content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def painel(request): """ Exibe o painel do usuário. """ return render(request, "lancamentos/painel.html")
ff40db732402077eb6678f8586582877d96e3ede
4,526
def q_statistic(y, c1, c2): """ Q-Statistic. Parameters ---------- y : numpy.array Target sample. c1 : numpy.array Output of the first classifier. c2 : numpy.array Output of the second classifier. Returns ------- float Return the Q-Statistic measure between the classifiers 'c1' and 'c2'. Q-Statistic takes value in the range of [-1, 1]: - is zero if 'c1' and 'c2' are independent. - is positive if 'c1' and 'c2' make similar predictions. - is negative if 'c1' and 'c2' make different predictions. References ---------- .. [1] Zhi-Hua Zhou. (2012), pp 105: Ensemble Methods Foundations and Algorithms Chapman & Hall/CRC Machine Learning & Pattern Recognition Series. """ a, b, c, d = contingency_table(y, c1, c2) return (a * d - b * c) / (a * d + b * c)
83f83bffcb469ff45c22a1f35efc6e60ccdd0d2d
4,528
def nan_helper(y): """Helper to handle indices and logical indices of NaNs. Input: - y, 1d numpy array with possible NaNs Output: - nans, logical indices of NaNs - index, a function, with signature indices= index(logical_indices), to convert logical indices of NaNs to 'equivalent' indices Example: >>> # linear interpolation of NaNs >>> nans, x= nan_helper(y) >>> y[nans]= np.interp(x(nans), x(~nans), y[~nans]) Taken from: https://stackoverflow.com/questions/6518811/interpolate-nan-values-in-a-numpy-array """ return np.isnan(y), lambda z: z.nonzero()[0]
b6bd981369403a5542f8bcefb3e8a68315fb697f
4,529
import re def convert_parameters(child, text=False, tail=False, **kwargs): """ Get child text or tail :param child: :param text: :param tail: :return: """ p = re.compile(r'\S') # Remove empty info child_text = child.text if child.text else '' child_tail = child.tail if child.tail else '' child_text = child_text if p.search(child_text) else '' child_tail = child_tail if p.search(child_tail) else '' # all if text and tail: convert_string = child_text + child_tail # only_text elif text: convert_string = child_text # only_tail elif tail: convert_string = child_tail else: convert_string = '' # replace params mybatis_param_list = get_params(child) for mybatis_param in mybatis_param_list: convert_value = '' if mybatis_param.sql_param.is_function: # eval function convert_value = __eval_function(mybatis_param, **kwargs) else: # 类型转换 param_value = __get_param(mybatis_param.param_name, **kwargs) print(mybatis_param.param_name+ ' value:'+str(param_value)) convert_value = PY_MYBATIS_TYPE_HANDLER.convert(mybatis_param.python_type, mybatis_param.sql_type, param_value, PyMybatisTypeHandler.PYTHON2SQL_TYPE_HANDLER_CONVERT_MODE) #longjb modify 2021.10.29: if convert_value!='null' and len(convert_value)>0 and( mybatis_param.sql_type=='raw' or mybatis_param.python_type=='raw'): convert_value= convert_value.replace("'","`") #convert_value= convert_value[1:len(convert_value)-1] # print('name:'+str(mybatis_param.name)) # print('value:'+convert_value) # print('sql_type:'+str(mybatis_param.sql_type)) # print('python_type:'+str(mybatis_param.python_type)) convert_string = convert_string.replace(mybatis_param.full_name, convert_value, 1) # convert CDATA string convert_cdata(convert_string) return convert_string
2421e515491f1256c56eb9ac6935a3c0c1de64be
4,532
def Get_Country_Name_From_ISO3_Extended(countryISO): """ Creates a subset of the quick chart data for a specific country. The subset includes all those rows containing the given country either as the origin or as the country of asylum. """ countryName = "" # June-22 - This function has been updated to include a to upper without a check on if the data is null or not # So we need to wrap it in a try catch try: countryName = Country.get_country_name_from_iso3(countryISO) except: print("Failed to get the country from get_country_name_from_iso3.") # Now lets try to find it for the three typical non-standard codes if countryName is None or countryName == "": print("Non-standard ISO code:", countryISO) if countryISO == "UKN": countryName = "Various / unknown" elif countryISO == "STA": countryName = "Stateless" elif countryISO == "TIB": countryName = "Tibetan" else: print("!!SERIOUS!! Unknown ISO code identified:", countryISO) # Lets add a sensible default here... countryName = "Various / unknown" return countryName
d6e5b34223582f3a5a5ca20fd798ef5cfb1b1e8d
4,533
def thetaG(t,t1,t2): """ Return a Gaussian pulse. Arguments: t -- time of the pulse t1 -- initial time t2 -- final time Return: theta -- Scalar or vector with the dimensions of t, """ tau = (t2-t1)/5 to = t1 + (t2-t1)/2 theta = (np.sqrt(np.pi)/(2*tau))*np.exp(-((t-to)/tau)**2) return theta
9e05358bfbf5f11b30f2a6b44504214ab4db4ea5
4,536
def choose_string(g1, g2): """Function used by merge_similar_guesses to choose between 2 possible properties when they are strings. If the 2 strings are similar, or one is contained in the other, the latter is returned with an increased confidence. If the 2 strings are dissimilar, the one with the higher confidence is returned, with a weaker confidence. Note that here, 'similar' means that 2 strings are either equal, or that they differ very little, such as one string being the other one with the 'the' word prepended to it. >>> s(choose_string(('Hello', 0.75), ('World', 0.5))) ('Hello', 0.25) >>> s(choose_string(('Hello', 0.5), ('hello', 0.5))) ('Hello', 0.75) >>> s(choose_string(('Hello', 0.4), ('Hello World', 0.4))) ('Hello', 0.64) >>> s(choose_string(('simpsons', 0.5), ('The Simpsons', 0.5))) ('The Simpsons', 0.75) """ v1, c1 = g1 # value, confidence v2, c2 = g2 if not v1: return g2 elif not v2: return g1 v1, v2 = v1.strip(), v2.strip() v1l, v2l = v1.lower(), v2.lower() combined_prob = 1 - (1 - c1) * (1 - c2) if v1l == v2l: return (v1, combined_prob) # check for common patterns elif v1l == 'the ' + v2l: return (v1, combined_prob) elif v2l == 'the ' + v1l: return (v2, combined_prob) # if one string is contained in the other, return the shortest one elif v2l in v1l: return (v2, combined_prob) elif v1l in v2l: return (v1, combined_prob) # in case of conflict, return the one with highest confidence else: if c1 > c2: return (v1, c1 - c2) else: return (v2, c2 - c1)
e39a66c9f3f941b12225dde879bc92956694d2d0
4,537
def update_alert_command(client: MsClient, args: dict): """Updates properties of existing Alert. Returns: (str, dict, dict). Human readable, context, raw response """ alert_id = args.get('alert_id') assigned_to = args.get('assigned_to') status = args.get('status') classification = args.get('classification') determination = args.get('determination') comment = args.get('comment') args_list = [assigned_to, status, classification, determination, comment] check_given_args_update_alert(args_list) json_data, context = add_args_to_json_and_context(alert_id, assigned_to, status, classification, determination, comment) alert_response = client.update_alert(alert_id, json_data) entry_context = { 'MicrosoftATP.Alert(val.ID === obj.ID)': context } human_readable = f'The alert {alert_id} has been updated successfully' return human_readable, entry_context, alert_response
237aa63f449dc6395390a26007b15123d5763874
4,538
def create_payment(context: SagaContext) -> SagaContext: """For testing purposes.""" context["payment"] = "payment" return context
e96db6e57996d8f704e453bf14b8e4a3c63da1a6
4,539
import asyncio async def TwitterAuthURLAPI( request: Request, current_user: User = Depends(User.getCurrentUser), ): """ Twitter アカウントと連携するための認証 URL を取得する。<br> 認証 URL をブラウザで開くとアプリ連携の許可を求められ、ユーザーが許可すると /api/twitter/callback に戻ってくる。 JWT エンコードされたアクセストークンがリクエストの Authorization: Bearer に設定されていないとアクセスできない。<br> """ # コールバック URL を設定 ## Twitter API の OAuth 連携では、事前にコールバック先の URL をデベロッパーダッシュボードから設定しておく必要がある ## 一方 KonomiTV サーバーの URL はまちまちなので、コールバック先の URL を一旦 https://app.konomi.tv/api/redirect/twitter に集約する ## この API は、リクエストを "server" パラメーターで指定された KonomiTV サーバーの TwitterAuthCallbackAPI にリダイレクトする ## 最後に KonomiTV サーバーがリダイレクトを受け取ることで、コールバック対象の URL が定まらなくても OAuth 連携ができるようになる ## Twitter だけ他のサービスと違い OAuth 1.0a なので、フローがかなり異なる ## ref: https://github.com/tsukumijima/KonomiTV-API callback_url = f'https://app.konomi.tv/api/redirect/twitter?server={request.url.scheme}://{request.url.netloc}/' # OAuth1UserHandler を初期化し、認証 URL を取得 ## signin_with_twitter を True に設定すると、oauth/authenticate の認証 URL が生成される ## oauth/authorize と異なり、すでにアプリ連携している場合は再承認することなくコールバック URL にリダイレクトされる ## ref: https://developer.twitter.com/ja/docs/authentication/api-reference/authenticate try: oauth_handler = tweepy.OAuth1UserHandler(Interlaced(1), Interlaced(2), callback=callback_url) authorization_url = await asyncio.to_thread(oauth_handler.get_authorization_url, signin_with_twitter=True) # 同期関数なのでスレッド上で実行 except tweepy.TweepyException: raise HTTPException( status_code = status.HTTP_422_UNPROCESSABLE_ENTITY, detail = 'Failed to get Twitter authorization URL', ) # 仮で TwitterAccount のレコードを作成 ## 戻ってきたときに oauth_token がどのユーザーに紐づいているのかを判断するため ## TwitterAuthCallbackAPI は仕組み上認証をかけられないので、勝手に任意のアカウントを紐付けられないためにはこうせざるを得ない twitter_account = TwitterAccount() twitter_account.user = current_user twitter_account.name = 'Temporary' twitter_account.screen_name = 'Temporary' twitter_account.icon_url = 'Temporary' twitter_account.access_token = oauth_handler.request_token['oauth_token'] # 暫定的に oauth_token を格納 (認証 URL の ?oauth_token= と同じ値) twitter_account.access_token_secret = oauth_handler.request_token['oauth_token_secret'] # 暫定的に oauth_token_secret を格納 await twitter_account.save() return {'authorization_url': authorization_url}
