content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import random def delete_important_words(word_list, replace=''): """ randomly detele an important word in the query or replace (not in QUERY_SMALL_CHANGE_SETS) """ # replace can be [MASK] important_word_list = set(word_list) - set(QUERY_SMALL_CHANGE_SETS) target = random.sample(important_word_list, 1)[0] if replace: new_word_list = [item if item!=target else item.replace(target, replace) for item in word_list] else: new_word_list = [item for item in word_list if item!=target] return new_word_list
336518cb1c52f896fc9878e1c11b3f0e72c4f36a
3,650,300
import numpy as np def prot(vsini, st_rad): """ Function to convert stellar rotation velocity vsini in km/s to rotation period in days. Parameters: ---------- vsini: Rotation velocity of star in km/s. st_rad: Stellar radius in units of solar radii Returns ------ Prot: Period of rotation of the star in days. """ vsini=np.array(vsini) prot=(2*np.pi*st_rad*rsun)/(vsini*24*60*60) return prot
db2ef4648c5142a996e4a700aee0c7df0f02a394
3,650,301
def dialog_sleep(): """Return the time to sleep as set by the --exopy-sleep option. """ return DIALOG_SLEEP
cc40ffa09c83bd095f685b3b1d237545b8d7dd34
3,650,302
def required_overtime (db, user, frm) : """ If required_overtime flag is set for overtime_period of dynamic user record at frm, we return the overtime_period belonging to this dyn user record. Otherwise return None. """ dyn = get_user_dynamic (db, user, frm) if dyn and dyn.overtime_period : otp = db.overtime_period.getnode (dyn.overtime_period) if otp.required_overtime : return otp return None
052e1289a0d7110100b3a1ea0ad90fa7bd000cce
3,650,303
def get_best_fit_member(*args): """ get_best_fit_member(sptr, offset) -> member_t Get member that is most likely referenced by the specified offset. Useful for offsets > sizeof(struct). @param sptr (C++: const struc_t *) @param offset (C++: asize_t) """ return _ida_struct.get_best_fit_member(*args)
7d4032d5cedb789d495e658eda939c36591f3506
3,650,304
def convert_time(time): """Convert given time to srt format.""" stime = '%(hours)02d:%(minutes)02d:%(seconds)02d,%(milliseconds)03d' % \ {'hours': time / 3600, 'minutes': (time % 3600) / 60, 'seconds': time % 60, 'milliseconds': (time % 1) * 1000} return stime
948e6567c8bc17ccb5f98cf8c8eaf8fe6e8d0bec
3,650,305
def Returns1(target_bitrate, result): """Score function that returns a constant value.""" # pylint: disable=W0613 return 1.0
727e58e0d6d596cf4833ca3ca1cbcec6b9eedced
3,650,306
def test_abstract_guessing(): """Test abstract guessing property.""" class _CustomPsychometric(DiscriminationMethod): def psychometric_function(self, d): return 0.5 with pytest.raises(TypeError, match="abstract method"): _CustomPsychometric()
996f6fb4d6b819e15fb3a931c0dc2a1f211e3d58
3,650,307
import re def remove_repeats(msg): """ This function removes repeated characters from text. :param/return msg: String """ # twitter specific repeats msg = re.sub(r"(.)\1{2,}", r"\1\1\1", msg) # characters repeated 3 or more times # laughs msg = re.sub(r"(ja|Ja)(ja|Ja)+(j)?", r"jaja", msg) # spanish msg = re.sub(r"(rs|Rs)(Rs|rs)+(r)?", r"rsrs", msg) # portugese msg = re.sub(r"(ha|Ha)(Ha|ha)+(h)?", r"haha", msg) # english return msg
590ab42f74deaa9f8dc1eb9c8b11d81622db2e6d
3,650,308
def _legend_main_get(project, row): """ forma la leyenda de la serie principal del gráfico input project: es el tag project del proyecto seleccionado en fichero XYplus_parameters.f_xml -en XYplus_main.py- row: es fila activa devuelta por select_master) de donde se extrae el título del gráfico return un str con la leyenda del punto principal del gráfico """ legend_master = project.find('graph/legend_master').text.strip() columns_master = project.findall('graph/legend_master/column') if len(columns_master) == 0: return legend_master subs = [row[int(col1.text)-1] for col1 in columns_master] return legend_master.format(*subs)
3938d723bd44a67313b86f956464fd186ef25386
3,650,309
import time import os def contrast_jwst_num(coro_floor, norm, matrix_dir, rms=50*u.nm): """ Compute the contrast for a random segmented OTE misalignment on the JWST simulator. :param coro_floor: float, coronagraph contrast floor :param norm: float, normalization factor for PSFs: peak of unaberrated direct PSF :param matrix_dir: str, directory of saved matrix :param rms: astropy quantity (e.g. m or nm), WFE rms (OPD) to be put randomly over the entire segmented mirror :return: 2x float, E2E and matrix contrast """ # Keep track of time start_time = time.time() # Parameters nb_seg = CONFIG_PASTIS.getint('JWST', 'nb_subapertures') iwa = CONFIG_PASTIS.getfloat('JWST', 'IWA') owa = CONFIG_PASTIS.getfloat('JWST', 'OWA') sampling = CONFIG_PASTIS.getfloat('JWST', 'sampling') # Import numerical PASTIS matrix filename = 'pastis_matrix' matrix_pastis = fits.getdata(os.path.join(matrix_dir, filename + '.fits')) # Create random aberration coefficients on segments, scaled to total rms aber = util.create_random_rms_values(nb_seg, rms) ### E2E JWST sim start_e2e = time.time() jwst_sim = webbpsf_imaging.set_up_nircam() jwst_sim[0].image_mask = CONFIG_PASTIS.get('JWST', 'focal_plane_mask') log.info('Calculating E2E contrast...') # Put aberration on OTE jwst_sim[1].zero() for nseg in range(nb_seg): # TODO: there is probably a single function that puts the aberration on the OTE at once seg_num = webbpsf_imaging.WSS_SEGS[nseg].split('-')[0] jwst_sim[1].move_seg_local(seg_num, piston=aber[nseg].value, trans_unit='nm') image = jwst_sim[0].calc_psf(nlambda=1) psf_jwst = image[0].data / norm # Create DH dh_mask = util.create_dark_hole(psf_jwst, iwa=iwa, owa=owa, samp=sampling) # Get the mean contrast contrast_jwst = util.dh_mean(psf_jwst, dh_mask) end_e2e = time.time() ## MATRIX PASTIS log.info('Generating contrast from matrix-PASTIS') start_matrixpastis = time.time() # Get mean contrast from matrix PASTIS contrast_matrix = util.pastis_contrast(aber, matrix_pastis) + coro_floor # calculating contrast with PASTIS matrix model end_matrixpastis = time.time() ## Outputs log.info('\n--- CONTRASTS: ---') log.info(f'Mean contrast from E2E: {contrast_jwst}') log.info(f'Contrast from matrix PASTIS: {contrast_matrix}') log.info('\n--- RUNTIMES: ---') log.info(f'E2E: {end_e2e-start_e2e}sec = {(end_e2e-start_e2e)/60}min') log.info(f'Matrix PASTIS: {end_matrixpastis-start_matrixpastis}sec = {(end_matrixpastis-start_matrixpastis)/60}min') end_time = time.time() runtime = end_time - start_time log.info(f'Runtime for contrast_calculation_simple.py: {runtime} sec = {runtime/60} min') return contrast_jwst, contrast_matrix
750287224184cf6f49394b5bceee3307fe790810
3,650,310
def ordinal_mapper(fh, coords, idmap, fmt=None, n=1000000, th=0.8, prefix=False): """Read an alignment file and match reads and genes in an ordinal system. Parameters ---------- fh : file handle Alignment file to parse. coords : dict of list Gene coordinates table. idmap : dict of list Gene identifiers. fmt : str, optional Alignment file format. n : int, optional Number of lines per chunk. th : float Minimum threshold of overlap length : alignment length for a match. prefix : bool Prefix gene IDs with nucleotide IDs. See Also -------- align.plain_mapper Yields ------ tuple of str Query queue. dict of set of str Subject(s) queue. """ # determine file format fmt, head = (fmt, []) if fmt else infer_align_format(fh) # assign parser for given format parser = assign_parser(fmt, ext=True) # cached list of query Ids for reverse look-up # gene Ids are unique, but read Ids can have duplicates (i.e., one read is # mapped to multiple loci on a genome), therefore an incremental integer # here replaces the original read Id as its identifer rids = [] rid_append = rids.append # cached map of read to coordinates locmap = defaultdict(list) def flush(): """Match reads in current chunk with genes from all nucleotides. Returns ------- tuple of str Query queue. dict of set of str Subject(s) queue. """ # master read-to-gene(s) map res = defaultdict(set) # iterate over nucleotides for nucl, locs in locmap.items(): # it's possible that no gene was annotated on the nucleotide try: glocs = coords[nucl] except KeyError: continue # get reference to gene identifiers gids = idmap[nucl] # append prefix if needed pfx = nucl + '_' if prefix else '' # execute ordinal algorithm when reads are many # 8 (5+ reads) is an empirically determined cutoff if len(locs) > 8: # merge and sort coordinates # question is to add unsorted read coordinates into pre-sorted # gene coordinates # Python's Timsort algorithm is efficient for this task queue = sorted(chain(glocs, locs)) # map reads to genes using the core algorithm for read, gene in match_read_gene(queue): # add read-gene pairs to the master map res[rids[read]].add(pfx + gids[gene]) # execute naive algorithm when reads are few else: for read, gene in match_read_gene_quart(glocs, locs): res[rids[read]].add(pfx + gids[gene]) # return matching read Ids and gene Ids return res.keys(), res.values() this = None # current query Id target = n # target line number at end of current chunk # parse alignment file for i, row in enumerate(parser(chain(iter(head), fh))): query, subject, _, length, beg, end = row[:6] # skip if length is not available or zero if not length: continue # when query Id changes and chunk limits has been reached if query != this and i >= target: # flush: match currently cached reads with genes and yield yield flush() # re-initiate read Ids, length map and location map rids = [] rid_append = rids.append locmap = defaultdict(list) # next target line number target = i + n # append read Id, alignment length and location idx = len(rids) rid_append(query) # effective length = length * th # -int(-x // 1) is equivalent to math.ceil(x) but faster # this value must be >= 1 locmap[subject].extend(( (beg << 48) + (-int(-length * th // 1) << 31) + idx, (end << 48) + idx)) this = query # final flush yield flush()
955c411e608fdb3cf55d0c52350b38061f87cd3a
3,650,311
def file_lines(filename): """ >>> file_lines('test/foo.txt') ['foo', 'bar'] """ return text_file(filename).split()
b121ba549606adeac244b063ff679192951c2ff8
3,650,312
def repr_should_be_defined(obj): """Checks the obj.__repr__() method is properly defined""" obj_repr = repr(obj) assert isinstance(obj_repr, str) assert obj_repr == obj.__repr__() assert obj_repr.startswith("<") assert obj_repr.endswith(">") return obj_repr
28537f4f48b402a2eba290d8ece9b765eeb9fdc3
