content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
import json
def solve_with_log(board, out_fname):
"""Wrapper for solve: write log to out_fname"""
log = []
ret = solve(board, log)
with open(out_fname, 'w') as f:
f.write(json.dumps({'model': log}, indent=4))
return ret | c550980f252df724d68f9eb22159463e361997bc | 3,650,800 |
def discrepancy(sample, bounds=None):
"""Discrepancy.
Compute the centered discrepancy on a given sample.
It is a measure of the uniformity of the points in the parameter space.
The lower the value is, the better the coverage of the parameter space is.
Parameters
----------
sample : array_like (n_samples, k_vars)
The sample to compute the discrepancy from.
bounds : tuple or array_like ([min, k_vars], [max, k_vars])
Desired range of transformed data. The transformation apply the bounds
on the sample and not the theoretical space, unit cube. Thus min and
max values of the sample will coincide with the bounds.
Returns
-------
discrepancy : float
Centered discrepancy.
References
----------
[1] Fang et al. "Design and modeling for computer experiments",
Computer Science and Data Analysis Series Science and Data Analysis
Series, 2006.
"""
sample = np.asarray(sample)
n_sample, dim = sample.shape
# Sample scaling from bounds to unit hypercube
if bounds is not None:
min_ = bounds.min(axis=0)
max_ = bounds.max(axis=0)
sample = (sample - min_) / (max_ - min_)
abs_ = abs(sample - 0.5)
disc1 = np.sum(np.prod(1 + 0.5 * abs_ - 0.5 * abs_ ** 2, axis=1))
prod_arr = 1
for i in range(dim):
s0 = sample[:, i]
prod_arr *= (1 +
0.5 * abs(s0[:, None] - 0.5) + 0.5 * abs(s0 - 0.5) -
0.5 * abs(s0[:, None] - s0))
disc2 = prod_arr.sum()
c2 = ((13.0 / 12.0) ** dim - 2.0 / n_sample * disc1 +
1.0 / (n_sample ** 2) * disc2)
return c2 | f54cf5efa3cf12410d5522971983d41ea767767f | 3,650,801 |
def rz(psi, r):
"""
Wrapper for ERFA function ``eraRz``.
Parameters
----------
psi : double array
r : double array
Returns
-------
r : double array
Notes
-----
The ERFA documentation is below.
- - - - - -
e r a R z
- - - - - -
Rotate an r-matrix about the z-axis.
Given:
psi double angle (radians)
Given and returned:
r double[3][3] r-matrix, rotated
Notes:
1) Calling this function with positive psi incorporates in the
supplied r-matrix r an additional rotation, about the z-axis,
anticlockwise as seen looking towards the origin from positive z.
2) The additional rotation can be represented by this matrix:
( + cos(psi) + sin(psi) 0 )
( )
( - sin(psi) + cos(psi) 0 )
( )
( 0 0 1 )
Copyright (C) 2013-2017, NumFOCUS Foundation.
Derived, with permission, from the SOFA library. See notes at end of file.
"""
r = ufunc.rz(psi, r, r)
return r | 1ea4e9322ba187e91d3b976d74d416ae99a74ee6 | 3,650,802 |
import locale
def _get_ticklabels(band_type, kHz, separator):
"""
Return a list with all tick labels for octave or third octave bands cases.
"""
if separator is None:
separator = locale.localeconv()['decimal_point']
if band_type == 'octave':
if kHz is True:
ticklabels = TICKS_OCTAVE_KHZ
else:
ticklabels = TICKS_OCTAVE
else:
if kHz is True:
ticklabels = TICKS_THIRD_OCTAVE_KHZ
else:
ticklabels = TICKS_THIRD_OCTAVE
ticklabels = _set_separator(ticklabels, separator)
return ticklabels | 95ebdc670a23fdb8561a431e863901df6734fdb9 | 3,650,803 |
def SpearmanP(predicted, observed):
"""abstracts out p from stats.spearmanr"""
if np.isnan(np.min(predicted)) or np.isnan(np.min(observed)):
return np.asarray([np.nan])
coef, p = stats.spearmanr(np.squeeze(predicted).astype(float), np.squeeze(observed).astype(float))
return p | 41986483ea3d466d94af5c86cedee62165d81d98 | 3,650,804 |
def get_zebra_route_type_by_name(route_type='BGP'):
"""
Returns the constant value for Zebra route type named "ZEBRA_ROUTE_*"
from its name.
See "ZEBRA_ROUTE_*" constants in "ryu.lib.packet.zebra" module.
:param route_type: Route type name (e.g., Kernel, BGP).
:return: Constant value for Zebra route type.
"""
return getattr(zebra, "ZEBRA_ROUTE_%s" % route_type.upper()) | 8cdc3a8384f71c4c04172a8c37f51e3789929e42 | 3,650,805 |
def preprocess(arr):
"""Preprocess image array with simple normalization.
