {metadata_obj['Date']}")
metadata.append("")
return metadata | 02ef3952c265276f4e666f060be6cb1d4a150cca | 4,426 |
def fftshift(x:np.ndarray):
"""平移FFT频谱
FFT默认频谱不是关于零频率对称的,使用fftshift可以对调左右频谱。
:Parameters:
- x: 频谱序列
:Returns: 平移后的频谱
"""
N = x.size
return np.append(x[N//2:], x[:N//2]) | beaf2dcd0d5c9ff0b9bd83d326b3d3a9f6471968 | 4,427 |
from typing import List
from typing import Tuple
def get_20newsgroups_data(
train_test,
categories=None,
max_text_len: int = None,
min_num_tokens=0,
random_state=42,
) -> List[Tuple[str, str]]:
"""
'alt.atheism',
'comp.graphics',
'comp.os.ms-windows.misc',
'comp.sys.ibm.pc.hardware',
'comp.sys.mac.hardware',
'comp.windows.x',
'misc.forsale',
'rec.autos',
'rec.motorcycles',
'rec.sport.baseball',
'rec.sport.hockey',
'sci.crypt',
'sci.electronics',
'sci.med',
'sci.space',
'soc.religion.christian',
'talk.politics.guns',
'talk.politics.mideast',
'talk.politics.misc',
'talk.religion.misc'
"""
data = fetch_20newsgroups(
subset=train_test,
shuffle=True,
remove=("headers", "footers", "quotes"),
categories=categories,
random_state=random_state,
)
target_names = data.target_names
def truncate_to_maxlen(text):
if max_text_len is not None:
return text[0 : min(len(text), max_text_len)]
else:
return text
text_target_tuples = [
(truncate_to_maxlen(d), target_names[target])
for d, target in zip(data.data, data.target)
if len(d.split(" ")) > min_num_tokens
]
return text_target_tuples | 6053f967ac1fb782cab28fe401e384940703e384 | 4,428 |
def crossdomain(allowed_origins=None, methods=None, headers=None,
max_age=21600, attach_to_all=True,
automatic_options=True, credentials=False):
"""
http://flask.pocoo.org/snippets/56/
"""
if methods is not None:
methods = ', '.join(sorted(x.upper() for x in methods))
if headers is not None and not isinstance(headers, str):
headers = ', '.join(x.upper() for x in headers)
if isinstance(allowed_origins, str):
# always have allowed_origins as a list of strings.
allowed_origins = [allowed_origins]
if isinstance(max_age, timedelta):
max_age = max_age.total_seconds()
def get_methods():
if methods is not None:
return methods
options_resp = current_app.make_default_options_response()
return options_resp.headers['allow']
def decorator(f):
def wrapped_function(*args, **kwargs):
# Get a hold of the request origin
origin = request.environ.get('HTTP_ORIGIN')
if automatic_options and request.method == 'OPTIONS':
resp = current_app.make_default_options_response()
else:
resp = make_response(f(*args, **kwargs))
if not attach_to_all and request.method != 'OPTIONS':
return resp
h = resp.headers
# if the origin matches any of our allowed origins set the
# access control header appropriately
allow_origin = (origin if origin is not None and
allowed_origins is not None and
origin in allowed_origins else None)
h['Access-Control-Allow-Origin'] = allow_origin
h['Access-Control-Allow-Methods'] = get_methods()
h['Access-Control-Max-Age'] = str(max_age)
if credentials:
h['Access-Control-Allow-Credentials'] = 'true'
if headers is not None:
h['Access-Control-Allow-Headers'] = headers
return resp
f.provide_automatic_options = False
return update_wrapper(wrapped_function, f)
return decorator | 9d352718406f62eaeb184a081b4223b67f6200f3 | 4,429 |
from typing import Callable
def make_vector_gradient(bcs: Boundaries) -> Callable:
""" make a discretized vector gradient operator for a cylindrical grid
|Description_cylindrical|
Args:
bcs (:class:`~pde.grids.boundaries.axes.Boundaries`):
|Arg_boundary_conditions|
Returns:
A function that can be applied to an array of values
"""
assert isinstance(bcs.grid, CylindricalGrid)
bcs.check_value_rank(1)
# calculate preliminary quantities
gradient_r = make_gradient(bcs.extract_component(0))
gradient_z = make_gradient(bcs.extract_component(1))
gradient_phi = make_gradient(bcs.extract_component(2))
@jit_allocate_out(out_shape=(3, 3) + bcs.grid.shape)
def vector_gradient(arr, out=None):
""" apply gradient operator to array `arr` """
gradient_r(arr[0], out=out[:, 0])
gradient_z(arr[1], out=out[:, 1])
gradient_phi(arr[2], out=out[:, 2])
return out
return vector_gradient | 61d4f1a29d4a81e57ad37a6b963e201e5deabc06 | 4,430 |
def exec_in_terminal(command):
"""Run a command in the terminal and get the
output stripping the last newline.
Args:
command: a string or list of strings
"""
return check_output(command).strip().decode("utf8") | 1186649cebbd20559f7de0ba8aa743d70f35c924 | 4,431 |
def replace_string(original, start, end, replacement):
"""Replaces the specified range of |original| with |replacement|"""
return original[0:start] + replacement + original[end:] | c71badb26287d340170cecdbae8d913f4bdc14c6 | 4,432 |
def edit_mod():
""" Admin endpoint used for sub transfers. """
if not current_user.is_admin():
abort(403)
form = EditModForm()
try:
sub = Sub.get(fn.Lower(Sub.name) == form.sub.data.lower())
except Sub.DoesNotExist:
return jsonify(status='error', error=[_("Sub does not exist")])
try:
user = User.get(fn.Lower(User.name) == form.user.data.lower())
except User.DoesNotExist:
return jsonify(status='error', error=[_("User does not exist")])
if form.validate():
try:
sm = SubMod.get((SubMod.sid == sub.sid) & (SubMod.uid == user.uid))
sm.power_level = 0
sm.invite = False
sm.save()
except SubMod.DoesNotExist:
SubMod.create(sid=sub.sid, uid=user.uid, power_level=0)
misc.create_sublog(misc.LOG_TYPE_SUB_TRANSFER, current_user.uid, sub.sid,
comment=user.name, admin=True)
return jsonify(status='ok')
return jsonify(status="error", error=get_errors(form)) | debab16603e2cfe412eb0f819753fb7571a9c803 | 4,433 |
def get_current_info(symbol_list, columns='*'):
"""Retrieves the latest data (15 minute delay) for the
provided symbols."""
columns = ','.join(columns)
symbols = __format_symbol_list(symbol_list)
yql = ('select %s from %s where symbol in (%s)'
% (columns, FINANCE_TABLES['quotes'], symbols))
response = execute_yql_query(yql)
return __validate_response(response, 'quote') | a13df0f44b31ac091a5283958cdb1aa675fe9bdc | 4,434 |
def dictionarify_recpat_data(recpat_data):
"""
Covert a list of flat dictionaries (single-record dicts) into a dictionary.
If the given data structure is already a dictionary, it is left unchanged.
"""
return {track_id[0]: patterns[0] for track_id, patterns in \
[zip(*item.items()) for item in recpat_data]} \
if not isinstance(recpat_data, dict) else recpat_data | d1cdab68ab7445aebe1bbcce2f220c73d6db308f | 4,435 |
def _get_qualified_name(workflow_name, job_name):
"""Construct a qualified name from workflow name and job name."""
return workflow_name + _NAME_DELIMITER + job_name | 29881480a9db33f18ff4b01abcdd1aaf39781f36 | 4,436 |
def normalize_each_time_frame(input_array):
"""
Normalize each time frame
- Input: 3D numpy array
- Output: 3D numpy array
"""
for i in range(input_array.shape[0]):
max_value = np.amax(input_array[i, :, :])
if max_value != 0:
input_array[i, :, :] = input_array[i, :, :] / max_value
return input_array | bee7f41f17e4e24a654426f65c6a73c518abafca | 4,437 |
def pre_process_data(full_data):
"""
pre process data- dump invalid values
"""
clean_data = full_data[(full_data["Temp"] > -10)]
return clean_data | 6172d4a77f5805c60ae9e4f146da2bd8283beef0 | 4,438 |
def invalid_grant(_):
"""Handles the Invalid Grant error when doing Oauth
"""
del current_app.blueprints['google'].token
flash(("InvalidGrant Error"), category="danger")
return redirect(url_for('index')) | 95b8b20d3d96b46387c6dd23ede9b54c6b056da1 | 4,439 |
import difflib
def diff_text(a, b):
"""
Performs a diffing algorithm on two pieces of text. Returns
a string of HTML containing the content of both texts with
<span> tags inserted indicating where the differences are.
"""
def tokenise(text):
"""
Tokenises a string by spliting it into individual characters
and grouping the alphanumeric ones together.
This means that punctuation, whitespace, CJK characters, etc
become separate tokens and words/numbers are merged together
to form bigger tokens.
This makes the output of the diff easier to read as words are
not broken up.
