content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from typing import Dict def merge(source: Dict, destination: Dict) -> Dict: """ Deep merge two dictionaries Parameters ---------- source: Dict[Any, Any] Dictionary to merge from destination: Dict[Any, Any] Dictionary to merge to Returns ------- Dict[Any, Any] New dictionary with fields in destination overwritten with values from source """ new_dict = {**destination} for key, value in source.items(): if isinstance(value, dict): # get node or create one node = new_dict.get(key, {}) new_dict[key] = merge(value, node) else: new_dict[key] = value return new_dict
4ffba933fe1ea939ecaa9f16452b74a4b3859f40
3,650,400
async def async_api_adjust_volume_step(hass, config, directive, context): """Process an adjust volume step request.""" # media_player volume up/down service does not support specifying steps # each component handles it differently e.g. via config. # For now we use the volumeSteps returned to figure out if we # should step up/down volume_step = directive.payload['volumeSteps'] entity = directive.entity data = { ATTR_ENTITY_ID: entity.entity_id, } if volume_step > 0: await hass.services.async_call( entity.domain, SERVICE_VOLUME_UP, data, blocking=False, context=context) elif volume_step < 0: await hass.services.async_call( entity.domain, SERVICE_VOLUME_DOWN, data, blocking=False, context=context) return directive.response()
85625118d4185842dd0398ec5dd0adbb951b5d67
3,650,401
import os def load_recordings(path: str, activityLabelToIndexMap: dict, limit: int = None) -> 'list[Recording]': """ Load the recordings from a folder containing csv files. """ recordings = [] recording_files = os.listdir(path) recording_files = list(filter(lambda file: file.endswith('.csv'), recording_files)) if limit is not None: recording_files = recording_files[:limit] recording_files = sorted(recording_files, key=lambda file: int(file.split('_')[0])) for (index, file) in enumerate(recording_files): print(f'Loading recording {file}, {index+1} / {len(recording_files)}') recording_dataframe = pd.read_csv(os.path.join(path, file)) time_frame = recording_dataframe.loc[:, 'SampleTimeFine'] activities = recording_dataframe.loc[:, 'activity'].map(lambda label: activityLabelToIndexMap[label]) sensor_frame = recording_dataframe.loc[:, recording_dataframe.columns.difference(['SampleTimeFine', 'activity'])] subject = file.split('_')[1] recordings.append(Recording(sensor_frame, time_frame, activities, subject, index)) print(f'Loaded {len(recordings)} recordings from {path}') return recordings
c5081c7f7b27eea080a1b1394a67bff158bdf243
3,650,402
import warnings import io def load_img(path, grayscale=False, color_mode='rgb', target_size=None, interpolation='nearest'): """Loads an image into PIL format. # Arguments path: Path to image file. grayscale: DEPRECATED use `color_mode="grayscale"`. color_mode: The desired image format. One of "grayscale", "rgb", "rgba". "grayscale" supports 8-bit images and 32-bit signed integer images. Default: "rgb". target_size: Either `None` (default to original size) or tuple of ints `(img_height, img_width)`. interpolation: Interpolation method used to resample the image if the target size is different from that of the loaded image. Supported methods are "nearest", "bilinear", and "bicubic". If PIL version 1.1.3 or newer is installed, "lanczos" is also supported. If PIL version 3.4.0 or newer is installed, "box" and "hamming" are also supported. Default: "nearest". # Returns A PIL Image instance. # Raises ImportError: if PIL is not available. ValueError: if interpolation method is not supported. """ if grayscale is True: warnings.warn('grayscale is deprecated. Please use ' 'color_mode = "grayscale"') color_mode = 'grayscale' if pil_image is None: raise ImportError('Could not import PIL.Image. ' 'The use of `load_img` requires PIL.') with open(path, 'rb') as f: img = pil_image.open(io.BytesIO(f.read())) if color_mode == 'grayscale': # if image is not already an 8-bit, 16-bit or 32-bit grayscale image # convert it to an 8-bit grayscale image. if img.mode not in ('L', 'I;16', 'I'): img = img.convert('L') elif color_mode == 'rgba': if img.mode != 'RGBA': img = img.convert('RGBA') elif color_mode == 'rgb': if img.mode != 'RGB': img = img.convert('RGB') else: raise ValueError('color_mode must be "grayscale", "rgb", or "rgba"') if target_size is not None: width_height_tuple = (target_size[1], target_size[0]) if img.size != width_height_tuple: if interpolation not in _PIL_INTERPOLATION_METHODS: raise ValueError( 'Invalid interpolation method {} specified. Supported ' 'methods are {}'.format( interpolation, ", ".join(_PIL_INTERPOLATION_METHODS.keys()))) resample = _PIL_INTERPOLATION_METHODS[interpolation] img = img.resize(width_height_tuple, resample) return img
61709400c2bd6379864f2399c2c04c29e0b61b92
3,650,403
import logging import platform def check_compatible_system_and_kernel_and_prepare_profile(args): """ Checks if we can do local profiling, that for now is only available via Linux based platforms and kernel versions >=4.9 Args: args: """ res = True logging.info("Enabled profilers: {}".format(args.profilers)) logging.info("Checking if system is capable of running those profilers") if "Linux" not in platform.system(): logging.error( "Platform needs to be Linux based. Current platform: {}".format( platform.system() ) ) res = False # check for release >= 4.9 release = platform.release() logging.info("Detected platform release: {}".format(release)) major_minor = release.split(".")[:2] system_kernel_major_v = major_minor[0] system_kernel_minor_v = major_minor[1] if float(system_kernel_major_v) < 4: logging.error( "kernel version needs to be >= 4.9. Detected version: {}".format(release) ) res = False if float(system_kernel_major_v) == 4 and float(system_kernel_minor_v) < 9: logging.error( "kernel version needs to be >= 4.9. Detected version: {}".format(release) ) res = False # a map between profiler name and profiler object wrapper res, profilers_map = get_profilers_map(args.profilers.split(",")) return res, profilers_map
35da3151109ef13c7966ede991b871dca45f4d0b
3,650,404
import os import shutil import subprocess import glob def crop_file(in_file, out_file, ext): """Crop a NetCDF file to give rectangle using NCO. The file is automatically converted to [0,360] °E longitude format. Args: in_file: Input file path. out_file: Output file path. It will not be overwritten. ext: The rectangular region (extent) to crop to, given as a list of [lon1, lon2, lat1, lat2]. Longitude in [0,360) °E and latitude in [-90,+90] °N. Returns: Name of output file (same as `out_file`). Raises: FileNotFoundError: `in_file` doesn’t exist. RuntimeError: Executable `ncks` is not in the PATH. RuntimeError: NCKS failed or no output file was created. """ if not os.path.isfile(in_file): raise FileNotFoundError("Input file doesn’t exist: '%s'" % in_file) if skip(in_file, out_file): return out_file out_dir = os.path.dirname(out_file) if not os.path.isdir(out_dir): cprint(f"Directory '{out_dir}' does not exist yet. I will create it.", 'yellow') os.makedirs(out_dir) cprint("Cropping file '%s'..." % in_file, 'yellow') if shutil.which("ncks") is None: raise RuntimeError("Executable `ncks` not found.") try: # ADJUST LONGITUDE ext_adj = list() ext_adj[:] = ext ext_adj[0] = adjust_longitude(in_file, ext[0]) ext_adj[1] = adjust_longitude(in_file, ext[1]) # CROP subprocess.run(["ncks", "--overwrite", "--dimension", "lon,%.2f,%.2f" % (ext_adj[0], ext_adj[1]), "--dimension", "lat,%.2f,%.2f" % (ext_adj[2], ext_adj[3]), in_file, out_file], check=True) # ROTATE LONGITUDE # See here for the documentation about rotating longitude: # http://nco.sourceforge.net/nco.html#msa_usr_rdr # Unlike in the instructions in the documentation, we don’t need to # re-order the longitude dimension with --msa_usr_rdr because through # the `ncks` cropping/hyperslabbing command the longitude is already # ordered correctly from East to West. # Note that we rotate after cropping for performance reasons. This way # only the cropped grid cells need to be rotated. subprocess.run(['ncap2', '--overwrite', '--script', 'where(lon < 0) lon=lon+360', out_file, out_file], check=True) except Exception: print(f'DEBUG: ext = {ext}') print(f'DEBUG: ext_adj = {ext_adj}') if os.path.isfile(out_file): cprint(f"Removing file '{out_file}'.", 'red') os.remove(out_file) # Remove temporary file created by ncks. for g in glob(f'{out_file}.pid*.ncks.tmp'): cprint(f"Removing file '{g}'.", 'red') os.remove(g) raise if not os.path.isfile(out_file): raise RuntimeError("Cropping with `ncks` failed: No output file " "created.") cprint(f"Successfully created '{out_file}'.", 'green') return out_file
3f185c4e86299270b2ef694d6b5505326873f7db
3,650,405
def get_instance_string(params): """ combine the parameters to a string mostly used for debug output use of OrderedDict is advised """ return "_".join([str(i) for i in params.values()])
ff9470cd9e308357b594c2ec0389c194d2d6ac00
3,650,406
import logging import time import re def recv_bgpmon_updates(host, port, queue): """ Receive and parse the BGP update XML stream of bgpmon """ logging.info ("CALL recv_bgpmon_updates (%s:%d)", host, port) # open connection sock = _init_bgpmon_sock(host,port) data = "" stream = "" # receive data logging.info(" + receiving XML update stream ...") while(True): data = sock.recv(1024) if not data: sock.close() time.sleep(60) sock = _init_bgpmon_sock(host,port) continue stream += data stream = str.replace(stream, "<xml>", "") while (re.search('</BGP_MONITOR_MESSAGE>', stream)): messages = stream.split('</BGP_MONITOR_MESSAGE>') msg = messages[0] + '</BGP_MONITOR_MESSAGE>' stream = '</BGP_MONITOR_MESSAGE>'.join(messages[1:]) result = parse_bgp_message(msg) if result: queue.put(result) return True
6cf8e008b2b47437e80b863eab6f7c1fd4a54e18
3,650,407
import ast def is_string_expr(expr: ast.AST) -> bool: """Check that the expression is a string literal.""" return ( isinstance(expr, ast.Expr) and isinstance(expr.value, ast.Constant) and isinstance(expr.value.value, str) )
f61418b5671c5e11c1e90fce8d90c583659d40e3
3,650,408
import numba def events_to_img( xs: np.ndarray, ys: np.ndarray, tots: np.ndarray, cluster_ids: np.ndarray, x_img: np.ndarray, y_img: np.ndarray, minimum_event_num: int = 30, extinguish_dist: float = 1.41422, # sqrt(2) = 1.41421356237 ) -> np.ndarray: """ Converting given events into a flatten image array defined by given image pixel positions @param xs: event x position, must be float @param ys: event y position, must be float @param tots: event time of threshold (as intensity), must be float @param cluster_ids: ID labels @param x_img: pixel position of the target image (see np.meshgrid) @param y_img: pixel position of the target image (see np.meshgrid) @param minimum_event_num: minimum number of events needed to be included @param extinguish_dist: signal impact ends outside this range @returns: the image converted from given events using weighted centroid method """ # preparation unique_cids = np.unique(cluster_ids) img_shape = x_img.shape x_img = x_img.flatten() y_img = y_img.flatten() img = x_img * 0.0 for i in numba.prange(unique_cids.shape[0]): cid = unique_cids[i] idx = np.where(cluster_ids == cid)[0] # skip cluster with too few events if idx.shape[0] < minimum_event_num: continue # compute the centroid position and weighted equivalent intensity wgts = tots[idx] / np.sum(tots[idx]) xc = np.dot(wgts, xs[idx]) yc = np.dot(wgts, ys[idx]) # ic = np.dot(wgts, tots[idx]) # propogate the signal to the image idx = np.where( np.logical_and( np.logical_and( x_img >= xc - extinguish_dist, x_img < xc + extinguish_dist, ), np.logical_and( y_img >= yc - extinguish_dist, y_img < yc + extinguish_dist, ), ))[0] wgts = (x_img[idx] - xc)**2 + (y_img[idx] - yc)**2 wgts = 1.0 / wgts wgts = wgts / np.sum(wgts) img[idx] += wgts # return the results return img.reshape(img_shape)