2245c3b2d842c455fa9cb36390c84c8470c3b8e1
4,540
import random def post_sunday(request): """Post Sunday Details, due on the date from the form""" date_form = SelectDate(request.POST or None) if request.method == 'POST': if date_form.is_valid(): groups = DetailGroup.objects.filter(semester=get_semester()) details = settings.SUNDAY_DETAILS g = [e for e in groups] groups = g random.shuffle(groups) random.shuffle(details) emails = [] for group in groups: if len(details) <= 0: break group_detail = SundayGroupDetail( group=group, due_date=date_form.cleaned_data['due_date'] ) group_detail.save() for _ in range(group.size()): if len(details) <= 0: break d = details.pop() det = SundayDetail( short_description=d['name'], long_description="\n".join(d['tasks']), due_date=date_form.cleaned_data['due_date'] ) det.save() group_detail.details.add(det) group_detail.save() emails.append( build_sunday_detail_email( group_detail, request.scheme + "://" + request.get_host() ) ) det_manager_email = Position.objects.get( title=Position.PositionChoices.DETAIL_MANAGER ).brothers.first().user.email for (subject, message, to) in emails: send_mail(subject, message, det_manager_email, to) context = { 'form': date_form, 'date': 'sunday', } return render(request, 'detail-manager/post-details.html', context)
84787109d0981920bbced7a734d0b67c84d4a9a7
4,541
from typing import Dict from typing import List def reconstruct(lvl: Level, flow_dict: Dict[int, Dict[int, int]], info: Dict[int, NodeInfo]) -> List[List[int]]: """Reconstruct agent paths from the given flow and node information""" paths: List[List[int]] = [[]] * len(lvl.scenario.agents) start_flows = flow_dict[0] agent_starts = {agent.origin: i for i, agent in enumerate(lvl.scenario.agents)} for n in start_flows: if start_flows[n] > 0: agent = agent_starts[info[n].id] paths[agent] = follow_path(n, flow_dict, info) return paths
d792ed6b937f49177ac85609ada3edb2089e2642
4,542
import traceback def arch_explain_instruction(bv, instruction, lifted_il_instrs): """ Returns the explanation string from explanations_en.json, formatted with the preprocessed instruction token list """ if instruction is None: return False, [] parsed = parse_instruction(bv, instruction, lifted_il_instrs) if len(parsed) == 0: return False, [] out = [] out_bool = False for name in parsed: name = find_proper_name(name).lower() if name in explanations: try: # Get the string from the JSON and format it out_bool = out_bool or name not in dont_supersede_llil out.append(explanations[name].format(instr=preprocess(bv, parsed, lifted_il_instrs, name))) except (AttributeError, KeyError): # Usually a bad format string. Shouldn't show up unless something truly weird happens. log_error("Bad Format String in binja_explain_instruction") traceback.print_exc() out.append(name) return out_bool, out
57c6146ac06317df8a9e9b846a279fa950a970bc
4,543
def get_subnet_mask(subnet: int, v6: bool) -> int: """Get the subnet mask given a CIDR prefix 'subnet'.""" if v6: return bit_not((1 << (128 - subnet)) - 1, 128) else: return bit_not((1 << (32 - subnet)) - 1, 32)
57c8de0bff70b0939dd8c646da0840be7c2839e1
4,545
def home(request): """return HttpResponse('<h1>Hello, Welcome to this test</h1>')""" """Le chemin des templates est renseigne dans "DIRS" de "TEMPLATES" dans settings.py DONC PAS BESOIN DE RENSEIGNER LE CHEMIN ABSOLU""" return render(request, "index.html")
04a671daa9425ea76841b491f8eefd133b6e2c67
4,547
def extract_commands(data, *commands): """Input function to find commands output in the "data" text""" ret = "" hostname = _ttp_["variable"]["gethostname"](data, "input find_command function") if hostname: for command in commands: regex = r"{}[#>] *{} *\n([\S\s]+?)(?={}[#>]|$)".format( hostname, command, hostname ) match = search(regex, data) if match: ret += "\n{}\n".format(match.group()) if ret: return ret, None return data, None
6fcbf9584f5a2f799839c9964a5ae6235f4e8b50
4,549
def get_version() -> str: """ Returns the version string for the ufotest project. The version scheme of ufotest loosely follows the technique of `Semantic Versioning <https://semver.org/>`_. Where a minor version change may introduce backward incompatible changes, due to the project still being in active development with many features being subject to change. The return value of this function is subject to the "get_version" filter hook, which is able to modify the version string *after* it has been loaded from the file and sanitized. *EXAMPLE* .. code-block:: python version = get_version() # "1.2.1" :returns: The version string without any additional characters or whitespaces. """ with open(VERSION_PATH) as version_file: version = version_file.read() version = version.replace(' ', '').replace('\n', '') # Here we actually need to check if the plugin management system is actually initialized (this is what the boolean # return of is_prepared indicates) because the version function needs to be functional even when the ufotest # installation folder and thus the config file does not yet exist. if CONFIG.is_prepared(): version = CONFIG.pm.apply_filter('get_version', value=version) return version
b34eac3aef7661b65408c60ce606cd24a06ae0ee
4,550
async def clear_pending_revocations(request: web.BaseRequest): """ Request handler for clearing pending revocations. Args: request: aiohttp request object Returns: Credential revocation ids still pending revocation by revocation registry id. """ context: AdminRequestContext = request["context"] body = await request.json() purge = body.get("purge") rev_manager = RevocationManager(context.profile) try: results = await rev_manager.clear_pending_revocations(purge) except StorageError as err: raise web.HTTPBadRequest(reason=err.roll_up) from err return web.json_response({"rrid2crid": results})
98db34266f3afbe9ecfeddcf802c1441ae7ea58b
4,551
from datetime import datetime def add_filter(field, bind, criteria): """Generate a filter.""" if 'values' in criteria: return '{0}=any(:{1})'.format(field, bind), criteria['values'] if 'date' in criteria: return '{0}::date=:{1}'.format(field, bind), datetime.strptime(criteria['date'], '%Y-%m-%d').date() if 'gte' in criteria: return '{0}>=:{1}'.format(field, bind), criteria['gte'] if 'lte' in criteria: return '{0}<=:{1}'.format(field, bind), criteria['lte'] raise ValueError('criteria not supported')
2358cab297b2a2cbc42af02b3b6d14ac134c8b71
4,552
def ireject(predicate, iterable): """Reject all items from the sequence for which the predicate is true. ireject(function or None, sequence) --> iterator :param predicate: Predicate function. If ``None``, reject all truthy items. :param iterable: Iterable to filter through. :yields: A sequence of all items for which the predicate is false. """ return _ifilterfalse(predicate, iterable)
98f9416ac1db1f2909d1d895ee0c0bc70c8b2249
4,553
def construct_config_error_msg(config, errors): """Construct an error message for an invalid configuration setup Parameters ---------- config: Dict[str, Any] Merged dictionary of configuration options from CLI, user configfile and default configfile errors: Dict[str, Any] Dictionary of schema validation errors passed by Marshmallow Returns ------- str """ error_msg = "Failed to parse config\n" for error_param, exception_msg in errors.items(): error_msg += parse_config_error(error_param, exception_msg) return error_msg
02954620115308d7d50ca28b23b98a2ba410489f
4,554