3,650,313
import os def read_tiff(tiff_path): """ Args: tiff_path: a tiff file path Returns: tiff image object """ if not os.path.isfile(tiff_path) or not is_tiff_file(tiff_path): raise InvalidTiffFileError(tiff_path) return imread(tiff_path)
63a5ae406c47ba72a46d7c4a29bde9371e6ce824
3,650,314
def changePassword(): """ Change to a new password and email user. URL Path: URL Args (required): - JSON structure of change password data Returns: 200 OK if invocation OK. 500 if server not configured. """ @testcase def changePasswordWorker(): try: util.debugPrint("changePassword") if not Config.isConfigured(): util.debugPrint("Please configure system") abort(500) urlPrefix = Config.getDefaultPath() requestStr = request.data accountData = json.loads(requestStr) return jsonify(AccountsChangePassword.changePasswordEmailUser( accountData, urlPrefix)) except: print "Unexpected error:", sys.exc_info()[0] print sys.exc_info() traceback.print_exc() util.logStackTrace("Unexpected error:" + str(sys.exc_info()[0])) raise return changePasswordWorker()
0c354535b2ff6be180ddec939be533b2a87a5a94
3,650,315
from typing import Callable from typing import Any from typing import List from typing import Tuple import os import multiprocessing def parallel_for( loop_callback: Callable[[Any], Any], parameters: List[Tuple[Any, ...]], nb_threads: int = os.cpu_count()+4 ) -> List[Any]: """Execute a for loop body in parallel .. note:: Race-Conditions Code executation in parallel can cause into an "race-condition" error. Arguments: loop_callback(Callable): function callback running in the loop body parameters(List[Tuple]): element to execute in parallel Returns: (List[Any]): list of values Examples: .. example-code:: >>> x = lambda x: x ** 2 >>> parallel_for(x, [y for y in range(10)]) [0, 1, 4, 9, 16, 25, 36, 49, 64, 81] """ with closing(multiprocessing.pool.ThreadPool(nb_threads)) as pool: return pool.map(loop_callback, parameters)
e3ae62d02ee886386e939a7f4890df74f3ab4879
3,650,316
def indexName(): """Index start page.""" return render_template('index.html')
0340e708a82052a98e6e9e92bfde2eb04128d354
3,650,317
def translate_http_code(): """Print given code :return: """ return make_http_code_translation(app)
c9b501b57323aeb765be47af134dd2de1c1d084e
3,650,318
from re import DEBUG def dose_rate(sum_shielding, isotope, disable_buildup = False): """ Calculate the dose rate for a specified isotope behind shielding behind shielding barriers. The dose_rate is calculated for 1MBq Args: sum_shielding: dict with shielding elements isotope: isotope name (string) """ t = transmission_sum(sum_shielding, isotope, disable_buildup) energies = ps.config.get_setting(ps.ISOTOPES)[isotope][ps.ENERGY_keV] abundance = ps.config.get_setting(ps.ISOTOPES)[isotope][ps.ABUNDANCE] if DEBUG: ps.logger.debug(isotope) ps.logger.debug('t: %s', t) ps.logger.debug('energies: %s', energies) ps.logger.debug('abundance: %s', abundance) rate = H10(energy_keV=energies, abundance=t * np.array(abundance)) return rate
37b90720564c1a15b5e4fb40cb67df556caaa742
3,650,319
import warnings def parmap(f, X, nprocs=1): """ parmap_fun() and parmap() are adapted from klaus se's post on stackoverflow. https://stackoverflow.com/a/16071616/4638182 parmap allows map on lambda and class static functions. Fall back to serial map when nprocs=1. """ if nprocs < 1: raise ValueError("nprocs should be >= 1. nprocs: {}".format(nprocs)) nprocs = min(int(nprocs), mp.cpu_count()) # exception handling f # simply ignore all exceptions. If exception occurs in parallel queue, the # process with exception will get stuck and not be able to process # following requests. def ehf(x): try: res = f(x) except Exception as e: res = e return res # fall back on serial if nprocs == 1: return list(map(ehf, X)) q_in = mp.Queue(1) q_out = mp.Queue() proc = [mp.Process(target=_parmap_fun, args=(ehf, q_in, q_out)) for _ in range(nprocs)] for p in proc: p.daemon = True p.start() sent = [q_in.put((i, x)) for i, x in enumerate(X)] [q_in.put((None, None)) for _ in range(nprocs)] res = [q_out.get() for _ in range(len(sent))] [p.join() for p in proc] # maintain the order of X ordered_res = [x for i, x in sorted(res)] for i, x in enumerate(ordered_res): if isinstance(x, Exception): warnings.warn("{} encountered in parmap {}th arg {}".format( x, i, X[i])) return ordered_res
66a498966979ca00c9a7eedfc1113a07b9076245
3,650,320
def is_char_token(c: str) -> bool: """Return true for single character tokens.""" return c in ["+", "-", "*", "/", "(", ")"]
3d5691c8c1b9a592987cdba6dd4809cf2c410ee8
3,650,321
import numpy def _float_arr_to_int_arr(float_arr): """Try to cast array to int64. Return original array if data is not representable.""" int_arr = float_arr.astype(numpy.int64) if numpy.any(int_arr != float_arr): # we either have a float that is too large or NaN return float_arr else: return int_arr
73643757b84ec28ed721608a2176b292d6e90837
3,650,322
def latest(scores: Scores) -> int: """The last added score.""" return scores[-1]
393c1d9a4b1852318d622a58803fff3286db98af
3,650,323
def get_dp_2m(wrfin, timeidx=0, method="cat", squeeze=True, cache=None, meta=True, _key=None, units="degC"): """Return the 2m dewpoint temperature. This functions extracts the necessary variables from the NetCDF file object in order to perform the calculation. Args: wrfin (:class:`netCDF4.Dataset`, :class:`Nio.NioFile`, or an \ iterable): WRF-ARW NetCDF data as a :class:`netCDF4.Dataset`, :class:`Nio.NioFile` or an iterable sequence of the aforementioned types. timeidx (:obj:`int` or :data:`wrf.ALL_TIMES`, optional): The desired time index. This value can be a positive integer, negative integer, or :data:`wrf.ALL_TIMES` (an alias for None) to return all times in the file or sequence. The default is 0. method (:obj:`str`, optional): The aggregation method to use for sequences. Must be either 'cat' or 'join'. 'cat' combines the data along the Time dimension. 'join' creates a new dimension for the file index. The default is 'cat'. squeeze (:obj:`bool`, optional): Set to False to prevent dimensions with a size of 1 from being automatically removed from the shape of the output. Default is True. cache (:obj:`dict`, optional): A dictionary of (varname, ndarray) that can be used to supply pre-extracted NetCDF variables to the computational routines. It is primarily used for internal purposes, but can also be used to improve performance by eliminating the need to repeatedly extract the same variables used in multiple diagnostics calculations, particularly when using large sequences of files. Default is None. meta (:obj:`bool`, optional): Set to False to disable metadata and return :class:`numpy.ndarray` instead of :class:`xarray.DataArray`. Default is True. _key (:obj:`int`, optional): A caching key. This is used for internal purposes only. Default is None. units (:obj:`str`): The desired units. Refer to the :meth:`getvar` product table for a list of available units for 'td2'. Default is 'degC'. Returns: :class:`xarray.DataArray` or :class:`numpy.ndarray`: The 2m dewpoint temperature. If xarray is enabled and the *meta* parameter is True, then the result will be a :class:`xarray.DataArray` object. Otherwise, the result will be a :class:`numpy.ndarray` object with no metadata. """ varnames=("PSFC", "Q2") ncvars = extract_vars(wrfin, timeidx, varnames, method, squeeze, cache, meta=False, _key=_key) # Algorithm requires hPa psfc = .01*(ncvars["PSFC"]) # Copy needed for the mmap nonsense of scipy.io.netcdf, which seems to # break with every release q2 = ncvars["Q2"].copy() q2[q2 < 0] = 0 td = _td(psfc, q2) return td
e16a5a3951312254eb852a5e03987aab32a91373
3,650,324
def fit_uncertainty(points, lower_wave, upper_wave, log_center_wave, filter_size): """Performs fitting many times to get an estimate of the uncertainty """ mock_points = [] for i in range(1, 100): # First, fit the points coeff = np.polyfit(np.log10(points['rest_wavelength']), np.random.normal(points['f_lambda'], points['err_f_lambda']), deg=2) # , w=(1/points['err_f_lambda']) # Get the polynomial fit_func = np.poly1d(coeff) # x-range over which we fit fit_wavelengths = np.arange( np.log10(lower_wave), np.log10(upper_wave), 0.001) # Values of the points we fit fit_points = fit_func(fit_wavelengths) # Indexes of the values that lie in the mock filter fit_idx = np.logical_and(fit_wavelengths > (log_center_wave - filter_size), fit_wavelengths < (log_center_wave + filter_size)) # Average the values in the mock filter to get the mock point mock_sed_point = np.mean(fit_points[fit_idx]) mock_points.append(mock_sed_point) # PERCENTILE ERROR HERE? mock_sed_point, l_err, u_err = np.percentile(mock_points, [50, 15.7, 84.3]) return mock_sed_point, u_err - mock_sed_point, mock_sed_point - l_err
cca5193e55d7aeef710a08fb16df8c896bbeef90
3,650,325
def from_dateutil_rruleset(rruleset): """ Convert a `dateutil.rrule.rruleset` instance to a `Recurrence` instance. :Returns: A `Recurrence` instance. """ rrules = [from_dateutil_rrule(rrule) for rrule in rruleset._rrule] exrules = [from_dateutil_rrule(exrule) for exrule in rruleset._exrule] rdates = rruleset._rdate exdates = rruleset._exdate dts = [r._dtstart for r in rruleset._rrule] + rruleset._rdate if len(dts) > 0: dts.sort() dtstart = dts[0] else: dtstart = None return Recurrence(dtstart, rrules, exrules, rdates, exdates)
cd5ab771eebbf6f68ce70a8d100ad071561541de
3,650,326
import re def error_038_italic_tag(text): """Fix the error and return (new_text, replacements_count) tuple.""" backup = text (text, count) = re.subn(r"<(i|em)>([^\n<>]+)</\1>", "''\\2''", text, flags=re.I) if re.search(r"</?(?:i|em)>", text, flags=re.I): return (backup, 0) else: return (text, count)
b0c2b571ade01cd483a3ffdc6f5c2bbb873cd13c
3,650,327
def create_user(): """ Method that will create an user . Returns: user.id: The id of the created user Raises: If an error occurs it will be displayed in a error message. """ try: new_user = User(name=login_session['username'], email=login_session[ 'email'], picture=login_session['picture']) db_session.add(new_user) db_session.commit() user = db_session.query(User).filter_by(email=login_session['email']).one() return user.id except Exception as e: flash('An error has occurred: {}'.format(str(e)), 'error') return None
e5d555fb955523c6bff811efe308030de257e05a
3,650,328