"""
tokens = []
current_token = ""
for c in text:
if c.isalnum():
current_token += c
else:
if current_token:
tokens.append(current_token)
current_token = ""
tokens.append(c)
if current_token:
tokens.append(current_token)
return tokens
a_tok = tokenise(a)
b_tok = tokenise(b)
sm = difflib.SequenceMatcher(lambda t: len(t) <= 4, a_tok, b_tok)
changes = []
for op, i1, i2, j1, j2 in sm.get_opcodes():
if op == 'replace':
for token in a_tok[i1:i2]:
changes.append(('deletion', token))
for token in b_tok[j1:j2]:
changes.append(('addition', token))
elif op == 'delete':
for token in a_tok[i1:i2]:
changes.append(('deletion', token))
elif op == 'insert':
for token in b_tok[j1:j2]:
changes.append(('addition', token))
elif op == 'equal':
for token in a_tok[i1:i2]:
changes.append(('equal', token))
# Merge ajacent changes which have the same type. This just cleans up the HTML a bit
merged_changes = []
current_value = []
current_change_type = None
for change_type, value in changes:
if change_type != current_change_type:
if current_change_type is not None:
merged_changes.append((current_change_type, ''.join(current_value)))
current_value = []
current_change_type = change_type
current_value.append(value)
if current_value:
merged_changes.append((current_change_type, ''.join(current_value)))
return TextDiff(merged_changes) | e15348e942ac3e6936872ec61f123a9241f49eba | 4,440 |
from common.aes import encrypt
from common.datatypes import PasswordResetToken
from config import AUTH_TOKEN, RESET_PASSWORD_EXPIRE_SECONDS
from time import time
from urllib.parse import quote_plus
from utils import send_mail
import traceback
from operator import or_
def require_reset_password():
"""
请求重设密码
参数:
{
"identifier":"用户识别符"
}
返回:
{
"code":0,//非0表示调用成功
"message":"qwq"//code非0的时候表示错误信息
}
"""
if config.USE_PHONE_WHEN_REGISTER_AND_RESETPASSWD:
return make_response(-1, message="当前不使用邮箱验证密码")
if db.session.query(User).filter(User.email == request.form["identifier"]).count() > 1:
return make_response(-1, message="此邮箱对应多个用户,请使用用户名进行操作")
query = db.session.query(User).filter(or_(
User.email == request.form["identifier"], User.username == request.form["identifier"]))
if query.count() == 0:
return make_response(-1, message="用户名或邮箱错误")
user: User = query.one()
raw_json = PasswordResetToken(
user.id, int(time())+RESET_PASSWORD_EXPIRE_SECONDS, AUTH_TOKEN).as_json()
# print(raw_json)
to_send_token = encrypt(config.AUTH_PASSWORD, raw_json)
# print("raw token", to_send_token)
to_send_token = quote_plus(quote_plus(to_send_token))
# print(to_send_token)
# user.reset_token = str(uuid.uuid1())
try:
send_mail(config.RESET_PASSWORD_EMAIL.format(
reset_token=to_send_token), "重置密码", user.email)
except Exception as ex:
return make_response(-1, message=traceback.format_exc())
return make_response(0, message="重置密码的邮件已经发送到您邮箱的垃圾箱,请注意查收") | aa1c14755485fe3ac5fc294e43fa1d4e610e0a83 | 4,441 |
def coerce_affine(affine, *, ndim, name=None):
"""Coerce a user input into an affine transform object.
If the input is already an affine transform object, that same object is returned
with a name change if the given name is not None. If the input is None, an identity
affine transform object of the given dimensionality is returned.
Parameters
----------
affine : array-like or napari.utils.transforms.Affine
An existing affine transform object or an array-like that is its transform matrix.
ndim : int
The desired dimensionality of the transform. Ignored is affine is an Affine transform object.
name : str
The desired name of the transform.
Returns
-------
napari.utils.transforms.Affine
The input coerced into an affine transform object.
"""
if affine is None:
affine = Affine(affine_matrix=np.eye(ndim + 1), ndim=ndim)
elif isinstance(affine, np.ndarray):
affine = Affine(affine_matrix=affine, ndim=ndim)
elif isinstance(affine, list):
affine = Affine(affine_matrix=np.array(affine), ndim=ndim)
elif not isinstance(affine, Affine):
raise TypeError(
trans._(
'affine input not recognized. must be either napari.utils.transforms.Affine or ndarray. Got {dtype}',
deferred=True,
dtype=type(affine),
)
)
if name is not None:
affine.name = name
return affine | 66900e32b83100004d2ea62a742fc0afe8a26cbb | 4,442 |
def known_peaks():
"""Return a list of Peak instances with data (identified)."""
peak1 = Peak(
name="Test1Known",
r_time=5.00,
mz=867.1391,
charge="+",
inchi_key="IRPOHFRNKHKIQA-UHFFFAOYSA-N",
)
peak2 = Peak(
name="Test2Known",
r_time=8.00,
mz=260.0297,
charge="-",
inchi_key="HXXFSFRBOHSIMQ-FPRJBGLDSA-N",
)
return [peak1, peak2] | 3f7d5eb5b16d61f09c0c10f32e9d8d40324e2d5d | 4,444 |
def explode_sheet_music(sheet_music):
"""
Splits unformatted sheet music into formated lines of LINE_LEN_LIM
and such and returns a list of such lines
"""
split_music = sheet_music.split(',')
split_music = list(map(lambda note: note+',', split_music))
split_list = []
counter = 0
line_counter = 1
for note in split_music:
if line_counter > LINES_LIMIT-1:
break
if counter+len(note) > LINE_LENGTH_LIM-2:
split_list[-1] = split_list[-1].rstrip(',')
split_list[-1] += END_OF_LINE_CHAR
counter = 0
line_counter += 1
split_list.append(note)
counter += len(note)
return split_list | f89ae58a0deb315c61419bd381cd0bf84f079c3e | 4,445 |
def norm_coefficient(m, n):
"""
Calculate the normalization coefficient for the (m, n) Zernike mode.
Parameters
----------
m : int
m-th azimuthal Zernike index
n : int
n-th radial Zernike index
Returns
-------
norm_coeff : float
Noll normalization coefficient
"""
norm_coeff = np.sqrt(2 * (n + 1)/(1 + (m == 0)))
return norm_coeff | 1632ffac5e771e4ab16b3f7918d9543ffd67171e | 4,446 |
def get_waveglow(ckpt_url):
"""
Init WaveGlow vocoder model with weights.
Used to generate realistic audio from mel-spectrogram.
"""
wn_config = {
'n_layers': hp.wg_n_layers,
'n_channels': hp.wg_n_channels,
'kernel_size': hp.wg_kernel_size
}
audio_config = {
'wav_value': hp.wg_wav_value,
'sampling_rate': hp.wg_sampling_rate
}
model = WaveGlow(
n_mel_channels=hp.wg_n_mel_channels,
n_flows=hp.wg_n_flows,
n_group=hp.wg_n_group,
n_early_every=hp.wg_n_early_every,
n_early_size=hp.wg_n_early_size,
wn_config=wn_config
)
load_checkpoint(ckpt_url, model)
model.set_train(False)
return model, audio_config | a5b494299fae98be2bb5f764ed7a53fc42d36eff | 4,447 |
def user_exists(keystone, user):
"""" Return True if user already exists"""
return user in [x.name for x in keystone.users.list()] | 17d99e12c0fc128607a815f0b4ab9897c5d45578 | 4,448 |
from typing import List
from typing import Dict
import itertools
def gen_cartesian_product(*args: List[Dict]) -> List[Dict]:
""" generate cartesian product for lists
生成笛卡尔积,估计是参数化用的
Args:
args (list of list): lists to be generated with cartesian product
Returns:
list: cartesian product in list
Examples:
>>> arg1 = [{"a": 1}, {"a": 2}]
>>> arg2 = [{"x": 111, "y": 112}, {"x": 121, "y": 122}]
>>> args = [arg1, arg2]
>>> gen_cartesian_product(*args)
>>> # same as below
>>> gen_cartesian_product(arg1, arg2)
[
{'a': 1, 'x': 111, 'y': 112},
{'a': 1, 'x': 121, 'y': 122},
{'a': 2, 'x': 111, 'y': 112},
{'a': 2, 'x': 121, 'y': 122}
]
"""
if not args:
return []
elif len(args) == 1:
return args[0]
"""
经过以上判断,只有args≥2时
"""
product_list = []
# itertools.product(*args) 笛卡尔积,相当于嵌套的for循环
for product_item_tuple in itertools.product(*args):
"""
({'a': 1}, {'x': 111, 'y': 112})
({'a': 1}, {'x': 121, 'y': 122})
({'a': 2}, {'x': 111, 'y': 112})
({'a': 2}, {'x': 121, 'y': 122})
"""
product_item_dict = {}
for item in product_item_tuple:
"""
1 :{'a': 1}
1 :{'x': 111, 'y': 112}
2 :{'a': 1}
2 :{'x': 121, 'y': 122}
3 :{'a': 2}
3 :{'x': 111, 'y': 112}
4 :{'a': 2}
4 :{'x': 121, 'y': 122}
"""
product_item_dict.update(item)
product_list.append(product_item_dict)
# [{'a': 1, 'x': 111, 'y': 112}, {'a': 1, 'x': 121, 'y': 122}, {'a': 2, 'x': 111, 'y': 112}, {'a': 2, 'x': 121, 'y': 122}]
return product_list | cbe85f440f399b523aa70bc10733ea175dc93f7a | 4,449 |
def get_234_df(x):
"""
This function get the dataframe for model2.1,2.2,2.3
input: x, the col we want
output: the dataframe only for x
"""
styles = pd.read_csv("styles.csv", error_bad_lines=False)
styles = styles.drop(["productDisplayName"],axis = 1)
styles = styles.drop(["year"],axis = 1)
styles = styles[(styles.masterCategory=='Apparel')| (styles.masterCategory=='Footwear')]
styles = styles.drop(styles[styles["subCategory"] == "Innerwear"].index)
styles = styles.dropna()
styles = df_drop(styles,"subCategory", ["Apparel Set", "Dress","Loungewear and Nightwear","Saree","Socks"])
styles["subCategory"] = styles["subCategory"].transform(lambda x: "Footwear" if(x in ["Shoes","Flip Flops","Sandal"]) else x)
styles = styles.drop(labels=[6695,16194,32309,36381,40000], axis=0)
styles = styles[styles.subCategory == x]
group_color(styles)
styles.baseColour=styles.colorgroup
return styles | c9d456ae058492e5e242bbde2288885158681f98 | 4,450 |
def appropriate_bond_orders(params, smrts_mol, smrts):
"""Checks if a SMARTS substring specification has appropriate bond orders
given the user-specified mode.
:param params: A dictionary of the user parameters and filters.
:type params: dict
:param smrts_mol: RDKit mol object of the SMARTS string.
:type smrts_mol: RDKit mol object.
:param smrts: The SMARTS string.
:type smrts: str
:return: 'True' if it validates, 'False' otherwise.