def _haversine_GC_distance(φ1, φ2, λ1, λ2): """ Haversine formula for great circle distance. Suffers from rounding errors for antipodal points. Parameters ---------- φ1, φ2 : :class:`numpy.ndarray` Numpy arrays wih latitudes. λ1, λ2 : :class:`numpy.ndarray` Numpy arrays wih longitude. """ Δλ = np.abs(λ1 - λ2) Δφ = np.abs(φ1 - φ2) return 2 * np.arcsin( np.sqrt(np.sin(Δφ / 2) ** 2 + np.cos(φ1) * np.cos(φ2) * np.sin(Δλ / 2) ** 2) )
bb57ddeacd761abead5ee499610ead8c9ba38a9f
4,556
def differentiate_branch(branch, suffix="deriv"): """calculates difference between each entry and the previous first entry in the new branch is difference between first and last entries in the input""" def bud(manager): return {add_suffix(branch,suffix):manager[branch]-np.roll(manager[branch],1)} return bud
298b19b1e151e04df9c040f0c48e4799bcc3f3d2
4,557
import typing def etf_holders(apikey: str, symbol: str) -> typing.Optional[typing.List[typing.Dict]]: """ Query FMP /etf-holder/ API. :param apikey: Your API key. :param symbol: Company ticker. :return: A list of dictionaries. """ path = f"etf-holder/{symbol}" query_vars = {"apikey": apikey} return __return_json_v3(path=path, query_vars=query_vars)
f405fa92296c28a8ba8ca87b6edac27392ec1f85
4,558
def clean_visibility_flags(horizon_dataframe: pd.DataFrame) -> pd.DataFrame: """ assign names to unlabeled 'visibility flag' columns -- solar presence, lunar/interfering body presence, is-target-on-near-side-of-parent-body, is-target-illuminated; drop then if empty """ flag_mapping = { unlabeled_flag: flag_name for unlabeled_flag, flag_name in zip( [c for c in horizon_dataframe.columns if 'Unnamed' in c], VISIBILITY_FLAG_NAMES ) } horizon_dataframe = horizon_dataframe.rename(mapper=flag_mapping, axis=1) empty_flags = [] for flag_column in flag_mapping.values(): if horizon_dataframe[flag_column].isin([' ', '']).all(): empty_flags.append(flag_column) return horizon_dataframe.drop(empty_flags, axis=1)
906432120babffacb709b1d45e7c4dd86c60775d
4,559
def calib(phase, k, axis=1): """Phase calibration Args: phase (ndarray): Unwrapped phase of CSI. k (ndarray): Subcarriers index axis (int): Axis along which is subcarrier. Default: 1 Returns: ndarray: Phase calibrated ref: [Enabling Contactless Detection of Moving Humans with Dynamic Speeds Using CSI] (http://tns.thss.tsinghua.edu.cn/wifiradar/papers/QianKun-TECS2017.pdf) """ p = np.asarray(phase) k = np.asarray(k) slice1 = [slice(None, None)] * p.ndim slice1[axis] = slice(-1, None) slice1 = tuple(slice1) slice2 = [slice(None, None)] * p.ndim slice2[axis] = slice(None, 1) slice2 = tuple(slice2) shape1 = [1] * p.ndim shape1[axis] = k.shape[0] shape1 = tuple(shape1) k_n, k_1 = k[-1], k[1] a = (p[slice1] - p[slice2]) / (k_n - k_1) b = p.mean(axis=axis, keepdims=True) k = k.reshape(shape1) phase_calib = p - a * k - b return phase_calib
5e1f59c0a13440ad8e1304523976c2fbe6562d5a
4,560
def rescale_as_int( s: pd.Series, min_value: float = None, max_value: float = None, dtype=np.int16 ) -> pd.Series: """Cannot be converted to njit because np.clip is unsupported.""" valid_dtypes = {np.int8, np.int16, np.int32} if dtype not in valid_dtypes: raise ValueError(f"dtype: expecting [{valid_dtypes}] but found [{dtype}]") if min_value is None: min_value = min(s) if max_value is None: max_value = max(s) if min_value == 0 and max_value == 0: raise ValueError("Both min_value and max_value must not be zero") limit = max(abs(min_value), abs(max_value)) res = np.clip(s / limit, 0, 1) * np.iinfo(dtype).max return res.astype(dtype)
31772759c67d33f20b89fd87aa91c9249ae2bb9a
4,561
def format_headers(headers): """Formats the headers of a :class:`Request`. :param headers: the headers to be formatted. :type headers: :class:`dict`. :return: the headers in lower case format. :rtype: :class:`dict`. """ dictionary = {} for k, v in headers.items(): if isinstance(k, unicode): k = k.encode('utf-8') if isinstance(v, unicode): v = v.encode('utf-8') dictionary[k.lower()] = v.lower() return dictionary
0a0890c10378d9f8e20f353b1b9383e728f0a4f7
4,562
def decode_field(value): """Decodes a field as defined in the 'Field Specification' of the actions man page: http://www.openvswitch.org/support/dist-docs/ovs-actions.7.txt """ parts = value.strip("]\n\r").split("[") result = { "field": parts[0], } if len(parts) > 1 and parts[1]: field_range = parts[1].split("..") start = field_range[0] end = field_range[1] if len(field_range) > 1 else start if start: result["start"] = int(start) if end: result["end"] = int(end) return result
1a1659e69127ddd3c63eb7d4118ceb4e53a28ca0
4,563
import tqdm def compute_norm(x_train, in_ch): """Returns image-wise mean and standard deviation per channel.""" mean = np.zeros((1, 1, 1, in_ch)) std = np.zeros((1, 1, 1, in_ch)) n = np.zeros((1, 1, 1, in_ch)) # Compute mean. for x in tqdm(x_train, desc='Compute mean'): mean += np.sum(x, axis=(0, 1, 2), keepdims=True) n += np.sum(x > 0, axis=(0, 1, 2), keepdims=True) mean /= n # Compute std. for x in tqdm(x_train, desc='Compute std'): std += np.sum((x - mean) ** 2, axis=(0, 1, 2), keepdims=True) std = (std / n) ** 0.5 return mean, std
e49012075adfa03b33bb6308d1d50f4c22c1cc2c
4,564
def _nonempty_line_count(src: str) -> int: """Count the number of non-empty lines present in the provided source string.""" return sum(1 for line in src.splitlines() if line.strip())
ad2ac0723f9b3e1f36b331175dc32a8591c67893
4,565
import json def geom_to_xml_element(geom): """Transform a GEOS or OGR geometry object into an lxml Element for the GML geometry.""" if geom.srs.srid != 4326: raise NotImplementedError("Only WGS 84 lat/long geometries (SRID 4326) are supported.") # GeoJSON output is far more standard than GML, so go through that return geojson_to_gml(json.loads(geom.geojson))
a2702e8ac4e3cb24f787513f820df60ad973e305
4,566
def precision(y_true, y_pred): """Precision metric. Only computes a batch-wise average of precision. Computes the precision, a metric for multi-label classification of how many selected items are relevant. Parameters ---------- y_true : numpy array an array of true labels y_pred : numpy array an array of predicted labels Returns ------- recall : float the batch-wise average of precision value """ true_positives = K.sum(K.round(K.clip(y_true * y_pred, 0, 1))) predicted_positives = K.sum(K.round(K.clip(y_pred, 0, 1))) precision = true_positives / (predicted_positives + K.epsilon()) return precision
d57f1d782628e312b2e52098658be81e32351f3d
4,568
def get_validators(setting): """ :type setting: dict """ if 'validate' not in setting: return [] validators = [] for validator_name in setting['validate'].keys(): loader_module = load_module( 'spreadsheetconverter.loader.validator.{}', validator_name) validators.append(loader_module.Validator(setting)) return validators
db3b5594122685f3190cdae053ab7a385065d17e
4,569
def worker(remote, parent_remote, env_fn_wrapper): """ worker func to execute vec_env commands """ def step_env(env, action): ob, reward, done, info = env.step(action) if done: ob = env.reset() return ob, reward, done, info parent_remote.close() envs = [env_fn_wrapper() for env_fn_wrapper in env_fn_wrappers.x] try: while True: cmd, data = remote.recv() # branch out for requests if cmd == 'step': res = [step_env(env, action) for env, action in zip(envs, data)] remote.send(res) elif cmd == 'reset': remote.send([env.reset() for env in envs]) elif cmd == 'render': remote.send([env.render(mode='rgb_array') for env in envs]) elif cmd == 'close': remote.close() break elif cmd == 'get_spaces': remote.send(CloudpickleWrapper( (envs[0].observation_space, envs[0].action_space) )) elif cmd == 'get_agent_types': if all([hasattr(a, 'adversary') for a in envs[0].agents]): res = [ 'adversary' if a.adversary else 'agent' for a in envs[0].agents ] else: # fully cooperative res = ['agent' for _ in envs[0].agents] remote.send(res) else: raise NotImplementedErrors except KeyboardInterrupt: print('SubprocVecEnv worker: got KeyboardInterrupt') except: print('Environment runner process failed...') finally: for env in envs: env.close()
aaf5a16a72e97ec46e3a1ae4676c4591bc7f0183
4,571
from functools import reduce def greedysplit_general(n, k, sigma, combine=lambda a, b: a + b, key=lambda a: a): """ Do a greedy split """ splits = [n] s = sigma(0, n) def score(splits, sigma): splits = sorted(splits) return key(reduce(combine, (sigma(a, b) for (a, b) in tools.seg_iter(splits)))) while k > 0: usedinds = set(splits) new = min((score(splits + [i], sigma), splits + [i]) for i in range(1, n) if i not in usedinds) splits = new[1] s = new[0] k -= 1 return sorted(splits), s
6480db8f613f37704e7bf6552407e5b0f851ab47