import numpy def buildStartAndEndWigData(thisbam, LOG_EVERY_N=1000, logger=None): """parses a bam file for 3' and 5' ends and builds these into wig-track data Returns a dictionary of various gathered statistics.""" def formatToWig(wigdata): """ take in the read position data and output in wigTrack format""" this_wigTracks = {} for key in wigdata.keys(): track = wigTrack() track.wigtype = "fixedStep" track.chr = key track.start = 1 track.step = 1 track.position = numpy.arange(len(wigdata[key]))+track.start this_wigTracks[key] = track this_wigTracks[key].data = wigdata[key] this_wigData = wigData() this_wigData.tracks = this_wigTracks return(this_wigData) if type(thisbam) is str: thisbam = pysam.AlignmentFile(thisbam, "rb") all_wigdata={ "fwd":{ "five_prime":{}, "three_prime":{} }, "rev":{ "five_prime":{}, "three_prime":{} } } chromSizes = dict(zip(thisbam.references, thisbam.lengths)) for key in chromSizes.keys(): for strand in all_wigdata.keys(): for end in all_wigdata[strand].keys(): all_wigdata[strand][end][key] = numpy.zeros(chromSizes[key]) counter=0 nlogs=0 for read in thisbam.fetch(): if read.is_reverse: all_wigdata["rev"]["five_prime"][read.reference_name][read.reference_end-1]+=1 all_wigdata["rev"]["three_prime"][read.reference_name][read.reference_start]+=1 else: all_wigdata["fwd"]["five_prime"][read.reference_name][read.reference_start]+=1 all_wigdata["fwd"]["three_prime"][read.reference_name][read.reference_end-1]+=1 counter+=1 if (counter % LOG_EVERY_N)==0: msg = "processed {these} reads...".format(these=(nlogs*LOG_EVERY_N)) if logger is not None: logger.info(msg) else: print(msg) nlogs+=1 msg = "Processed {counted} reads...".format(counted=counter) if logger is not None: logger.info(msg) else: print(msg) msg = "Formatting wig tracks..." if logger is not None: logger.info(msg) else: print(msg) for strand in all_wigdata.keys(): for end in all_wigdata[strand].keys(): all_wigdata[strand][end] = formatToWig(all_wigdata[strand][end]) return(all_wigdata, chromSizes)
f97a2b2c54f1cf2f978a17ef2b74435153ec4369
3,650,329
from pathlib import Path from typing import List from typing import Optional def time_series_h5(timefile: Path, colnames: List[str]) -> Optional[DataFrame]: """Read temporal series HDF5 file. If :data:`colnames` is too long, it will be truncated. If it is too short, additional column names will be deduced from the content of the file. Args: timefile: path of the TimeSeries.h5 file. colnames: names of the variables expected in :data:`timefile` (may be modified). Returns: A :class:`pandas.DataFrame` containing the time series, organized by variables in columns and the time steps in rows. """ if not timefile.is_file(): return None with h5py.File(timefile, 'r') as h5f: dset = h5f['tseries'] _, ncols = dset.shape ncols -= 1 # first is istep h5names = h5f['names'].asstr()[len(colnames) + 1:] _tidy_names(colnames, ncols, h5names) data = dset[()] pdf = pd.DataFrame(data[:, 1:], index=np.int_(data[:, 0]), columns=colnames) # remove duplicated lines in case of restart return pdf.loc[~pdf.index.duplicated(keep='last')]
e28194bcfead5b188ea947efe51fc2bac052bea9
3,650,330
def decode_jwt(token): """decodes a token and returns ID associated (subject) if valid""" try: payload = jwt.decode(token.encode(), current_app.config['SECRET_KEY'], algorithms=['HS256']) return {"isError": False, "payload": payload["sub"]} except jwt.ExpiredSignatureError as e: current_app.logger.error("Token expired.") raise ExpiredTokenError() except jwt.InvalidTokenError as e: current_app.logger.error("Invalid token.") raise InvalidTokenError()
15938fc40d2fb5b60c4ef5ccb3d6f3211fa5952f
3,650,331
def format_point(point: Point) -> str: """Return a str representing a Point object. Args: point: Point obj to represent. Returns: A string representing the Point with ° for grades, ' for minutes and " for seconds. Latitude is written before Longitude. Example Output: 30°21'12", 10°21'22" """ lat = to_sexagesimal(point.latitude) long = to_sexagesimal(point.longitude) return f'[{lat.deg}°{lat.min}\'{lat.sec}\", {long.deg}°{long.min}\'{long.sec}\"]'
435a13d7198e6da99306c58d35249b666a03571c
3,650,332
def families_horizontal_correctors(): """.""" return ['CH']
a3f8de3e0d44ea72d2fb98733050b7a2d598c142
3,650,333
import requests def variable_select_source_data_proxy(request): """ @summary: 获取下拉框源数据的通用接口 @param request: @return: """ url = request.GET.get('url') try: response = requests.get( url=url, verify=False ) except Exception as e: logger.exception('variable select get data from url[url={url}] raise error: {error}'.format(url=url, error=e)) text = _('请求数据异常: {error}').format(error=e) data = [{'text': text, 'value': ''}] return JsonResponse(data, safe=False) try: data = response.json() except Exception: try: content = response.content.decode(response.encoding) logger.exception('variable select get data from url[url={url}] is not a valid JSON: {data}'.format( url=url, data=content[:500]) ) except Exception: logger.exception('variable select get data from url[url={url}] data is not a valid JSON'.format(url=url)) text = _('返回数据格式错误,不是合法 JSON 格式') data = [{'text': text, 'value': ''}] return JsonResponse(data, safe=False)
c8d131d6c7d0e766e0a4dacd1b0086090ee02c4f
3,650,334
async def select_guild_lfg_events(guild_id: int) -> list[asyncpg.Record]: """Gets the lfg messages for a specific guild ordered by the youngest creation date""" select_sql = f""" SELECT id, message_id, creation_time, voice_channel_id FROM lfgmessages WHERE guild_id = $1 ORDER BY creation_time ASC;""" async with (await get_connection_pool()).acquire(timeout=timeout) as connection: return await connection.fetch(select_sql, guild_id)
3a1b98191b75b4ec0bbdb5942a7b5b2d8c8dca48
3,650,335
def ValueToString(descriptor, field_desc, value): """Renders a field value as a PHP literal. Args: descriptor: The descriptor module from the protobuf package, e.g. google.protobuf.descriptor. field_desc: The type descriptor for the field value to be rendered. value: The value of the field to be rendered. Returns: A PHP literal for the provided value. """ if field_desc.label == descriptor.FieldDescriptor.LABEL_REPEATED: if value: return '[%s]' % ', '.join([NonRepeatedValueToString(descriptor, field_desc, s) for s in value]) return '[]' return NonRepeatedValueToString(descriptor, field_desc, value)
e40815ab6e3b55e1a7cb026c33a9c9324da900b4
3,650,336
def get_checkpoints(run_dir, from_global_step=None, last_only=False): """Return all available checkpoints. Args: run_dir: Directory where the checkpoints are located. from_global_step (int): Only return checkpoints after this global step. The comparison is *strict*. If ``None``, returns all available checkpoints. Returns: List of dicts (with keys ``global_step``, ``file``) with all the checkpoints found. Raises: ValueError: If there are no checkpoints in ``run_dir``. """ # The latest checkpoint file should be the last item of # `all_model_checkpoint_paths`, according to the CheckpointState protobuf # definition. # TODO: Must check if the checkpoints are complete somehow. ckpt = tf.train.get_checkpoint_state(run_dir) if not ckpt or not ckpt.all_model_checkpoint_paths: raise ValueError('Could not find checkpoint in {}.'.format(run_dir)) # TODO: Any other way to get the global_step? (Same as in `checkpoints`.) checkpoints = sorted([ {'global_step': int(path.split('-')[-1]), 'file': path} for path in ckpt.all_model_checkpoint_paths ], key=lambda c: c['global_step']) if last_only: checkpoints = checkpoints[-1:] tf.logging.info( 'Using last checkpoint in run_dir, global_step = {}'.format( checkpoints[0]['global_step'] ) ) elif from_global_step is not None: checkpoints = [ c for c in checkpoints if c['global_step'] > from_global_step ] tf.logging.info( 'Found %s checkpoints in run_dir with global_step > %s', len(checkpoints), from_global_step, ) else: tf.logging.info( 'Found {} checkpoints in run_dir'.format(len(checkpoints)) ) return checkpoints
c40a89049b11bda2688cb195956db3e50bc44c06
3,650,337
import tempfile import sys def write_env_file(env_dict): """ Write the env_file information to a temporary file If there is any error, return None; otherwise return the temp file """ try: temp_file = tempfile.NamedTemporaryFile(mode='w') for key in env_dict.keys(): val = env_dict[key] if val is None or val=='': continue temp_file.write('%s=%s\n' % (key, env_dict[key])) temp_file.flush() return temp_file except KeyboardInterrupt: # If Control-C etc, allow calling function to cleanup before halting the script close_ignore_exception(temp_file) return None except Exception as e: sys.stderr.write("Exception %s\n" % e) close_ignore_exception(temp_file) return None return None
c53ee69cc12fafc7504f8adbbfbef40626f18427
3,650,338
def __load_txt_resource__(path): """ Loads a txt file template :param path: :return: """ txt_file = open(path, "r") return txt_file
9e3632098c297d1f6407559a86f0d8dc7b68ea75
3,650,339
def parse_cpu_spec(spec): """Parse a CPU set specification. :param spec: cpu set string eg "1-4,^3,6" Each element in the list is either a single CPU number, a range of CPU numbers, or a caret followed by a CPU number to be excluded from a previous range. :returns: a set of CPU indexes """ cpuset_ids = set() cpuset_reject_ids = set() for rule in spec.split(','): rule = rule.strip() # Handle multi ',' if len(rule) < 1: continue # Note the count limit in the .split() call range_parts = rule.split('-', 1) if len(range_parts) > 1: # So, this was a range; start by converting the parts to ints try: start, end = [int(p.strip()) for p in range_parts] except ValueError: raise exception.Invalid(_("Invalid range expression %r") % rule) # Make sure it's a valid range if start > end: raise exception.Invalid(_("Invalid range expression %r") % rule) # Add available CPU ids to set cpuset_ids |= set(range(start, end + 1)) elif rule[0] == '^': # Not a range, the rule is an exclusion rule; convert to int try: cpuset_reject_ids.add(int(rule[1:].strip())) except ValueError: raise exception.Invalid(_("Invalid exclusion " "expression %r") % rule) else: # OK, a single CPU to include; convert to int try: cpuset_ids.add(int(rule)) except ValueError: raise exception.Invalid(_("Invalid inclusion " "expression %r") % rule) # Use sets to handle the exclusion rules for us cpuset_ids -= cpuset_reject_ids return cpuset_ids
fa323a2fc5c27a6645f0abfb3b4878f6ae6390ee
3,650,340