ced70fc290157a4168c8e9ebd589263bbc410c6f
3,650,409
import logging import requests def worker(job): """Run a single download job.""" logger = logging.getLogger("ncbi-genome-download") ret = False try: if job.full_url is not None: req = requests.get(job.full_url, stream=True) ret = save_and_check(req, job.local_file, job.expected_checksum) if not ret: return ret ret = create_symlink(job.local_file, job.symlink_path) except KeyboardInterrupt: # pragma: no cover # TODO: Actually test this once I figure out how to do this in py.test logger.debug("Ignoring keyboard interrupt.") return ret
f7ddf815bc6689ac7086c3f8d04bc4ffd29fccbd
3,650,410
def generate_ar(n_series, n_samples, random_state=0): """Generate a linear auto-regressive series. This simple model is defined as:: X(t) = 0.4 * X(t - 1) - 0.6 * X(t - 4) + 0.5 * N(0, 1) The task is to predict the current value using all the previous values. Parameters ---------- n_series : int Number of time series to generate. n_samples : int Number of samples in each time series. random_state : int, default 0 Seed to use in the random generator. Returns ------- X, Y : ndarray, shape (n_series, 1, n_stamps, 1) Input and output sequences, `Y` is just delayed by 1 sample version of `X`. """ n_init = 4 n_discard = 20 X = np.zeros((n_series, n_init + n_discard + n_samples + 1)) rng = np.random.RandomState(random_state) X[:, n_init] = rng.randn(n_series) for i in range(n_init + 1, X.shape[1]): X[:, i] = (0.4 * X[:, i - 1] - 0.6 * X[:, i - 4] + 0.1 * rng.randn(n_series)) Y = X[:, n_init + n_discard + 1:, None] X = X[:, n_init + n_discard: -1, None] return X, Y
a02b2bb242ecc0eb6cf3d5d23d0982c56d81b617
3,650,411
import subprocess def get_current_commit_id() -> str: """Get current commit id. Returns: str: current commit id. """ command = "git rev-parse HEAD" commit_id = ( subprocess.check_output(command.split()).strip().decode("utf-8") # noqa: S603 ) return commit_id
978bd35fc3cfe71fcc133a6e49fbbe0e27d4feda
3,650,412
import re def get_raw_code(file_path): """ Removes empty lines, leading and trailing whitespaces, single and multi line comments :param file_path: path to .java file :return: list with raw code """ raw_code = [] multi_line_comment = False with open(file_path, "r") as f: for row in f: # remove leading and trailing whitespaces line = row.strip() # remove '/* comments */' line = re.sub(r''' ^ # start of string /\* # "/*" string .* # any character (except line break) zero or more times \*/ # "*/" string \s* # zero or many whitespaces ''', '', line, 0, re.VERBOSE) # remove '//comments' line = re.sub(r''' ^ # start of string // # "//" string .* # any character (except line break) zero or more times $ # end of string ''', '', line, 0, re.VERBOSE) # ignore empty lines if line != '': # skip multi-line comments (/*) if re.search(r''' ^ # start of string /\* # "/*" string .* # any character (except line break) zero or more times ''', line, re.VERBOSE): multi_line_comment = True continue # check if multi-line comment was closed (*/) elif re.search(r''' .* # any character (except line break) zero or more times \*/ # "*/" string $ # end of string ''', line, re.VERBOSE): multi_line_comment = False line = re.sub(r''' .* # any character (except line break) zero or more times \*/ # "*/" string \s* # zero or many whitespaces ''', '', line, 0, re.VERBOSE) if line == '': continue # add line if it's not multi-line comment if not multi_line_comment: raw_code.append(line) return raw_code
6654a0423f024eaea3067c557984c3aa5e9494da
3,650,413
import os def load_content(file_path): """ Loads content from file_path if file_path's extension is one of allowed ones (See ALLOWED_EXTS). Throws UnsupportedMetaException on disallowed filetypes. :param file_path: Absolute path to the file to load content from. :type file_path: ``str`` :rtype: ``dict`` """ file_name, file_ext = os.path.splitext(file_path) if file_ext not in ALLOWED_EXTS: raise Exception('Unsupported meta type %s, file %s. Allowed: %s' % (file_ext, file_path, ALLOWED_EXTS)) parser_func = PARSER_FUNCS.get(file_ext, None) with open(file_path, 'r') as fd: return parser_func(fd) if parser_func else fd.read()
b9fb74d90f181b7066643e82269c5a6915cb57e9
3,650,414
from typing import Pattern import re def _yaml_comment_regex() -> Pattern: """ From https://yaml-multiline.info/, it states that `#` cannot appear *after* a space or a newline, otherwise it will be a syntax error (for multiline strings that don't use a block scalar). This applies to single lines as well: for example, `a#b` will be treated as a single value, but `a #b` will only capture `a`, leaving `#b` as a comment. For lines that *do* use a block scalar, the YAML parser will throw a syntax error if there is additional text on the same line as the block scalar. Comments however, are fine. e.g. key: | # this is ok blah key: | but this is not blah Given that we've made it to this stage, we can assume the YAML file is syntactically correct. Therefore, if we add whitespace before the comment character, we can know that everything else *after* the comment character is a comment for a given line. """ return re.compile(r'(\s+#[\S ]*)')
3b5739f460c3d2c66f802dd46e061d2d07030525
3,650,415
def to_list(name: str) -> "Expr": """ Aggregate to list """ return col(name).list()
2265c14d13ef92bb5481dc2eee17915288cf95e8
3,650,416
import re def format_ipc_dimension(number: float, decimal_places: int = 2) -> str: """ Format a dimension (e.g. lead span or height) according to IPC rules. """ formatted = '{:.2f}'.format(number) stripped = re.sub(r'^0\.', '', formatted) return stripped.replace('.', '')
60001f99b5f107faba19c664f90ee2e9fb61fe68
3,650,417
def mean_test(data, muy0, alternative = 'equal', alpha = 0.95): """ This function is used to create a confidence interval of two.sided hypothesis Input: data (1D array): the sample of the whole column that you want to evaluate confidence (float) : confidence_level, must be in (0, 1) Output: the dictionary that contains the info of - Confidence_Interval (tupple) - T_statistics (float) - Two-sided p-value. """ # convert datapoint to float a = 1.0 * np.array(data) confidence = np.round(1 - alpha, 3) # Number of observations n = len(a) # Compute mean and standard_errors m, se = np.mean(a), stats.sem(a) # result of testing T_stat = ((m - muy0) / se)*np.sqrt(n) # compute the interval_radius if alternative in ['equal', "two.side"]: h = se * stats.t.ppf((1 + confidence) / 2., n-1) conf_itv = (float(m - h), float(m + h)) alt = "true mean (muy) is not equal to muy0 = {}".format(muy0) cnls = "true mean (muy) = muy0 = {}".format(muy0) p_val = 2*min(stats.t.cdf(T_stat, n-1), 1 - stats.t.cdf(T_stat, n-1)) elif alternative == 'greater': h = se * stats.t.ppf(1 - confidence, n-1) conf_itv = (float(m - h), '+inf') alt = "true mean (muy) > muy0 = {}".format(muy0) cnls = "true mean (muy) <= muy0 = {}".format(muy0) p_val = 1 - stats.t.cdf(T_stat, n-1) elif alternative == 'less': h = se * stats.t.ppf(1 - confidence, n-1) conf_itv = ('-inf', float(m + h)) alt = "true mean (muy) < muy0 = {}".format(muy0) cnls = "true mean (muy) >= muy0 = {}".format(muy0) p_val = stats.t.cdf(T_stat, n-1) # conclusion if p_val < alpha: kl = 'reject the hypothesis, {}'.format(alt) else: kl = 'can not reject the null hypothesis, so the {}'.format(cnls) # save all the output-results dic_data = pd.DataFrame( { 'alpha / confidence_level': [{'significance level':alpha, 'confidence_level': 1- alpha}], 'Confidence_Interval': [conf_itv], 'T_statistic': T_stat, 'sample_mean': m, 'alternative_hypothesis': alt, 'p_value': p_val, 'conclusion': "For confidence_level = {}%, we {}".format(100*confidence, kl) } ) return dic_data
9a798eeed1ba2debfe42dbb08ed33c8a1f463fd3
3,650,418
def __build_command(command, name, background=None, enable=None): """ Constuct args for systemctl command. Args: command: The systemctl command name: The unit name or name pattern background: True to have systemctl perform the command in the background enable: True to enable/disable, False to start/stop only, None for default. Returns: The name with type suffix """ args = ['--quiet'] if background: args.append('--no-block') if ((enable or name.startswith('appscale-')) and not enable==False and command in ('start', 'stop')): args.append('--now') args.append('--runtime') if command == 'start': args.append('enable') else: args.append('disable') else: args.append(command) args.append(__expand_name(name)) return args
5f47c19bb24d05b66d02c6d93ed1bf90144afb63
3,650,419
import requests def dockerFetchLatestVersion(image_name: str) -> list[str]: """ Fetches the latest version of a docker image from hub.docker.com :param image_name: image to search for :return: list of version suggestions for the image or 'not found' if error was returned """ base_url = "https://hub.docker.com/v2/repositories/library" request = f"{base_url}/{image_name}/tags" params = { "ordering": "last_updated", "name": "." } version_list = [] response = requests.get(request, params=params) if response.status_code == requests.codes.ok: json = response.json() version_list = list( map(lambda i: i["name"], json["results"]) )[:5] if len(version_list) == 0: version_list = [NOT_FOUND] else: del params["name"] response = requests.get(request, params=params) if response.status_code == requests.codes.ok: json = response.json() version_list += list( map(lambda i: i["name"], json["results"]) )[:5] return sorted(sorted(list(set(version_list)), reverse=True), key=lambda it: _isfloat(it), reverse=True)
5907dfe92b627c272132f97be9019d735aabd570
3,650,420
import torch import torchvision def _dataset( dataset_type: str, transform: str, train: bool = True ) -> torch.utils.data.Dataset: """ Dataset: mnist: MNIST cifar10: CIFAR-10 cifar100: CIFAR-100 Transform: default: the default transform for each data set simclr: the transform introduced in SimCLR """ try: transform = _get_transform(dataset_type, transform, train) except KeyError: raise DatasetNotIncludeError(f"Dataset {dataset_type} or transform {transform} is not included.\n" \ f"Refer to the following: {_dataset.__doc__}") if dataset_type == "mnist": dataset = torchvision.datasets.MNIST( root=ROOT, train=train, download=False, transform=transform ) elif dataset_type == "fashionmnist": dataset = torchvision.datasets.FashionMNIST( root=ROOT, train=train, download=False, transform=transform ) elif dataset_type == "cifar10": dataset = torchvision.datasets.CIFAR10( root=ROOT, train=train, download=False, transform=transform ) elif dataset_type == "cifar100": dataset = torchvision.datasets.CIFAR100( root=ROOT, train=train, download=False, transform=transform ) return dataset
cdfeefefede97db0a8d8ad6c3f4620855004062c
3,650,421
def inferCustomerClasses(param_file, evidence_dir, year): """ This function uses the variable elimination algorithm from libpgm to infer the customer class of each AnswerID, given the evidence presented in the socio-demographic survey responses. It returns a tuple of the dataframe with the probability distribution over all classes for each AnswerID and the BN object. """ bn = loadbn(param_file) evidence, a_id = readEvidence(year, evidence_dir) query = {"customer_class":''} cols = bn.Vdata.get('customer_class')['vals'] result = pd.DataFrame(columns=cols) #create empty dataframe in which to store inferred probabilities count = 0 #set counter for e in evidence: bn = loadbn(param_file) fn = TableCPDFactorization(bn) try: inf = fn.condprobve(query, e) classprobs = list(inf.vals) result.loc[count] = classprobs count += 1 except: result.loc[count] = [None] * len(cols) count += 1 result['AnswerID'] = a_id result.set_index(keys='AnswerID',inplace=True) return result