:rtype: bool
"""
# Test if double bonds are inappropriately specified.
if params["mode"] == "NONE" and (
".pdb" in params["ligand_exts"] or ".pdbqt" in params["ligand_exts"]
):
bond_orders = [b.GetBondTypeAsDouble() for b in smrts_mol.GetBonds()]
bond_orders = [o for o in bond_orders if o != 1.0]
if len(bond_orders) > 0:
# So it has bonds with orders greater than 1
output.error(
"When processing PDB- and PDBQT-formatted ligands in NONE "
+ "mode, LigGrep ignores bond orders and simply "
+ "assumes that all appropriately juxtaposed atoms are "
+ "connected by single bonds. But one (or more) of your "
+ "filters describes a substructure with bonds of higher "
+ "orders: "
+ smrts,
params,
)
return False
return True | 045abda277716812694cc1093256742e1d67a016 | 4,451 |
def train(model, train_path, val_path, steps_per_epoch, batch_size,
records_path):
"""
Train the Keras graph model
Parameters:
model (keras Model): The Model defined in build_model
train_path (str): Path to training data
val_path (str): Path to validation data
steps_per_epoch (int): Len(training_data)/batch_size
batch_size (int): Size of mini-batches used during training
records_path (str): Path + prefix to output directory
Returns:
loss (ndarray): An array with the validation loss at each epoch
"""
adam = Adam(lr=0.001)
model.compile(loss='binary_crossentropy', optimizer=adam)
train_generator = data_generator(train_path, batch_size, seqlen=500)
val_generator = data_generator(val_path, 200000, seqlen=500)
validation_data = next(val_generator)
precision_recall_history = PrecisionRecall(validation_data)
# adding check-pointing
checkpointer = ModelCheckpoint(records_path + 'model_epoch{epoch}.hdf5',
verbose=1, save_best_only=False)
# defining parameters for early stopping
# earlystop = EarlyStopping(monitor='val_loss', mode='min', verbose=1,
# patience=5)
# training the model..
hist = model.fit_generator(epochs=15, steps_per_epoch=steps_per_epoch,
generator=train_generator,
validation_data=validation_data,
callbacks=[precision_recall_history,
checkpointer])
loss, val_pr = save_metrics(hist, precision_recall_history,
records_path=records_path)
return loss, val_pr | 24a8080a8b4738f7eb32846729b006ca2237a576 | 4,452 |
def Mcnu_to_m1m2(Mc, nu):
"""Convert chirp mass, symmetric mass ratio pair to m1, m2"""
q = nu_to_q(nu)
M = Mcq_to_M(Mc, q)
return Mq_to_m1m2(M, q) | 8b4eb6e49549607bda0ea9a17baec8c4d0b38cb6 | 4,453 |
import functools
def _AccumulateActions(args):
"""Given program arguments, determines what actions we want to run.
Returns [(ResultsReportCtor, str)], where ResultsReportCtor can construct a
ResultsReport, and the str is the file extension for the given report.
"""
results = []
# The order of these is arbitrary.
if args.json:
results.append((JSONResultsReport, 'json'))
if args.text:
results.append((TextResultsReport, 'txt'))
if args.email:
email_ctor = functools.partial(TextResultsReport, email=True)
results.append((email_ctor, 'email'))
# We emit HTML if nothing else was specified.
if args.html or not results:
results.append((HTMLResultsReport, 'html'))
return results | 73925fe55e6986e1222a5e88f804caaa9793044a | 4,454 |
def build_predictions_dictionary(data, class_label_map):
"""Builds a predictions dictionary from predictions data in CSV file.
Args:
data: Pandas DataFrame with the predictions data for a single image.
class_label_map: Class labelmap from string label name to an integer.
Returns:
Dictionary with keys suitable for passing to
OpenImagesDetectionChallengeEvaluator.add_single_detected_image_info:
standard_fields.DetectionResultFields.detection_boxes: float32 numpy
array of shape [num_boxes, 4] containing `num_boxes` detection boxes
of the format [ymin, xmin, ymax, xmax] in absolute image coordinates.
standard_fields.DetectionResultFields.detection_scores: float32 numpy
array of shape [num_boxes] containing detection scores for the boxes.
standard_fields.DetectionResultFields.detection_classes: integer numpy
array of shape [num_boxes] containing 1-indexed detection classes for
the boxes.
"""
dictionary = {
standard_fields.DetectionResultFields.detection_classes:
data['LabelName'].map(lambda x: class_label_map[x]).to_numpy(),
standard_fields.DetectionResultFields.detection_scores:
data['Score'].to_numpy().astype(float)
}
if 'Mask' in data:
segments, boxes = _decode_raw_data_into_masks_and_boxes(
data['Mask'], data['ImageWidth'], data['ImageHeight'])
dictionary[standard_fields.DetectionResultFields.detection_masks] = segments
dictionary[standard_fields.DetectionResultFields.detection_boxes] = boxes
else:
dictionary[standard_fields.DetectionResultFields.detection_boxes] = data[[
'YMin', 'XMin', 'YMax', 'XMax'
]].to_numpy().astype(float)
return dictionary | 738e1c9c4568bc689ecda9765c3412d36f2d73ec | 4,455 |
def create_file_link(link_id, file_id, parent_share_id, parent_datastore_id):
"""
DB wrapper to create a link between a file and a datastore or a share
Takes care of "degenerated" tree structures (e.g a child has two parents)
In addition checks if the link already exists, as this is a crucial part of the access rights system
:param link_id:
:param file_id:
:param parent_share_id:
:param parent_datastore_id:
:return:
"""
try:
File_Link.objects.create(
link_id = link_id,
file_id = file_id,
parent_datastore_id = parent_datastore_id,
parent_share_id = parent_share_id
)
except:
return False
return True | 0c4abe1d5aa4bce8bd489f8bec1ae900a9194631 | 4,456 |
def deptree(lines):
"""Build a tree of what step depends on what other step(s).
Test input becomes
{'A': set(['C']), 'C': set([]), 'B': set(['A']),
'E': set(['B', 'D', 'F']), 'D': set(['A']),
'F': set(['C'])}
A depends on C
B depends on A
C depends on nothing (starting point)
D depends on A
E depends on B, D, F
F depends on C
"""
coll = defaultdict(set)
for line in lines:
parts = line.split()
coll[parts[7]].add(parts[1])
if parts[1] not in coll:
coll[parts[1]] = set()
return dict(coll) | 9a435a0e78dd3a68c97df4bcd2e03583841de216 | 4,457 |
from datetime import datetime
def get_datetime(time_str, model="0"):
"""
时间格式化 '20200120.110227'转为'2020-01-20 11:02:27'
返回一个datetime格式
"""
if model == "0":
time_str = get_time(time_str)
time = datetime.datetime.strptime(time_str, "%Y-%m-%d %H:%M:%S")
return time | 568c46efab9366f64fc0e286cf9876cd48e7a9bb | 4,458 |
def gather_parent_cnvs(vcf, fa, mo):
"""
Create BEDTools corresponding to parent CNVs for converage-based inheritance
"""
cnv_format = '{0}\t{1}\t{2}\t{3}\t{4}\n'
fa_cnvs = ''
mo_cnvs = ''
for record in vcf:
# Do not include variants from sex chromosomes
if record.chrom in sex_chroms:
continue
# Process biallelic CNVs
if record.info['SVTYPE'] in 'DEL DUP'.split() \
and 'MULTIALLELIC' not in record.filter:
# Father
fa_ac = get_AC(get_GT(record, fa))
if fa_ac != 'NA':
if int(fa_ac) > 0:
new_cnv = cnv_format.format(record.chrom, str(record.pos),
str(record.stop),
record.info['SVTYPE'], fa_ac)
fa_cnvs = fa_cnvs + new_cnv
# Mother
mo_ac = get_AC(get_GT(record, mo))
if mo_ac != 'NA':
if int(mo_ac) > 0:
new_cnv = cnv_format.format(record.chrom, str(record.pos),
str(record.stop),
record.info['SVTYPE'], mo_ac)
mo_cnvs = mo_cnvs + new_cnv
# Process multiallelic CNVs
if record.info['SVTYPE'] == 'MCNV' and 'MULTIALLELIC' in record.filter:
# Father
fa_ac = get_GT(record, fa).split('/')[1]
if fa_ac != 'None':
fa_ac = int(fa_ac)
if fa_ac < 2:
new_cnv = cnv_format.format(record.chrom, str(record.pos),
str(record.stop), 'DEL',
str(2 - fa_ac))
fa_cnvs = fa_cnvs + new_cnv
elif fa_ac > 2:
new_cnv = cnv_format.format(record.chrom, str(record.pos),
str(record.stop), 'DUP',
str(fa_ac - 2))
fa_cnvs = fa_cnvs + new_cnv
# Mother
mo_ac = get_GT(record, mo).split('/')[1]
if mo_ac != 'None':
mo_ac = int(mo_ac)
if mo_ac < 2:
new_cnv = cnv_format.format(record.chrom, str(record.pos),
str(record.stop), 'DEL',
str(2 - mo_ac))
mo_cnvs = mo_cnvs + new_cnv
elif mo_ac > 2:
new_cnv = cnv_format.format(record.chrom, str(record.pos),
str(record.stop), 'DUP',
str(mo_ac - 2))
mo_cnvs = mo_cnvs + new_cnv
fa_cnvs = pbt.BedTool(fa_cnvs, from_string=True)
mo_cnvs = pbt.BedTool(mo_cnvs, from_string=True)
return fa_cnvs, mo_cnvs | 2d685586a917bbd94f87758221b4d06c2d6ad7c1 | 4,459 |
import json
def create_images():
""" Create new images
Internal Parameters:
image (FileStorage): Image
Returns:
success (boolean)
image (list)
"""
# vars
image_file = request.files.get('image')
validate_image_data({"image": image_file})
image_url_set = create_img_set(image_file)
# create image
image = Image(**{
"user_id": auth_user_id(),
"url": json.dumps(image_url_set)
})
try:
image.insert()
# return the result
return jsonify({
'success': True,
'image': image.format()
})
except Exception as e:
abort(400) | 682bb2f6044265fbd6c29c4ff6581d6bc2469edb | 4,460 |
from typing import Union
from pathlib import Path
from typing import Optional
def docx2python(
docx_filename: Union[str, Path],
image_folder: Optional[str] = None,
html: bool = False,
paragraph_styles: bool = False,
extract_image: bool = None,
) -> DocxContent:
"""
Unzip a docx file and extract contents.
:param docx_filename: path to a docx file
:param image_folder: optionally specify an image folder
(images in docx will be copied to this folder)
:param html: bool, extract some formatting as html
:param paragraph_styles: prepend the paragraphs style (if any, else "") to each
paragraph. This will only be useful with ``*_runs`` attributes.
:param extract_image: bool, extract images from document (default True)
:return: DocxContent object
"""
if extract_image is not None:
warn(
"'extract_image' is no longer a valid argument for docx2python. If an "
"image_folder is given as an argument to docx2python, images will be "
"written to that folder. A folder can be provided later with "
"``docx2python(filename).write_images(image_folder)``. Images files are "
"available as before with ``docx2text(filename).images`` attribute."
)
docx_context = DocxReader(docx_filename, html, paragraph_styles)
docx_content = DocxContent(docx_context, locals())
if image_folder:
_ = docx_content.images
return docx_content | 557ba8502b62ffc771a7d3b6f88a8b769dd55d68 | 4,461 |
def parcel_analysis(con_imgs, parcel_img,
msk_img=None, vcon_imgs=None,
design_matrix=None, cvect=None,
fwhm=8, smooth_method='default',
res_path=None):
"""
Helper function for Bayesian parcel-based analysis.