import typing def distance_fit_from_transits() -> typing.List[float]: """ This uses the observers position from full transits and then the runway positions from all the transit lines fitted to a """ ((x_mean, x_std), (y_mean, y_std)) = observer_position_mean_std_from_full_transits() transits = transit_x_axis_distances(x_mean, y_mean) times = [v.time for v in transits] dists = [v.distance for v in transits] popt, pcov = curve_fit( video_utils.polynomial_3, times, dists, ) return popt
57b201b1328528191b4926a66325ca026855f09a
3,650,341
import torch def collate_fn_synthesize(batch): """ Create batch Args : batch(tuple) : List of tuples / (x, c) x : list of (T,) c : list of (T, D) Returns : Tuple of batch / Network inputs x (B, C, T), Network targets (B, T, 1) """ local_conditioning = len(batch[0]) >= 2 if local_conditioning: new_batch = [] for idx in range(len(batch)): x, c = batch[idx] if upsample_conditional_features: assert len(x) % len(c) == 0 and len(x) // len(c) == hop_length new_batch.append((x, c)) batch = new_batch else: pass input_lengths = [len(x[0]) for x in batch] max_input_len = max(input_lengths) # x_batch : [B, T, 1] x_batch = np.array([_pad_2d(x[0].reshape(-1, 1), max_input_len) for x in batch], dtype=np.float32) assert len(x_batch.shape) == 3 y_batch = np.array([_pad(x[0], max_input_len) for x in batch], dtype=np.float32) assert len(y_batch.shape) == 2 if local_conditioning: max_len = max([len(x[1]) for x in batch]) c_batch = np.array([_pad_2d(x[1], max_len) for x in batch], dtype=np.float32) assert len(c_batch.shape) == 3 # (B x C x T') c_batch = torch.tensor(c_batch).transpose(1, 2).contiguous() else: c_batch = None # Convert to channel first i.e., (B, C, T) / C = 1 x_batch = torch.tensor(x_batch).transpose(1, 2).contiguous() # Add extra axis i.e., (B, T, 1) y_batch = torch.tensor(y_batch).unsqueeze(-1).contiguous() input_lengths = torch.tensor(input_lengths) return x_batch, y_batch, c_batch, input_lengths
b784a45eb753d5d84ae3bf18fd4e7a09e891753d
3,650,342
def max_(context, mapping, args, **kwargs): """Return the max of an iterable""" if len(args) != 1: # i18n: "max" is a keyword raise error.ParseError(_("max expects one argument")) iterable = evalwrapped(context, mapping, args[0]) try: return iterable.getmax(context, mapping) except error.ParseError as err: # i18n: "max" is a keyword hint = _("max first argument should be an iterable") raise error.ParseError(bytes(err), hint=hint)
068f77031fb83dc9d88446863e39f38c14a7478d
3,650,343
from typing import Optional from typing import Dict def dict_to_duration(time_dict: Optional[Dict[str, int]]) -> Duration: """Convert a QoS duration profile from YAML into an rclpy Duration.""" if time_dict: try: return Duration(seconds=time_dict['sec'], nanoseconds=time_dict['nsec']) except KeyError: raise ValueError( 'Time overrides must include both seconds (sec) and nanoseconds (nsec).') else: return Duration()
7b20ed1ecbe496f55426562e791e591d8c5104e5
3,650,344
def gen_ex_tracking_df(subj_dir): """Generate subject tracking error data frames from time series CSVs. This method generates tracking error (Jaccard distance, CSA, T, AR) data frames from raw time series CSV data for a single subject. Args: subj_dir (str): path to subject data directory, including final '/' Returns: pandas.DataFrame mean errors (Jaccard distance, CSA, T, AR) pandas.DataFrame standard deviation errors (Jaccard distance, CSA, T, AR) """ df_iou = gen_jd_vals(subj_dir) df_csa = gen_def_err_vals(subj_dir, 'CSA') df_t = gen_def_err_vals(subj_dir, 'T') df_tr = gen_def_err_vals(subj_dir, 'AR') df_iou_mean = df_iou.mean().to_frame() df_csa_mean = df_csa.mean().to_frame() df_t_mean = df_t.mean().to_frame() df_tr_mean = df_tr.mean().to_frame() df_means = df_iou_mean.copy() df_means.rename(columns={0: 'Jaccard Distance'}, inplace=True) df_means['CSA'] = df_csa_mean[0] df_means['T'] = df_t_mean[0] df_means['AR'] = df_tr_mean[0] df_iou_std = df_iou.std().to_frame() df_csa_std = df_csa.std().to_frame() df_t_std = df_t.std().to_frame() df_tr_std = df_tr.std().to_frame() df_stds = df_iou_std.copy() df_stds.rename(columns={0: 'Jaccard Distance'}, inplace=True) df_stds['CSA'] = df_csa_std[0] df_stds['T'] = df_t_std[0] df_stds['AR'] = df_tr_std[0] return df_means, df_stds
259f2533bf8a0d9a03c250fc937c4a99903c8994
3,650,345
def mse(y_true: np.ndarray, y_pred: np.ndarray) -> float: """Compute the MSE (Mean Squared Error).""" return sklearn.metrics.mean_squared_error(y_true, y_pred)
f9c669b04bc6a44bcd983c79dec5d630a6acbd09
3,650,346
import torch def policy_improvement(env, V, gamma): """ Obtain an improved policy based on the values @param env: OpenAI Gym environment @param V: policy values @param gamma: discount factor @return: the policy """ n_state = env.observation_space.n n_action = env.action_space.n policy = torch.zeros(n_state) for state in range(n_state): v_actions = torch.zeros(n_action) for action in range(n_action): for trans_prob, new_state, reward, _ in env.env.P[state][action]: v_actions[action] += trans_prob * (reward + gamma * V[new_state]) policy[state] = torch.argmax(v_actions) return policy
10587e5d4fb08158eff06a4305de6c02fc2d878c
3,650,347
def loudness_zwst_freq(spectrum, freqs, field_type="free"): """Zwicker-loudness calculation for stationary signals Calculates the acoustic loudness according to Zwicker method for stationary signals. Normatice reference: ISO 532:1975 (method B) DIN 45631:1991 ISO 532-1:2017 (method 1) The code is based on BASIC program published in "Program for calculating loudness according to DIN 45631 (ISO 532B)", E.Zwicker and H.Fastl, J.A.S.J (E) 12, 1 (1991). Note that due to normative continuity, as defined in the preceeding standards, the method is in accordance with ISO 226:1987 equal loudness contours (instead of ISO 226:2003) Parameters ---------- spectrum : numpy.array A RMS frequency spectrum, size (Nfreq, Ntime) freqs : list List of the corresponding frequencies, size (Nfreq,) or (Nfreq, Ntime) field_type : str Type of soundfield corresponding to spec_third ("free" by default or "diffuse") Outputs ------- N : float or numpy.array Calculated loudness [sones], size (Ntime,). N_specific : numpy.ndarray Specific loudness [sones/bark], size (Nbark, Ntime). bark_axis : numpy.array Frequency axis in bark, size (Nbark,). """ if len(spectrum) != len(freqs): raise ValueError('Input spectrum and frequency axis must have the same shape') # Compute third octave band spectrum spec_third, _ = noct_synthesis(spectrum, freqs, fmin=24, fmax=12600) # Compute dB values spec_third = amp2db(spec_third, ref=2e-5) # Compute main loudness Nm = _main_loudness(spec_third, field_type) # # Computation of specific loudness pattern and integration of overall # loudness by attaching slopes towards higher frequencies N, N_specific = _calc_slopes(Nm) # Define Bark axis bark_axis = np.linspace(0.1, 24, int(24 / 0.1)) return N, N_specific, bark_axis
391e33784e355675b68b3e95ade084cbcb86d5b5
3,650,348
import sys def func(back=2): """ Returns the function name """ return "{}".format(sys._getframe(back).f_code.co_name)
97332c32195418e4bf6dd6427adabbc5c4360580
3,650,349
def normU(u): """ A function to scale Uranium map. We don't know what this function should be """ return u
e4bd83a26c502e9129d18091e807e17ab3294fd1
3,650,350
def exact_riemann_solution(q_l, q_r, gamma=1.4, phase_plane_curves=False): """Return the exact solution to the Riemann problem with initial states q_l, q_r. The solution is given in terms of a list of states, a list of speeds (each of which may be a pair in case of a rarefaction fan), and a function reval(xi) that gives the solution at a point xi=x/t. The input and output vectors are the conserved quantities. If phase_plane_curves==True, then the appropriate Hugoniot Locus and/or integral curve is returned for the 1- and 3-waves. """ rho_l, u_l, p_l = conservative_to_primitive(*q_l) rho_r, u_r, p_r = conservative_to_primitive(*q_r) # Compute left and right state sound speeds c_l = sound_speed(rho_l, p_l, gamma) c_r = sound_speed(rho_r, p_r, gamma) ws = np.zeros(5) wave_types = ['', 'contact', ''] if rho_l == 0: # 3-rarefaction connecting right state to vacuum p = 0. rho_l_star = 0. rho_r_star = 0. u_vacuum_r = integral_curve_3(0., rho_r, u_r, p_r, gamma) u = u_vacuum_r ws[0] = 0. ws[1] = 0. ws[2] = 0. ws[3] = u_vacuum_r ws[4] = u_r + c_r wave_types = ['contact', 'contact', 'raref'] elif rho_r == 0: # 1-rarefaction connecting left state to vacuum p = 0 rho_l_star = 0. rho_r_star = 0. u_vacuum_l = integral_curve_1(0., rho_l, u_l, p_l, gamma) u = u_vacuum_l ws[0] = u_l - c_l ws[1] = u_vacuum_l ws[2] = 0. ws[3] = 0. ws[4] = 0. wave_types = ['raref', 'contact', 'contact'] elif u_l - u_r + 2*(c_l+c_r)/(gamma-1.) < 0: # Middle states are vacuum p = 0. rho_l_star = 0. rho_r_star = 0. u_vacuum_l = integral_curve_1(0., rho_l, u_l, p_l, gamma) u_vacuum_r = integral_curve_3(0., rho_r, u_r, p_r, gamma) u = 0.5*(u_vacuum_l + u_vacuum_r) ws[0] = u_l - c_l ws[1] = u_vacuum_l ws[2] = u ws[3] = u_vacuum_r ws[4] = u_r + c_r wave_types = ['raref', 'contact', 'raref'] else: # Check whether the 1-wave is a shock or rarefaction def phi_l(p): if p >= p_l: return hugoniot_locus_1(p, rho_l, u_l, p_l, gamma) else: return integral_curve_1(p, rho_l, u_l, p_l, gamma) # Check whether the 1-wave is a shock or rarefaction def phi_r(p): if p >= p_r: return hugoniot_locus_3(p, rho_r, u_r, p_r, gamma) else: return integral_curve_3(p, rho_r, u_r, p_r, gamma) phi = lambda p: phi_l(p)-phi_r(p) exp = (1.-gamma)/(2.*gamma) guess = ((c_l + c_r - (gamma-1.)*(u_r-u_l)/2.)/(c_l*p_l**exp+c_r*p_r**exp))**(-1./exp) # Compute middle state p, u by finding curve intersection p, info, ier, msg = fsolve(phi, guess, full_output=True, xtol=1.e-14) # For strong rarefactions, sometimes fsolve needs help if ier != 1: p, info, ier, msg = fsolve(phi, guess, full_output=True, factor=0.1, xtol=1.e-10) # This should not happen: if ier != 1: print('Warning: fsolve did not converge.') print(msg) u = phi_l(p) ws[2] = u # Find shock and rarefaction speeds if p > p_l: wave_types[0] = 'shock' rho_l_star = rho_l*(1+beta(gamma)*p/p_l)/(p/p_l+beta(gamma)) ws[0] = (rho_l*u_l - rho_l_star*u)/(rho_l - rho_l_star) ws[1] = ws[0] else: wave_types[0] = 'raref' rho_l_star = (p/p_l)**(1./gamma) * rho_l c_l_star = sound_speed(rho_l_star, p, gamma) ws[0] = u_l - c_l ws[1] = u - c_l_star if p > p_r: wave_types[2] = 'shock' rho_r_star = rho_r*(1+beta(gamma)*p/p_r)/(p/p_r+beta(gamma)) ws[4] = (rho_r*u_r - rho_r_star*u)/(rho_r - rho_r_star) ws[3] = ws[4] else: wave_types[2] = 'raref' rho_r_star = (p/p_r)**(1./gamma) * rho_r c_r_star = sound_speed(rho_r_star, p, gamma) ws[3] = u + c_r_star ws[4] = u_r + c_r # Find solution inside rarefaction fans (in primitive variables) def raref1(xi): u1 = ((gamma-1.)