Arguments:
----------
arr (np.array): image array
Returns:
--------
arr (np.array): preprocessed image array
"""
arr = arr / 255.0
arr = arr * 2.0 - 1.0
return arr | 3bccf2f4433c4da62954db4f25f5e9bfabc03c3a | 3,650,806 |
def remove_const(type):
"""removes const from the type definition
If type is not const type, it will be returned as is
"""
nake_type = remove_alias(type)
if not is_const(nake_type):
return type
else:
return nake_type.base | b00d7cca79222d5ac2b6a12019b73a8169df96b7 | 3,650,807 |
def populate_institute_form(form, institute_obj):
"""Populate institute settings form
Args:
form(scout.server.blueprints.institutes.models.InstituteForm)
institute_obj(dict) An institute object
"""
# get all other institutes to populate the select of the possible collaborators
institutes_tuples = []
for inst in store.institutes():
if not inst["_id"] == institute_obj["_id"]:
institutes_tuples.append(((inst["_id"], inst["display_name"])))
form.display_name.default = institute_obj.get("display_name")
form.institutes.choices = institutes_tuples
form.coverage_cutoff.default = institute_obj.get("coverage_cutoff")
form.frequency_cutoff.default = institute_obj.get("frequency_cutoff")
# collect all available default HPO terms and populate the pheno_groups form select with these values
default_phenotypes = [choice[0].split(" ")[0] for choice in form.pheno_groups.choices]
if institute_obj.get("phenotype_groups"):
for key, value in institute_obj["phenotype_groups"].items():
if not key in default_phenotypes:
custom_group = " ".join(
[key, ",", value.get("name"), "( {} )".format(value.get("abbr"))]
)
form.pheno_groups.choices.append((custom_group, custom_group))
# populate gene panels multiselect with panels from institute
available_panels = list(store.latest_panels(institute_obj["_id"]))
# And from institute's collaborators
for collaborator in institute_obj.get("collaborators", []):
available_panels += list(store.latest_panels(collaborator))
panel_set = set()
for panel in available_panels:
panel_set.add((panel["panel_name"], panel["display_name"]))
form.gene_panels.choices = list(panel_set)
return default_phenotypes | 836850a55a02b199b2c7607a236f77e6b95051e0 | 3,650,808 |
def closestMedioidI(active_site, medioids, distD):
"""
returns the index of the closest medioid in medioids to active_site
input: active_site, an ActiveSite instance
medioids, a list of ActiveSite instances
distD, a dictionary of distances
output: the index of the ActiveSite closest to active_site in medioids
"""
closest = (float('Inf'), None)
for i, medioid in enumerate(medioids):
thisDist = distD[frozenset([active_site, medioid])]
if thisDist < closest[0]:
closest = (thisDist, i)
return closest[1] | 379f98a84751c0a392f8f9b1703b89b299979676 | 3,650,809 |
from typing import Dict
from typing import Any
import traceback
import sys
def watchPoint(filename, lineno, event="call"):
"""whenever we hit this line, print a stack trace. event='call'
for lines that are function definitions, like what a profiler
gives you.
Switch to 'line' to match lines inside functions. Execution speed
will be much slower."""
seenTraces: Dict[Any, int] = {} # trace contents : count
def trace(frame, ev, arg):
if ev == event:
if (frame.f_code.co_filename, frame.f_lineno) == (filename, lineno):
stack = ''.join(traceback.format_stack(frame))
if stack not in seenTraces:
print("watchPoint hit")
print(stack)
seenTraces[stack] = 1
else:
seenTraces[stack] += 1
return trace
sys.settrace(trace)
# atexit, print the frequencies? | 5c7017a180e254f5651c6cf737ca798d570d669c | 3,650,810 |
def no_op_job():
"""
A no-op parsl.python_app to return a future for a job that already
has its outputs.
"""
return 0 | ad8d6379ba35dae14ce056d9900fb6e62c769d85 | 3,650,811 |
def identity(dim, shape=None):
"""Return identity operator with appropriate shape.
Parameters
----------
dim : int
Dimension of real space.
shape : int (optional)
Size of the unitary part of the operator.
If not provided, U is set to None.
Returns
-------
id : PointGroupElement
"""
R = ta.identity(dim, int)
if shape is not None:
U = np.eye(shape)
else:
U = None
return PointGroupElement(R, False, False, U) | 0cd40246f4ccf2805a852dcea09d451e7f8c63a5 | 3,650,812 |
def configure_checkout_session(request):
"""
Configure the payment session for Stripe.
Return the Session ID.
Key attributes are:
- mode: payment (for one-time charge) or subscription
- line_items: including price_data because users configure the donation
price.
TODOs
- Standard amounts could use active Prices, rather than ad-hoc price_data.
- Tie Stripe customers to site User accounts.