4,572
def public_assignment_get(assignment_id: str): """ Get a specific assignment spec :param assignment_id: :return: """ return success_response({ 'assignment': get_assignment_data(current_user.id, assignment_id) })
2f3d828975c0d7db663556da5f0dc590124075b2
4,573
def recursion_detected(frame, keys): """Detect if we have a recursion by finding if we have already seen a call to this function with the same locals. Comparison is done only for the provided set of keys. """ current = frame current_filename = current.f_code.co_filename current_function = current.f_code.co_name current_locals = {k: v for k, v in current.f_locals.items() if k in keys} while frame.f_back: frame = frame.f_back fname = frame.f_code.co_filename if not(fname.endswith(".py") or fname == "<template>"): return False if fname != current_filename or \ frame.f_code.co_name != current_function: continue if ({k: v for k, v in frame.f_locals.items() if k in keys} == current_locals): return True return False
ebf30e715d2901169095bc920e8af6c715f2a1de
4,574
def pars_to_blocks(pars): """ this simulates one of the phases the markdown library goes through when parsing text and returns the paragraphs grouped as blocks, as markdown handles them """ pars = list(pars) m = markdown.Markdown() bp = markdown.blockprocessors.build_block_parser(m) root = markdown.util.etree.Element('div') blocks = [] while pars: parsbefore = list(pars) for processor in bp.blockprocessors.values(): if processor.test(root, pars[0]): processor.run(root, pars) while len(parsbefore) > len(pars): blocks.append(parsbefore[0]) parsbefore = parsbefore[1:] if pars and pars[0].strip('\n') != parsbefore[0].strip('\n'): strippedbefore = parsbefore[0].strip('\n') strippedcurrent = pars[0].strip('\n') if strippedbefore.endswith(strippedcurrent): beforelength = len(strippedbefore) currentlength = len(strippedcurrent) block = strippedbefore[0:beforelength - currentlength] blocks.append(block) else: raise Exception('unsupported change by blockprocessor. abort! abort!') break return blocks
f71d4460847ec4b69ad53470aba26c145d296388
4,576
from bs4 import BeautifulSoup def extract_intersections_from_osm_xml(osm_xml): """ Extract the GPS coordinates of the roads intersections Return a list of gps tuples """ soup = BeautifulSoup(osm_xml) retval = [] segments_by_extremities = {} Roads = [] RoadRefs = [] Coordinates = {} for point in soup.osm.findAll('node'): Coordinates[point['id']] = (float(point['lat']), float(point['lon'])) for way in soup.osm.findAll(lambda node : node.name=="way" and node.findAll(k='highway')): name = "" roadPoints = [] nodes = way.findAll('nd') for node in nodes: roadPoints.append(node['ref']) RoadRefs.append(roadPoints) # iterate over the list of street and over each segment of a street. # for each segment extremity, build a list of segment leading to it for roadIdx, roadRef in enumerate(RoadRefs): for segIdx, seg in enumerate(roadRef): coords = Coordinates[seg] if coords not in segments_by_extremities: segments_by_extremities[coords] = [] segments_by_extremities[coords].append([roadIdx, segIdx]) # Iterate over the extremity lists, only keep the ones with at least three segments leading to them # Otherwise, they are not an intersection, just a turn in a road for k in segments_by_extremities.keys(): if len(segments_by_extremities[k]) <2: del(segments_by_extremities[k]) #finally return just the keys return segments_by_extremities.keys()
6cff1fe39891eb4a6c595196eabfd4569af2fd8e
4,577
def spark_session(request): """Fixture for creating a spark context.""" spark = (SparkSession .builder .master('local[2]') .config('spark.jars.packages', 'com.databricks:spark-avro_2.11:3.0.1') .appName('pytest-pyspark-local-testing') .enableHiveSupport() .getOrCreate()) request.addfinalizer(lambda: spark.stop()) quiet_py4j() return spark
e7a95ad7ebea876976923c6dd16c7a761116427d
4,578
import yaml def _load_model_from_config(config_path, hparam_overrides, vocab_file, mode): """Loads model from a configuration file""" with gfile.GFile(config_path) as config_file: config = yaml.load(config_file) model_cls = locate(config["model"]) or getattr(models, config["model"]) model_params = config["model_params"] if hparam_overrides: model_params.update(hparam_overrides) # Change the max decode length to make the test run faster model_params["decoder.params"]["max_decode_length"] = 5 model_params["vocab_source"] = vocab_file model_params["vocab_target"] = vocab_file return model_cls(params=model_params, mode=mode)
97af7dc919de5af96332c8445e162990006079f4
4,579
import ast def _get_assignment_node_from_call_frame(frame): """ Helper to get the Assign or AnnAssign AST node for a call frame. The call frame will point to a specific file and line number, and we use the source index to retrieve the AST nodes for that line. """ filename = frame.f_code.co_filename # Go up the AST from a node in the call frame line until we find an Assign or # AnnAssign, since the (Ann)Assign may be over multiple lines. nodes_in_line = _get_source_index(filename).get(frame.f_lineno, []) cur_node = nodes_in_line[0] while cur_node: if isinstance(cur_node, (ast.Assign, ast.AnnAssign)): return cur_node cur_node = cur_node.parent raise Exception("Could not find AST assignment node in the line" f" {filename}:{frame.f_lineno}")
edb7f2425d170721e12dc4c1e2427e9584aeed8c
4,580
def check_existing_user(username): """ a function that is used to check and return all exissting accounts """ return User.user_exist(username)
573e9a8a6c0e504812d3b90eb4a27b15edec35ab
4,581
def createevent(): """ An event is a (immediate) change of the world. It has no duration, contrary to a StaticSituation that has a non-null duration. This function creates and returns such a instantaneous situation. :sees: situations.py for a set of standard events types """ sit = Situation(type = GENERIC, pattern = None) return sit
998f0a473c47828435d7e5310de29ade1fbd7810
4,582
def _dump_multipoint(obj, fmt): """ Dump a GeoJSON-like MultiPoint object to WKT. Input parameters and return value are the MULTIPOINT equivalent to :func:`_dump_point`. """ coords = obj['coordinates'] mp = 'MULTIPOINT (%s)' points = (' '.join(fmt % c for c in pt) for pt in coords) # Add parens around each point. points = ('(%s)' % pt for pt in points) mp %= ', '.join(points) return mp
cdea05b91c251b655e08650807e3f74d3bb5e77b
4,583
def do_inference(engine, pics_1, h_input_1, d_input_1, h_output, d_output, stream, batch_size, height, width): """ This is the function to run the inference Args: engine : Path to the TensorRT engine pics_1 : Input images to the model. h_input_1: Input in the host d_input_1: Input in the device h_output_1: Output in the host d_output_1: Output in the device stream: CUDA stream batch_size : Batch size for execution time height: Height of the output image width: Width of the output image Output: The list of output images """ load_images_to_buffer(pics_1, h_input_1) with engine.create_execution_context() as context: # Transfer input data to the GPU. cuda.memcpy_htod_async(d_input_1, h_input_1, stream) # Run inference. context.profiler = trt.Profiler() context.execute(batch_size=1, bindings=[int(d_input_1), int(d_output)]) # Transfer predictions back from the GPU. cuda.memcpy_dtoh_async(h_output, d_output, stream) # Synchronize the stream stream.synchronize() # Return the host output. out = h_output.reshape((batch_size,-1, height, width)) return out
e9e452e96d42167bf17bc6bef8dc014fa31dbe8f
4,584
import ast def make_import(): """Import(alias* names)""" return ast.Import(names=[make_alias()])
e9085ee9b4b0438857b50b891fbee0b88d256f8b
4,585