*u_l + 2*(c_l + xi))/(gamma+1.) rho1 = (rho_l**gamma*(u1-xi)**2/pospart(gamma*p_l))**(1./(gamma-1.)) p1 = p_l*(rho1/pospart(rho_l))**gamma return rho1, u1, p1 def raref3(xi): u3 = ((gamma-1.)*u_r - 2*(c_r - xi))/(gamma+1.) rho3 = (rho_r**gamma*(xi-u3)**2/pospart(gamma*p_r))**(1./(gamma-1.)) p3 = p_r*(rho3/pospart(rho_r))**gamma return rho3, u3, p3 q_l_star = np.squeeze(np.array(primitive_to_conservative(rho_l_star,u,p))) q_r_star = np.squeeze(np.array(primitive_to_conservative(rho_r_star,u,p))) states = np.column_stack([q_l,q_l_star,q_r_star,q_r]) speeds = [[], ws[2], []] if wave_types[0] in ['shock','contact']: speeds[0] = ws[0] else: speeds[0] = (ws[0],ws[1]) if wave_types[2] in ['shock','contact']: speeds[2] = ws[3] else: speeds[2] = (ws[3],ws[4]) def reval(xi): r"""Returns the Riemann solution in primitive variables for any value of xi = x/t. """ rar1 = raref1(xi) rar3 = raref3(xi) rho_out = (xi<=ws[0] )*rho_l \ + (xi>ws[0])*(xi<=ws[1])*rar1[0] \ + (xi>ws[1])*(xi<=ws[2] )*rho_l_star \ + (xi>ws[2]) *(xi<=ws[3])*rho_r_star \ + (xi>ws[3])*(xi<=ws[4])*rar3[0] \ + (xi>ws[4] )*rho_r u_out = (xi<=ws[0] )*u_l \ + (xi>ws[0])*(xi<=ws[1])*rar1[1] \ + (xi>ws[1])*(xi<=ws[2] )*u \ + (xi>ws[2] )*(xi<=ws[3])*u \ + (xi>ws[3])*(xi<=ws[4])*rar3[1] \ + (xi>ws[4] )*u_r p_out = (xi<=ws[0] )*p_l \ + (xi>ws[0])*(xi<=ws[1])*rar1[2] \ + (xi>ws[1])*(xi<=ws[2] )*p \ + (xi>ws[2] )*(xi<=ws[3])*p \ + (xi>ws[3])*(xi<=ws[4])*rar3[2] \ + (xi>ws[4] )*p_r return primitive_to_conservative(rho_out,u_out,p_out) if phase_plane_curves: if wave_types[0] == 'raref': phi1 = lambda p: integral_curve_1(p, rho_l, u_l, p_l, gamma) elif wave_types[0] == 'shock': phi1 = lambda p: hugoniot_locus_1(p, rho_l, u_l, p_l, gamma) else: phi1 = lambda p: p if wave_types[2] == 'raref': phi3 = lambda p: integral_curve_3(p, rho_r, u_r, p_r, gamma) elif wave_types[2] == 'shock': phi3 = lambda p: hugoniot_locus_3(p, rho_r, u_r, p_r, gamma) else: phi3 = lambda p: p return states, speeds, reval, wave_types, (p, phi1, phi3) else: return states, speeds, reval, wave_types
a5baa391d88a56026cc02a1a1fa841325e712ea0
3,650,351
def show_edge_scatter(N, s1, s2, t1, t2, d, dmax=None, fig_ax=None): """Draw the cell-edge contour and the displacement vectors. The contour is drawn using a scatter plot to color-code the displacements.""" if fig_ax is None: fig, ax = plt.subplots() else: fig, ax = fig_ax plt.figure(fig.number) # Evaluate splines at window locations and on fine-resolution grid c1 = splineutils.splevper(t1, s1) c2 = splineutils.splevper(t2, s2) c1p = splev(np.linspace(0, 1, N + 1), s1) c2p = splev(np.linspace(0, 1, N + 1), s2) # Interpolate displacements # d = 0.5 + 0.5 * d / np.max(np.abs(d)) if len(d) < N + 1: d = np.interp(np.linspace(0, 1, N + 1), t1, d, period=1) if dmax is None: dmax = np.max(np.abs(d)) if dmax == 0: dmax = 1 # Plot results # matplotlib.use('PDF') lw = 1 s = 1 # Scaling factor for the vectors ax.plot(c1p[0], c1p[1], "b", zorder=50, lw=lw) ax.plot(c2p[0], c2p[1], "r", zorder=100, lw=lw) # plt.scatter(c1p[0], c1p[1], c=d, cmap='bwr', vmin=-dmax, vmax=dmax, zorder=50, s1=lw) # # plt.colorbar(label='Displacement [pixels]') for j in range(len(t2)): ax.arrow( c1[0][j], c1[1][j], s * (c2[0][j] - c1[0][j]), s * (c2[1][j] - c1[1][j]), color="y", zorder=200, lw=lw, ) # plt.arrow(c1[0][j], c1[1][j], s1 * u[0][j], s1 * u[1][j], color='y', zorder=200, lw=lw) # Show normal to curve ax.arrow( c1[0][0], c1[1][0], s * (c2[0][0] - c1[0][0]), s * (c2[1][0] - c1[1][0]), color="c", zorder=400, lw=lw, ) fig.tight_layout() return fig, ax
d0575ec425828e895f24c3ff8cbf9f472ba62947
3,650,352
def get_A2_const(alpha1, alpha2, lam_c, A1): """Function to compute the constant A2. Args: alpha1 (float): The alpha1 parameter of the WHSCM. alpha2 (float): The alpha2 parameter of the WHSCM. lam_c (float): The switching point between the two exponents of the double power-laws in the WHSCM. A1 (float): The A1 constant of the WHSCM. Returns: A2 (float): The A2 constant of the WHSCM. """ A2 = A1 * (lam_c**(alpha2 - alpha1)) return A2
16fe12e9ef9d72cfe7250cf840e222512409d377
3,650,353
import argparse def args_parser(): """ Parese command line arguments Args: opt_args: Optional args for testing the function. By default sys.argv is used Returns: args: Dictionary of args. Raises: ValueError: Raises an exception if some arg values are invalid. """ # Construct the parser parser = argparse.ArgumentParser(description='NConv') # Mode selection parser.add_argument('--neighbor', type=int, default=2, help='the neighbors will be considered') parser.add_argument('--machine', type=str, default="local", help='choose the training machin, local or remote') parser.add_argument('--num-channels', type=int, help='choose the number of channels in the model') parser.add_argument('--output_type', type=str, default="normal", help='choose the meaning of output tensor, rgb or normal') parser.add_argument('--args', '-a', type=str, default='', choices=['defaults', 'json'], help='How to read args? (json file or dataset defaults)') parser.add_argument('--exp', '--e', help='Experiment name') parser.add_argument('--workspace', '--ws', default='', type=str, help='Workspace name') parser.add_argument('--resume', default=None, type=str, metavar='PATH', help='Path to latest checkpoint (default: none)') ########### General Dataset arguments ########## parser.add_argument('--dataset-path', type=str, default='', help='Dataset path.') parser.add_argument('--batch_size', '-b', default=8, type=int, help='Mini-batch size (default: 8)') parser.add_argument('--train-on', default='full', type=str, help='The number of images to train on from the data.') parser.add_argument('--sharp_penalty', default=1.5, type=float, help='penalty of sharp normal prediction') ########### KITTI-Depth arguments ########### parser.add_argument('--raw-kitti-path', type=str, default='', help='Dataset path') parser.add_argument('--selval-ds', default='selval', type=str, choices=['selval, selval, test'], help='Which set to evaluate on? ' + ' | '.join(['selval, selval, test']) + ' (default: selval)') parser.add_argument('--norm-factor', default=256, type=float, help='Normalization factor for the input data (default: 256)') parser.add_argument('--train-disp', default=False, type=bool, help='Train on disparity (1/depth) (default: False)') ########### Training arguments ########### parser.add_argument('--epochs', default=20, type=int, help='Total number of epochs to run (default: 30)') parser.add_argument('--optimizer', '-o', default='adam', choices=optimizers_list, help='Optimizer method: ' + ' | '.join(optimizers_list) + ' (default: sgd)') parser.add_argument('--lr', '--learning-rate', default=0.001, type=float, metavar='LR', help='Initial learning rate (default 0.001)') parser.add_argument('--momentum', default=0.9, type=float, help='SGD momentum.') parser.add_argument('--lr-scheduler', default='step', choices=lr_scheduler_list, help='LR scheduler method: ' + ' | '.join(lr_scheduler_list) + ' (default: step)') parser.add_argument('--lr-decay-step', default=5, type=int, help='Learning rate decay step (default: 20)') parser.add_argument('--lr-decay-factor', default=0.1, type=float, help='Learning rate decay factor(default: 0.1)') parser.add_argument('--weight-decay', '--wd', default=0, type=float, help='Weight decay (default: 0)') parser.add_argument('--loss', '-l', default='l1', choices=losses_list, help='Loss function: ' + ' | '.join(losses_list) + ' (default: l1)') parser.add_argument('--penalty', '-pena', default=1.2, help='penalty of output value which out of range [0-255]') ########### Logging ########### parser.add_argument('--print-freq', default=10, type=int, help='Printing evaluation criterion frequency (default: 10)') parser.add_argument('--tb_log', default=False, type=bool, help='Log to Tensorboard (default: False)') parser.add_argument('--tb_freq', default=1000, type=int, help='Logging Frequence to Tensorboard (default: 1000)') parser.add_argument('--save-selval-imgs', default=False, type=bool, help='A flag for saving validation images (default: False)') parser.add_argument('--eval_uncert', default=False, type=bool, help='Evaluate uncertainty or not') parser.add_argument('--angle_loss', default=False, type=bool, help='Calculate angle loss and plot') # Parse the arguments args = parser.parse_args() args = initialize_args(args) return args
10cfb19844e380d683bb7d50b6752e8d1b2a62eb
3,650,354
def _parse_seq_tf_example(example, uint8_features, shapes): """Parse tf.Example containing one or two episode steps.""" def to_feature(key, shape): if key in uint8_features: return tf.io.FixedLenSequenceFeature( shape=[], dtype=tf.string, allow_missing=True) else: return tf.io.FixedLenSequenceFeature( shape=shape, dtype=tf.float32, allow_missing=True) feature_map = {} for k, v in shapes.items(): feature_map[k] = to_feature(k, v) parsed = tf.io.parse_single_example(example, features=feature_map) observation = {} restructured = {} for k in parsed.keys(): if 'observation' not in k: restructured[k] = parsed[k] continue if k in uint8_features: observation[k.replace('observation/', '')] = tf.reshape( tf.io.decode_raw(parsed[k], out_type=tf.uint8), (-1,) + shapes[k]) else: observation[k.replace('observation/', '')] = parsed[k] restructured['observation'] = observation restructured['length'] = tf.shape(restructured['action'])[0] return restructured
5e0e4a6d3f26c28eb6e5dfe12e9295eb5b53979c
3,650,355
def unique_list(a_list, unique_func=None, replace=False): """Unique a list like object. - collection: list like object - unique_func: the filter functions to return a hashable sign for unique - replace: the following replace the above with the same sign Return the unique subcollection of collection. Example: data = [(1, 2), (2, 1), (2, 3), (1, 2)] unique_func = lambda x: tuple(sorted(x)) unique(data) -> [(1, 2), (2, 1), (2, 3)] unique(data, unique_func) -> [(1, 2), (2, 3)] unique(data, unique_func, replace=True) -> [(2, 1), (2, 3)] """ unique_func = unique_func or (lambda x: x) result = {} for item in a_list: hashable_sign = unique_func(item) if hashable_sign not in result or replace: result[hashable_sign] = item return list(result.values())
8d7957a8dffc18b82e8a45129ba3634c28dd0d52
3,650,356