- If a user is logged in, we can create the session for the correct
customer.
- Stripe's documented flows are VERY keen that we create the customer
first, although the session will do that if we don't.
- Allow selecting currency. (Smaller task.) Users receive an additional
charge making payments in foreign currencies. Stripe will convert all
payments without further charge.
"""
# Form data:
# - The interval: which determines the Product and the mode.
# - The amount: which goes to the Price data.
form = PaymentForm(request.POST)
if not form.is_valid():
data = {
'success': False,
'error': form.errors
}
return JsonResponse(data)
amount = form.cleaned_data["amount"]
interval = form.cleaned_data["interval"]
product_details = settings.PRODUCTS[interval]
is_subscription = product_details.get('recurring', True)
price_data = {
'currency': 'usd',
'unit_amount': amount * 100,
'product': product_details['product_id']
}
if is_subscription:
price_data['recurring'] = {
'interval': product_details['interval'],
"interval_count": product_details["interval_count"],
}
try:
session = stripe.checkout.Session.create(
payment_method_types=['card'],
line_items=[{'price_data': price_data, 'quantity': 1}],
mode='subscription' if is_subscription else 'payment',
success_url=request.build_absolute_uri(
reverse('fundraising:thank-you')
),
cancel_url=request.build_absolute_uri(
reverse('fundraising:index')
),
# TODO: Drop this when updating API.
stripe_version="2020-08-27",
)
return JsonResponse({'success': True, "sessionId": session["id"]})
except Exception as e:
logger.exception('Error configuring Stripe session.')
return JsonResponse({'success': False, "error": str(e)}) | f53bd6ecd488d214d3ebc43a2c049bf4315c1494 | 3,650,813 |
import os
import json
def load_schemas():
"""Return all of the schemas in this directory in a dictionary where
the keys are the filename (without the .json extension) and the values
are the JSON schemas (in dictionary format)
:raises jsonschema.exceptions.SchemaError if any of the JSON files in this
directory are not valid (Draft 7) JSON schemas"""
schemas = {}
for filename in os.listdir(THIS_DIR):
if (
os.path.isfile(os.path.join(THIS_DIR, filename))
and os.path.splitext(filename)[1].lower() == ".json"
):
key = os.path.splitext(filename)[0]
with open(os.path.join(THIS_DIR, filename)) as file_obj:
value = json.load(file_obj)
Draft7Validator.check_schema(value)
schemas[key] = value
return schemas | cbd14a4cdcc37f7fc861e00de84928abd3f8a557 | 3,650,814 |
from typing import Optional
from typing import Union
import torch
from pathlib import Path
import json
def load_separator(
model_str_or_path: str = "umxhq",
targets: Optional[list] = None,
niter: int = 1,
residual: bool = False,
wiener_win_len: Optional[int] = 300,
device: Union[str, torch.device] = "cpu",
pretrained: bool = True,
filterbank: str = "torch",
):
"""Separator loader
Args:
model_str_or_path (str): Model name or path to model _parent_ directory
E.g. The following files are assumed to present when
loading `model_str_or_path='mymodel', targets=['vocals']`
'mymodel/separator.json', mymodel/vocals.pth', 'mymodel/vocals.json'.
Defaults to `umxhq`.
targets (list of str or None): list of target names. When loading a
pre-trained model, all `targets` can be None as all targets
will be loaded
niter (int): Number of EM steps for refining initial estimates
in a post-processing stage. `--niter 0` skips this step altogether
(and thus makes separation significantly faster) More iterations
can get better interference reduction at the price of artifacts.
Defaults to `1`.
residual (bool): Computes a residual target, for custom separation
scenarios when not all targets are available (at the expense
of slightly less performance). E.g vocal/accompaniment
Defaults to `False`.
wiener_win_len (int): The size of the excerpts (number of frames) on
which to apply filtering independently. This means assuming
time varying stereo models and localization of sources.
None means not batching but using the whole signal. It comes at the
price of a much larger memory usage.
Defaults to `300`
device (str): torch device, defaults to `cpu`
pretrained (bool): determines if loading pre-trained weights
filterbank (str): filterbank implementation method.
Supported are `['torch', 'asteroid']`. `torch` is about 30% faster
compared to `asteroid` on large FFT sizes such as 4096. However,
asteroids stft can be exported to onnx, which makes is practical
for deployment.