from typing import Union from typing import List def preprocess( image: Union[np.ndarray, Image.Image], threshold: int = None, resize: int = 64, quantiles: List[float] = [.01, .05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99], reduction: Union[str, List[str]] = ['max', 'median', 'mean', 'min'] ) -> dict: """ Basic preprocessing metrics for a histological image. Args: image (Union[np.ndarray, Image.Image]): Input image. threshold (int, optional): Threshold for tissue detection. If not defined Otsu's binarization will be used (which) may fail for images with data loss or only background. Defaults to None. resize (int, optional): For artifact() function. Defaults to 64. quantiles (List[float], optional): For HSV_quantiles() and RGB_quantiles functions. Defaults to [.01, .05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99]. reduction (Union[str, List[str]], optional): Reduction methods for sharpness() function. Defaults to ['max', 'median', 'mean', 'min']. Raises: TypeError: Invalid type for ``image``. Returns: dict: Dictionary of basic preprocessing metrics. """ if isinstance(image, Image.Image): if image.mode != 'RGB': image = image.convert('RGB') image = np.array(image, dtype=np.uint8) elif isinstance(image, np.ndarray): image = image.astype(np.uint8) else: raise TypeError('Excpected {} or {} not {}.'.format( np.ndarray, Image.Image, type(image) )) # Initialize results and other shit. results = {} gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY) mask = tissue_mask(image, threshold=threshold) # Background percentage. results['background'] = (mask == 0).sum()/mask.size # Sharpness. results.update(sharpness(gray, reduction=reduction)) # Data loss. results.update(data_loss(gray)) # Artifacts. small_img = cv2.resize(image, (resize, resize), cv2.INTER_LANCZOS4) small_mask = cv2.resize(mask, (resize, resize), cv2.INTER_LANCZOS4) results.update(HSV_quantiles( small_img, mask=small_mask, quantiles=quantiles)) results.update(RGB_quantiles( small_img, mask=small_mask, quantiles=quantiles)) return results
afa36739309ada2e97e18e63ae65362546b1b52c
4,586
def binary_distance(label1, label2): """Simple equality test. 0.0 if the labels are identical, 1.0 if they are different. >>> from nltk.metrics import binary_distance >>> binary_distance(1,1) 0.0 >>> binary_distance(1,3) 1.0 """ return 0.0 if label1 == label2 else 1.0
2c4eaebda2d6955a5012cc513857aed66df60194
4,587
def calc_commission_futures_global(trade_cnt, price): """ 国际期货:差别很大,最好外部自定义自己的计算方法,这里只简单按照0.002计算 :param trade_cnt: 交易的股数(int) :param price: 每股的价格(美元) :return: 计算结果手续费 """ cost = trade_cnt * price # 国际期货各个券商以及代理方式差别很大,最好外部自定义计算方法,这里只简单按照0.002计算 commission = cost * 0.002 return commission
ddd2c4571abfcdf7021a28b6cc78fe6441da2bd3
4,589
def is_section_command(row): """CSV rows are cosidered new section commands if they start with <SECTION> and consist of at least two columns column. >>> is_section_command('<SECTION>\tSection name'.split('\t')) True >>> is_section_command('<other>\tSection name'.split('\t')) False >>> is_section_command(['<SECTION>', 'Section name', 'some more']) True """ return len(row) >= 2 and row[0] == __CSV_SECTION_PREFIX
7942625e119c4a0d3707fd5884ade6e48b2dfb1a
4,590
def to_int(matrix): """ Funciton to convert the eact element of the matrix to int """ for row in range(rows(matrix)): for col in range(cols(matrix)): for j in range(3): matrix[row][col][j] = int(matrix[row][col][j]) return matrix
9f277ab0c0fe7df145e8a4c0da36fba25a523756
4,592
def create_tastypie_resource(class_inst): """ Usage: url(r'^api/', include(create_tastypie_resource(UfsObjFileMapping).urls)), Access url: api/ufs_obj_file_mapping/?format=json :param class_inst: :return: """ return create_tastypie_resource_class(class_inst)()
cba76e51073612124c5cd968c9360e9c4748d604
4,593
def make_collector(entries): """ Creates a function that collects the location data from openLCA. """ def fn(loc): entry = [loc.getCode(), loc.getName(), loc.getRefId()] entries.append(entry) return fn
83fb167c38626fde79262a32f500b33a72ab8308
4,594
def apiname(funcname): """ Define what name the API uses, the short or the gl version. """ if funcname.startswith('gl'): return funcname else: if funcname.startswith('_'): return '_gl' + funcname[1].upper() + funcname[2:] else: return 'gl' + funcname[0].upper() + funcname[1:]
06575fce76ac02990c973a6dd17ff177ae5e3ddc
4,595
def add_numeric_gene_pos(gene_info): """ Add numeric gene (start) genomic position to a gene_info dataframe """ gene_chr_numeric = gene_info['chr'] gene_chr_numeric = ['23' if x == 'X' else x for x in gene_chr_numeric] gene_chr_numeric = ['24' if x == 'Y' else x for x in gene_chr_numeric] gene_start_vec = gene_info['start'] gene_start_vec = [str(x).zfill(10) for x in gene_start_vec] gene_pos_numeric = [x + '.' + y for x, y in zip(gene_chr_numeric, gene_start_vec)] gene_pos_numeric = np.array([float(x) for x in gene_pos_numeric]) gene_info['genome_pos_numeric'] = gene_pos_numeric return gene_info
ab77e6c3a1f6e8d780f5b83a3beb4d94eaf8198b
4,596
import pathlib def read_list_from_file(filename: str) -> set: """Build a set from a simple multiline text file. Args: filename: name of the text file Returns: a set of the unique lines from the file """ filepath = pathlib.Path(__file__).parent.joinpath(filename) lines = filepath.read_text().splitlines() return set(lines)
c6fd5f80e05cc74bad600a7af21e36b5bd672b63
4,597
def qlist(q): """Convenience function that converts asyncio.Queues into lists. This is inefficient and should not be used in real code. """ l = [] # get the messages out while not q.empty(): l.append(q.get_nowait()) # now put the messages back (since we popped them out) for i in l[::-1]: q.put_nowait(item) return l
0ce6fb0d543646fb036c35c800d75bbadf670b0d
4,601
def is_stdin(name): """Tell whether or not the given name represents stdin.""" return name in STDINS
535ce3fee9e4a9a42ef24e4b35f84420a61cc529
4,602
def filter_marker_y_padding(markers_y_indexes, padding_y_top, padding_y_bottom): """ Filter the markers indexes for padding space in the top and bottom of answer sheet :param markers_y_indexes: :param padding_y_top: :param padding_y_bottom: :return: """ return markers_y_indexes[(markers_y_indexes > padding_y_top) & (markers_y_indexes < padding_y_bottom)]
b1eed0ac24bd6a6354072427be4375ad188572a5
4,603
def hr_admin(request): """ Views for HR2 Admin page """ template = 'hr2Module/hradmin.html' # searched employee query = request.GET.get('search') if(request.method == "GET"): if(query != None): emp = ExtraInfo.objects.filter( Q(user__first_name__icontains=query) | Q(user__last_name__icontains=query) ).distinct() emp = emp.filter(user_type="faculty") else: emp = ExtraInfo.objects.all() emp = emp.filter(user_type="faculty") else: emp = ExtraInfo.objects.all() emp = emp.filter(user_type="faculty") context = {'emps': emp} return render(request, template, context)
b78f78c57282b60b527bbaa03eab9064d881aea1
4,605
def create_aws_clients(region='us-east-1'): """Creates an S3, IAM, and Redshift client to interact with. Parameters ---------- region : str The aws region to create each client (default 'us-east-1'). Returns ------- ec3 A boto3 ec2 resource. s3 A boto3 s3 resource. iam A boto3 iam client. redshift A boto3 redshift client. """ ec2 = boto3.resource( 'ec2', region_name=region, aws_access_key_id=KEY, aws_secret_access_key=SECRET ) s3 = boto3.resource( 's3', region_name=region, aws_access_key_id=KEY, aws_secret_access_key=SECRET ) iam = boto3.client( 'iam', region_name=region, aws_access_key_id=KEY, aws_secret_access_key=SECRET ) redshift = boto3.client( 'redshift', region_name=region, aws_access_key_id=KEY, aws_secret_access_key=SECRET ) return ec2, s3, iam, redshift
3a422ac88791e404d67127bc85bab12b6a8aa4d9
4,606
def apply_function(f, *args, **kwargs): """ Apply a function or staticmethod/classmethod to the given arguments. """ if callable(f): return f(*args, **kwargs) elif len(args) and hasattr(f, '__get__'): # support staticmethod/classmethod return f.__get__(None, args[0])(*args, **kwargs) else: assert False, "expected a function or staticmethod/classmethod"
374be0283a234d4121435dbd3fa873640f2b9ad1
4,607
def join_data(ycom_county, census, land_area_data): """ Getting one dataframe from the three datasets """ census['LogPopDensity'] = np.log10(census['TotalPop']/land_area_data['LND110200D']) data = pd.concat(([ycom_county, census]), axis=1) return data
171c08d0c5dac721c3100df9be747c90b299a6c1
4,608
def path_graph(): """Return a path graph of length three.""" G = nx.path_graph(3, create_using=nx.DiGraph) G.graph["name"] = "path" nx.freeze(G) return G
c5fd4ea322b512bd26755d94581d56ddfb4d52bf
4,610
def dropStudentsWithEvents(df, events, saveDroppedAs=None, studentId='BookletNumber', eventId='Label', verbose=True): """ Drop students with certain events. It finds students with the events, and use dropStudents() to drop them. :param df: input data frame with data from multiple students :param events: a list of events. Each event is a string of event name :param saveDroppedAs: optionally saving the dropped data to a csv or pickle file. Remember to specify .csv or .pickle :param studentId: name of the column containing the student ID info; default ot "BookletNumber" :param eventId: name of the column containing the event name; default to "Label" :param verbose: default to True :return: a data frame with students having any of these events dropped. """ # error checks assert (isinstance(df, pd.DataFrame)) for v in [studentId, eventId]: assert (v in df.columns) studentsToDrop = df.loc[df[eventId].isin(events), studentId].unique() if verbose: print("\ndropStudentsWithEvents:") print(events) return dropStudents(df, studentsToDrop, saveDroppedAs, studentId, verbose)