Given a sequence of independent images registered to a common
space (for instance, a set of contrast images from a first-level
fMRI analysis), perform a second-level analysis assuming constant
effects throughout parcels defined from a given label image in
reference space. Specifically, a model of the following form is
assumed:
Y = X * beta + variability,
where Y denotes the input image sequence, X is a design matrix,
and beta are parcel-wise parameter vectors. The algorithm computes
the Bayesian posterior probability of cvect'*beta, where cvect is
a given contrast vector, in each parcel using an expectation
propagation scheme.
Parameters
----------
con_imgs: sequence of nipy-like images
Images input to the group analysis.
parcel_img: nipy-like image
Label image where each label codes for a parcel.
msk_img: nipy-like image, optional
Binary mask to restrict analysis. By default, analysis is
carried out on all parcels with nonzero value.
vcon_imgs: sequece of nipy-like images, optional
First-level variance estimates corresponding to `con_imgs`. This
is useful if the input images are "noisy". By default,
first-level variances are assumed to be zero.
design_matrix: array, optional
If None, a one-sample analysis model is used. Otherwise, an
array with shape (n, p) where `n` matches the number of input
scans, and `p` is the number of regressors.
cvect: array, optional
Contrast vector of interest. The method makes an inference on
the contrast defined as the dot product cvect'*beta, where beta
are the unknown parcel-wise effects. If None, `cvect` is assumed
to be np.array((1,)). However, the `cvect` argument is mandatory
if `design_matrix` is provided.
fwhm: float, optional
A parameter that represents the localization uncertainty in
reference space in terms of the full width at half maximum of an
isotropic Gaussian kernel.
smooth_method: str, optional
One of 'default' and 'spm'. Setting `smooth_method=spm` results
in simply smoothing the input images using a Gaussian kernel,
while the default method involves more complex smoothing in
order to propagate spatial uncertainty into the inference
process.
res_path: str, optional
An existing path to write output images. If None, no output is
written.
Returns
-------
pmap_mu_img: nipy image
Image of posterior contrast means for each parcel.
pmap_prob_img: nipy image
Corresponding image of posterior probabilities of positive
contrast.
"""
p = ParcelAnalysis(con_imgs, parcel_img, parcel_info=None,
msk_img=msk_img, vcon_imgs=vcon_imgs,
design_matrix=design_matrix, cvect=cvect,
fwhm=fwhm, smooth_method=smooth_method,
res_path=res_path)
return p.parcel_maps() | 8abface7ad72f5ca2679dc9a8ea6cedd93f681a5 | 4,462 |
def memoize(fn):
"""Simple memoization decorator for functions and methods,
assumes that all arguments to the function can be hashed and
compared.
"""
memoized_values = {}
@wraps(fn)
def wrapped_fn(*args, **kwargs):
key = (args, tuple(sorted(kwargs.items())))
try:
return memoized_values[key]
except KeyError:
memoized_values[key] = fn(*args, **kwargs)
return memoized_values[key]
return wrapped_fn | 2a48fad065e04a7eed9b9865adc0640f2a7cff9f | 4,463 |
from pydantic import BaseModel # noqa: E0611
import torch
def validate(
args: Namespace,
model: BaseModel
) -> pd.DataFrame:
"""Perform the validation.
Parameters
----------
args : Namespace
Arguments to configure the model and the validation.
model : BaseModel
The model to be used for validation.
Returns
-------
pd.DataFrame
A DataFrame with the metric results.
See Also
--------
ptlflow.models.base_model.base_model.BaseModel : The parent class of the available models.
"""
model.eval()
if torch.cuda.is_available():
model = model.cuda()
dataloaders = model.val_dataloader()
dataloaders = {model.val_dataloader_names[i]: dataloaders[i] for i in range(len(dataloaders))}
metrics_df = pd.DataFrame()
metrics_df['model'] = [args.model]
metrics_df['checkpoint'] = [args.pretrained_ckpt]
for dataset_name, dl in dataloaders.items():
metrics_mean = validate_one_dataloader(args, model, dl, dataset_name)
metrics_df[[f'{dataset_name}-{k}' for k in metrics_mean.keys()]] = list(metrics_mean.values())
args.output_path.mkdir(parents=True, exist_ok=True)
metrics_df.T.to_csv(args.output_path / 'metrics.csv', header=False)
metrics_df = metrics_df.round(3)
return metrics_df | 456ec24e1639970db285e260028e9ba3bd4d2e31 | 4,464 |
def stats(last_day=None, timeframe=None, dates_sources=None):
"""See :class:`bgpranking.api.get_stats`"""
query = {'method': 'stats'}
query.update({'last_day': last_day, 'timeframe': timeframe,
'dates_sources': dates_sources})
return __prepare_request(query) | 5da42848926372fa5fe90338529ab47396203fd8 | 4,465 |
def restore_purchases() -> None:
"""restore_purchases() -> None
(internal)
"""
return None | 7f047cdfe892bd724c2203d846762c3b3786d7c2 | 4,466 |
import time
def sim_mat(fc7_feats):
"""
Given a matrix of features, generate the similarity matrix S and sparsify it.
:param fc7_feats: the fc7 features
:return: matrix_S - the sparsified matrix S
"""
print("Something")
t = time.time()
pdist_ = spatial.distance.pdist(fc7_feats)
print('Created distance matrix' + ' ' + str(time.time() - t) + ' sec')
t = time.time()
dist_mat = spatial.distance.squareform(pdist_)
print('Created square distance matrix' + ' ' + str(time.time() - t) + ' sec')
del pdist_
t = time.time()
sigmas = np.sort(dist_mat, axis=1)[:, 7] + 1e-16
matrice_prodotti_sigma = np.dot(sigmas[:, np.newaxis], sigmas[np.newaxis, :])
print('Generated Sigmas' + ' ' + str(time.time() - t) + ' sec')
t = time.time()
dist_mat /= -matrice_prodotti_sigma
print('Computed dists/-sigmas' + ' ' + str(time.time() - t) + ' sec')
del matrice_prodotti_sigma
t = time.time()
W = np.exp(dist_mat, dist_mat)
# W = np.exp(-(dist_mat / matrice_prodotti_sigma))
np.fill_diagonal(W, 0.)
# sparsify the matrix
k = int(np.floor(np.log2(fc7_feats.shape[0])) + 1)
n = W.shape[0]
print('Created inplace similarity matrix' + ' ' + str(time.time() - t) + ' sec')
t = time.time()
for x in W:
x[np.argpartition(x, n - k)[:(n - k)]] = 0.0
print('Sparsify the matrix' + ' ' + str(time.time() - t) + ' sec')
t = time.time()
# matrix_S = np.zeros((n, n))
m1 = W[np.triu_indices(n, k=1)]
m2 = W.T[np.triu_indices(n, k=1)]
W = spatial.distance.squareform(np.maximum(m1, m2))
print('Symmetrized the similarity matrix' + ' ' + str(time.time() - t) + ' sec')
return W | 6b896a4912f4a9a8fc765674ad47e17aea73bfa0 | 4,467 |
def text_split(in_text, insert_points, char_set):
""" Returns: Input Text Split into Text and Nonce Strings. """
nonce_key = []
encrypted_nonce = ""
in_list = list(in_text)
for pos in range(3967):
if insert_points[pos] >= len(in_list) - 1: point = len(in_list) - 2
else: point = insert_points[pos]
char = in_list[point]
in_list.pop(point)
nonce_key.append(char)
if char is not char_set[-1]: break
length = ((len(nonce_key) - 1) * (len(char_set) -2)) + char_set.index(nonce_key[len(nonce_key) - 1])
for pos in range(length):
if insert_points[pos + len(nonce_key)] >= len(in_list) - 1: point = len(in_list) - 2
else: point = insert_points[pos + len(nonce_key)]
char = in_list[point]
in_list.pop(point)
encrypted_nonce = encrypted_nonce + char
return "".join(in_list), encrypted_nonce | 15f496513e63236b0df7e2d8a8949a8b2e632af4 | 4,468 |
import decimal
def f_approximation(g_matrix, coeficients_array):
"""
Retorna um vetor para o valor aproximado de f, dados os coeficientes ak.
"""
decimal.getcontext().prec = PRECSION
decimal.getcontext().rounding = ROUNDING_MODE
num_of_xs = len(g_matrix[0])
num_of_coeficients = len(g_matrix)
f_approx_array = np.full(num_of_xs, decimal.Decimal('0'))
for i in range(0, num_of_xs):
approx_sum = 0
for k in range(0, num_of_coeficients):
approx_sum += coeficients_array[k] * g_matrix[k][i]
f_approx_array[i] = approx_sum
return f_approx_array | f5f8ce78b07e877c521a6374548e21273c61dcee | 4,469 |
def _module_exists(module_name):
"""
Checks if a module exists.
:param str module_name: module to check existance of
:returns: **True** if module exists and **False** otherwise
"""
try:
__import__(module_name)
return True
except ImportError:
return False | 8f3ed2e97ee6dbb41d6e84e9e5595ec8b6f9b339 | 4,470 |
def users(request):
"""Show a list of users and their puzzles."""