212906aacc2bc3d607e1589742591834953de14e
3,650,422
def MidiSegInfo(segment): """ Midi file info saved in config file for speed """ class segInfo: iMsPerTick = 0 bpm = 4 ppqn = 480 total_ticks = 0 iLengthInMs = 0 iTracks = 0 trackList = [] ver = "1.5" ret = segInfo() savedVer = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "Ver") savedDateTime = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "DateTime") dateTime = FileDateTime(segment.filename) if ver != savedVer or dateTime != savedDateTime: mi = GetMidiInfo(segment.filename) if mi.err == 0: IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "Ver", ver) IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "DateTime", str(dateTime)) IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "PPQN", str(mi.ppqn)) IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "BPM", str(mi.beats_per_measure)) IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "totalTicks", str(mi.totalTicks)) IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "maxTracks", str(mi.maxTracks)) iLengthInMs = GetMidiFileLength(segment.filename) * 1000 IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "LengthInMs", str(iLengthInMs)) if iLengthInMs > 0: IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "MsPerTick", str(iLengthInMs / mi.totalTicks)) #have to write out the tracklist in format that can be saved in INI file tl = [] for track in mi.trackList: tl.append((track.track, track.channel, track.name)) IniSetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "Tracks", tl) trackList = [] tl = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "Tracks", 'list', []) for t in tl: trackList.append(trackGrid(t[0], t[1], t[2],False)) iTracks = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "maxTracks", 'int', 0) iMsPerTick = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "MsPerTick", 'float', 0) bpm = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "BPM", 'int', 0) ppqn = IniGetValue(JetDefs.JETMIDIFILES_INI, segment.filename, "PPQN", 'int', 480) if iMsPerTick == 0 or bpm == 0 or ppqn == 0: return ret tb = TimeBase(ppqn, bpm) total_ticks = tb.ConvertStrTimeToTicks(segment.length) if total_ticks == 0: total_ticks = tb.MbtDifference(tb.ConvertStrTimeToTuple(segment.start), tb.ConvertStrTimeToTuple(segment.end)) if total_ticks == 0: return ret ret.iTracks = iTracks ret.iMsPerTick = iMsPerTick ret.bpm = bpm ret.ppqn = ppqn ret.total_ticks = total_ticks ret.iLengthInMs = total_ticks * iMsPerTick ret.trackList = trackList return ret
7d48b699ed52239cf08e57b217f5dd62f3c64a84
3,650,423
def num_in_row(board, row, num): """True if num is already in the row, False otherwise""" return num in board[row]
ca9ab9de4514740e25e0c55f3613d03b2844cdb8
3,650,424
import urllib def load_mnist(dataset="mnist.pkl.gz"): """ dataset: string, the path to dataset (MNIST) """ data_dir, data_file = os.path.split(dataset) # download MNIST if not found if not os.path.isfile(dataset): origin = ( 'http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz' ) print 'Downloading MNIST from %s' % origin assert urllib.urlretrieve(origin, dataset) print "Loading Data ..." with gzip.open(dataset, 'rb') as handle: train_set, valid_set, test_set = cPickle.load(handle) rval = [(train_set[0],to_categorical(train_set[1])), (valid_set[0],to_categorical(valid_set[1])), (test_set[0], to_categorical(test_set[1]))] #train_X, train_y = shared_data(train_set[0]),shared_data_int32(to_categorical(train_set[1])) #valid_X, valid_y = shared_data(valid_set[0]),shared_data_int32(to_categorical(valid_set[1])) #test_X, test_y = shared_data(test_set[0]),shared_data_int32(to_categorical(test_set[1])) # #rval = [(train_X, train_y), (valid_X, valid_y), (test_X, test_y)] return rval
2e499431bed7a8c1c775b04d6272153564d9c99f
3,650,425
import os from sys import path def load_hs13_ZSBB_params(): """Load the standard parameters to generate SocioPatterns HS13 surrogate networks using the ZSBB model. Returns ------- :obj:`dict` The `kwargs` to pass to :func:`tacoma.ZSBB_model`. """ fn = os.path.join(path,'ht09_zsbb_params.json') return tc.load_json_dict(fn)
a6a922fd696d19e2f0dc609cd14db814b84a1e4d
3,650,426
def factorial_3(n, acc=1): """ Replace all recursive tail calls f(x=x1, y=y1, ...) with (x, y, ...) = (x1, y1, ...); continue """ while True: if n < 2: return 1 * acc (n, acc) = (n - 1, acc * n) continue break
e067cf4564056bf488e56fe58bbd5b998b0175f3
3,650,427
def autocorr(x, axis=0, fast=False): """ Estimate the autocorrelation function of a time series using the FFT. :param x: The time series. If multidimensional, set the time axis using the ``axis`` keyword argument and the function will be computed for every other axis. :param axis: (optional) The time axis of ``x``. Assumed to be the first axis if not specified. :param fast: (optional) If ``True``, only use the largest ``2^n`` entries for efficiency. (default: False) """ x = np.atleast_1d(x) m = [slice(None), ] * len(x.shape) # For computational efficiency, crop the chain to the largest power of # two if requested. if fast: n = int(2**np.floor(np.log2(x.shape[axis]))) m[axis] = slice(0, n) x = x else: n = x.shape[axis] # Compute the FFT and then (from that) the auto-correlation function. f = np.fft.fft(x-np.mean(x, axis=axis), n=2*n, axis=axis) m[axis] = slice(0, n) acf = np.fft.ifft(f * np.conjugate(f), axis=axis)[m].real m[axis] = 0 return acf / acf[m]
e2e4105bd0a4aed3431af6acf4f3669bb3340825
3,650,428
import re import dateutil def parse_date(filename_html): """Parse a file, and return the date associated with it. filename_html -- Name of file to parse. """ match = re.search(r"\d{4}-\d{2}-\d{2}", filename_html) if not match: return None match_date = match.group() file_date = dateutil.parser.parse(match_date).date() return file_date
2ee45c3f70b75fc2d26b9c00861dbb1e7586d4af
3,650,429
import os def build_static_runtime( workspace, compiler, module, compiler_options, executor=None, extra_libs=None, ): """Build the on-device runtime, statically linking the given modules. Parameters ---------- compiler : tvm.micro.Compiler Compiler instance used to build the runtime. module : IRModule Module to statically link. compiler_options : dict The return value of tvm.micro.default_options(), with any keys overridden to inject compiler options specific to this build. If not given, tvm.micro.default_options() is used. This dict contains the `options` parameter passed to Compiler.library() and Compiler.binary() at various stages in the compilation process. executor : Optional[str] Executor used for runtime. Based on this we determine the libraries that need to be linked with runtime. extra_libs : Optional[List[MicroLibrary|str]] If specified, extra libraries to be compiled into the binary. If a MicroLibrary, it is included into the binary directly. If a string, the path to a directory; all direct children of this directory matching RUNTIME_SRC_REGEX are built into a library. These libraries are placed before any common CRT libraries in the link order. Returns ------- MicroBinary : The compiled runtime. """ mod_build_dir = workspace.relpath(os.path.join("build", "module")) os.makedirs(mod_build_dir) mod_src_dir = workspace.relpath(os.path.join("src", "module")) if not executor: executor = "host-driven" libs = [] for mod_or_src_dir in (extra_libs or []) + get_runtime_libs(executor): if isinstance(mod_or_src_dir, MicroLibrary): libs.append(mod_or_src_dir) continue lib_src_dir = mod_or_src_dir lib_name = os.path.basename(lib_src_dir) lib_build_dir = workspace.relpath(f"build/{lib_name}") os.makedirs(lib_build_dir) lib_srcs = [] for p in os.listdir(lib_src_dir): if RUNTIME_SRC_REGEX.match(p): lib_srcs.append(os.path.join(lib_src_dir, p)) libs.append(compiler.library(lib_build_dir, lib_srcs, compiler_options["lib_opts"])) mod_src_dir = workspace.relpath(os.path.join("src", "module")) os.makedirs(mod_src_dir) libs.append( module.export_library( mod_build_dir, workspace_dir=mod_src_dir, fcompile=lambda bdir, srcs, **kwargs: compiler.library( bdir, srcs, compiler_options["generated_lib_opts"] ), ) ) runtime_build_dir = workspace.relpath(f"build/runtime") os.makedirs(runtime_build_dir) return compiler.binary(runtime_build_dir, libs, compiler_options["bin_opts"])
2c9b451a3c0208fb7dc1439fdf887b1a17d749ce
3,650,430
def mod(a1, a2): """ Function to give the remainder """ return a1 % a2
f5c03a952aed373e43933bafe37dbc75e796b74d
3,650,431
def select_theme_dirs(): """ Load theme templates, if applicable """ if settings.THEME_DIR: return ["themes/" + settings.THEME_DIR + "/templates", "templates"] else: return ["templates"]
df74bc751f701be63276b5481ac222e64ba914e7
3,650,432
def encode_string(s): """ Simple utility function to make sure a string is proper to be used in a SQL query EXAMPLE: That's my boy! -> N'That''s my boy!' """ res = "N'"+s.replace("'","''")+"'" res = res.replace("\\''","''") res = res.replace("\''","''") return res
814822b9aa15def24f98b2b280ab899a3f7ea617
3,650,433
def email_manage(request, email_pk, action): """Set the requested email address as the primary. Can only be requested by the owner of the email address.""" email_address = get_object_or_404(EmailAddress, pk=email_pk) if not email_address.user == request.user and not request.user.is_staff: messages.error(request, "You are not authorized to manage this email address") # if not email_address.is_verified(): # messages.error(request, "Email '%s' needs to be verified first." % email_address.email) if action == "set_primary": email_address.set_primary() messages.success(request, "'%s' is now marked as your primary email address." % email_address.email) elif action == "delete": email_address.delete() messages.success(request, "'%s' has been removed." % email_address.email) if 'HTTP_REFERER' in request.META: return redirect(request.META['HTTP_REFERER']) else: return redirect(reverse('member:profile:view', kwargs={'username': email_address.user.username}))
7a533fe34fdc13b737025c01bb0bb15dcbeae0f2
3,650,434
def get_container_service_api_version(): """Get zun-api-version with format: 'container X.Y'""" return 'container ' + CONTAINER_SERVICE_MICROVERSION
c6f83640b50132e24ce96889688afcda49ba6b1c
3,650,435
import yaml import os def prepare_config(config_path=None, schema_path=None, config=None, schema=None, base_path=None) -> Munch: """ Takes in paths to config and schema files. Validates the config against the schema, normalizes the config, parses gin and converts the config to a Munch. """ # Load up the config if config is None: assert config_path is not None, 'Please pass in either config or config_path.' assert config_path.endswith('.yaml'), 'Must use a YAML file for the config.' config = yaml.load(open(config_path), Loader=yaml.FullLoader) # If the config is a Quinfig object, just grab the __dict__ for convenience if isinstance(config, Quinfig): config = config.__dict__ # Convert config to Munch: iffy ensures that the Munch fn is only applied to mappings config = walk_values_rec(iffy(is_mapping, lambda c: Munch(**c)), config) # Load up the schema if schema is None: if schema_path is not None: assert schema_path.endswith('.yaml'), 'Must use a YAML file for the config.' schema = yaml.load(open(schema_path), Loader=yaml.FullLoader) if schema is not None: # Allow gin configuration at any level of nesting: put a gin tag at every level of the schema schema = autoexpand_schema(schema) # Validate the config against the schema validate_config(config, schema) # Normalize the config if not base_path: base_path = os.path.dirname(os.path.abspath(config_path)) if config_path else '' else: base_path = os.path.abspath(base_path) config = normalize_config(config, schema, base_path=base_path) # Convert config to Munch: iffy ensures that the Munch fn is only applied to mappings config = walk_values_rec(iffy(is_mapping, lambda c: Munch(**c)), config) # Parse and load the gin configuration nested_gin_dict_parser(config) return config