5308ec96c8d5d3c9704f4a42202656bc4126e645
4,611
def create_slides(user, node, slideshow_data): """ Generate SlideshowSlides from data """ """ Returns a collection of SlideshowSlide objects """ slides = [] with transaction.atomic(): for slide in slideshow_data: slide_obj = SlideshowSlide( contentnode=node, sort_order=slide.get("sort_order"), metadata={ "caption": slide.get('caption'), "descriptive_text": slide.get('descriptive_text'), "checksum": slide.get('checksum'), "extension": slide.get('extension') } ) slide_obj.save() slides.append(slide_obj) return slides
6fc31c11f0dc24d17fd82eacd366a0026fb95157
4,613
def is_valid(sequence): """ A string is not valid if the knight moves onto a blank square and the string cannot contain more than two vowels. """ if any(letter == "_" for letter in sequence): return False # Check for vowels # Strings shorter than 3 letters are always ok, as they # can't contain more than two vowels if len(sequence) < 3: return True # Check longer sequences for number of vowels vowels="AEIUO" num_vowels = len([v for v in sequence if v in vowels]) if num_vowels > 2: return False # Check for duplicate characters. # The original question did not say anything about # repeated characters, but ignoring them would lead to infinite # sequences, such as AMAMAMA..., where the knight makes the same sequence # of moves over and over again if duplicate_characters(sequence): return False return True
0c3a72d05155eaf69ffeb7a734e9ceeabe0c44c2
4,614
import urllib def is_dataproc_VM(): """Check if this installation is being executed on a Google Compute Engine dataproc VM""" try: dataproc_metadata = urllib.request.urlopen("http://metadata.google.internal/0.1/meta-data/attributes/dataproc-bucket").read() if dataproc_metadata.decode("UTF-8").startswith("dataproc"): return True except: pass return False
21044a482b534ce3625b49080d1c472d587039ad
4,618
def lookup_all(base): """Looks up a subclass of a base class from the registry. Looks up a subclass of a base class with name provided from the registry. Returns a list of registered subclass if found, None otherwise. Args: base: The base class of the subclass to be found. Returns: A list of subclass of the name if found, None otherwise. """ basename = base.__name__ if basename not in _registries: return None registry = _registries[basename] output = [] for name in registry.keys(): init_args = registry[name][_INIT_ARGS] if init_args is not None: output.append(registry[name][_TYPE_TAG](**init_args)) else: output.append(registry[name][_TYPE_TAG]) return output
de6a8504d0c6cf6f149b597e4d8b41f7b5fc1eff
4,619
def makepyfile(testdir): """Fixture for making python files with single function and docstring.""" def make(*args, **kwargs): func_name = kwargs.pop('func_name', 'f') # content in args and kwargs is treated as docstring wrap = partial(_wrap_docstring_in_func, func_name) args = map(wrap, args) kwargs = dict(zip(kwargs.keys(), map(wrap, kwargs.values()))) return testdir.makepyfile(*args, **kwargs) return make
420733f4ee299514dba4172cfcc93b7429c635ca
4,620
from PIL import Image, ImageDraw, ImageFont def createTextWatermark(msg, size, loc, fontcolor='white', fontpath='arial.ttf', fontsize=18): """Creates a watermark image of the given text. Puts it at the given location in an RGBA image of the given size. Location should be a 2-tuple denoting the center location of the text.""" im = Image.new('RGBA', size, (0,0,0,0)) draw = ImageDraw.Draw(im) font = ImageFont.truetype(fontpath, fontsize) tw, th = draw.textsize(msg, font=font) loc = (loc[0] - tw//2, loc[1] - th//2) draw.text(loc, msg, font=font, fill=fontcolor) return im
6a1ae202a92b351f7d7301735dc825e826898522
4,621
def get_server_pull_config(config:dict): """ takes a config dictionary and returns the variables related to server deployment (pull from intersections). If there is any error in the configuration, returns a quadruple of -1 with a console output of the exception """ try: server = config["DataTransfer"]["server"] intersection = config["DataTransfer"]["intersection"] startHour = config["DataTransfer"]["StartTime_PullFromIntersections"]["hour"] startMinute = config["DataTransfer"]["StartTime_PullFromIntersections"]["minute"] return server, intersection, startHour, startMinute except Exception as e: print(e) return -1, -1, -1, -1
3a5a882bf91cb65462cdbf4fe202bbbc9d52ae2c
4,622
def buff_push(item: BufferItem): """ Add BufferItem to the buffer and execute if the buffer is full """ q.put(item) make_dependencies(item) if q.full(): return buff_empty_partial(q.maxsize - 1) return None
d45c0f67fa21cade7a0c2462e1cd8167f4939e0b
4,623
from rx.core.operators.take import _take from typing import Callable def take(count: int) -> Callable[[Observable], Observable]: """Returns a specified number of contiguous elements from the start of an observable sequence. .. marble:: :alt: take -----1--2--3--4----| [ take(2) ] -----1--2-| Example: >>> op = take(5) Args: count: The number of elements to return. Returns: An operator function that takes an observable source and returns an observable sequence that contains the specified number of elements from the start of the input sequence. """ return _take(count)
636cc982c6c8c9b13a2cecb675bb0ca7aadbcd91
4,625
from typing import List from typing import Union def format_fields_for_join( fields: List[Union[Field, DrivingKeyField]], table_1_alias: str, table_2_alias: str, ) -> List[str]: """Get formatted list of field names for SQL JOIN condition. Args: fields: Fields to be formatted. table_1_alias: Alias that should be used in the field on the left side of the equality sign. table_2_alias: alias that should be used in the field on the right side of the equality sign. Returns: Fields list formatted for an SQL JOIN condition. """ return [ JOIN_CONDITION_SQL_TEMPLATE.format( field_name=field.name, table_1_alias=table_1_alias, table_2_alias=table_2_alias, ) for field in fields ]
691a154f8b984b11ed177a7948fe74398c693b25
4,626
def get_payment_balance(currency): """ Returns available balance for selected currency This method requires authorization. """ result = get_data("/payment/balances", ("currency", currency)) payment_balance = namedtuple("Payment_balance", get_namedtuple(result[0])) return [payment_balance(**element) for element in result]
354abbf4e9bc1b22a32e31555106ce68a21e9cd1
4,627
import torch def build_scheduler(optimizer, config): """ """ scheduler = None config = config.__dict__ sch_type = config.pop('type') if sch_type == 'LambdaLR': burn_in, steps = config['burn_in'], config['steps'] # Learning rate setup def burnin_schedule(i): if i < burn_in: factor = pow(i / burn_in, 4) elif i < steps[0]: factor = 1.0 elif i < steps[1]: factor = 0.1 else: factor = 0.01 return factor scheduler = optim.lr_scheduler.LambdaLR(optimizer, burnin_schedule) elif sch_type == 'StepLR': # 等间隔调整学习率, 调整倍数为gamma倍,调整间隔为step_size,间隔单位是step,step通常是指epoch。 step_size, gamma = config['step_size'], config['gamma'] scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=step_size, gamma=gamma) elif sch_type == 'ReduceLROnPlateau': # 当某指标不再变化(下降或升高),调整学习率,这是非常实用的学习率调整策略。例如,当验证集的loss不再下降时,进行学习率调整;或者监测验证集的accuracy,当accuracy不再上升时,则调整学习率。 scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.1, patience=3, verbose=True, threshold=1e-4) return scheduler
b205b323db322336426f3c13195cb49735d7284d
4,628
def rpca_alm(X, lmbda=None, tol=1e-7, max_iters=1000, verbose=True, inexact=True): """ Augmented Lagrange Multiplier """ if lmbda is None: lmbda = 1.0 / np.sqrt(X.shape[0]) Y = np.sign(X) norm_two = svd(Y, 1)[1] norm_inf = np.abs(Y).max() / lmbda dual_norm = np.max([norm_two, norm_inf]) Y = Y / dual_norm A = np.zeros(Y.shape) E = np.zeros(Y.shape) dnorm = la.norm(X, ord='fro') tol_primal = 1e-6 * dnorm total_svd = 0 mu = 0.5 / norm_two rho = 6 sv = 5 n = Y.shape[0] for iter1 in xrange(max_iters): primal_converged = False sv = sv + np.round(n * 0.1) primal_iter = 0 while not primal_converged: Eraw = X - A + (1/mu) * Y Eupdate = np.maximum( Eraw - lmbda/mu, 0) + np.minimum(Eraw + lmbda / mu, 0) U, S, V = svd(X - Eupdate + (1 / mu) * Y, sv) svp = (S > 1/mu).sum() if svp < sv: sv = np.min([svp + 1, n]) else: sv = np.min([svp + round(.05 * n), n]) Aupdate = np.dot( np.dot(U[:, :svp], np.diag(S[:svp] - 1/mu)), V[:svp, :]) if primal_iter % 10 == 0 and verbose >= 2: print(la.norm(A - Aupdate, ord='fro')) if ((la.norm(A - Aupdate, ord='fro') < tol_primal and la.norm(E - Eupdate, ord='fro') < tol_primal) or (inexact and primal_iter > 5)): primal_converged = True A = Aupdate E = Eupdate primal_iter += 1 total_svd += 1 Z = X - A - E Y = Y + mu * Z mu *= rho if la.norm(Z, ord='fro') / dnorm < tol: if verbose: print('\nConverged at iteration {}'.format(iter1)) break if verbose: _verbose(A, E, X) return A, E