context = {'user_list': []}
for user in User.objects.all().order_by('username'):
objs = Puzzle.objects.filter(user=user, pub_date__lte=timezone.now()).order_by('-number')
if objs:
puzzle_list = []
for puz in objs:
puzzle_list.append({'number': puz.number, 'date': get_date_string(puz)})
context['user_list'].append({'name': user.username, 'puzzles': puzzle_list})
return render(request, 'puzzle/users.html', context) | abf953394af6baff08bedf252796eb0d89cba3f4 | 4,471 |
from xidplus.stan_fit import get_stancode
def MIPS_SPIRE_gen(phot_priors,sed_prior_model,chains=4,seed=5363,iter=1000,max_treedepth=10,adapt_delta=0.8):
"""
Fit the three SPIRE bands
:param priors: list of xidplus.prior class objects. Order (MIPS,PACS100,PACS160,SPIRE250,SPIRE350,SPIRE500)
:param sed_prior: xidplus.sed.sed_prior class
:param chains: number of chains
:param iter: number of iterations
:return: pystan fit object
"""
prior24=phot_priors[0]
prior250=phot_priors[1]
prior350=phot_priors[2]
prior500=phot_priors[3]
#input data into a dictionary
XID_data = {
'nsrc': prior250.nsrc,
'bkg_prior': [prior24.bkg[0],prior250.bkg[0], prior350.bkg[0], prior500.bkg[0]],
'bkg_prior_sig': [prior24.bkg[1],prior250.bkg[1], prior350.bkg[1], prior500.bkg[1]],
'conf_prior_sig': [0.0001, 0.1, 0.1, 0.1],
'z_median': prior24.z_median,
'z_sig': prior24.z_sig,
'npix_psw': prior250.snpix,
'nnz_psw': prior250.amat_data.size,
'db_psw': prior250.sim,
'sigma_psw': prior250.snim,
'Val_psw': prior250.amat_data,
'Row_psw': prior250.amat_row.astype(np.long),
'Col_psw': prior250.amat_col.astype(np.long),
'npix_pmw': prior350.snpix,
'nnz_pmw': prior350.amat_data.size,
'db_pmw': prior350.sim,
'sigma_pmw': prior350.snim,
'Val_pmw': prior350.amat_data,
'Row_pmw': prior350.amat_row.astype(np.long),
'Col_pmw': prior350.amat_col.astype(np.long),
'npix_plw': prior500.snpix,
'nnz_plw': prior500.amat_data.size,
'db_plw': prior500.sim,
'sigma_plw': prior500.snim,
'Val_plw': prior500.amat_data,
'Row_plw': prior500.amat_row.astype(np.long),
'Col_plw': prior500.amat_col.astype(np.long),
'npix_mips24': prior24.snpix,
'nnz_mips24': prior24.amat_data.size,
'db_mips24': prior24.sim,
'sigma_mips24': prior24.snim,
'Val_mips24': prior24.amat_data,
'Row_mips24': prior24.amat_row.astype(np.long),
'Col_mips24': prior24.amat_col.astype(np.long),
'nTemp': sed_prior_model.shape[0],
'nz': sed_prior_model.shape[2],
'nband': sed_prior_model.shape[1],
'SEDs': sed_prior_model,
}
#see if model has already been compiled. If not, compile and save it
model_file='/XID+MIPS_SPIRE_SED_gen'
sm = get_stancode(model_file)
fit = sm.sampling(data=XID_data,iter=iter,chains=chains,seed=seed,verbose=True,control=dict(max_treedepth=max_treedepth,adapt_delta=adapt_delta))
#return fit data
return fit | be3d168e6a7a5a8159e83371059cfcbd1f0c187e | 4,472 |
def check_cstr(solver, indiv):
"""Check the number of constraints violations of the individual
Parameters
----------
solver : Solver
Global optimization problem solver
indiv : individual
Individual of the population
Returns
-------
is_feasible : bool
Individual feasibility
"""
# Non valid simulation violate every constraints
if indiv.is_simu_valid == False:
indiv.cstr_viol = len(solver.problem.constraint)
return True # To not add errors to infeasible
# Browse constraints
for constraint in solver.problem.constraint:
# Compute value to compare
var_val = constraint.get_variable(indiv.output)
# Compare the value with the constraint
type_const = constraint.type_const
if type_const == "<=":
if var_val > constraint.value:
indiv.cstr_viol += 1
elif type_const in ["==", "="]:
if var_val != constraint.value:
indiv.cstr_viol += 1
elif type_const == ">=":
if var_val < constraint.value:
indiv.cstr_viol += 1
elif type_const == "<":
if var_val >= constraint.value:
indiv.cstr_viol += 1
elif type_const == ">":
if var_val <= constraint.value:
indiv.cstr_viol += 1
else:
raise ValueError("Wrong type of constraint")
return indiv.cstr_viol == 0 | 2aa52d2badfb45d8e289f8314700648ddc621252 | 4,473 |
def _FixFsSelectionBit(key, expected):
"""Write a repair script to fix a bad fsSelection bit.
Args:
key: The name of an fsSelection flag, eg 'ITALIC' or 'BOLD'.
expected: Expected value, true/false, of the flag.
Returns:
A python script to fix the problem.
"""
if not _ShouldFix('fsSelection'):
return None
op = '|='
verb = 'set'
mask = bin(fonts.FsSelectionMask(key))
if not expected:
op = '&='
verb = 'unset'
mask = '~' + mask
return 'ttf[\'OS/2\'].fsSelection %s %s # %s %s' % (op, mask, verb, key) | 6dda9ccbb565857c4187afc4dada6dd84653b427 | 4,474 |
def dilation_dist(path_dilation, n_dilate=None):
"""
Compute surface of distances with dilation
:param path_dilation: binary array with zeros everywhere except for paths
:param dilate: How often to do dilation --> defines radious of corridor
:returns: 2dim array of same shape as path_dilation, with values
0 = infinite distance from path
n_dilation = path location
"""
saved_arrs = [path_dilation]
if n_dilate is None:
# compute number of iterations: maximum distance of pixel to line
x_coords, y_coords = np.where(path_dilation)
x_len, y_len = path_dilation.shape
# dilate as much as the largest distance from the sides
n_dilate = max(
[
np.min(x_coords), x_len - np.max(x_coords),
np.min(y_coords), y_len - np.max(y_coords)
]
)
# dilate
for _ in range(n_dilate):
path_dilation = binary_dilation(path_dilation)
saved_arrs.append(path_dilation)
saved_arrs = np.sum(np.array(saved_arrs), axis=0)
return saved_arrs | 0d35ec5a0a14b026f0df228ae752f104502b82ba | 4,475 |
def plot_rgb_phases(absolute, phase):
"""
Calculates a visualization of an inverse Fourier transform, where the absolute value is plotted as brightness
and the phase is plotted as color.
:param absolute: 2D numpy array containing the absolute value
:param phase: 2D numpy array containing phase information in units of pi (should range from -1 to +1!)
:return: numpy array containing red, green and blue values
"""
red = 0.5 * (np.sin(phase * np.pi) + 1) * absolute / absolute.max()
green = 0.5 * (np.sin(phase * np.pi + 2 / 3 * np.pi) + 1) * absolute / absolute.max()
blue = 0.5 * (np.sin(phase * np.pi + 4 / 3 * np.pi) + 1) * absolute / absolute.max()
return np.dstack([red, green, blue]) | d2f12df2af25925ae9607ef102f4b0fc1cb01373 | 4,476 |
def normal_shock_pressure_ratio(M, gamma):
"""Gives the normal shock static pressure ratio as a function of upstream Mach number."""
return 1.0+2.0*gamma/(gamma+1.0)*(M**2.0-1.0) | 30d0a339b17bab2b662fecd5b19073ec6478a1ec | 4,479 |
from typing import Tuple
import numpy
def _lorentz_berthelot(
epsilon_1: float, epsilon_2: float, sigma_1: float, sigma_2: float
) -> Tuple[float, float]:
"""Apply Lorentz-Berthelot mixing rules to a pair of LJ parameters."""
return numpy.sqrt(epsilon_1 * epsilon_2), 0.5 * (sigma_1 + sigma_2) | b27c282cec9f880442be4e83f4965c0ad79dfb1e | 4,480 |
def verify_password_str(password, password_db_str):
"""Verify password matches database string."""
split_password_db = password_db_str.split('$')
algorithm = split_password_db[0]
salt = split_password_db[1]
return password_db_str == generate_password_str(algorithm, salt, password) | 467dcbfa1dbf1af0d7cd343f00149fc8322053e5 | 4,481 |
def get_ical_file_name(zip_file):
"""Gets the name of the ical file within the zip file."""
ical_file_names = zip_file.namelist()
if len(ical_file_names) != 1:
raise Exception(
"ZIP archive had %i files; expected 1."
% len(ical_file_names)
)
return ical_file_names[0] | 7013840891844358f0b4a16c7cefd31a602d9eae | 4,482 |
def unquoted_str(draw):
"""Generate strings compatible with our definition of an unquoted string."""
start = draw(st.text(alphabet=(ascii_letters + "_"), min_size=1))
body = draw(st.text(alphabet=(ascii_letters + digits + "_")))
return start + body | 7927e828a82786f45749e25e25376f48479c0662 | 4,483 |
from typing import List
from typing import Optional
from typing import Any
from typing import Callable
def _reduce_attribute(states: List[State],
key: str,
default: Optional[Any] = None,
reduce: Callable[..., Any] = _mean) -> Any:
"""Find the first attribute matching key from states.
If none are found, return default.
"""
attrs = list(_find_state_attributes(states, key))
if not attrs:
return default
if len(attrs) == 1:
return attrs[0]
return reduce(*attrs) | bfc4ca6826e05b04ae9e1af6d3c167935bceda6f | 4,484 |
def sync_garmin(fit_file):
"""Sync generated fit file to Garmin Connect"""
garmin = GarminConnect()
session = garmin.login(ARGS.garmin_username, ARGS.garmin_password)
return garmin.upload_file(fit_file.getvalue(), session) | 8e604a0461f503d83b5a304081020d54acd7577c | 4,485 |
from typing import Callable
from typing import List
def get_paths(graph: Graph, filter: Callable) -> List:
""" Collect all the paths consist of valid vertices.
Return one path every time because the vertex index may be modified.
"""
result = []
if filter == None:
return result
visited = set()
vs = graph.topological_sorting()
for vertex in vs:
if not filter(vertex, graph) or vertex in visited:
continue
visited.add(vertex)
path = [vertex]
slist = graph.successors(vertex)
while len(set(slist))==1 and filter(slist[0], graph) and not slist[0] in visited:
cur = slist[0]
path.append(cur)
visited.add(cur)
slist = graph.successors(cur)
if len(path) > 0:
result.append(path)
return result | f7e1679bae48781010257b4fe8e980964dee80ce | 4,486 |
def create_app(app_name=PKG_NAME):
"""Initialize the core application."""
app = Flask(app_name)
CORS(app)
with app.app_context():
# Register Restx Api
api.init_app(app)
return app | 1773b0a84253aa6a1bca5c6f6aec6cd6d59b74fa | 4,487 |
from typing import Dict
from typing import Callable
import sympy
import warnings
def smtlib_to_sympy_constraint(
smtlib_input: str,
interpreted_constants: Dict[str, Callable] = default_interpreted_constants,
interpreted_unary_functions: Dict[str,
Callable] = default_interpreted_unary_functions):
"""Convert SMTLIB(v2) constraints into sympy constraints analyzable via SYMPAIS.
This function is experimental and introduced as an example.
It is implemented on top of PySMT (https://github.com/pysmt/pysmt).
Additional features can be added extending the `SMTToSympyWalker` class.
Args:
smtlib_input: SMT constraint as a string in SMTLIB(v2) format, as accepted by PySMT
interpreted_constants:
predefined interpreted constants to be declared in the SMT problem.
Default: E (Euler), PI
interpreted_unary_functions:
predefined interpreted functions Real -> Real.
Default: sin, cos, tan, asin, acos, atan, log, exp, sqrt
Returns:
A dict of the estimates found by the DMC sampler.