3bcf3a033134475ef873ab631410cc210c5b09a2
3,650,436
from django.utils.cache import get_cache_key from django.core.cache import cache def invalidate_view_cache(view_name, args=[], namespace=None, key_prefix=None): """ This function allows you to invalidate any view-level cache. view_name: view function you wish to invalidate or it's named url pattern args: any arguments passed to the view function namepace: if an application namespace is used, pass that key prefix: for the @cache_page decorator for the function (if any) """ # create a fake request object request = HttpRequest() # Loookup the request path: if namespace: view_name = namespace + ":" + view_name request.path = reverse(view_name, args=args) # get cache key, expire if the cached item exists: key = get_cache_key(request, key_prefix=key_prefix) if key: if cache.get(key): cache.set(key, None, 0) return True return False
2622e6ee48cb7565014660858104edba5b20b9eb
3,650,437
def compute_ray_features_segm_2d(seg_binary, position, angle_step=5., smooth_coef=0, edge='up'): """ compute ray features vector , shift them to be starting from larges and smooth_coef them by gauss filter (from given point the close distance to boundary) :param ndarray seg_binary: np.array<height, width> :param tuple(int,int) position: integer position in the segmentation :param float angle_step: angular step for ray features :param str edge: pointing to the up of down edge of an boundary :param int smooth_coef: smoothing the final ray features :return list(float): ray distances .. seealso:: :func:`imsegm.descriptors.compute_ray_features_segm_2d_vectors` .. note:: for more examples, see unittests >>> seg_empty = np.zeros((100, 150), dtype=bool) >>> compute_ray_features_segm_2d(seg_empty, (50, 75), 90) # doctest: +ELLIPSIS array([-1., -1., -1., -1.]...) >>> from skimage import draw >>> seg = np.ones((100, 150), dtype=bool) >>> x, y = draw.circle(50, 75, 40, shape=seg.shape) >>> seg[x, y] = False >>> np.round(compute_ray_features_segm_2d(seg, (50, 75), 45)) # doctest: +ELLIPSIS array([ 40., 41., 40., 41., 40., 41., 40., 41.]...) >>> np.round(compute_ray_features_segm_2d(seg, (60, 40), 30, smooth_coef=1)).tolist() [66.0, 52.0, 32.0, 16.0, 8.0, 5.0, 5.0, 8.0, 16.0, 33.0, 53.0, 67.0] >>> ray_fts = compute_ray_features_segm_2d(seg, (40, 60), 20) >>> np.round(ray_fts).tolist() # doctest: +NORMALIZE_WHITESPACE [54.0, 57.0, 59.0, 55.0, 51.0, 44.0, 38.0, 31.0, 27.0, 24.0, 22.0, 22.0, 23.0, 26.0, 29.0, 35.0, 42.0, 49.0] """ assert seg_binary.ndim == len(position), \ 'Segmentation dim of %r and position (%i) does not match' \ % (seg_binary.ndim, len(position)) seg_binary = seg_binary.astype(bool) position = tuple(map(int, position)) fn_compute = cython_ray_features_seg2d if USE_CYTHON else numpy_ray_features_seg2d ray_dist = fn_compute(seg_binary, position, angle_step, edge) if smooth_coef is not None and smooth_coef > 0: ray_dist = gaussian_filter1d(ray_dist, smooth_coef) return ray_dist
18b830fe6ac83cf7282be39d368ad7c1261a890c
3,650,438
def visualize_bbox(img, bbox, class_name, color=(255, 0, 0) , thickness=2): """Visualizes a single bounding box on the image""" BOX_COLOR = (255, 0, 0) # Red TEXT_COLOR = (255, 255, 255) # White x_min, y_min, x_max, y_max = bbox cv2.rectangle(img, (x_min, y_min), (x_max, y_max), color=color, thickness=thickness) ((text_width, text_height), _) = cv2.getTextSize(class_name, cv2.FONT_HERSHEY_SIMPLEX, 0.35, 1) cv2.rectangle(img, (x_min, y_min - int(1.3 * text_height)), (x_min + text_width, y_min), BOX_COLOR, -1) cv2.putText( img, text=class_name, org=(x_min, y_min - int(0.3 * text_height)), fontFace=cv2.FONT_HERSHEY_SIMPLEX, fontScale=0.35, color=TEXT_COLOR, lineType=cv2.LINE_AA, ) return img
147335c2e87b57f0bd0ba0840e9dae9f713b513f
3,650,439
import json def mock_light(): """Mock UniFi Protect Camera device.""" data = json.loads(load_fixture("sample_light.json", integration=DOMAIN)) return Light.from_unifi_dict(**data)
ba83ae80ddb39ec9f9b6f30b77eabee39f998b39
3,650,440
def randomize_bulge_i(N, M, bp='G', target='none', ligand='theo'): """ Replace the upper stem with the aptamer and randomize the bulge to connect it to the lower stem. This is a variant of the rb library with two small differences. First, the nucleotides flanking the aptamer are not randomized and are instead guaranteed to base pair. The default base pair is GC. However, note that to be consistent with rb, this base pair is considered part of the linker, and is included in the N and M arguments. So rbi/4/8 only randomizes 10 positions. Second, the library is based off the Dang scaffold. Most extended upper stem is replaced with the aptamer, but the CG base pair in the lower stem remains. Parameters ---------- N: int The length of the linker on the 5' side of the aptamer. This length includes a non-randomized base pair immediately adjacent to the aptamer. M: int The length of the linker on the 3' side of the aptamer. This length includes a non-randomized base pair immediately adjacent to the aptamer. bp: 'ACGU' Not implemented, but this would be a good interface for changing the static base pair. Right now to base pair is hard-coded to be GC. """ sgrna = on(target=target) sgrna['bulge/5'].attachment_sites = 0, sgrna['bulge/3'].attachment_sites = 4, sgrna.attach( random_insert(ligand, N, M, flags='g'), 'bulge/5', 0, 'bulge/3', 4, ) return sgrna
aff8aa9e6ba276bb9d867f24c58c44e0e3c849f6
3,650,441
def JSparser(contents: str) -> str: """ Is supposed to replace URLs in JS. Arguments: contents: JS string Returns: Input JS string """ # TODO: URL replacement return contents
393216d8e10677405d888e4cdd6a884aebb0684a
3,650,442
import logging def parse_identifier(db, identifier): """Parse the identifier and return an Identifier object representing it. :param db: Database session :type db: sqlalchemy.orm.session.Session :param identifier: String containing the identifier :type identifier: str :return: Identifier object :rtype: Optional[core.model.identifier.Identifier] """ parsed_identifier = None try: result = Identifier.parse_urn(db, identifier) if result is not None: parsed_identifier, _ = result except Exception: logging.error( f"An unexpected exception occurred during parsing identifier {identifier}" ) return parsed_identifier
390fc8d44014d2cdb17fc641dab9914ba13bc95e
3,650,443
import textwrap def wrap_name(dirname, figsize): """Wrap name to fit in subfig.""" fontsize = plt.rcParams["font.size"] # 1/120 = inches/(fontsize*character) num_chars = int(figsize / fontsize * 72) return textwrap.fill(dirname, num_chars)
7fb7430a01781c7c53637ae4a94c72c057faddab
3,650,444
def resolve_shape(tensor, rank=None, scope=None): """Fully resolves the shape of a Tensor. Use as much as possible the shape components already known during graph creation and resolve the remaining ones during runtime. Args: tensor: Input tensor whose shape we query. rank: The rank of the tensor, provided that we know it. scope: Optional name scope. Returns: shape: The full shape of the tensor. """ with tf.name_scope(scope, 'resolve_shape', [tensor]): if rank is not None: shape = tensor.get_shape().with_rank(rank).as_list() else: shape = tensor.get_shape().as_list() if None in shape: shape_dynamic = tf.shape(tensor) for i in range(len(shape)): if shape[i] is None: shape[i] = shape_dynamic[i] return shape
cc1c3a0bd2b5a35580dd94b6c45a2a36cc151e5a
3,650,445
def gradient_clip(gradients, max_gradient_norm): """Clipping gradients of a model.""" clipped_gradients, gradient_norm = tf.clip_by_global_norm( gradients, max_gradient_norm) gradient_norm_summary = [tf.summary.scalar("grad_norm", gradient_norm)] gradient_norm_summary.append( tf.summary.scalar("clipped_gradient", tf.global_norm(clipped_gradients))) return clipped_gradients, gradient_norm_summary
416f9560ad612ab364cd03de39851a559012d26b
3,650,446
import subprocess def get_sha_from_ref(repo_url, reference): """ Returns the sha corresponding to the reference for a repo :param repo_url: location of the git repository :param reference: reference of the branch :returns: utf-8 encoded string of the SHA found by the git command """ # Using subprocess instead of convoluted git libraries. # Any rc != 0 will be throwing an exception, so we don't have to care out = subprocess.check_output( ["git", "ls-remote", "--exit-code", repo_url, reference] ) # out is a b'' type string always finishing up with a newline # construct list of (ref,sha) refs = [ (line.split(b"\t")[1], line.split(b"\t")[0]) for line in out.split(b"\n") if line != b"" and b"^{}" not in line ] if len(refs) > 1: raise ValueError( "More than one ref for reference %s, please be more explicit %s" % (reference, refs) ) return refs[0][1].decode("utf-8")
d7ab3e98217fa57e0831a6df94d34f1cf45e3d97
3,650,447
def list_species(category_id): """ List all the species for the specified category :return: A list of Species instances """ with Session.begin() as session: species = session.query(Species)\ .filter(Species.categoryId == category_id)\ .order_by(db.asc(Species.name))\ .all() return species
c49283fdde11456ffc6e4eff4b5043d547fa9908
3,650,448
def get_motif_proteins(meme_db_file): """ Hash motif_id's to protein names using the MEME DB file """ motif_protein = {} for line in open(meme_db_file): a = line.split() if len(a) > 0 and a[0] == 'MOTIF': if a[2][0] == '(': motif_protein[a[1]] = a[2][1:a[2].find(')')] else: motif_protein[a[1]] = a[2] return motif_protein
88e42b84314593a965e7dd681ded612914e35629
3,650,449
import os import sys def get_files(search_glob): """ Returns all files matching |search_glob|. """ recursive_glob = '**' + os.path.sep if recursive_glob in search_glob: if sys.version_info >= (3, 5): result = iglob(search_glob, recursive=True) else: # Polyfill for recursive glob pattern matching added in Python 3.5. result = get_files_recursive(*search_glob.split(recursive_glob)) else: result = iglob(search_glob) # Sort the result for consistency across platforms. return sorted(result)
3e09c26b0e2a77f3c883fce048825af4c025d502
3,650,450
def pixellate_bboxes(im, bboxes, cell_size=(5,6), expand_per=0.0): """Pixellates ROI using Nearest Neighbor inerpolation :param im: (numpy.ndarray) image BGR :param bbox: (BBox) :param cell_size: (int, int) pixellated cell size :returns (numpy.ndarray) BGR image """ if not bboxes: return im elif not type(bboxes) == list: bboxes = list(bboxes) for bbox in bboxes: if expand_per > 0: bbox = bbox.expand_per(expand_per) x1,y1,x2,y2 = bbox.xyxy_int im_roi = im[y1:y2, x1:x2] h,w,c = im_roi.shape # pixellate im_roi = cv.resize(im_roi, cell_size, interpolation=cv.INTER_NEAREST) im_roi = cv.resize(im_roi, (w,h), interpolation=cv.INTER_NEAREST) im[y1:y2, x1:x2] = im_roi return im
8c028714467c350dfd799671b0b18739705393ba
3,650,451
import sys def in_ipython() -> bool: """try to detect whether we are in an ipython shell, e.g., a jupyter notebook""" ipy_module = sys.modules.get("IPython") if ipy_module: return bool(ipy_module.get_ipython()) else: return False
7a6804b964bd7fbde6d5795da953954343575413
3,650,452
def StepToGeom_MakeHyperbola2d_Convert(*args): """ :param SC: :type SC: Handle_StepGeom_Hyperbola & :param CC: :type CC: Handle_Geom2d_Hyperbola & :rtype: bool """ return _StepToGeom.StepToGeom_MakeHyperbola2d_Convert(*args)