8c09f8f4b004b9a00655402e5466636aa9fc4390
4,629
def dwt_embed(wmImage, hostImage, alpha, beta): """Embeds a watermark image into a host image, using the First Level Discrete Wavelet Transform and Alpha Blending.\n The formula used for the alpha blending is: resultLL = alpha * hostLL + beta * watermarkLL Arguments: wmImage (NumPy array) -- the image to be embedded hostImage (NumPy array) -- the image to be watermarked alpha (float) -- the first embedding strength factor beta (float) -- the second embedding strength factor Returns: NumPy array type -- the watermarked image, in float64 format """ # Take the dimensions of the host and watermark images wmHeight, wmWidth = wmImage.shape[:2] hostHeight, hostWidth = hostImage.shape[:2] # Resize the watermark image so that it is the same size as the host image if wmHeight > hostHeight or wmWidth > hostWidth: # Scale down the watermark image wmImage = cv2.resize(wmImage, (hostWidth, hostHeight), interpolation = cv2.INTER_AREA) elif wmHeight < hostHeight or wmWidth < hostWidth: # Scale up the watermark image wmImage = cv2.resize(wmImage, (hostWidth, hostHeight), interpolation = cv2.INTER_LINEAR) # Take the new dimensions of the watermark image wmHeight, wmWidth = wmImage.shape[:2] # Split both images into channels hostB, hostG, hostR = cv2.split(hostImage) wmB, wmG, wmR = cv2.split(wmImage) # Compute the first level bidimensional DWT for each channel of both images # (LL, (HL, LH, HH)) cAhostB, (cHhostB, cVhostB, cDhostB) = pywt.dwt2(hostB, 'db2') cAhostG, (cHhostG, cVhostG, cDhostG) = pywt.dwt2(hostG, 'db2') cAhostR, (cHhostR, cVhostR, cDhostR) = pywt.dwt2(hostR, 'db2') cAhostHeight, cAhostWidth = cAhostB.shape cAwmB, (cHwmB, cVwmB, cDwmB) = pywt.dwt2(wmB, 'db2') cAwmG, (cHwmG, cVwmG, cDwmG) = pywt.dwt2(wmG, 'db2') cAwmR, (cHwmR, cVwmR, cDwmR) = pywt.dwt2(wmR, 'db2') cAwmHeight, cAwmWidth = cAwmB.shape # Generate image matrix for containing all four host coefficients images coeffsHost = np.zeros((cAhostHeight * 2, cAhostWidth * 2, 3), dtype = 'float64') # Merge channels for each of A, H, V and D and build the host coefficients image cAhost = cv2.merge([cAhostB, cAhostG, cAhostR]) coeffsHost[0:cAhostHeight, 0:cAhostWidth] = cAhost cHhost = cv2.merge([cHhostB, cHhostG, cHhostR]) coeffsHost[0:cAhostHeight, cAhostWidth:cAhostWidth * 2] = cHhost cVhost = cv2.merge([cVhostB, cVhostG, cVhostR]) coeffsHost[cAhostHeight:cAhostHeight * 2, 0:cAhostWidth] = cVhost cDhost = cv2.merge([cDhostB, cDhostG, cDhostR]) coeffsHost[cAhostHeight:cAhostHeight * 2, cAhostWidth:cAhostWidth * 2] = cDhost # Display the host coefficients image temp = np.uint8(np.rint(coeffsHost)) cv2.imshow('Host DWT', temp) # Generate image matrix for containing all four watermark coefficients images coeffsWm = np.zeros((cAwmHeight * 2, cAwmWidth * 2, 3), dtype = 'float64') # Merge channels for each of A, H, V and D and build the wm coefficients image cAwm = cv2.merge([cAwmB, cAwmG, cAwmR]) coeffsWm[0:cAwmHeight, 0:cAwmWidth] = cAwm cHwm = cv2.merge([cHwmB, cHwmG, cHwmR]) coeffsWm[0:cAwmHeight, cAwmWidth:cAwmWidth * 2] = cHwm cVwm = cv2.merge([cVwmB, cVwmG, cVwmR]) coeffsWm[cAwmHeight:cAwmHeight * 2, 0:cAwmWidth] = cVwm cDwm = cv2.merge([cDwmB, cDwmG, cDwmR]) coeffsWm[cAwmHeight:cAwmHeight * 2, cAwmWidth:cAwmWidth * 2] = cDwm # Display the watermark coefficients image temp = np.uint8(np.rint(coeffsWm)) cv2.imshow('Watermark DWT', temp) # Apply the Alpha Blending Technique # wmImageLL = alpha * hostLL + beta * wmLL cAresult = alpha * cAhost + beta * cAwm cAresultB, cAresultG, cAresultR = cv2.split(cAresult) # Compute the channels of the watermarked image by applying the inverse DWT resultB = pywt.idwt2((cAresultB, (cHhostB, cVhostB, cDhostB)), 'db2') resultG = pywt.idwt2((cAresultG, (cHhostG, cVhostG, cDhostG)), 'db2') resultR = pywt.idwt2((cAresultR, (cHhostR, cVhostR, cDhostR)), 'db2') # Merge the channels and obtain the final watermarked image resultImage = cv2.merge([resultB, resultG, resultR]) return resultImage
939e8d14ceb9452dc873f7b2d9472630211c0432
4,630
def make_file_iterator(filename): """Return an iterator over the contents of the given file name.""" # pylint: disable=C0103 with open(filename) as f: contents = f.read() return iter(contents.splitlines())
e7b612465717dafc3155d9df9fd007f7aa9af509
4,631
def little_endian_bytes_to_int(little_endian_byte_seq): """Converts a pair of bytes into an integer. The `little_endian_byte_seq` input must be a 2 bytes sequence defined according to the little-endian notation (i.e. the less significant byte first). For instance, if the `little_endian_byte_seq` input is equals to ``(0xbc, 0x02)`` this function returns the decimal value ``700`` (0x02bc in hexadecimal notation). :param bytes little_endian_byte_seq: the 2 bytes sequence to be converted. It must be compatible with the "bytes" type and defined according to the little-endian notation. """ # Check the argument and convert it to "bytes" if necessary. # Assert "little_endian_byte_seq" items are in range (0, 0xff). # "TypeError" and "ValueError" are sent by the "bytes" constructor if # necessary. # The statement "tuple(little_endian_byte_seq)" implicitely rejects # integers (and all non-iterable objects) to compensate the fact that the # bytes constructor doesn't reject them: bytes(2) is valid and returns # b'\x00\x00' little_endian_byte_seq = bytes(tuple(little_endian_byte_seq)) # Check that the argument is a sequence of two items if len(little_endian_byte_seq) != 2: raise ValueError("A sequence of two bytes is required.") integer = little_endian_byte_seq[1] * 0x100 + little_endian_byte_seq[0] return integer
d8d0c6d4ebb70ea541e479b21deb913053886748
4,633
def higher_follower_count(A, B): """ Compares follower count key between two dictionaries""" if A['follower_count'] >= B['follower_count']: return "A" return "B"
d4d182ca5a3c5bff2bc7229802603a82d44a4d67
4,634
def _element_or_none(germanium, selector, point): """ Function to check if the given selector is only a regular element without offset clicking. If that is the case, then we enable the double hovering in the mouse actions, to solve a host of issues with hovering and scrolling, such as elements appearing on mouse in, or edge not hovering correctly. :param germanium: :param selector: :param point: :return: """ if isinstance(selector, Point): return None if point: return None return _element(germanium, selector)
b3de13ecefc7b8593d4b61e7caf63eee41d1521a
4,635
def ENDLEMuEpP_TransferMatrix( style, tempInfo, crossSection, productFrame, angularData, EMuEpPData, multiplicity, comment = None ) : """This is LLNL I = 1, 3 type data.""" logFile = tempInfo['logFile'] workDir = tempInfo['workDir'] s = versionStr + '\n' s += "Process: 'Double differential EMuEpP data transfer matrix'\n" s += commonDataToString( comment, style, tempInfo, crossSection, productFrame, multiplicity = multiplicity ) s += angularToString( angularData, crossSection ) s += EMuEpPDataToString( EMuEpPData ) return( executeCommand( logFile, transferMatrixExecute, s, workDir, tempInfo['workFile'], tempInfo['restart'] ) )
224e72f52ad6b143e51a50962d548084a8e7c283
4,636
def createfourierdesignmatrix_chromatic(toas, freqs, nmodes=30, Tspan=None, logf=False, fmin=None, fmax=None, idx=4): """ Construct Scattering-variation fourier design matrix. :param toas: vector of time series in seconds :param freqs: radio frequencies of observations [MHz] :param nmodes: number of fourier coefficients to use :param freq: option to output frequencies :param Tspan: option to some other Tspan :param logf: use log frequency spacing :param fmin: lower sampling frequency :param fmax: upper sampling frequency :param idx: Index of chromatic effects :return: F: Chromatic-variation fourier design matrix :return: f: Sampling frequencies """ # get base fourier design matrix and frequencies F, Ffreqs = utils.createfourierdesignmatrix_red( toas, nmodes=nmodes, Tspan=Tspan, logf=logf, fmin=fmin, fmax=fmax) # compute the DM-variation vectors Dm = (1400/freqs) ** idx return F * Dm[:, None], Ffreqs