"""
interpreted_symbols_declarations = '\n'.join(
[f'(declare-const {cname} Real)' for cname in interpreted_constants.keys()])
interpreted_symbols_declarations += '\n'.join([
f'(declare-fun {fname} (Real) Real)'
for fname in interpreted_unary_functions.keys()
])
smtlib_with_interpreted_symbols = (
interpreted_symbols_declarations + '\n' + smtlib_input)
reset_env()
parser = SmtLibParser()
script = parser.get_script(cStringIO(smtlib_with_interpreted_symbols))
f = script.get_last_formula()
converter = SMTToSympyWalker(get_env(), interpreted_constants,
interpreted_unary_functions)
f_sympy = converter.walk(f)
f_sympy = sympy.logic.simplify_logic(f_sympy)
f_sympy = sympy.simplify(f_sympy)
if f_sympy.atoms(sympy.logic.Or):
warnings.warn(
'Disjunctive constraints are not supported by RealPaver. Consider replacing it with an adequate interval constraint propagation tool for benefit from all the features of SYMPAIS'
)
return f_sympy | d04782272cd13fcb7eafdb4b8f9cb7b1fd857dcc | 4,488 |
async def revert(app, change_id: str) -> dict:
"""
Revert a history change given by the passed ``change_id``.
:param app: the application object
:param change_id: a unique id for the change
:return: the updated OTU
"""
db = app["db"]
change = await db.history.find_one({"_id": change_id}, ["index"])
if change["index"]["id"] != "unbuilt" or change["index"]["version"] != "unbuilt":
raise virtool.errors.DatabaseError(
"Change is included in a build an not revertible"
)
otu_id, otu_version = change_id.split(".")
if otu_version != "removed":
otu_version = int(otu_version)
_, patched, history_to_delete = await patch_to_version(app, otu_id, otu_version - 1)
# Remove the old sequences from the collection.
await db.sequences.delete_many({"otu_id": otu_id})
if patched is not None:
patched_otu, sequences = virtool.otus.utils.split(patched)
# Add the reverted sequences to the collection.
for sequence in sequences:
await db.sequences.insert_one(sequence)
# Replace the existing otu with the patched one. If it doesn't exist, insert it.
await db.otus.replace_one({"_id": otu_id}, patched_otu, upsert=True)
else:
await db.otus.delete_one({"_id": otu_id})
await db.history.delete_many({"_id": {"$in": history_to_delete}})
return patched | ad5484639f0a70913b17799534fa52b8531b3356 | 4,489 |
def days_away(date):
"""Takes in the string form of a date and returns the number of days until date."""
mod_date = string_to_date(date)
return abs((current_date() - mod_date).days) | f76b10d9e72d8db9e42d7aba7481e63cf1382502 | 4,490 |
def node_constraints_transmission(model):
"""
Constrains e_cap symmetrically for transmission nodes.
"""
m = model.m
# Constraint rules
def c_trans_rule(m, y, x):
y_remote, x_remote = transmission.get_remotes(y, x)
if y_remote in m.y_trans:
return m.e_cap[y, x] == m.e_cap[y_remote, x_remote]
else:
return po.Constraint.NoConstraint
# Constraints
m.c_transmission_capacity = po.Constraint(m.y_trans, m.x,
rule=c_trans_rule) | 0fc51f39b63324c73503b349cfd38da4c9816c50 | 4,491 |
def plot_mtf(faxis, MTF, labels=None):
"""Plot the MTF. Return the figure reference."""
fig_lineplot = plt.figure()
plt.rc('axes', prop_cycle=PLOT_STYLES)
for i in range(0, MTF.shape[0]):
plt.plot(faxis, MTF[i, :])
plt.xlabel('spatial frequency [cycles/length]')
plt.ylabel('Radial MTF')
plt.gca().set_ylim([0, 1])
if labels is not None:
plt.legend([str(n) for n in labels])
plt.title("Modulation Tansfer Function for various angles")
return fig_lineplot | dac09628a72666a4f4e3e8aae4263cb9f2688fa2 | 4,492 |
import enum
def forward_ref_structure_hook(context, converter, data, forward_ref):
"""Applied to ForwardRef model and enum annotations
- Map reserved words in json keys to approriate (safe) names in model.
- handle ForwardRef types until github.com/Tinche/cattrs/pull/42/ is fixed
Note: this is the reason we need a "context" param and have to use a
partial func to register the hook. Once the issue is resolved we can
remove "context" and the partial.
"""
data = hooks.tr_data_keys(data)
actual_type = eval(forward_ref.__forward_arg__, context, locals())
if issubclass(actual_type, enum.Enum):
instance = converter.structure(data, actual_type)
elif issubclass(actual_type, model.Model):
# cannot use converter.structure - recursion error
instance = converter.structure_attrs_fromdict(data, actual_type)
else:
raise DeserializeError(f"Unknown type to deserialize: {actual_type}")
return instance | acbbf365c7a80c7a9f5230bcd038c2c286ae58c5 | 4,493 |
def cross(x: VariableLike, y: VariableLike) -> VariableLike:
"""Element-wise cross product.
Parameters
----------
x:
Left hand side operand.
y:
Right hand side operand.
Raises
------
scipp.DTypeError
If the dtype of the input is not vector3.
Returns
-------
:
The cross product of the input vectors.
"""
return _call_cpp_func(_cpp.cross, x, y) | 372156ba869e3dabb2421e1ea947fdc710c316eb | 4,494 |
def delete(service, name, parent_id=None,
appProperties=defaults.GDRIVE_USE_APPPROPERTIES):
""" Delete a file/folder on Google Drive
Parameters
----------
service : googleapiclient.discovery.Resource
Google API resource for GDrive v3
name : str
Name of file/folder
parent_id : str, optional
Parent ID of folder containing file (to narrow search)
appProperties : bool
Search for application-specific files using ``appProperties``
Returns
-------
str
ID of deleted file/folder
"""
name_id = exists(service, name, parent_id=parent_id)
resp = service.files().delete(fileId=name_id).execute()
return name_id | e2653005d8d0e53df80119869586542b08405c55 | 4,495 |
def _is_LoginForm_in_this_frame(driver, frame):
""" 判断指定的 frame 中是否有 登录表单 """
driver.switch_to.frame(frame) # 切换进这个 frame
if _is_LoginForm_in_this_page(driver):
return True
else:
driver.switch_to.parent_frame() # 如果没有找到就切换回去
return False | 16a4b3af1d5cf9abe2efee6856a37b520fc2a1fc | 4,496 |
def parse_range_header(specifier, len_content):
"""Parses a range header into a list of pairs (start, stop)"""
if not specifier or '=' not in specifier:
return []
ranges = []
unit, byte_set = specifier.split('=', 1)
unit = unit.strip().lower()
if unit != "bytes":
return []
for val in byte_set.split(","):
val = val.strip()
if '-' not in val:
return []
if val.startswith("-"):
# suffix-byte-range-spec: this form specifies the last N
# bytes of an entity-body
start = len_content + int(val)
if start < 0:
start = 0
stop = len_content
else:
# byte-range-spec: first-byte-pos "-" [last-byte-pos]
start, stop = val.split("-", 1)
start = int(start)
# Add 1 to make stop exclusive (HTTP spec is inclusive)
stop = int(stop)+1 if stop else len_content
if start >= stop:
return []
ranges.append((start, stop))
return ranges | 2a408abe816684bf42b2253495088338bf4cac2b | 4,497 |
def acf(x, lags=None):
""" Computes the empirical autocorralation function.
:param x: array (n,), sequence of data points
:param lags: int, maximum lag to compute the ACF for. If None, this is set to n-1. Default is None.
:return gamma: array (lags,), values of the ACF at lags 0 to lags
"""
gamma = np.correlate(x, x, mode='full') # Size here is always 2*len(x)-1
gamma = gamma[int((gamma.size - 1) / 2):] # Keep only second half
if lags is not None and lags < len(gamma):
gamma = gamma[0:lags + 1]
return gamma / gamma[0] | 9d47df88255ec8c9ae373c501f8b70af8f3c4ebc | 4,498 |
def _login(client, user, users):
"""Login user and return url."""
login_user_via_session(client, user=User.query.get(user.id))
return user | 079136eb777957caf09c51c75ae5148ab2eea836 | 4,500 |
def search(request):
"""renders search page"""
queryset_list = Listing.objects.order_by('-list_date')
if 'keywords' in request.GET:
keywords = request.GET['keywords']
# Checking if its none
if keywords:
queryset_list = queryset_list.filter(
description__icontains=keywords)
if 'city' in request.GET:
city = request.GET['city']
# Checking if its none
if city:
queryset_list = queryset_list.filter(
city__iexact=city)
if 'state' in request.GET:
state = request.GET['state']
# Checking if its none
if state:
queryset_list = queryset_list.filter(
state__iexact=state)
if 'bedrooms' in request.GET:
bedrooms = request.GET['bedrooms']
# Here LTE(lte) means less then or equal
if bedrooms:
queryset_list = queryset_list.filter(
bedrooms__lte=bedrooms)
if 'price' in request.GET:
price = request.GET['price']
# Here LTE(lte) means less then or equal
if price:
queryset_list = queryset_list.filter(
price__lte=price)
context = {
"price_choices": price_choices,
"bedroom_choices": bedroom_choices,
"state_choices": state_choices,
"listings": queryset_list,
"values": request.GET
}
return render(request, 'listings/search.html', context) | a25d6e112d4054dfaf505aff5c4c36f07a95d989 | 4,501 |
def generate_cutout(butler, skymap, ra, dec, band='N708', data_type='deepCoadd',
half_size=10.0 * u.arcsec, psf=True, verbose=False):
"""Generate a single cutout image.