6896b27c10526b3a7f1d5840a63209a6f30d163e
3,650,453
def create_dict(local=None, field=None, **kwargs): """ 以字典的形式从局部变量locals()中获取指定的变量 :param local: dict :param field: str[] 指定需要从local中读取的变量名称 :param kwargs: 需要将变量指定额外名称时使用 :return: dict """ if field is None or local is None: return {} result = {k: v for k, v in local.items() if k in field} result.update(**kwargs) return result
19aceef7f648cc72f29fceba811085cde9d6d587
3,650,454
def sum_list_for_datalist(list): """ DB에 저장할 때, 기준일로부터 과거 데이터가 존재하지 않을 경우에는 0을 return 한다. :param list: :return: float or int """ mysum = 0 for i in range(0, len(list)): if list[i] == 0: return 0 mysum = mysum + list[i] return mysum
bae8966f64c642176d92d31c27df691e0f255d6a
3,650,455
def elu(x, alpha=1.): """Exponential linear unit. Arguments: x {tensor} -- Input float tensor to perform activation. alpha {float} -- A scalar, slope of negative section. Returns: tensor -- Output of exponential linear activation """ return x * (x > 0) + alpha * (tf.math.exp(x) - 1.) * (x < 0)
c40c7aa4a0553dc6b0b6c6dd9f583a701f022e70
3,650,456
def coalesce(*args): """ Compute the first non-null value(s) from the passed arguments in left-to-right order. This is also known as "combine_first" in pandas. Parameters ---------- *args : variable-length value list Examples -------- >>> import ibis >>> expr1 = None >>> expr2 = 4 >>> result = ibis.coalesce(expr1, expr2, 5) Returns ------- coalesced : type of first provided argument """ return ops.Coalesce(args).to_expr()
0fb1af5db75c7ad65f470e348d76d0f289ba5ff2
3,650,457
import json def get_analysis(poem, operations, rhyme_analysis=False, alternative_output=False): """ View for /analysis that perform an analysis of poem running the different operations on it. :param poem: A UTF-8 encoded byte string with the text of the poem :param operations: List of strings with the operations to be performed: - "scansion": Performs scansion analysis - "enjambment": Performs enjambment detection :param rhyme_analysis: Whether or not rhyme analysis is to be performed :return: Response object with a dict with a key for each operation and its analysis or a serialized version of it """ analysis = analyze(poem.decode('utf-8'), operations, rhyme_analysis, alternative_output) mime = connexion.request.headers.get("Accept") # serialization = serialize(analysis, mime) return Response(json.dumps(analysis), mimetype=mime)
1f40376a4ecbbe6453caa909406f595707cc44be
3,650,458
def get_detail_root(): """ Get the detail storage path in the git project """ return get_root() / '.detail'
aa2c30ed839d32e084a11c52f17af621ecfb9011
3,650,459
def solve(strs, m, n): """ 2D 0-1 knapsack """ def count(s): m, n = 0, 0 for c in s: if c == "0": m += 1 elif c == "1": n += 1 return m, n dp = [] for _ in range(m + 1): dp.append([0] * (n + 1)) for s in strs: mi, ni = count(s) for j in range(m, mi - 1, -1): # reverse! for k in range(n, ni - 1, -1): # reverse! dp[j][k] = max(dp[j][k], dp[j - mi][k - ni] + 1) return dp[m][n]
3fb2b16fc9059227c0edce1199269988d18cb908
3,650,460
def bk_category_chosen_category(): """Returns chosen category for creating bk_category object.""" return "Bread"
cbf1c933e5c2b69214e828afaab5babdba61dca8
3,650,461
import math def apply_weights( events, total_num=1214165.85244438, # for chips_1200 nuel_frac=0.00003202064566, # for chips_1200 anuel_frac=0.00000208200747, # for chips_1200 numu_frac=0.00276174709613, # for chips_1200 anumu_frac=0.00006042213136, # for chips_1200 cosmic_frac=0.99714372811940, # for chips_1200 osc_file_name="./inputs/oscillations/matter_osc_cp_zero.root", verbose=False, ): """Calculate and apply the 'weight' column to scale events to predicted numbers. Args: events (pd.DataFrame): events dataframe to append weights to total_num (float): total number of expected events in a year nuel_frac (float): fraction of events from nuel anuel_frac (float): fraction of events from anuel numu_frac (float): fraction of events from numu anumu_frac (float): fraction of events from anumu cosmic_frac (float): fractions of events from cosmics osc_file_name (str): Oscillation data file name verbose (bool): should we print the weight summary? Returns: pd.DataFrame: events dataframe with weights """ def apply_scale_weight(event, w_nuel, w_anuel, w_numu, w_anumu, w_cosmic): """Add the correct weight to each event. Args: event (dict): pandas event(row) dict w_nuel: nuel weight w_anuel: anuel weight w_numu: numu weight w_anumu: anumu weight w_cosmic: cosmic weight """ if ( event[data.MAP_NU_TYPE["name"]] == 0 and event[data.MAP_SIGN_TYPE["name"]] == 0 and event[data.MAP_COSMIC_CAT["name"]] == 0 and event["t_sample_type"] == 0 ): # Beam nuel return w_nuel elif ( event[data.MAP_NU_TYPE["name"]] == 0 and event[data.MAP_SIGN_TYPE["name"]] == 0 and event[data.MAP_COSMIC_CAT["name"]] == 0 and event["t_sample_type"] == 1 ): # Appeared nuel return 1 elif ( event[data.MAP_NU_TYPE["name"]] == 0 and event[data.MAP_SIGN_TYPE["name"]] == 1 and event[data.MAP_COSMIC_CAT["name"]] == 0 and event["t_sample_type"] == 0 ): # Beam anuel return w_anuel elif ( event[data.MAP_NU_TYPE["name"]] == 1 and event[data.MAP_SIGN_TYPE["name"]] == 0 and event[data.MAP_COSMIC_CAT["name"]] == 0 and event["t_sample_type"] == 0 ): # Beam numu return w_numu elif ( event[data.MAP_NU_TYPE["name"]] == 1 and event[data.MAP_SIGN_TYPE["name"]] == 1 and event[data.MAP_COSMIC_CAT["name"]] == 0 and event["t_sample_type"] == 0 ): # Beam anumu return w_anumu elif event[data.MAP_COSMIC_CAT["name"]] == 1 and event["t_sample_type"] == 2: return w_cosmic else: return 0 def apply_osc_weight(event, numu_survival_prob, nuel_osc): """Add the correct weight to each event. Args: event (dict): pandas event(row) dict numu_survival_prob (np.array): numu survival probability array nuel_osc (np.array): numu appearance scaled probability array """ if ( event[data.MAP_NU_TYPE["name"]] == 0 and event[data.MAP_SIGN_TYPE["name"]] == 0 and event[data.MAP_COSMIC_CAT["name"]] == 0 and event["t_sample_type"] == 0 ): # Beam nuel return event["w"] if ( event[data.MAP_NU_TYPE["name"]] == 0 and event[data.MAP_SIGN_TYPE["name"]] == 0 and event[data.MAP_COSMIC_CAT["name"]] == 0 and event["t_sample_type"] == 1 ): # Appeared nuel nu_energy = math.floor(event["t_nu_energy"] / 100) if nu_energy > 99: nu_energy = 99 if nuel_osc[nu_energy] == 0.0: return event["w"] else: return nuel_osc[nu_energy] * event["w"] elif ( event[data.MAP_NU_TYPE["name"]] == 0 and event[data.MAP_SIGN_TYPE["name"]] == 1 and event[data.MAP_COSMIC_CAT["name"]] == 0 and event["t_sample_type"] == 0 ): # beam anuel return event["w"] elif ( event[data.MAP_NU_TYPE["name"]] == 1 and event[data.MAP_SIGN_TYPE["name"]] == 0 and event[data.MAP_COSMIC_CAT["name"]] == 0 and event["t_sample_type"] == 0 ): # Beam numu nu_energy = math.floor(event["t_nu_energy"] / 100) if nu_energy > 99: nu_energy = 99 return numu_survival_prob[nu_energy] * event["w"] elif ( event[data.MAP_NU_TYPE["name"]] == 1 and event[data.MAP_SIGN_TYPE["name"]] == 1 and event[data.MAP_COSMIC_CAT["name"]] == 0 and event["t_sample_type"] == 0 ): # Beam anumu nu_energy = math.floor(event["t_nu_energy"] / 100) if nu_energy > 99: nu_energy = 99 return numu_survival_prob[nu_energy] * event["w"] elif event[data.MAP_COSMIC_CAT["name"]] == 1 and event["t_sample_type"] == 2: return event["w"] else: return 0 np.seterr(divide="ignore", invalid="ignore") tot_nuel = events[ (events[data.MAP_NU_TYPE["name"]] == 0) & (events[data.MAP_SIGN_TYPE["name"]] == 0) & (events[data.MAP_COSMIC_CAT["name"]] == 0) & (events["t_sample_type"] == 0) ].shape[0] tot_anuel = events[ (events[data.MAP_NU_TYPE["name"]] == 0) & (events[data.MAP_SIGN_TYPE["name"]] == 1) & (events[data.MAP_COSMIC_CAT["name"]] == 0) & (events["t_sample_type"] == 0) ].shape[0] tot_numu = events[ (events[data.MAP_NU_TYPE["name"]] == 1) & (events[data.MAP_SIGN_TYPE["name"]] == 0) & (events[data.MAP_COSMIC_CAT["name"]] == 0) & (events["t_sample_type"] == 0) ].shape[0] tot_anumu = events[ (events[data.MAP_NU_TYPE["name"]] == 1) & (events[data.MAP_SIGN_TYPE["name"]] == 1) & (events[data.MAP_COSMIC_CAT["name"]] == 0) & (events["t_sample_type"] == 0) ].shape[0] tot_cosmic = events[events[data.MAP_COSMIC_CAT["name"]] == 1].shape[0] if tot_nuel == 0: w_nuel = 0.0 else: w_nuel = (1.0 / tot_nuel) * (nuel_frac * total_num) if tot_anuel == 0: w_anuel = 0.0 else: w_anuel = (1.0 / tot_anuel) * (anuel_frac * total_num) if tot_numu == 0: w_numu = 0.0 else: w_numu = (1.0 / tot_numu) * (numu_frac * total_num) if tot_anumu == 0: w_anumu = 0.0 else: w_anumu = (1.0 / tot_anumu) * (anumu_frac * total_num) if tot_cosmic == 0: w_cosmic = 0.0 else: w_cosmic = (1.0 / tot_cosmic) * (cosmic_frac * total_num) if verbose: print( "Weights: ({},{:.5f}), ({},{:.5f}), ({},{:.5f}), ({},{:.5f}), ({},{:.5f})".format( tot_nuel, w_nuel, tot_anuel, w_anuel, tot_numu, w_numu, tot_anumu, w_anumu, tot_cosmic, w_cosmic, ) ) events["w"] = events.apply( apply_scale_weight, axis=1, args=(w_nuel, w_anuel, w_numu, w_anumu, w_cosmic), ) # Now we need to apply the oscillation probability weights osc_file = uproot.open(osc_file_name) # We need to scale the nuel events so they simulate the appearance spectra numu_ev = events[ # Get the unoscillated numu beam events (events[data.MAP_NU_TYPE["name"]] == 1) & (events[data.MAP_SIGN_TYPE["name"]] == 0) & (events[data.MAP_COSMIC_CAT["name"]] == 0) & (events["t_sample_type"] == 0) ] nuel_ev = events[ # Get the nuel events generated with the numu flux (events[data.MAP_NU_TYPE["name"]] == 0) & (events[data.MAP_SIGN_TYPE["name"]] == 0) & (events[data.MAP_COSMIC_CAT["name"]] == 0) & (events["t_sample_type"] == 1) ] numu_e_h = np.histogram( numu_ev["t_nu_energy"] / 100, bins=100, range=(0, 100), weights=numu_ev["w"], ) nuel_e_h = np.histogram( nuel_ev["t_nu_energy"] / 100, bins=100, range=(0, 100), weights=nuel_ev["w"], ) nuel_osc = (numu_e_h[0] * osc_file["hist_mue"].values) / nuel_e_h[0] # Apply a weight to every event events["w"] = events.apply( apply_osc_weight, axis=1, args=( osc_file["hist_mumu"].values, nuel_osc, ), ) return events
81f35a51b3d28577204087511f9c405ff56afaaa
3,650,462
def _pipe_line_with_colons(colwidths, colaligns): """Return a horizontal line with optional colons to indicate column's alignment (as in `pipe` output format).""" segments = [_pipe_segment_with_colons(a, w) for a, w in zip(colaligns, colwidths)] return "|" + "|".join(segments) + "|"
76dd17c761e7adb06fe57c5210645a4fe3872374
3,650,463
from datetime import datetime def convert_to_dates(start, end): """ CTD - Convert two strings to datetimes in format 'xx:xx' param start: String - First string to convert param end: String - Second string to convert return: datetime - Two datetimes """ start = datetime.strptime(start, "%H:%M") end = datetime.strptime(end, "%H:%M") if end < start: end += timedelta(days=1) return start, end
53ffb9924d31385aac2eafc66fe7a6159e5a310d
3,650,464
def flipud(m): """ Flips the entries in each column in the up/down direction. Rows are preserved, but appear in a different order than before. Args: m (Tensor): Input array. Returns: Tensor. Raises: TypeError: If the input is not a tensor. Supported Platforms: ``GPU`` ``CPU`` Example: >>> import mindspore.numpy as np >>> A = np.arange(8.0).reshape((2,2,2)) >>> output = np.flipud(A) >>> print(output) [[[4. 5.] [6. 7.]] [[0. 1.] [2. 3.]]] """ return flip(m, 0)
06770689d23ca365fb57a6b9d1e74654b30ddaf2
3,650,465
def get_book_url(tool_name, category): """Get the link to the help documentation of the tool. Args: tool_name (str): The name of the tool. category (str): The category of the tool. Returns: str: The URL to help documentation. """ prefix = "https://jblindsay.github.io/wbt_book/available_tools" url = "{}/{}.html#{}".format(prefix, category, tool_name) return url