59420ea9bde77f965f4571bdec5112d026c63478
4,638
def get_word_data(char_data): """ 获取分词的结果 :param char_data: :return: """ seq_data = [''.join(l) for l in char_data] word_data = [] # stop_words = [line.strip() for line in open(stop_word_file, 'r', encoding='utf-8')] for seq in seq_data: seq_cut = jieba.cut(seq, cut_all=False) word_data.append([w for w in seq_cut ]) return word_data
8ca306d0f3f4c94f6d67cdc7b865ddef4f639291
4,639
from typing import List from typing import Dict from typing import Any def get_output_stream(items: List[Dict[str, Any]]) -> List[OutputObject]: """Convert a list of items in an output stream into a list of output objects. The element in list items are expected to be in default serialization format for output objects. Paramaters ---------- items: list(dict) Items in the output stream in default serialization format Returns ------- list(vizier.viztrail.module.OutputObject) """ result = list() for item in items: result.append( OutputObject( type=item[KEY_OUTPUT_TYPE], value=item[KEY_OUTPUT_VALUE] ) ) return result
841bffba3f0e4aeab19ca31b62807a5a30e818f1
4,641
def lvnf_stats(**kwargs): """Create a new module.""" return RUNTIME.components[LVNFStatsWorker.__module__].add_module(**kwargs)
1bdf94687101b8ab90684b67227acec35205e320
4,642
import re def parse_float(string): """ Finds the first float in a string without casting it. :param string: :return: """ matches = re.findall(r'(\d+\.\d+)', string) if matches: return matches[0] else: return None
4adea9226d0f67cd4d2dfe6a2b65bfd24f3a7ecb
4,643
def objectproxy_realaddress(obj): """ Obtain a real address as an integer from an objectproxy. """ voidp = QROOT.TPython.ObjectProxy_AsVoidPtr(obj) return C.addressof(C.c_char.from_buffer(voidp))
6c2f1a2b0893ef2fd90315a2cd3a7c5c5524707f
4,644
def delta_shear(observed_gal, psf_deconvolve, psf_reconvolve, delta_g1, delta_g2): """ Takes in an observed galaxy object, two PSFs for metacal (deconvolving and re-convolving), and the amount by which to shift g1 and g2, and returns a tuple of tuples of modified galaxy objects. ((g1plus, g1minus), (g2plus, g2minus)) """ # Deconvolving by psf_deconvolve inv_psf = galsim.Deconvolve(psf_deconvolve) deconvolved = galsim.Convolve(observed_gal, inv_psf) # Applying second shear in g1 sheared_plus_g1 = deconvolved.shear(g1=delta_g1, g2=0) sheared_minus_g1 = deconvolved.shear(g1=-delta_g1, g2=0) # Applying second shear in g2 sheared_plus_g2 = deconvolved.shear(g1=0, g2=delta_g2) sheared_minus_g2 = deconvolved.shear(g1=0, g2=-delta_g2) # Reconvolving by psf_reconvolve for g1 reconvolved_plus_g1 = galsim.Convolve(sheared_plus_g1, psf_reconvolve) reconvolved_minus_g1 = galsim.Convolve(sheared_minus_g1, psf_reconvolve) g1_plus_minus = (reconvolved_plus_g1, reconvolved_minus_g1) # Reconvolving by psf_reconvolve for g2 reconvolved_plus_g2 = galsim.Convolve(sheared_plus_g2, psf_reconvolve) reconvolved_minus_g2 = galsim.Convolve(sheared_minus_g2, psf_reconvolve) g2_plus_minus = (reconvolved_plus_g2, reconvolved_minus_g2) # g1_plus_minus = (sheared_plus_g1, sheared_minus_g1) # g2_plus_minus = (sheared_plus_g2, sheared_minus_g2) # adding noshear reconvolved for testing reconvolved_noshear = galsim.Convolve(deconvolved, psf_reconvolve) return g1_plus_minus, g2_plus_minus, reconvolved_noshear
13ab29088a1a88305e9f74ab1b43351f2d19b3c6
4,646
def estimateModifiedPiSquared(n): """ Estimates that value of Pi^2 through a formula involving partial sums. n is the number of terms to be summed; the larger the more accurate the estimation of Pi^2 tends to be (but not always). The modification relative to estimatePiSquared() is that the n terms are added in reverse order (i.e. the smallest values are added first). """ partialSum = 0 # Initializing # Implementation of the mathematical formula involving summing for k in range(n, 0, -1): # Order reversed partialSum += 1 / (k ** 2) estimate = 6*partialSum return estimate
652376bf0964990905bf25b12ad8ab5156975dea
4,647
def pattern_match(template, image, upsampling=16, metric=cv2.TM_CCOEFF_NORMED, error_check=False): """ Call an arbitrary pattern matcher using a subpixel approach where the template and image are upsampled using a third order polynomial. Parameters ---------- template : ndarray The input search template used to 'query' the destination image image : ndarray The image or sub-image to be searched upsampling : int The multiplier to upsample the template and image. func : object The function to be used to perform the template based matching Options: {cv2.TM_CCORR_NORMED, cv2.TM_CCOEFF_NORMED, cv2.TM_SQDIFF_NORMED} In testing the first two options perform significantly better with Apollo data. error_check : bool If True, also apply a different matcher and test that the values are not too divergent. Default, False. Returns ------- x : float The x offset y : float The y offset strength : float The strength of the correlation in the range [-1, 1]. """ if upsampling < 1: raise ValueError # Fit a 3rd order polynomial to upsample the images if upsampling != 1: u_template = zoom(template, upsampling, order=3) u_image = zoom(image, upsampling, order=3) else: u_template = template u_image = image result = cv2.matchTemplate(u_image, u_template, method=metric) _, max_corr, min_loc, max_loc = cv2.minMaxLoc(result) if metric == cv2.TM_SQDIFF or metric == cv2.TM_SQDIFF_NORMED: x, y = (min_loc[0], min_loc[1]) else: x, y = (max_loc[0], max_loc[1]) # Compute the idealized shift (image center) ideal_y = u_image.shape[0] / 2 ideal_x = u_image.shape[1] / 2 # Compute the shift from template upper left to template center y += (u_template.shape[0] / 2) x += (u_template.shape[1] / 2) x = (x - ideal_x) / upsampling y = (y - ideal_y) / upsampling return x, y, max_corr, result
adb98b96d9ca778a909868c0c0851bf52b1f0a1b
4,648
def main(argv=[__name__]): """Raspi_x10 command line interface. """ try: try: devices_file, rules_file, special_days_file = argv[1:] except ValueError: raise Usage('Wrong number of arguments') sched = Schedule() try: sched.load_conf(devices_file, 'x10_devices', 'devices') sched.load_conf(rules_file, 'x10_rules', 'rules') sched.load_conf(special_days_file, 'special_days', 'special_days') except IOError: raise Usage except KeyError as err: raise Usage('KeyError: {0}'.format(err)) sched.build() sched.write() return 0 except Usage as err: log.error('{0.msg}\n{0.usage}'.format(err)) return 2
583df25dc3fb3059d6ed5b87d61a547fc1a11935
4,649
def HexaMeshIndexCoord2VoxelValue(nodes, elements, dim, elementValues): """ Convert hexamesh (bricks) in index coordinates to volume in voxels with value of voxels assigned according to elementValues. dim: dimension of volume in x, y and z in voxels (tuple) elementValues: len(elements) == len(elementValues) Example: to retrieve nodes corresponding to element 217: nodesSortedUnique[elements[217],:] Given the default voxelSize and origin, coordinates range from (-0.5 to dimXYZ+0.5) nodesSortedUnique.shape = (nodes,3) """ volume = np.zeros(dim, dtype=elementValues.dtype) # initialize volume of False xyz = nodes[elements,:][:,0,:] + 0.5 # voxel coordinates of bone xyz = xyz.astype(int) volume[tuple(xyz.T)] = elementValues return volume
8dcab059dd137173e780b7dd9941c80c89d7929c
4,650
def hamiltonian(latt: Lattice, eps: (float, np.ndarray) = 0., t: (float, np.ndarray) = 1.0, dense: bool = True) -> (csr_matrix, np.ndarray): """Computes the Hamiltonian-matrix of a tight-binding model. Parameters ---------- latt : Lattice The lattice the tight-binding model is defined on. eps : array_like, optional The on-site energies of the model. t : array_like, optional The hopping energies of the model. dense : bool, optional If ``True`` the hamiltonian matrix is returned as a ``np.ndarray`` Returns ------- ham : csr_matrix or np.ndarray The Hamiltonian-matrix as a sparse or dense matrix. """ dmap = latt.data.map() data = np.zeros(dmap.size) data[dmap.onsite()] = eps data[dmap.hopping()] = t ham = csr_matrix((data, dmap.indices)) if dense: ham = ham.toarray() return ham
63df0f8557ba13fe3501506974c402faca1811f5
4,651
def pad_in(string: str, space: int) -> str: """ >>> pad_in('abc', 0) 'abc' >>> pad_in('abc', 2) ' abc' """ return "".join([" "] * space) + string
325c0751da34982e33e8fae580af6f439a2dcac0
4,652
def get_existing_rule(text): """ Return the matched rule if the text is an existing rule matched exactly, False otherwise. """ matches = get_license_matches(query_string=text) if len(matches) == 1: match = matches[0] if match.matcher == MATCH_HASH: return match.rule
9c41241532977b0a30485c7b7609da3c6e75b59c
4,654