"""
if not isinstance(half_size, u.Quantity):
# Assume that this is in pixel
half_size_pix = int(half_size)
else:
half_size_pix = int(half_size.to('arcsec').value / PIXEL_SCALE)
if isinstance(ra, u.Quantity):
ra = ra.value
if isinstance(dec, u.Quantity):
dec = dec.value
# Width and height of the post-stamps
stamp_shape = (half_size_pix * 2 + 1, half_size_pix * 2 + 1)
# Make a list of (RA, Dec) that covers the cutout region
radec_list = np.array(
sky_cone(ra, dec, half_size_pix * PIXEL_SCALE * u.Unit('arcsec'), steps=50)).T
# Retrieve the Patches that cover the cutout region
img_patches = _get_patches(butler, skymap, radec_list, band, data_type=data_type)
if img_patches is None:
if verbose:
print('***** No data at {:.5f} {:.5f} *****'.format(ra, dec))
return None
# Coordinate of the image center
coord = geom.SpherePoint(ra * geom.degrees, dec * geom.degrees)
# Making the stacked cutout
cutouts = []
idx, bbox_sizes, bbox_origins = [], [], []
for img_p in img_patches:
# Generate cutout
cut, x0, y0 = _get_single_cutout(img_p, coord, half_size_pix)
cutouts.append(cut)
# Original lower corner pixel coordinate
bbox_origins.append([x0, y0])
# New lower corner pixel coordinate
xnew, ynew = cut.getBBox().getBeginX() - x0, cut.getBBox().getBeginY() - y0
idx.append([xnew, xnew + cut.getBBox().getWidth(),
ynew, ynew + cut.getBBox().getHeight()])
# Area of the cutout region on this patch in unit of pixels
# Will reverse rank all the overlapped images by this
bbox_sizes.append(cut.getBBox().getWidth() * cut.getBBox().getHeight())
# Stitch cutouts together with the largest bboxes inserted last
stamp = afwImage.MaskedImageF(geom.BoxI(geom.Point2I(0,0), geom.Extent2I(*stamp_shape)))
bbox_sorted_ind = np.argsort(bbox_sizes)
for i in bbox_sorted_ind:
masked_img = cutouts[i].getMaskedImage()
stamp[idx[i][0]: idx[i][1], idx[i][2]: idx[i][3]] = masked_img
# Build the new WCS of the cutout
stamp_wcs = _build_cutout_wcs(coord, cutouts, bbox_sorted_ind[-1], bbox_origins)
cutout = afwImage.ExposureF(stamp, stamp_wcs)
if bbox_sizes[bbox_sorted_ind[-1]] < (half_size_pix * 2 + 1) ** 2:
flag = 1
else:
flag = 2
# The final product of the cutout
if psf:
psf = _get_psf(cutouts[bbox_sorted_ind[-1]], coord)
return cutout, psf, flag
return cutout, flag | fdc42ad0dd0f357d53804a1f6fa43c93e86d2c0e | 4,502 |
def get_arraytypes ():
"""pygame.sndarray.get_arraytypes (): return tuple
Gets the array system types currently supported.
Checks, which array system types are available and returns them as a
tuple of strings. The values of the tuple can be used directly in
the use_arraytype () method.
If no supported array system could be found, None will be returned.
"""
vals = []
if __hasnumeric:
vals.append ("numeric")
if __hasnumpy:
vals.append ("numpy")
if len (vals) == 0:
return None
return tuple (vals) | 192cb215fdc651543ac6ed4ce2f9cac2b0d3b4f4 | 4,503 |
def is_request_authentic(request, secret_token: bytes = conf.WEBHOOK_SECRET_TOKEN):
"""
Examine the given request object to determine if it was sent by an authorized source.
:param request: Request object to examine for authenticity
:type request: :class:`~chalice.app.Request`
:param secret_token: Shared secret token used to create payload hash
:type: :class:`~bytes`
:return: Response object indicating whether or not the request is authentic
:rtype: :class:`~lopper.response.Response`
"""
signature = request.headers.get('X-Hub-Signature')
if not signature:
return response.unauthorized('Missing "X-Hub-Signature" header')
return auth.is_authentic(signature, request.raw_body, secret_token) | 1ffceea3aebc0c038384c003edc93358e6faa9ed | 4,504 |
def circular_mask_string(centre_ra_dec_posns, aperture_radius="1arcmin"):
"""Get a mask string representing circular apertures about (x,y) tuples"""
mask = ''
if centre_ra_dec_posns is None:
return mask
for coords in centre_ra_dec_posns:
mask += 'circle [ [ {x} , {y}] , {r} ]\n'.format(
x=coords[0], y=coords[1], r=aperture_radius)
return mask | 04e66d160eb908f543990adf896e494226674c71 | 4,505 |
def dataset_hdf5(dataset, tmp_path):
"""Make an HDF5 dataset and write it to disk."""
path = str(tmp_path / 'test.h5')
dataset.write_hdf5(path, object_id_itemsize=10)
return path | 4a7920adf7715797561513fbb87593abf95f0bca | 4,506 |
def _make_indexable(iterable):
"""Ensure iterable supports indexing or convert to an indexable variant.
Convert sparse matrices to csr and other non-indexable iterable to arrays.
Let `None` and indexable objects (e.g. pandas dataframes) pass unchanged.
Parameters
----------
iterable : {list, dataframe, array, sparse} or None
Object to be converted to an indexable iterable.
"""
if sp.issparse(iterable):
return iterable.tocsr()
elif hasattr(iterable, "__getitem__") or hasattr(iterable, "iloc"):
return iterable
elif iterable is None:
return iterable
return np.array(iterable) | 94be904009adfd3bf15de0f258b94a196a9612df | 4,507 |
def fib_for(n):
"""
Compute Fibonnaci sequence using a for loop
Parameters
----------
n : integer
the nth Fibonnaci number in the sequence
Returns
-------
the nth Fibonnaci number in the sequence
"""
res = [0, 1]
for i in range(n-1):
res.append(res[i] + res[i+1])
return res[n] | 1609a2d52f5308a6a9d496f13c1de3f7eee6332d | 4,509 |
import pickle
def command_factory(command):
"""A factory which returns functions for direct daemon communication.
This factory will create a function which sends a payload to the daemon
and returns the unpickled object which is returned by the daemon.
Args:
command (string): The type of payload this should be. This determines
as what kind of instruction this will be interpreted by the daemon.
Returns:
function: The created function.
"""
def communicate(body={}, root_dir=None):
"""Communicate with the daemon.
This function sends a payload to the daemon and returns the unpickled
object sent by the daemon.
Args:
body (dir): Any other arguments that should be put into the payload.
root_dir (str): The root directory in which we expect the daemon.
We need this to connect to the daemons socket.
Returns:
function: The returned payload.
"""
client = connect_socket(root_dir)
body['mode'] = command
# Delete the func entry we use to call the correct function with argparse
# as functions can't be pickled and this shouldn't be send to the daemon.
if 'func' in body:
del body['func']
data_string = pickle.dumps(body, -1)
client.send(data_string)
# Receive message, unpickle and return it
response = receive_data(client)
return response
return communicate | ec84d6ab611d4edaf55ba0c365ed8526250c7ce1 | 4,510 |
def load_prepare_saif_data(threshold=0.25):
"""
Loads and prepares saif's data.
Parameters
----------
threshold : float
Only data with intensities equal to or
above this threshold will be kept (range 0-1).
Returns
-------
DataFrame : pd.DataFrame
Concatenated tweets with labels as a pandas DataFrame.
"""
files = get_saif_files()
df = pd.concat([pd.read_csv(f, sep='\t', index_col=0, names=['tweet', 'emotion', 'intensity']) for f in files], axis=0)
df = df[df['intensity'] >= threshold]
df.drop('intensity', axis=1, inplace=True)
return df | b2087d0558473069cf5985bd7e2b063162157df5 | 4,511 |
def nonmax_suppression(harris_resp, halfwidth=2):
"""
Takes a Harris response from an image, performs nonmax suppression, and outputs the x,y values
of the corners in the image.
:param harris_resp: Harris response for an image which is an array of the same shape as the original image.
:param halfwidth: The size of the padding to use in building the window (matrix) for nonmax suppression.
The window will have a total shape of (2*halfwidth+1, 2*halfwidth+1).
:return: Tuple of x and y coordinates for the corners that were found from the Harris response
after nonmax suppression.
"""
cornersx = []
cornersy = []
h, w = harris_resp.shape[:2]
boxlength = 2*halfwidth + 1
for i in range(halfwidth, w-halfwidth-1):
for j in range(halfwidth, h-halfwidth-1):
matrix = np.zeros((boxlength, boxlength))
for k in range(-halfwidth, halfwidth+1):
for l in range(-halfwidth, halfwidth+1):
matrix[k+halfwidth, l+halfwidth] = harris_resp[i+k, j+l]
if matrix[halfwidth, halfwidth] == 0:
pass
elif matrix[halfwidth, halfwidth] < np.amax(matrix):
matrix[halfwidth, halfwidth] = 0
else:
cornersx.append(j)
cornersy.append(i)
return cornersx, cornersy | b980ac9045728c8231749e7a43aa2f06d958d80c | 4,512 |
import uuid
from datetime import datetime
import pytz
def create_credit_request(course_key, provider_id, username):
"""
Initiate a request for credit from a credit provider.
This will return the parameters that the user's browser will need to POST
to the credit provider. It does NOT calculate the signature.
Only users who are eligible for credit (have satisfied all credit requirements) are allowed to make requests.
A provider can be configured either with *integration enabled* or not.
If automatic integration is disabled, this method will simply return
a URL to the credit provider and method set to "GET", so the student can
visit the URL and request credit directly. No database record will be created
to track these requests.
If automatic integration *is* enabled, then this will also return the parameters
that the user's browser will need to POST to the credit provider.
These parameters will be digitally signed using a secret key shared with the credit provider.
A database record will be created to track the request with a 32-character UUID.
The returned dictionary can be used by the user's browser to send a POST request to the credit provider.
If a pending request already exists, this function should return a request description with the same UUID.
(Other parameters, such as the user's full name may be different than the original request).
If a completed request (either accepted or rejected) already exists, this function will
raise an exception. Users are not allowed to make additional requests once a request
has been completed.
Arguments:
course_key (CourseKey): The identifier for the course.
provider_id (str): The identifier of the credit provider.
username (str): The user initiating the request.
Returns: dict
Raises:
UserIsNotEligible: The user has not satisfied eligibility requirements for credit.
CreditProviderNotConfigured: The credit provider has not been configured for this course.
RequestAlreadyCompleted: The user has already submitted a request and received a response
from the credit provider.