daf6c8e0832295914a03b002b548a82e2949612a
3,650,466
import hashlib def game_hash(s): """Generate hash-based identifier for a game account based on the text of the game. """ def int_to_base(n): alphabet = "BCDFGHJKLMNPQRSTVWXYZ" base = len(alphabet) if n < base: return alphabet[n] return int_to_base(n // base) + alphabet[n % base] return int_to_base( int(hashlib.sha1(s.encode('utf-8')).hexdigest(), 16) )[-7:]
c218a2607390916117921fe0f68fc23fedd51fc3
3,650,467
import math def thumbnail_url(bbox, layers, qgis_project, style=None, internal=True): """Internal function to generate the URL for the thumbnail. :param bbox: The bounding box to use in the format [left,bottom,right,top]. :type bbox: list :param layers: Name of the layer to use. :type layers: basestring :param qgis_project: The path to the QGIS project. :type qgis_project: basestring :param style: Layer style to choose :type style: str :param internal: Flag to switch between public url and internal url. Public url will be served by Django Geonode (proxified). :type internal: bool :return: The WMS URL to fetch the thumbnail. :rtype: basestring """ x_min, y_min, x_max, y_max = bbox # We calculate the margins according to 10 percent. percent = 10 delta_x = (x_max - x_min) / 100 * percent delta_x = math.fabs(delta_x) delta_y = (y_max - y_min) / 100 * percent delta_y = math.fabs(delta_y) # We apply the margins to the extent. margin = [ y_min - delta_y, x_min - delta_x, y_max + delta_y, x_max + delta_x ] # Call the WMS. bbox = ','.join([str(val) for val in margin]) query_string = { 'SERVICE': 'WMS', 'VERSION': '1.1.1', 'REQUEST': 'GetMap', 'BBOX': bbox, 'SRS': 'EPSG:4326', 'WIDTH': '250', 'HEIGHT': '250', 'MAP': qgis_project, 'LAYERS': layers, 'STYLE': style, 'FORMAT': 'image/png', 'TRANSPARENT': 'true', 'DPI': '96', 'MAP_RESOLUTION': '96', 'FORMAT_OPTIONS': 'dpi:96' } qgis_server_url = qgis_server_endpoint(internal) url = Request('GET', qgis_server_url, params=query_string).prepare().url return url
aa405eae72eacd7fd7b842bf569cc1ba3bc19315
3,650,468
def evaluate_prediction_power(df, num_days=1): """" Applies a shift to the model for the number of days given, default to 1, and feed the data to a linear regression model. Evaluate the results using score and print it. """ scores = {} print "Num days: {}".format(range(num_days)) for i in range(num_days): X,y = get_xy(df, num_days=i) regressor = learn(X,y) scores[i] = regressor.score(X,y) return scores
d4e91c8eb656fea8fce16cc16eb1588415c80849
3,650,469
def get_select_file_dialog_dir(): """" Return the directory that should be displayed by default in file dialogs. """ directory = CONF.get('main', 'select_file_dialog_dir', get_home_dir()) directory = directory if osp.exists(directory) else get_home_dir() return directory
9ae485caf5c5162e0b0e4082cee3e99925861717
3,650,470
import os def get_photo_filesystem_path(photos_basedir, album_name, filename): """ Gets location of photo on filesystem, e.g.: /some/dir/album/photo.jpg :param album_name: :param filename: :return: """ return os.path.join(photos_basedir, get_photo_filesystem_relpath(album_name, filename))
6bd754b31def01cf5b403bc924720efe999816dc
3,650,471
import os import imp import random from typing import OrderedDict def getAdminData(self): """ Deliver admin content of module alarms (ajax) :return: rendered template as string or json dict """ if request.args.get('action') == 'upload': if request.files: ufile = request.files['uploadfile'] fname = os.path.join(current_app.config.get('PATH_TMP'), ufile.filename) ufile.save(fname) scheduler.add_job(processFile, args=[current_app.config.get('PATH_TMP'), ufile.filename]) # schedule operation return "" elif request.args.get('action') == 'uploadchecker': if request.files: ufile = request.files['uploadfile'] if not os.path.exists('%s/emonitor/modules/alarms/inc/%s' % (current_app.config.get('PROJECT_ROOT'), ufile.filename)): ufile.save('%s/emonitor/modules/alarms/inc/%s' % (current_app.config.get('PROJECT_ROOT'), ufile.filename)) try: cls = imp.load_source('emonitor.modules.alarms.inc', 'emonitor/modules/alarms/inc/%s' % ufile.filename) if isinstance(getattr(cls, cls.__all__[0])(), AlarmFaxChecker): return "ok" except: pass os.remove('%s/emonitor/modules/alarms/inc/%s' % (current_app.config.get('PROJECT_ROOT'), ufile.filename)) return babel.gettext(u'admin.alarms.checkernotvalid') return "" elif request.args.get('action') == 'uploaddefinition': """ add alarmtype with given config for uploadfile """ alarmtype = AlarmType.buildFromConfigFile(request.files['uploadfile']) if not alarmtype: db.session.rollback() return babel.gettext(u'admin.alarms.incorrecttypedefinition') db.session.add(alarmtype) db.session.commit() return "ok" elif request.args.get('action') == 'gettypedefinition': """ export alarmtype definition as cfg-file """ alarmtype = AlarmType.getAlarmTypes(request.args.get('alarmtype')) if alarmtype: return Response(alarmtype.getConfigFile(), mimetype="application/x.download; charset=utf-8") else: return None elif request.args.get('action') == 'getkeywords': """ send list with all keywords of alarmtype """ for f in [f for f in os.listdir('%s/emonitor/modules/alarms/inc/' % current_app.config.get('PROJECT_ROOT')) if f.endswith('.py')]: if f == request.args.get('checker'): cls = imp.load_source('emonitor.modules.alarms.inc', 'emonitor/modules/alarms/inc/%s' % f) cls = getattr(cls, cls.__all__[0])() return {u'keywords': "\n".join(cls.getDefaultConfig()[u'keywords']), u'variables': cls.getDefaultConfig()[u'translations'], u'attributes': cls.getDefaultConfig()[u'attributes']} return "" elif request.args.get('action') == 'alarmsforstate': alarms = Alarm.getAlarms(state=int(request.args.get('state'))) return render_template('admin.alarms_alarm.html', alarms=alarms) elif request.args.get('action') == 'alarmsarchive': for id in request.args.get('alarmids').split(','): Alarm.changeState(int(id), 3) return "" elif request.args.get('action') == 'savefieldorder': # change order of fields fields = [] deptid = '0' for f in request.args.get('order').split(','): t, deptid, name = f.split('.') fields.append(name) if int(deptid): for dbfield in AlarmField.getAlarmFields(dept=deptid): dbfield.position = fields.index(dbfield.fieldtype) db.session.commit() return "" elif request.args.get('action') == 'addreport': f = request.files['template'] fname = "{}.{}".format(random.random(), f.filename.split('.')[-1]) fpath = '{}alarmreports/{}'.format(current_app.config.get('PATH_DATA'), fname[2:]) f.save(fpath) if f.filename.endswith('pdf'): fields = getFormFields(fpath) content = render_template('admin.alarms.report_fields.html', filepath='{}alarmreports/{}'.format(current_app.config.get('PATH_DATA'), fname[2:]), fileinfo=getPDFInformation(fpath), fields=fields, multi=max(fields.values()) > 1) else: content = "" fields = [] return {'filename': fname, 'content': content} elif request.args.get('action') == 'reportdetails': return render_template('admin.alarms.report_details.html', report=AlarmReport.getReports(id=request.args.get('reportid')), reporttype=AlarmReport.getReportTypes(request.args.get('template')), departments=request.args.get('departments')) elif request.args.get('action') == 'reportfieldlookup': ret = OrderedDict() ret['basic'] = [] # add basic information from AFBasic class for f in AFBasic().getFields(): ret['basic'].append({'id': f.name, 'value': f.id}) alarmfields = {} for alarmfield in AlarmField.getAlarmFields(): if str(alarmfield.dept) not in request.args.get('departments').split(','): continue if alarmfield.fieldtype not in alarmfields: alarmfields[alarmfield.fieldtype] = [] alarmfields[alarmfield.fieldtype].append(alarmfield) l = "" for alarmfield in list(chain.from_iterable([f for f in alarmfields.values() if len(f) == len(request.args.get('departments').split(','))])): if '%s' % alarmfield.name not in ret: ret['%s' % alarmfield.name] = [{'id': '%s-list' % alarmfield.fieldtype, 'value': '%s (%s)' % (alarmfield.name, babel.gettext('admin.alarms.list'))}] for f in alarmfield.getFields(): if f.getLabel().strip() not in ["", '<leer>']: # dismiss empty values if f.name[0] != ' ': value = '%s' % babel.gettext(f.getLabel()) l = value else: # add name of kategory value = '%s > %s' % (l, babel.gettext(f.getLabel())) ret['%s' % alarmfield.name].append({'id': '%s-%s' % (alarmfield.fieldtype, f.id), 'value': value}) return ret
38669746fe0b5436827999b51a4a57a3f294a76c
3,650,472
def join_collections(sql_query: sql.SQLQuery) -> QueryExpression: """Join together multiple collections to return their documents in the response. Params: ------- sql_query: SQLQuery object with information about the query params. Returns: -------- An FQL query expression for joined and filtered documents. """ tables = sql_query.tables order_by = sql_query.order_by from_table = tables[0] to_table = tables[-1] table_with_columns = next(table for table in tables if table.has_columns) if ( order_by is not None and order_by.columns[0].table_name != table_with_columns.name ): raise exceptions.NotSupportedError( "Fauna uses indexes for both joining and ordering of results, " "and we currently can only sort the principal table " "(i.e. the one whose columns are being selected or modified) in the query. " "You can sort on a column from the principal table, query one table at a time, " "or remove the ordering constraint." ) if not any(sql_query.filter_groups): raise exceptions.NotSupportedError( "Joining tables without cross-table filters via the WHERE clause is not supported. " "Selecting columns from multiple tables is not supported either, " "so there's no performance gain from joining tables without cross-table conditions " "for filtering query results." ) assert from_table.left_join_table is None intersection_queries = [] for filter_group in sql_query.filter_groups: intersection_query = q.intersection( *[ _build_intersecting_query(filter_group, None, table, direction) for table, direction in [(from_table, "right"), (to_table, "left")] ] ) intersection_queries.append(intersection_query) return q.union(*intersection_queries)
62ad0cbad609e8218b4ac9d78f893fbcfc90618e
3,650,473
def querylist(query, encoding='utf-8', errors='replace'): """Split the query component into individual `name=value` pairs and return a list of `(name, value)` tuples. """ if query: qsl = [query] else: return [] if isinstance(query, bytes): QUERYSEP = (b';', b'&') EQ = b'=' else: QUERYSEP = ';&' EQ = '=' for sep in QUERYSEP: qsl = [s for qs in qsl for s in qs.split(sep) if s] items = [] for qs in qsl: parts = qs.partition(EQ) name = uridecode_safe_plus(parts[0], encoding, errors) if parts[1]: value = uridecode_safe_plus(parts[2], encoding, errors) else: value = None items.append((name, value)) return items
25f726aa76c3b34a9aebc5e111b28162d0b91e3f
3,650,474