def calculate_attitude_angle(eccentricity_ratio): """Calculates the attitude angle based on the eccentricity ratio. Parameters ---------- eccentricity_ratio: float The ratio between the journal displacement, called just eccentricity, and the radial clearance. Returns ------- float Attitude angle Examples -------- >>> from ross.fluid_flow.fluid_flow import fluid_flow_example >>> my_fluid_flow = fluid_flow_example() >>> calculate_attitude_angle(my_fluid_flow.eccentricity_ratio) # doctest: +ELLIPSIS 1.5... """ return np.arctan( (np.pi * (1 - eccentricity_ratio ** 2)**(1/2)) / (4 * eccentricity_ratio) )
24dcb463a0ebdcab8582309bf9ff44fdbfc44686
3,650,357
import torch import pickle def enc_obj2bytes(obj, max_size=4094): """ Encode Python objects to PyTorch byte tensors """ assert max_size <= MAX_SIZE_LIMIT byte_tensor = torch.zeros(max_size, dtype=torch.uint8) obj_enc = pickle.dumps(obj) obj_size = len(obj_enc) if obj_size > max_size: raise Exception( 'objects too large: object size {}, max size {}'.format( obj_size, max_size ) ) byte_tensor[0] = obj_size // 256 byte_tensor[1] = obj_size % 256 byte_tensor[2:2+obj_size] = torch.ByteTensor(list(obj_enc)) return byte_tensor
bca30d1a88db42f66bdd978386a1c4d24c0c790b
3,650,358
def featCompression (feats, deltas, deltas2): """ Returns augmented feature vectors for all cases. """ feats_total = np.zeros (78) for i in range (len (feats)): row_total = np.array ([]) feat_mean = np.mean (np.array (feats[i]), axis = 0) delt_mean = np.mean (np.array (deltas[i]), axis = 0) delt2_mean = np.mean (np.array (deltas2[i]), axis = 0) feat_std = np.std (np.array (feats[i]), axis = 0) delt_std = np.std (np.array (deltas[i]), axis = 0) delt2_std = np.std (np.array (deltas2[i]), axis = 0) row_total = np.hstack ((feat_mean, feat_std, delt_mean, delt_std, \ delt2_mean, delt2_std)) feats_total = np.vstack ((feats_total, row_total)) return feats_total[1:, :]
033b53fec9cf920daadb3ba5bef2fcce7cc11d21
3,650,359
def _array_indexing(array, key, key_dtype, axis): """Index an array or scipy.sparse consistently across NumPy version.""" if np_version < parse_version('1.12') or issparse(array): # Remove the check for NumPy when using >= 1.12 # check if we have an boolean array-likes to make the proper indexing if key_dtype == 'bool': key = np.asarray(key) if isinstance(key, tuple): key = list(key) return array[key] if axis == 0 else array[:, key]
b8c04647ad79ce8ffd973d2b13fe7231854822de
3,650,360
def get_stock_ledger_entries(previous_sle, operator=None, order="desc", limit=None, for_update=False, debug=False, check_serial_no=True): """get stock ledger entries filtered by specific posting datetime conditions""" conditions = " and timestamp(posting_date, posting_time) {0} timestamp(%(posting_date)s, %(posting_time)s)".format( operator) if previous_sle.get("warehouse"): conditions += " and warehouse = %(warehouse)s" elif previous_sle.get("warehouse_condition"): conditions += " and " + previous_sle.get("warehouse_condition") if check_serial_no and previous_sle.get("serial_no"): conditions += " and serial_no like '{}'".format( frappe.db.escape('%{0}%'.format(previous_sle.get("serial_no")))) if not previous_sle.get("posting_date"): previous_sle["posting_date"] = "1900-01-01" if not previous_sle.get("posting_time"): previous_sle["posting_time"] = "00:00" if operator in (">", "<=") and previous_sle.get("name"): conditions += " and name!=%(name)s" return frappe.db.sql("""select *, timestamp(posting_date, posting_time) as "timestamp" from `tabStock Ledger Entry` where item_code = %%(item_code)s and ifnull(is_cancelled, 'No')='No' %(conditions)s order by timestamp(posting_date, posting_time) %(order)s, creation %(order)s %(limit)s %(for_update)s""" % { "conditions": conditions, "limit": limit or "", "for_update": for_update and "for update" or "", "order": order }, previous_sle, as_dict=1, debug=debug)
14a3e7a9a0f207260a21ba4166b59d44c8ab15b9
3,650,361
import torch def test_binary(test_data, model, criterion, batch_size, device, generate_batch=None): """Calculate performance of a Pytorch binary classification model Parameters ---------- test_data : torch.utils.data.Dataset Pytorch dataset model: torch.nn.Module Pytorch Model criterion: function Loss function bacth_size : int Number of observations per batch device : str Name of the device used for the model collate_fn : function Function defining required pre-processing steps Returns ------- Float Loss score Float: Accuracy Score """ # Set model to evaluation mode model.eval() test_loss = 0 test_acc = 0 # Create data loader data = DataLoader(test_data, batch_size=batch_size, collate_fn=generate_batch) # Iterate through data by batch of observations for feature, target_class in data: # Load data to specified device feature, target_class = feature.to(device), target_class.to(device).to(torch.float32) # Set no update to gradients with torch.no_grad(): # Make predictions output = model(feature) # Calculate loss for given batch loss = criterion(output, target_class.unsqueeze(1)) # Calculate global loss test_loss += loss.item() # Calculate global accuracy test_acc += (output.argmax(1) == target_class).sum().item() return test_loss / len(test_data), test_acc / len(test_data)
9bc8fefffca3d484abbcac48836fde3ca7b5287a
3,650,362
def linear_imputer(y, missing_values=np.nan, copy=True): """ Replace missing values in y with values from a linear interpolation on their position in the array. Parameters ---------- y: list or `numpy.array` missing_values: number, string, np.nan or None, default=`np.nan` The placeholder for the missing values. All occurrences of `missing_values` will be imputed. copy : bool, default=True If True, a copy of X will be created. If False, imputation will be done in-place whenever possible. Returns ------- `numpy.array` : array with `missing_values` imputed """ x = np.arange(len(y)) if missing_values is np.nan: mask_missing = np.isnan(y) else: mask_missing = y == missing_values imputed_values = np.interp(x[mask_missing], x[~mask_missing], y[~mask_missing]) if copy: yy = np.copy(y) yy[mask_missing] = imputed_values return yy else: y[mask_missing] = imputed_values return y
2557e7647e8d7e0246bb15c57605b75bf3d4131b
3,650,363
def gap2d_cx(cx): """Accumulates complexity of gap2d into cx = (h, w, flops, params, acts).""" cx["h"] = 1 cx["w"] = 1 return cx
28f6ba5f166f0b21674dfd507871743243fb4737
3,650,364
import requests def test_is_not_healthy(requests_mock): """ Test is not healthy response """ metadata = Gen3Metadata("https://example.com") def _mock_request(url, **kwargs): assert url.endswith("/_status") mocked_response = MagicMock(requests.Response) mocked_response.status_code = 500 mocked_response.text = "Not Healthy" mocked_response.json.return_value = {} mocked_response.raise_for_status.side_effect = HTTPError("uh oh") return mocked_response requests_mock.side_effect = _mock_request response = metadata.is_healthy() assert not response
9b6fdb7b822ef83e0441bdafa1c87ea07ad901ad
3,650,365
def kernelTrans(X, A, kTup): """ 通过核函数将数据转换更高维的空间 Parameters: X - 数据矩阵 A - 单个数据的向量 kTup - 包含核函数信息的元组 Returns: K - 计算的核K """ m,n = np.shape(X) K = np.mat(np.zeros((m,1))) if kTup[0] == 'lin': K = X * A.T #线性核函数,只进行内积。 elif kTup[0] == 'rbf': #高斯核函数,根据高斯核函数公式进行计算 for j in range(m): deltaRow = X[j,:] - A K[j] = deltaRow*deltaRow.T K = np.exp(K/(-1*kTup[1]**2)) #计算高斯核K else: raise NameError('核函数无法识别') return K #返回计算的核K
da43ab6aeff623b32d3287ad07acdc1ef5ec4bc3
3,650,366
def getBusEquipmentData(bhnd,paraCode): """ Retrieves the handle of all equipment of a given type (paraCode) that is attached to bus []. Args : bhnd : [bus handle] nParaCode : code data (BR_nHandle,GE_nBusHnd...) Returns: [][] = [len(bhnd)] [len(all equipment)] Raises: OlrxAPIException """ # get data res = [] vt = paraCode//100 val1 = setValType(vt,0) for bhnd1 in bhnd: r2 = [] while ( OLXAPI_OK == OlxAPI.GetBusEquipment( bhnd1, c_int(paraCode), byref(val1) ) ) : if vt==VT_STRING: r2.append((val1.value).decode("UTF-8")) else: r2.append(val1.value) res.append(r2) return res
6e0e63846c7b934edbe9de078c7ad8561766e58d
3,650,367
from typing import List from typing import Counter import click def build_and_register( client: "prefect.Client", flows: "List[FlowLike]", project_id: str, labels: List[str] = None, force: bool = False, ) -> Counter: """Build and register all flows. Args: - client (prefect.Client): the prefect client to use - flows (List[FlowLike]): the flows to register - project_id (str): the project id in which to register the flows - labels (List[str], optional): Any extra labels to set on all flows - force (bool, optional): If false (default), an idempotency key will be used to avoid unnecessary register calls. Returns: - Counter: stats about the number of successful, failed, and skipped flows. """ # Finish preparing flows to ensure a stable hash later prepare_flows(flows, labels) # Group flows by storage instance. storage_to_flows = defaultdict(list) for flow in flows: storage = flow.storage if isinstance(flow, prefect.Flow) else None storage_to_flows[storage].append(flow) # Register each flow, building storage as needed. # Stats on success/fail/skip rates are kept for later display stats = Counter(registered=0, errored=0, skipped=0) for storage, flows in storage_to_flows.items(): # Build storage if needed if storage is not None: click.echo(f" Building `{type(storage).__name__}` storage...") try: storage.build() except Exception as exc: click.secho(" Error building storage:", fg="red") log_exception(exc, indent=6) red_error = click.style("Error", fg="red") for flow in flows: click.echo(f" Registering {flow.name!r}... {red_error}") stats["errored"] += 1 continue for flow in flows: click.echo(f" Registering {flow.name!r}...", nl=False) try: if isinstance(flow, box.Box): serialized_flow = flow else: serialized_flow = flow.serialize(build=False) flow_id, flow_version, is_new = register_serialized_flow( client=client, serialized_flow=serialized_flow, project_id=project_id, force=force, ) except Exception as exc: click.secho(" Error", fg="red") log_exception(exc, indent=4) stats["errored"] += 1 else: if is_new: click.secho(" Done", fg="green") click.echo(f" └── ID: {flow_id}") click.echo(f" └── Version: {flow_version}") stats["registered"] += 1 else: click.secho(" Skipped", fg="yellow") stats["skipped"] += 1 return stats
7e4634578b44b7b5a1743fa0cfab21c6c551930b
3,650,368