Example Usage:
>>> create_credit_request(course.id, "hogwarts", "ron")
{
"url": "https://credit.example.com/request",
"method": "POST",
"parameters": {
"request_uuid": "557168d0f7664fe59097106c67c3f847",
"timestamp": 1434631630,
"course_org": "HogwartsX",
"course_num": "Potions101",
"course_run": "1T2015",
"final_grade": "0.95",
"user_username": "ron",
"user_email": "[email protected]",
"user_full_name": "Ron Weasley",
"user_mailing_address": "",
"user_country": "US",
"signature": "cRCNjkE4IzY+erIjRwOQCpRILgOvXx4q2qvx141BCqI="
}
}
"""
try:
user_eligibility = CreditEligibility.objects.select_related('course').get(
username=username,
course__course_key=course_key
)
credit_course = user_eligibility.course
credit_provider = CreditProvider.objects.get(provider_id=provider_id)
except CreditEligibility.DoesNotExist:
log.warning(
'User "%s" tried to initiate a request for credit in course "%s", '
'but the user is not eligible for credit',
username, course_key
)
raise UserIsNotEligible # lint-amnesty, pylint: disable=raise-missing-from
except CreditProvider.DoesNotExist:
log.error('Credit provider with ID "%s" has not been configured.', provider_id)
raise CreditProviderNotConfigured # lint-amnesty, pylint: disable=raise-missing-from
# Check if we've enabled automatic integration with the credit
# provider. If not, we'll show the user a link to a URL
# where the user can request credit directly from the provider.
# Note that we do NOT track these requests in our database,
# since the state would always be "pending" (we never hear back).
if not credit_provider.enable_integration:
return {
"url": credit_provider.provider_url,
"method": "GET",
"parameters": {}
}
else:
# If automatic credit integration is enabled, then try
# to retrieve the shared signature *before* creating the request.
# That way, if there's a misconfiguration, we won't have requests
# in our system that we know weren't sent to the provider.
shared_secret_key = get_shared_secret_key(credit_provider.provider_id)
check_keys_exist(shared_secret_key, credit_provider.provider_id)
if isinstance(shared_secret_key, list):
# if keys exist, and keys are stored as a list
# then we know at least 1 is available for [0]
shared_secret_key = [key for key in shared_secret_key if key][0]
# Initiate a new request if one has not already been created
credit_request, created = CreditRequest.objects.get_or_create(
course=credit_course,
provider=credit_provider,
username=username,
)
# Check whether we've already gotten a response for a request,
# If so, we're not allowed to issue any further requests.
# Skip checking the status if we know that we just created this record.
if not created and credit_request.status != "pending":
log.warning(
(
'Cannot initiate credit request because the request with UUID "%s" '
'exists with status "%s"'
), credit_request.uuid, credit_request.status
)
raise RequestAlreadyCompleted
if created:
credit_request.uuid = uuid.uuid4().hex
# Retrieve user account and profile info
user = User.objects.select_related('profile').get(username=username)
# Retrieve the final grade from the eligibility table
try:
final_grade = CreditRequirementStatus.objects.get(
username=username,
requirement__namespace="grade",
requirement__name="grade",
requirement__course__course_key=course_key,
status="satisfied"
).reason["final_grade"]
# NOTE (CCB): Limiting the grade to seven characters is a hack for ASU.
if len(str(final_grade)) > 7:
final_grade = f'{final_grade:.5f}'
else:
final_grade = str(final_grade)
except (CreditRequirementStatus.DoesNotExist, TypeError, KeyError):
msg = 'Could not retrieve final grade from the credit eligibility table for ' \
'user [{user_id}] in course [{course_key}].'.format(user_id=user.id, course_key=course_key)
log.exception(msg)
raise UserIsNotEligible(msg) # lint-amnesty, pylint: disable=raise-missing-from
# Getting the students's enrollment date
course_enrollment = CourseEnrollment.get_enrollment(user, course_key)
enrollment_date = course_enrollment.created if course_enrollment else ""
# Getting the student's course completion date
completion_date = get_last_exam_completion_date(course_key, username)
parameters = {
"request_uuid": credit_request.uuid,
"timestamp": to_timestamp(datetime.datetime.now(pytz.UTC)),
"course_org": course_key.org,
"course_num": course_key.course,
"course_run": course_key.run,
"enrollment_timestamp": to_timestamp(enrollment_date) if enrollment_date else "",
"course_completion_timestamp": to_timestamp(completion_date) if completion_date else "",
"final_grade": final_grade,
"user_username": user.username,
"user_email": user.email,
"user_full_name": user.profile.name,
"user_mailing_address": "",
"user_country": (
user.profile.country.code
if user.profile.country.code is not None
else ""
),
}
credit_request.parameters = parameters
credit_request.save()
if created:
log.info('Created new request for credit with UUID "%s"', credit_request.uuid)
else:
log.info(
'Updated request for credit with UUID "%s" so the user can re-issue the request',
credit_request.uuid
)
# Sign the parameters using a secret key we share with the credit provider.
parameters["signature"] = signature(parameters, shared_secret_key)
return {
"url": credit_provider.provider_url,
"method": "POST",
"parameters": parameters
} | 8c9e763d1f10f9187c102746911dc242385100e8 | 4,513 |
import pathlib
def is_valid_project_root(project_root: pathlib.Path) -> bool:
"""Check if the project root is a valid trestle project root."""
if project_root is None or project_root == '' or len(project_root.parts) <= 0:
return False
trestle_dir = pathlib.Path.joinpath(project_root, const.TRESTLE_CONFIG_DIR)
if trestle_dir.exists() and trestle_dir.is_dir():
return True
return False | f35d63373d96ee34592e84f21296eadb3ebc6c98 | 4,514 |
def make_2D_predictions_into_one_hot_4D(prediction_2D, dim):
"""
This method gets 2D prediction of shape (#batch, #kpts)
and then returns 4D one_hot maps of shape
(#batch, #kpts, #dim, #dim)
"""
# getting one_hot maps of predicted locations
# one_hot_maps is of shape (#batch, #kpts, #dim * #dim)
one_hot_Maps = get_one_hot_map(prediction_2D, dim)
num_batch, num_kpt = prediction_2D.shape
one_hot_Maps_4D = one_hot_Maps.reshape(num_batch, num_kpt, dim, dim)
return one_hot_Maps_4D | 507d2fa9c52d5f8a1674e695f55928783a179082 | 4,515 |
def distance(a, b):
"""
"""
dimensions = len(a)
_sum = 0
for dimension in range(dimensions):
difference_sq = (a[dimension] - b[dimension]) ** 2
_sum += difference_sq
return sqrt(_sum) | 20acd50d7e3ab7f512f3e9ab9920f76b805043a9 | 4,517 |
def is_block(modules):
"""Check if is ResNet building block."""
if isinstance(modules, (BasicBlock, Bottleneck)):
return True
return False | 8c6b5f59797646b27301a25a40d753b6c404b418 | 4,518 |
def playlist_500_fixture():
"""Load payload for playlist 500 and return it."""
return load_fixture("plex/playlist_500.xml") | 834efe057419f56b626c40430b68860fd5e0db1e | 4,519 |
def strip_output(nb):
"""strip the outputs from a notebook object"""
nb.metadata.pop('signature', None)
for cell in nb.cells:
if 'outputs' in cell:
cell['outputs'] = []
if 'prompt_number' in cell:
cell['prompt_number'] = None
return nb | 6339100f6897951bad4f91f8b8d86d1e5a68f459 | 4,520 |
def get_neighbors_general(status: CachingDataStructure, key: tuple) -> list:
"""
Returns a list of tuples of all coordinates that are direct neighbors,
meaning the index is valid and they are not KNOWN
"""
coords = []
for key in get_direct_neighbour_coords_general(key):
if status.valid_index(*key) and not status[key]: # Not known
coords.append(key)
return coords | 46a2b3aa91e424122982011ccaa684c2d9cf83f2 | 4,521 |
def transit_params(time):
"""
Dummy transit parameters for time series simulations
Parameters
----------
time: sequence
The time axis of the transit observation
Returns
-------
batman.transitmodel.TransitModel
The transit model
"""
params = batman.TransitParams()
params.t0 = 0. # time of inferior conjunction
params.per = 5.7214742 # orbital period (days)
params.a = 0.0558*q.AU.to(q.R_sun)*0.66 # semi-major axis (in units of stellar radii)
params.inc = 89.8 # orbital inclination (in degrees)
params.ecc = 0. # eccentricity
params.w = 90. # longitude of periastron (in degrees)
params.limb_dark = 'quadratic' # limb darkening profile to use
params.u = [0.1, 0.1] # limb darkening coefficients
params.rp = 0. # planet radius (placeholder)
tmodel = batman.TransitModel(params, time)
tmodel.teff = 3500 # effective temperature of the host star
tmodel.logg = 5 # log surface gravity of the host star
tmodel.feh = 0 # metallicity of the host star
return tmodel | 5e74a32ef4077a990d44edb15d66e56e00925666 | 4,522 |
def actions(__INPUT):
"""
Regresamos una lista de los posibles movimientos de la matriz
"""
MOVIMIENTOS = []
m = eval(__INPUT)
i = 0
while 0 not in m[i]:
i += 1
# Espacio en blanco (#0)
j = m[i].index(0);
if i > 0:
#ACCION MOVER ARRIBA
m[i][j], m[i-1][j] = m[i-1][j], m[i][j];
MOVIMIENTOS.append(str(m))
m[i][j], m[i-1][j] = m[i-1][j], m[i][j];
if i < 3:
# ACCION MOVER ABAJO
m[i][j], m[i+1][j] = m[i+1][j], m[i][j]
MOVIMIENTOS.append(str(m))
m[i][j], m[i+1][j] = m[i+1][j], m[i][j]
if j > 0:
# ACCION MOVER IZQUIERDA
m[i][j], m[i][j-1] = m[i][j-1], m[i][j]
MOVIMIENTOS.append(str(m))
m[i][j], m[i][j-1] = m[i][j-1], m[i][j]
if j < 3:
# ACCION MOVER DERECHA
m[i][j], m[i][j+1] = m[i][j+1], m[i][j]
MOVIMIENTOS.append(str(m))
m[i][j], m[i][j+1] = m[i][j+1], m[i][j]
return MOVIMIENTOS | 46875f83d7f50bbd107be8ad5d926397960ca513 | 4,523 |
def get_massif_geom(massif: str) -> WKBElement:
"""process to get the massifs geometries:
* go on the meteofrance bra website
* then get the html "area" element
* then convert it to fake GeoJSON (wrong coordinates)
* then open it in qgis.
* Select *all* the geom of the layer.
* rotate -90°
* swap X and Y coordinates (with plugin)
* use grass v.transform with various x, y scale and rotation until you get what you want.
"""
with resource_stream("nivo_api", "cli/data/all_massifs.geojson") as fp:
gj = geojson.load(fp)
for obj in gj.features:
if obj.properties["label"].upper() == massif.upper():
return from_shape(shape(obj.geometry), 4326)
else:
raise ValueError(f"Massif {massif} geometry cannot be found.") | 194ef4274dfd240af65b61781f39464e0cde4b3d | 4,524 |
def _to_arrow(x):
"""Move data to arrow format"""
if isinstance(x, cudf.DataFrame):
return x.to_arrow()
else:
return pa.Table.from_pandas(x, preserve_index=False) | c88c40d2d35f681ff268347c36e2cae4a52576d0 | 4,525 |
Subsets and Splits