def rotate_space_123(angles): """Returns the direction cosine matrix relating a reference frame B rotated relative to reference frame A through the x, y, then z axes of reference frame A (spaced fixed rotations). Parameters ---------- angles : numpy.array or list or tuple, shape(3,) Three angles (in units of radians) that specify the orientation of a new reference frame with respect to a fixed reference frame. The first angle is a pure rotation about the x-axis, the second about the y-axis, and the third about the z-axis. All rotations are with respect to the initial fixed frame, and they occur in the order x, then y, then z. Returns ------- R : numpy.matrix, shape(3,3) Three dimensional rotation matrix about three different orthogonal axes. Notes ----- R = |c2 * c3 s1 * s2 * c3 - s3 * c1 c1 * s2 * c3 + s3 * s1| |c2 * s3 s1 * s2 * s3 + c3 * c1 c1 * s2 * s3 - c3 * s1| |-s2 s1 * c2 c1 * c2 | where s1, s2, s3 = sine of the first, second and third angles, respectively c1, c2, c3 = cosine of the first, second and third angles, respectively So the unit vector b1 in the B frame can be expressed in the A frame (unit vectors a1, a2, a3) with: b1 = c2 * c3 * a1 + c2 * s3 * a2 - s2 * a3 Thus a vector vb which is expressed in frame B can be expressed in A by pre-multiplying by R: va = R * vb """ cx = np.cos(angles[0]) sx = np.sin(angles[0]) cy = np.cos(angles[1]) sy = np.sin(angles[1]) cz = np.cos(angles[2]) sz = np.sin(angles[2]) Rz = np.mat([[ cz,-sz, 0], [ sz, cz, 0], [ 0, 0, 1]]) Ry = np.mat([[ cy, 0, sy], [ 0, 1, 0], [-sy, 0, cy]]) Rx = np.mat([[ 1, 0, 0], [ 0, cx, -sx], [ 0, sx, cx]]) return Rz * Ry * Rx
f62ac16e63591c4852681479ab9d39227bad3dfc
3,650,475
import logging import os def parse_arguments(): """Parse and return the command line argument dictionary object """ parser = ArgumentParser("CIFAR-10/100 Training") _verbosity = "INFO" parser.add_argument( "-v", "--verbosity", type=str.upper, choices=logging._nameToLevel.keys(), default=_verbosity, metavar="VERBOSITY", help="output verbosity: {} (default: {})".format( " | ".join(logging._nameToLevel.keys()), _verbosity ), ) parser.add_argument("--manual-seed", type=int, help="manual seed integer") _mode = "train" parser.add_argument( "-m", "--mode", type=str.lower, default=_mode, choices=["train", "evaluate", "profile"], help=f"script execution mode (default: {_mode})", ) _tw_file = "tw.log" parser.add_argument( "-t", "--tensorwatch-log", type=str, default=_tw_file, help=f"tensorwatch log filename (default: {_tw_file})", ) parser.add_argument( "--gpu-id", default="0", type=str, help="id(s) for CUDA_VISIBLE_DEVICES" ) # Dataset Options d_op = parser.add_argument_group("Dataset") d_op.add_argument( "-d", "--dataset", default="cifar10", type=str.lower, choices=("cifar10", "cifar100"), ) avail_cpus = min(4, len(os.sched_getaffinity(0))) d_op.add_argument( "-w", "--workers", default=avail_cpus, type=int, metavar="N", help=f"number of data-loader workers (default: {avail_cpus})", ) # Architecture Options a_op = parser.add_argument_group("Architectures") _architecture = "alexnet" a_op.add_argument( "-a", "--arch", metavar="ARCH", default=_architecture, choices=MODEL_ARCHS.keys(), help="model architecture: {} (default: {})".format( " | ".join(MODEL_ARCHS.keys()), _architecture ), ) _depth = 29 a_op.add_argument( "--depth", type=int, default=_depth, help=f"Model depth (default: {_depth})" ) _block_name = "basicblock" _block_choices = ["basicblock", "bottleneck"] a_op.add_argument( "--block-name", type=str.lower, default=_block_name, choices=_block_choices, help=f"Resnet|Preresnet building block: (default: {_block_name}", ) _cardinality = 8 a_op.add_argument( "--cardinality", type=int, default=_cardinality, help=f"Resnext cardinality (group) (default: {_cardinality})", ) _widen_factor = 4 a_op.add_argument( "--widen-factor", type=int, default=_widen_factor, help=f"Resnext|WRT widen factor, 4 -> 64, 8 -> 128, ... (default: {_widen_factor})", ) _growth_rate = 12 a_op.add_argument( "--growth-rate", type=int, default=_growth_rate, help=f"DenseNet growth rate (default: {_growth_rate}", ) _compression_rate = 2 a_op.add_argument( "--compressionRate", type=int, default=_compression_rate, help=f"DenseNet compression rate (theta) (default: {_compression_rate}", ) # Optimization Options o_op = parser.add_argument_group("Optimizations") _epochs = 300 o_op.add_argument( "--epochs", default=_epochs, type=int, metavar="N", help=f"number of epochs to run (default: {_epochs})", ) _epoch_start = 0 o_op.add_argument( "--start-epoch", default=_epoch_start, type=int, metavar="N", help=f"epoch start number (default: {_epoch_start})", ) _train_batch = 128 o_op.add_argument( "--train-batch", default=_train_batch, type=int, metavar="N", help=f"train batchsize (default: {_train_batch})", ) _test_batch = 100 o_op.add_argument( "--test-batch", default=_test_batch, type=int, metavar="N", help=f"test batchsize (default: {_test_batch})", ) _lr = 0.1 o_op.add_argument( "--lr", "--learning-rate", default=_lr, type=float, metavar="LR", help=f"initial learning rate (default: {_lr})", ) _dropout = 0 o_op.add_argument( "--drop", "--dropout", default=_dropout, type=float, metavar="Dropout", help=f"Dropout ratio (default: {_dropout})", ) _schedule = [150, 225] o_op.add_argument( "--schedule", type=int, nargs="+", default=_schedule, help=f"Decrease LR at these epochs (default: {_schedule})", ) _gamma = 0.1 o_op.add_argument( "--gamma", type=float, default=_gamma, help=f"LR is multiplied by gamma on schedule (default: {_gamma})", ) _momentum = 0.9 o_op.add_argument( "--momentum", default=_momentum, type=float, metavar="M", help=f"momentum (default: {_momentum})", ) _wd = 5e-4 o_op.add_argument( "--weight-decay", "--wd", default=_wd, type=float, metavar="W", help=f"weight decay (default: {_wd})", ) # Checkpoint Options c_op = parser.add_argument_group("Checkpoints") _checkpoint = "checkpoint" c_op.add_argument( "-c", "--checkpoint", default=_checkpoint, type=str, metavar="PATH", help=f"path to save checkpoint (default: {_checkpoint})", ) return vars(parser.parse_args())
77264dfc1540b47835daf8bd5674484adc0a1d8e
3,650,476
def get_tac_resource(url): """ Get the requested resource or update resource using Tacoma account :returns: http response with content in xml """ response = None response = TrumbaTac.getURL(url, {"Accept": "application/xml"}) _log_xml_resp("Tacoma", url, response) return response
4d3fce0c7c65a880bf565c79285bcda081d4ef5a
3,650,477
def cosweightlat(darray, lat1, lat2): """Calculate the weighted average for an [:,lat] array over the region lat1 to lat2 """ # flip latitudes if they are decreasing if (darray.lat[0] > darray.lat[darray.lat.size -1]): print("flipping latitudes") darray = darray.sortby('lat') region = darray.sel(lat=slice(lat1, lat2)) weights=np.cos(np.deg2rad(region.lat)) regionw = region.weighted(weights) regionm = regionw.mean("lat") return regionm
87a8722d4d0b7004007fbce966a5ce99a6e51983
3,650,478
def _GetSoftMaxResponse(goal_embedding, scene_spatial): """Max response of an embeddings across a spatial feature map. The goal_embedding is multiplied across the spatial dimensions of the scene_spatial to generate a heatmap. Then the spatial softmax-pooled value of this heatmap is returned. If the goal_embedding and scene_spatial are aligned to the same space, then _GetSoftMaxResponse returns larger values if the object is present in the scene, and smaller values if the object is not. Args: goal_embedding: A batch x D tensor embedding of the goal image. scene_spatial: A batch x H x W x D spatial feature map tensor. Returns: max_heat: A tensor of length batch. max_soft: The max value of the softmax (ranges between 0 and 1.0) """ batch, dim = goal_embedding.shape reshaped_query = tf.reshape(goal_embedding, (int(batch), 1, 1, int(dim))) scene_heatmap = tf.reduce_sum(tf.multiply(scene_spatial, reshaped_query), axis=3, keep_dims=True) scene_heatmap_flat = tf.reshape(scene_heatmap, (batch, -1)) max_heat = tf.reduce_max(scene_heatmap_flat, axis=1) scene_softmax = tf.nn.softmax(scene_heatmap_flat, axis=1) max_soft = tf.reduce_max(scene_softmax, axis=1) return max_heat, max_soft
547e61b403d99f2c0a4b5a0f78c03f7051a10d5c
3,650,479
def summarize_star(star): """return one line summary of star""" if star.find('name').text[-2] == ' ': name = star.find('name').text[-1] else: name = ' ' mass = format_star_mass_str(star) radius = format_star_radius_str(star) temp = format_body_temp_str(star) metallicity = format_star_metal_str(star) return u'{} {} {:>8} {:>8} {:>8} {:>8} {:>8} {}'.format(name, format_spectral_name(star), mass, radius, '', '', temp, metallicity)
f9860d742a646637e4b725e39151ed8f5e8adf0f
3,650,480
def to_unicode(text, encoding='utf8', errors='strict'): """Convert a string (bytestring in `encoding` or unicode), to unicode.""" if isinstance(text, unicode): return text return unicode(text, encoding, errors=errors)
1acb85930349832259e9309fed3669fbd1114cad
3,650,481
def parse_pipfile(): """Reads package requirements from Pipfile.""" cfg = ConfigParser() cfg.read("Pipfile") dev_packages = [p.strip('"') for p in cfg["dev-packages"]] relevant_packages = [ p.strip('"') for p in cfg["packages"] if "nested-dataclasses" not in p ] return relevant_packages, dev_packages
72f559193b77989afc3aa200b6806ef051280673
3,650,482
from typing import Mapping def print_dist(d, height=12, pch="o", show_number=False, title=None): """ Printing a figure of given distribution Parameters ---------- d: dict, list a dictionary or a list, contains pairs of: "key" -> "count_value" height: int number of maximum lines for the graph pch : str shape of the bars in the plot, e.g 'o' Return ------ str """ LABEL_COLOR = ['cyan', 'yellow', 'blue', 'magenta', 'green'] MAXIMUM_YLABEL = 4 try: if isinstance(d, Mapping): d = d.items() orig_d = [(str(name), int(count)) for name, count in d] d = [(str(name)[::-1].replace('-', '|').replace('_', '|'), count) for name, count in d] labels = [[c for c in name] for name, count in d] max_labels = max(len(name) for name, count in d) max_count = max(count for name, count in d) min_count = min(count for name, count in d) except Exception as e: raise ValueError('`d` must be distribution dictionary contains pair of: ' 'label_name -> disitribution_count, error: "%s"' % str(e)) # ====== create figure ====== # # draw height, 1 line for minimum bar, 1 line for padding the label, # then the labels nb_lines = int(height) + 1 + 1 + max_labels unit = (max_count - min_count) / height fig = "" # ====== add unit and total ====== # fig += ctext("Unit: ", 'red') + \ '10^%d' % max(len(str(max_count)) - MAXIMUM_YLABEL, 0) + ' ' fig += ctext("Total: ", 'red') + \ str(sum(count for name, count in d)) + '\n' # ====== add the figure ====== # for line in range(nb_lines): value = max_count - unit * line # draw the y_label if line % 2 == 0 and line <= int(height): # value fig += ctext( ('%' + str(MAXIMUM_YLABEL) + 's') % str(int(value))[:MAXIMUM_YLABEL], color='red') else: # blank fig += ' ' * MAXIMUM_YLABEL fig += '|' if line <= int(height) else ' ' # draw default line if line == int(height): fig += ''.join([ctext(pch + ' ', color=LABEL_COLOR[i % len(LABEL_COLOR)]) for i in range(len(d))]) # draw seperator for the label elif line == int(height) + 1: fig += '-' * (len(d) * 2) # draw the labels elif line > int(height) + 1: for i, lab in enumerate(labels): fig += ctext(' ' if len(lab) == 0 else lab.pop(), LABEL_COLOR[i % len(LABEL_COLOR)]) + ' ' # draw the histogram else: for i, (name, count) in enumerate(d): fig += ctext(pch if count - value >= 0 else ' ', LABEL_COLOR[i % len(LABEL_COLOR)]) + ' ' # new line fig += '\n' # ====== add actual number of necessary ====== # maximum_fig_length = MAXIMUM_YLABEL + 1 + len(orig_d) * 2 if show_number: line_length = 0 name_fmt = '%' + str(max_labels) + 's' for name, count in orig_d: n = len(name) + len(str(count)) + 4 text = ctext(name_fmt % name, 'red') + ': %d ' % count if line_length + n >= maximum_fig_length: fig += '\n' line_length = n else: line_length += n fig += text # ====== add title ====== # if title is not None: title = ctext('"%s"' % str(title), 'red') padding = ' ' n = (maximum_fig_length - len(title) // 2) // 2 - len(padding) * 3 fig = '=' * n + padding + title + padding + '=' * n + '\n' + fig return fig[:-1]
d6636edbca5b16de8984c36bf9533ae963e21e0e
3,650,483