from typing import List import os def generate_path_to_bulk_roms( roms: List[models.BulkSystemROMS]) -> List[models.BulkSystemROMS]: """Creates the absolute path to where each rom should be downloaded""" for system in roms: for section in system.Sections: if not 'number' in section.Section: path: str = os.path.join(os.getcwd(), "ROMS", section.Section) section.Path = path else: path: str = os.path.join(os.getcwd(), "ROMS", system.System, '#') section.Path = path return roms
68c170aeef9af3d357a026229c9c5766260f70de
3,650,369
import sys import argparse def parse_args(args=sys.argv[1:]): """ Get the parsed arguments specified on this script. """ parser = argparse.ArgumentParser(description="") parser.add_argument( 'path_to_xml', action='store', type=str, help='Ful path to tei file.') parser.add_argument( 'omeka_id', action='store', type=str, help='omeka id') parser.add_argument( 'name', action='store', type=str, help='name') return parser.parse_args(args)
e934cfb5f0315fb0e834bef05fecaa67168485d4
3,650,370
def creer_element_xml(nom_elem,params): """ Créer un élément de la relation qui va donner un des attributs. Par exemple, pour ajouter le code FANTOIR pour une relation, il faut que le code XML soit <tag k='ref:FR:FANTOIR' v='9300500058T' />" Pour cela, il faut le nom de l'élément (ici tag) et un dictionnaire de paramètres nommé param qui associe chaque clé à une valeur (ici {'k':'ref:FR:FANTOIR', 'v'='9300500058T'} :param nom_elem: :type nom_elem: str :param params: :type params: dict :return: élément XML désiré :rtype: xml.etree.ElementTree.Element """ # Initialisation de l'objet XML elem = ET.Element(nom_elem) ajouter_atrributs_element_xml(elem, params) return elem
a4cd29b82531c7bc01864ae79de87643afeb8276
3,650,371
def get_display(): """Getter function for the display keys Returns: list: list of dictionary keys """ return data.keys()
dcc8957faf30db15282d2e67025cd6d5fd07e9dd
3,650,372
def calculate_class_probabilities(summaries, row) -> dict(): """ Calculate the probability of a value using the Gaussian Probability Density Function from inputs: summaries: prepared summaries of dataset row: a row in the dataset for predicting its label (a row of X_test) This function uses the statistics calculated from training data to calculate probabilities for the testing dataset (new data). Probabilities are calculated separately for each class. First, we calculate the probability that a new X vector from the testing dataset belongs to the first class. Then, we calculate the probabilities that it belongs to the second class, and so on for all the classes identified in the training dataset. The probability that a new X vector from the testing dataset belongs to a class is calculated as follows: P(class|data) = P(X|class) * P(class) Note we have simplified the Bayes theorem by removing the division as we do not strictly need a number between 0 and 1 to predict the class the new data belongs to as we will be simply taking the maximum result from the above equation for each class. It returns a dictionary where each key is the class label and the values are the probabibilities of that row belonging to each class on the dataset. """ # total number of training records calculated from the counts stored in the summary statistics # note that the count column has the same value for all rows, and hence picking up item [0] will suffice total_rows = sum([summaries[label]['count'][0] for label in summaries]) probabilities = dict() for class_value, class_summaries in summaries.items(): probabilities[class_value] = summaries[class_value]['count'][0]/float(total_rows) for i in range(len(class_summaries)-1): mean, stdev, _ = class_summaries.iloc[i] # probabilities are multiplied together as they accumulate. probabilities[class_value] *= calculate_probability(row[i], mean, stdev) # normalize probabilities so that they sum 1 max_prob = probabilities[max(probabilities, key=probabilities.get)] min_prob = probabilities[min(probabilities, key=probabilities.get)] for class_value, probability in probabilities.items(): if (max_val - min_val) > 0: probabilities[class_value] = (probability - min_val) / (max_val - min_val) else: probabilities[class_value] = float(0.0) sum_prob = sum(probabilities.values()) for class_value, probability in probabilities.items(): if sum_prob > 0: probabilities[class_value] = probability / sum_prob return probabilities
ffdff84e27fe5e76d66176d5d1c862f16b1ee494
3,650,373
import logging import os def discard_missing_files(df: pd.DataFrame, path_colname: str) -> pd.DataFrame: """Discard rows where the indicated file does not exist or has filesize 0. Log a warning with the number of rows discarded, if not zero. Args: df path_colname: Name of `df` column that specifies paths to check """ logging.info('Discarding missing files') nrows_before = len(df) file_exists = df.loc[:, path_colname].progress_apply( lambda x: os.path.isfile(x) and os.path.getsize(x) > 0 ) nrows_after = file_exists.sum() if nrows_after < nrows_before: logging.warning(f'{nrows_before - nrows_after} records discarded ' f'because file does not exist or is empty.' ) return df.loc[file_exists, :]
7358192a8400a4cd46522b1b6e11d9ffe03d9db7
3,650,374
from typing import Sequence from typing import Any def find(sequence: Sequence, target_element: Any) -> int: """Find the index of the first occurrence of target_element in sequence. Args: sequence: A sequence which to search through target_element: An element to search in the sequence Returns: The index of target_element's first occurrence, -1 if it was not found or the sequence is empty """ if not sequence: return -1 try: return sequence.index(target_element) except ValueError: return -1
20edfae45baafa218d8d7f37e0409e6f4868b75d
3,650,375
def read_time_data(fname, unit): """ Read time data (csv) from file and load into Numpy array """ data = np.loadtxt(fname, delimiter=',') t = data[:,0] x = data[:,1]*unit f = interp1d(t, x, kind='linear', bounds_error=False, fill_value=x[0]) return f
588c3bc472aa05eb0ead983405f22ecdf260687c
3,650,376
import sys def run(connection, args): """Prints it out based on command line configuration. Exceptions: - SAPCliError: - when the given type does not belong to the type white list """ types = {'program': sap.adt.Program, 'class': sap.adt.Class, 'package': sap.adt.Package} try: typ = types[args.type] except KeyError: raise SAPCliError(f'Unknown type: {args.type}') aunit = sap.adt.AUnit(connection) obj = typ(connection, args.name) response = aunit.execute(obj) run_results = sap.adt.aunit.parse_run_results(response.text) if args.output == 'human': return print_results_to_stream(run_results, sys.stdout) if args.output == 'raw': return print_raw(response.text, run_results) if args.output == 'junit4': return print_junit4(run_results, args, sys.stdout) raise SAPCliError(f'Unsupported output type: {args.output}')
579d94aa22f9b1bd62ee757bfb4b328679901a75
3,650,377
from pathlib import Path from typing import List from typing import Dict import json def read_nli_data(p: Path) -> List[Dict]: """Read dataset which has been converted to nli form""" with open(p) as f: data = json.load(f) return data
2218d8dc06e3b9adfe89cb780a9ef4e7cb111d14
3,650,378
def stanley_control(state, cx, cy, cyaw, last_target_idx): """ Stanley steering control. :param state: (State object) :param cx: ([float]) :param cy: ([float]) :param cyaw: ([float]) :param last_target_idx: (int) :return: (float, int) """ current_target_idx, error_front_axle = calc_target_index(state, cx, cy) if last_target_idx >= current_target_idx: current_target_idx = last_target_idx # theta_e corrects the heading error theta_e = normalize_angle(cyaw[current_target_idx] - state.yaw) # theta_d corrects the cross track error theta_d = np.arctan2(k * error_front_axle, state.v) # Steering control delta = theta_e + theta_d return delta, current_target_idx
bef2d7d075a6ef637d1423d6c85cdde3ac4d9d70
3,650,379
def get_predictions(my_map, reviews, restaurants): """ Get the topic predictions for all restaurants. Parameters: my_map - the Map object representation of the current city reviews - a dictionary of reviews with restaurant ids for keys restaurants - a list of restaurants of the current city Returns: A tuple of a dictionary of restaurant ids to topic distributions and the lda model """ predictor = LDAPredictor() lda = predictor.lda restaurant_ids_to_topics = {} for restaurant in restaurants: business_id = restaurant["business_id"] review = reviews[business_id] prediction = predictor.predict_topics(review) restaurant_ids_to_topics[business_id] = make_topic_array_from_tuple_list(prediction, NUM_TOPICS) #topic array of weights for each topic index normalized_restaurant_ids_to_topics = normalize_predictions(restaurant_ids_to_topics, restaurants) return normalized_restaurant_ids_to_topics, lda
ef900b9d3526a12f64951e9d7b6f4eb80db9f6f4
3,650,380
def decode_token(token, secret_key): """ 解密websocket token :param token: :param secret_key: :return: """ info = jwt.decode(token, secret_key, algorithms=['HS256']) return info
5807ce3428435eb0c15dd464164627fb342e46d6
3,650,381
import requests def getPatternID(pattern_url): """asssumes pattern_url is a string, representing the URL of a ravelry pattern e.g.https://www.ravelry.com/patterns/library/velvet-cache-cou returns an int, the pattern ID """ permalink = pattern_url[41:] with requests.Session() as a_session: auth_name = "read-046277a3027f680ebe3fa030e755eb34" auth_pass = "O+mL0KzfjgQ1eLA7K8FO9s28QPvr6QuiL+pOvFHZ" a_session.auth = (auth_name, auth_pass) ravelry_adapter = HTTPAdapter(max_retries=3) a_session.mount('https://ravelry.com', ravelry_adapter) base_request = "https://api.ravelry.com/patterns/search.json?query=" pattern = a_session.get(base_request+permalink) if pattern.status_code != 200: raise RuntimeError("Ravelry not responding as expected.\ Please check your internet connection or try again later") pattern_id = pattern.json()['patterns'][0]['id'] return pattern_id
0624457bad8753a9d15f8339c381ec233a207098
3,650,382
def make_multibonacci_modulo(history_length, limit): """Creates a function that generates the Multibonacci sequence modulo n.""" def sequence_fn(seq): return np.sum(seq[-history_length:]) % limit return sequence_fn
358876a91fec23853bde843c7222cd837b45ada3
3,650,383
def _get_key(arguments): """ Determine the config key based on the arguments. :param arguments: A dictionary of arguments already processed through this file's docstring with docopt :return: The datastore path for the config key. """ # Get the base path. if arguments.get("felix"): base = CONFIG_PATH elif arguments.get("node"): base = BGP_HOST_PATH % {"hostname": hostname} else: base = BGP_GLOBAL_PATH # Determine the actual name of the field. Look this up from the config # data, otherwise just use the name. config_data = _get_config_data(arguments) name = arguments["<NAME>"] if name in config_data: name, _ = config_data[name] return base + name
b68dd68a013ed2289ae60ab49a347858ce447964
3,650,384
def prepare_data_from_stooq(df, to_prediction = False, return_days = 5): """ Prepares data for X, y format from pandas dataframe downloaded from stooq. Y is created as closing price in return_days - opening price Keyword arguments: df -- data frame contaning data from stooq return_days -- number of day frame in which to calculate y. """ if 'Wolumen' in df.columns: df = df.drop(['Data', 'Wolumen', 'LOP'], axis=1) else: df = df.drop('Data', axis = 1) y = df['Zamkniecie'].shift(-return_days) - df['Otwarcie'] if not to_prediction: df = df.iloc[:-return_days,:] y = y[:-return_days]/df['Otwarcie'] return df.values, y
4b5bc45529b70ed1e8517a1d91fb5a6c2ff0b504
3,650,385
def represents_int_above_0(s: str) -> bool: """Returns value evaluating if a string is an integer > 0. Args: s: A string to check if it wil be a float. Returns: True if it converts to float, False otherwise. """ try: val = int(s) if val > 0: return True else: return False except ValueError: return False
e39c4afeff8f29b86ef2a80be0af475223654449
3,650,386
def resnet18(pretrained=False, **kwargs): """Constructs a ResNet-18 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(BasicBlock, [2, 2, 2, 2], **kwargs) if pretrained: model.load_state_dict(model_zoo.load_url('https://download.pytorch.org/models/resnet18-5c106cde.pth')) return model
89b71b447890e8986493abc90cca6e2ac2f0eca8
3,650,387
def sydney(): """Import most recent Sydney dataset""" d = { 'zip':'Sydney_geol_100k_shape', 'snap':-1, } return(d)
f79a5002ef548769096d3aeb1ad2c7d77ac5ce68
3,650,388
import json async def apiAdminRoleNotExists(cls:"PhaazebotWeb", WebRequest:ExtendedRequest, **kwargs) -> Response: """ Optional keywords: ------------------ * msg `str` : (Default: None) * [Overwrites default] * name `str` * * role_id `str` * Default message (*gets altered by optional keywords): ---------------------------------------------------- No role has been found """ res:dict = dict(status=400, error="admin_role_not_exists") name:str = kwargs.get("name", "") if name: res["name"] = name role_id:str = kwargs.get("role_id", "") if role_id: res["role_id"] = role_id # build message default_msg:str = "No command has been found" if name: default_msg += f" with name '{name}'" if role_id: default_msg += f" (Role ID: {role_id})" msg:str = kwargs.get("msg", default_msg) res["msg"] = msg cls.BASE.Logger.debug(f"(API/Admin) 400 Role not found: {WebRequest.path}", require="api:400") return cls.response( text=json.dumps(res), content_type="application/json", status=400 )
535bf4740e6d95ef1d82d9fdc97b36577425fed7
3,650,389
def format_non_date(value): """Return non-date value as string.""" return_value = None if value: return_value = value return return_value
9a7a13d7d28a14f5e92920cfef7146f9259315ec
3,650,390
def get_loss(loss_str): """Get loss type from config""" def _get_one_loss(cur_loss_str): if hasattr(keras_losses, cur_loss_str): loss_cls = getattr(keras_losses, cur_loss_str) elif hasattr(custom_losses, cur_loss_str): loss_cls = getattr(custom_losses, cur_loss_str) else: raise ValueError('%s is not a valid loss' % cur_loss_str) return loss_cls if not isinstance(loss_str, list): loss_cls = _get_one_loss(loss_str) return loss_cls else: loss_cls_list = [] for cur_loss in loss_str: loss_cls = _get_one_loss(cur_loss) loss_cls_list.append(loss_cls) return loss_cls_list
4c5714b7e8ca0becf43922a9624d9a4dccc4ac28
3,650,391
from functools import cmp_to_key def _hashable_policy(policy, policy_list): """ Takes a policy and returns a list, the contents of which are all hashable and sorted. Example input policy: {'Version': '2012-10-17', 'Statement': [{'Action': 's3:PutObjectAcl', 'Sid': 'AddCannedAcl2', 'Resource': 'arn:aws:s3:::test_policy/*', 'Effect': 'Allow', 'Principal': {'AWS': ['arn:aws:iam::XXXXXXXXXXXX:user/username1', 'arn:aws:iam::XXXXXXXXXXXX:user/username2']} }]} Returned value: [('Statement', ((('Action', (u's3:PutObjectAcl',)), ('Effect', (u'Allow',)), ('Principal', ('AWS', ((u'arn:aws:iam::XXXXXXXXXXXX:user/username1',), (u'arn:aws:iam::XXXXXXXXXXXX:user/username2',)))), ('Resource', (u'arn:aws:s3:::test_policy/*',)), ('Sid', (u'AddCannedAcl2',)))), ('Version', (u'2012-10-17',)))] """ # Amazon will automatically convert bool and int to strings for us if isinstance(policy, bool): return tuple([str(policy).lower()]) elif isinstance(policy, int): return tuple([str(policy)]) if isinstance(policy, list): for each in policy: tupleified = _hashable_policy(each, []) if isinstance(tupleified, list): tupleified = tuple(tupleified) policy_list.append(tupleified) elif isinstance(policy, string_types) or isinstance(policy, binary_type): policy = to_text(policy) # convert root account ARNs to just account IDs if policy.startswith('arn:aws:iam::') and policy.endswith(':root'): policy = policy.split(':')[4] return [policy] elif isinstance(policy, dict): sorted_keys = list(policy.keys()) sorted_keys.sort() for key in sorted_keys: element = policy[key] # Special case defined in # https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html if key in ["NotPrincipal", "Principal"] and policy[key] == "*": element = {"AWS": "*"} tupleified = _hashable_policy(element, []) if isinstance(tupleified, list): tupleified = tuple(tupleified) policy_list.append((key, tupleified)) # ensure we aren't returning deeply nested structures of length 1 if len(policy_list) == 1 and isinstance(policy_list[0], tuple): policy_list = policy_list[0] if isinstance(policy_list, list): policy_list.sort(key=cmp_to_key(_py3cmp)) return policy_list
beb5b527f38d7d1a9cecf81918a3291c0c9960ad
3,650,392
def LF_CD_NO_VERB(c): """ This label function is designed to fire if a given sentence doesn't contain a verb. Helps cut out some of the titles hidden in Pubtator abstracts """ if len([x for x in nltk.pos_tag(word_tokenize(c.get_parent().text)) if "VB" in x[1]]) == 0: if "correlates with" in c.get_parent().text: return 0 return -1 return 0
aa36b8a4cd00194fd1d786a7d3619ea46da0e1ab
3,650,393
from typing import Tuple def has_file_allowed_extension(filename: PATH_TYPE, extensions: Tuple[str, ...]) -> bool: """Checks if a file is an allowed extension. Args: filename (string): path to a file extensions (tuple of strings): extensions to consider (lowercase) Returns: bool: True if the filename ends with one of given extensions """ return str(filename).lower().endswith(extensions)
2f0d5698ecdb10533b303a637fdc03747ef8060c
3,650,394
def get_account_html(netid, timestamp=None): """ The Libraries object has a method for getting information about a user's library account """ return _get_resource(netid, timestamp=timestamp, style='html')
7c917f6778e42a1166d4a33819c2e51378933226
3,650,395
import functools import math def gcd_multiple(*args) -> int: """Return greatest common divisor of integers in args""" return functools.reduce(math.gcd, args)
c686b9495cd45ff047f091e31a79bedcd61f8842
3,650,396
from typing import Counter def chars_to_family(chars): """Takes a list of characters and constructs a family from them. So, A1B2 would be created from ['B', 'A', 'B'] for example.""" counter = Counter(chars) return "".join(sorted([char + str(n) for char, n in counter.items()]))
e78de779599f332045a98edde2aa0a0edc5a653b
3,650,397
import configparser def get_config_properties(config_file="config.properties", sections_to_fetch = None): """ Returns the list of properties as a dict of key/value pairs in the file config.properties. :param config_file: filename (string). :param section: name of section to fetch properties from (if specified); all sections are returned by default (iterable). :return: A flat (no sections) Python dictionary of properties. """ cf = configparser.ConfigParser() try: cf.read(config_file) except Exception as e: print("[ERROR] exception {} reading configurations from file {}".format(e, config_file)) properties = {} for section in cf.sections(): # only include args section if requested if (not sections_to_fetch or (section in sections_to_fetch)): for item in cf.items(section): properties[item[0]] = item[1] return properties
627d21327560595bb4c2905c98604926f03ca655
3,650,398
import base64 import secrets import time def process_speke(): """Processes an incoming request from MediaLive, which is using SPEKE A key is created and stored in DynamoDB.""" input_request = request.get_data() # Parse request tree = ET.fromstring(input_request) content_id = tree.get("id") kid = tree[0][0].get("kid") iv = tree[0][0].get("explicitIV") or "" keyPeriod = tree[2][0].get("id") index = tree[2][0].get("index") # Create key key = base64.b64encode(secrets.token_bytes(16)).decode("ascii") # Expire key tomorrow expiry = round(time.time()) + 24 * 60 * 60 # Create the pssh systems = [] for drmsystem in tree[1]: if drmsystem.get("systemId") == CLEARKEY_SYSTEM_ID: pssh = psshgen.genClearkeyPssh([kid]) systems.append( f"""<!-- ClearKey --> <cpix:DRMSystem kid="{kid}" systemId="{CLEARKEY_SYSTEM_ID}"> <cpix:PSSH>{pssh}</cpix:PSSH> </cpix:DRMSystem>""" ) # Save key info in dynamo dynamo.put_item( TableName=TABLE, Item={ "content_id": {"S": content_id}, "kid": {"S": kid}, "iv": {"S": iv}, "keyPeriod": {"S": keyPeriod}, "index": {"S": index}, "key": {"S": key}, "expiry": {"N": str(expiry)}, }, ) if iv: iv = f'explicitIV="{iv}"' # Craft response response = f"""<cpix:CPIX xmlns:cpix="urn:dashif:org:cpix" xmlns:pskc="urn:ietf:params:xml:ns:keyprov:pskc" xmlns:speke="urn:aws:amazon:com:speke" id="{content_id}"> <cpix:ContentKeyList> <cpix:ContentKey {iv} kid="{kid}"> <cpix:Data> <pskc:Secret> <pskc:PlainValue>{key}</pskc:PlainValue> </pskc:Secret> </cpix:Data> </cpix:ContentKey> </cpix:ContentKeyList> <cpix:DRMSystemList> {''.join(systems)} </cpix:DRMSystemList> <cpix:ContentKeyPeriodList> <cpix:ContentKeyPeriod id="{keyPeriod}" index="{index}" /> </cpix:ContentKeyPeriodList> <cpix:ContentKeyUsageRuleList> <cpix:ContentKeyUsageRule kid="{kid}"> <cpix:KeyPeriodFilter periodId="{keyPeriod}" /> </cpix:ContentKeyUsageRule> </cpix:ContentKeyUsageRuleList> </cpix:CPIX>""" return response
3caa1c0390ea699feab2f138942b6773933fbada
3,650,399