import os import errno def Per_sequence_quality_scores (file_path,output_dire, module): """ Read Per sequence quality scores contents from a fastqc file and parses to output file. Returns a list of data used to plot quality graph. Data and genereted graphs are saved to output directory as png image file and plain text. Acceptes three Aguments :- file_path = File name of fastqc output_dire = Output Folder | directory name module = Fastqc module name """ # opening fastqc data fastqc_data = open(file_path, 'r') # list to store Per Sequence Quality Scores data = [] # creating start/stop switch to read data for specific module read_line = 'stop' for line in fastqc_data: #line.strip("\n\r") if line.startswith('>>Per sequence quality scores'): read_line = 'start' head = line pass elif line.startswith(">>END_MODULE"): read_line = 'stop' # once the netxt module is reached it break the loop and stop reading lines elif line.startswith('>>Per base sequence content'): break elif read_line == 'start': data.append(line) # Here it's creating directory and the try and except will raise any error except if the file exist. try: os.makedirs(output_dire) except OSError as exception: if exception.errno != errno.EEXIST: raise # creating file path for both image and text file output if module == "ALL": output_path_dire_txt = os.path.join(cwd, "PSQS", 'Per_sequence_quality_scores.txt') output_path_dire_img = os.path.join(cwd, "PSQS", 'Per_sequence_quality_scores.png') else: output_path_dire_txt = os.path.join(cwd, output_dire, 'Per_sequence_quality_scores.txt') output_path_dire_img = os.path.join(cwd, output_dire, 'Per_sequence_quality_scores.png') data.insert(0,head)#insert header before writing fw = open(output_path_dire_txt, 'w' ) fw.write("\n".join(data)) fw.close() fastqc_data.close() #load per sequence quality scores data to numpy dataframe df = np.loadtxt(data, dtype='float', usecols = [0,1], skiprows=2) df1 = pd.DataFrame(df, columns= ['Quality', 'Count']) quality =df1.iloc[:,0] count = df1.iloc[:,1] count = count.astype('int64') plt.figure(figsize=(20,10)) plt.plot(quality,count, c = 'b') plt.xticks(np.arange(0, int(max(quality)+ 2))) plt.grid(which='major', linestyle='--', linewidth='0.5', color='green') plt.title('Quality score distribution over all sequences') plt.xlabel("Mean Sequence Quality (Phred Score)") ax=plt.gca() ax.ticklabel_format(axis='y', style='plain', scilimits=(0,0), useOffset=None, useLocale=None, useMathText=None) plt.savefig(output_path_dire_img, format='png', dpi=300) plt.draw() #plt.show() plt.close() return data
fa8debfaa7adcb8d827efba929e009a07ec19ed4
3,650,484
def count_primes(num): """ Write a function that returns the number of prime numbers that exist up to and including a given number :param num: int :return: int """ count = 0 lower = int(input()) upper = int(input()) for num in range(lower, upper + 1): if num > 1: for i in range(2, num): if (num % i) == 0: break else: count += 1 return count
7a544265f3a7eca9118b0647bc8926c655cdb8ec
3,650,485
def run_experiment(config): """ Run the experiment. Args: config: The configuration dictionary. Returns: The experiment result. """ return None
b12a8a5cbdb03d60ca618826f20c9a731a39fd2a
3,650,486
def read_notification(notification_id): """Marks a notification as read.""" notification = Notification.query.get_or_404(notification_id) if notification.recipient_email != current_user.email: abort(401) notification.is_read = True db.session.add(notification) db.session.commit() return NO_PAYLOAD
b2d4066be7b202d680415831fa6d3aa60e2896dc
3,650,487
def grayscale_blur(image): """ Convert image to gray and blur it. """ image_gray = cv.cvtColor(image, cv.COLOR_BGR2GRAY) image_gray = cv.blur(image_gray, (3, 3)) return image_gray
4e8bf0479c653a3ed073481ad71e2530527ec4a3
3,650,488
import hmac def calculate_stream_hmac(stream, hmac_key): """Calculate a stream's HMAC code with the given key.""" stream.seek(0) hash_hmac = hmac.new(bytearray(hmac_key, "utf-8"), digestmod=HASH_FUNCTION) while True: buf = stream.read(4096) if not buf: break hash_hmac.update(buf) return hash_hmac.hexdigest()
35da77cc708b4dc8a256fbfcc012da8c68868c8c
3,650,489
import os def find(name, dir_path="." , p="r"): """ find(name: string, dirpath="." , p="r") name: the name to find dirpath: find in this directory p = r recursive find sub dirs """ files = ls(dir_path, p) ans = [] for fn in files: head, tail = os.path.split(fn) dis = normal_leven(tail, name) ans.append((dis, fn)) ans.sort() ans = ans[0:5] if len(ans) > 0 and ans[0][0] == 0: return [ans[0][1]] return list(map(lambda x:x[1], ans))
5454a96cde6953f9d6112cdc3f4605dbf8ebf18c
3,650,490
import re def convert_tac(ThreeAddressCode): """Reads three adress code generated from parser and converts to TAC for codegen; generates the three_addr_code along with leaders; populates generate symbol table as per three_addr_code""" for i in range(ThreeAddressCode.length()): three_addr_instr = ThreeAddressCode.code[i] three_addr_instr = [str(i+1)] + three_addr_instr three_addr_code.add_line(three_addr_instr) if len(three_addr_instr) != 5: print("Incorrect size for the following instruction: ") print(three_addr_instr) return -1 if three_addr_instr[0] == '': print("Line number not given in the following instruction: ") print(three_addr_instr) return -1 if re.search(r'\D', three_addr_instr[0]) != None: print("Invalid line number given in the following instruction: ") print(three_addr_instr) return -1 leader_generating_if_instr = [] leader_generating_if_instr += ['ifgotoeq'] leader_generating_if_instr += ['ifgotoneq'] leader_generating_if_instr += ['ifgotolt'] leader_generating_if_instr += ['ifgotolteq'] leader_generating_if_instr += ['ifgotogt'] leader_generating_if_instr += ['ifgotogteq'] if three_addr_instr[1] in leader_generating_if_instr: three_addr_code.add_leader(three_addr_code.length()) leader_generating_other_instr = ['label'] if three_addr_instr[1] in leader_generating_if_instr: three_addr_code.add_leader(three_addr_code.length()-1) leader_generating_other_instr = [] leader_generating_other_instr += ['goto'] leader_generating_other_instr += ['break'] leader_generating_other_instr += ['continue'] if three_addr_instr[1] in leader_generating_other_instr: three_addr_code.add_leader(three_addr_code.length()) three_addr_code.leaders = sorted(three_addr_code.leaders, key=int) return three_addr_code
4a9408cfbd6b6f79a618b7eb89aa55e6aab25689
3,650,491
def is_english_score(bigrams, word): """Calculate the score of a word.""" prob = 1 for w1, w2 in zip("!" + word, word + "!"): bigram = f"{w1}{w2}" if bigram in bigrams: prob *= bigrams[bigram] # / float(bigrams['total'] + 1) else: print("%s not found" % bigram) prob *= 1 # / float(bigrams['total'] + 1) return prob
834e28a32806d0599f5df97d978bc6b9c1a51da7
3,650,492
def cat(fname, fallback=_DEFAULT, binary=True): """Return file content. fallback: the value returned in case the file does not exist or cannot be read binary: whether to open the file in binary or text mode. """ try: with open_binary(fname) if binary else open_text(fname) as f: return f.read().strip() except IOError: if fallback != _DEFAULT: return fallback raise
b3f645d79607f1ed986fe76aa20689d0860ef9ca
3,650,493
import os import json def _get_from_url(url): """ Note: url is in format like this(following OQMD RESTful API) and the result format should be set to json: http://oqmd.org/oqmdapi/formationenergy?fields=name,entry_id,delta_e&filter=stability=0&format=json Namely url should be in the form supported by OQMD RESTful API """ os.system("mkdir -p /tmp/pymatflow/third") #os.system("wget \"%s\" -O /tmp/pymatflow/third/oqmd_restful_api_results.json" % (url)) #os.system("curl \"%s\" -Lo /tmp/pymatflow/third/oqmd_restful_api_results.json" % (url)) # silent output of curl os.system("curl \"%s\" -s -Lo /tmp/pymatflow/third/oqmd_restful_api_results.json" % (url)) with open("/tmp/pymatflow/third/oqmd_restful_api_results.json", 'r') as fin: out = json.loads(fin.read()) return out
3860ca4b73eb6e4842ff7afd48485dd12d6d3e45
3,650,494
import codecs def createStringObject(string): """ Given a string (either a ``str`` or ``unicode``), create a :class:`ByteStringObject<ByteStringObject>` or a :class:`TextStringObject<TextStringObject>` to represent the string. """ if isinstance(string, string_type): return TextStringObject(string) elif isinstance(string, bytes_type): try: if string.startswith(codecs.BOM_UTF16_BE): retval = TextStringObject(string.decode("utf-16")) retval.autodetect_utf16 = True return retval else: # This is probably a big performance hit here, but we need to # convert string objects into the text/unicode-aware version if # possible... and the only way to check if that's possible is # to try. Some strings are strings, some are just byte arrays. retval = TextStringObject(decodePdfDocEncoding(string)) retval.autodetect_pdfdocencoding = True return retval except UnicodeDecodeError: return ByteStringObject(string) else: raise TypeError("createStringObject() should have str or unicode arg")
07c0ca42faa2b68dc347e1edad7f70a07930d891
3,650,495
import win32com.client def _get_windows_network_adapters(): """Get the list of windows network adapters.""" wbem_locator = win32com.client.Dispatch('WbemScripting.SWbemLocator') wbem_service = wbem_locator.ConnectServer('.', 'root\cimv2') wbem_network_adapters = wbem_service.InstancesOf('Win32_NetworkAdapter') network_adapters = [] for adapter in wbem_network_adapters: if (adapter.NetConnectionStatus == 2 or adapter.NetConnectionStatus == 7): adapter_name = adapter.NetConnectionID mac_address = adapter.MacAddress.lower() config = adapter.associators_( 'Win32_NetworkAdapterSetting', 'Win32_NetworkAdapterConfiguration')[0] ip_address = '' subnet_mask = '' if config.IPEnabled: ip_address = config.IPAddress[0] subnet_mask = config.IPSubnet[0] #config.DefaultIPGateway[0] network_adapters.append({'name': adapter_name, 'mac-address': mac_address, 'ip-address': ip_address, 'subnet-mask': subnet_mask}) return network_adapters
796c25089411633d11b28fdd9c23d900db7005f0
3,650,496
def project(dim, states): """Qiskit wrapper of projection operator. """ ket, bra = states if ket in range(dim) and bra in range(dim): return st.basis(dim, ket) * st.basis(dim, bra).dag() else: raise Exception('States are specified on the outside of Hilbert space %s' % states)
351a190ec183264af58de15944efb3af255c5b03
3,650,497
def check_service_status(ssh_conn_obj, service_name, status="running", device='server'): """ Author: Chaitanya Vella ([email protected]) Function to check the service status :param ssh_conn_obj: :param service_name: :param status: :return: """ st.log("##### Checking {} status for {} service ######".format(status, service_name)) command = "status {}".format(service_name) result = conn_obj.execute_command(ssh_conn_obj, command) if device == 'server' else st.config(ssh_conn_obj, command) result = utils_obj.remove_last_line_from_string(result) if "command not found" not in result: match = "start/running" if status == "running" else "stop/waiting" if result.find("{}".format(match)) > 1: return True else: command = "service --status-all | grep {}".format(service_name) result = conn_obj.execute_command(ssh_conn_obj, command) result = utils_obj.remove_last_line_from_string(result) operator = "+" if status == "running" else "-" return True if operator in result and service_name in result else False return False
d8f2a9be7a784ad874d218601fdc043babdafe6e
3,650,498
def _persist_block(block_node, block_map): """produce persistent binary data for a single block Children block are assumed to be already persisted and present in block_map. """ data = tuple(_to_value(v, block_map) for v in block_node) return S_BLOCK.pack(*data)
2fb97099135fe931d1d387ed616b152ed7c28b34
3,650,499