"""
model_path = Path(model_str_or_path).expanduser()
# when path exists, we assume its a custom model saved locally
if model_path.exists():
if targets is None:
raise UserWarning("For custom models, please specify the targets")
target_models = load_target_models(
targets=targets, model_str_or_path=model_path, pretrained=pretrained
)
with open(Path(model_path, "separator.json"), "r") as stream:
enc_conf = json.load(stream)
separator = model.Separator(
target_models=target_models,
niter=niter,
residual=residual,
wiener_win_len=wiener_win_len,
sample_rate=enc_conf["sample_rate"],
n_fft=enc_conf["nfft"],
n_hop=enc_conf["nhop"],
nb_channels=enc_conf["nb_channels"],
filterbank=filterbank,
).to(device)
# otherwise we load the separator from torchhub
else:
hub_loader = getattr(openunmix, model_str_or_path)
separator = hub_loader(
targets=targets,
device=device,
pretrained=True,
niter=niter,
residual=residual,
filterbank=filterbank,
)
return separator | bb9d0ecf47174ebac9181710a1bc4689ca122ecf | 3,650,815 |
from datetime import datetime
def transform_datetime(date_str, site):
"""
根据site转换原始的date为正规的date类型存放
:param date_str: 原始的date
:param site: 网站标识
:return: 转换后的date
"""
result = None
if site in SITE_MAP:
if SITE_MAP[site] in (SiteType.SINA, SiteType.HACKERNEWS):
try:
time_int = int(date_str)
result = datetime.fromtimestamp(time_int).strftime(DATE_FMT)
except Exception as e:
result = parse(date_str).strftime(DATE_FMT)
elif SITE_MAP[site] == SiteType.TENCENT:
result = date_str
elif SITE_MAP[site] == SiteType.TUICOOL:
result = date_str
elif SITE_MAP[site] == SiteType.HACKER:
result = date_str
elif SITE_MAP[site] == SiteType.DMZJ:
result = parse(date_str).strftime(DATE_FMT)
elif SITE_MAP[site] == SiteType.ACGMH:
result = parse(date_str).strftime(DATE_FMT)
elif SITE_MAP[site] == SiteType.CTOLIB:
result = parse(date_str).strftime(DATE_FMT)
elif date_str.strip() == '':
result = datetime.now().strftime(DATE_FMT)
else:
result = parse(date_str).strftime(DATE_FMT)
return result | 647ab633b0d5ce0887042ef42a762f1bc3196242 | 3,650,816 |
import re
import numpy
def ParseEventsForTTLs(eventsFileName, TR = 2.0, onset = False, threshold = 5.0):
"""
Parses the events file from Avotec for TTLs. Use if history file is not available.
The events files does not contain save movie start/stops, so use the history file if possible
@param eventsFileName: name of events file from avotec
@param TR: TR duration in seconds
@param onset: use the TTL pulse onset instead of the offset for timestamps?
@param threshold: multiple of the TR interval to use as a threshold as a break between runs
@type eventsFileName: str
@type TR: float
@type onset: bool
@type threshold: float
@return: timestamps of TTLs in each run, each run is a list of TTL timestamps and the number of TTLs
@rtype: list<tuple<list<float>, int>>
"""
eventsFile = open(eventsFileName, 'r')
TTLtoken = 'S' if onset else 's'
TTLs = []
lastTime = (0, 0, 0, 0)
duplicates = 0
runs = []
thisRun = []
line = eventsFile.readline()
while line != '':
tokens = line.split()
if len(tokens) > 0 and tokens[-1] == TTLtoken:
time = []
for token in re.split('[:\.]', re.match('[0-9\. ]+:[0-9\. ]+:[0-9 ]+\.[0-9]+', line).group()):
if (len(token) > 2): # the milliseconds have rather high precision
time.append(int(numpy.round(float(token) * 0.001)))
else:
time.append(int(token))
time = tuple(time)
if (TimeToSeconds(time) - TimeToSeconds(lastTime) > 0.1): # long enough of an interval since last one such that it's not a duplicate
TTLs.append(time)
lastTime = time
else:
duplicates += 1
line = eventsFile.readline()
nTRs = 1
thisRun.append(TTLs[0])
for i in range(1, len(TTLs) - 1):
this = TTLs[i]
last = TTLs[i - 1]
dt = TimeToSeconds(this) - TimeToSeconds(last)
if dt > threshold * TR:
runs.append((thisRun, nTRs))
thisRun = [this]
nTRs = 1
else:
thisRun.append(this)
nTRs += 1
runs.append((thisRun, nTRs + 1)) # account for last run without a faraway TTL
eventsFile.close()
print('{} duplicated TTLs'.format(duplicates))
for i in range(len(runs)):
duration = TimeToSeconds(runs[i][0][-1]) - TimeToSeconds(runs[i][0][0])
expectedTRs = int(numpy.round(duration / TR))
if (i == len(runs) - 1):
expectedTRs += 1 # account for last run without a faraway TTL
print('Run {} expected {} TTLs from duration, actual recorded {} TTLs'.format(i + 1, expectedTRs, len(runs[i][0])))
return runs | 59fa31df066424df3625e55496f0ccefa39f2d64 | 3,650,817 |
def _to_native_string(string, encoding='ascii'):
"""Given a string object, regardless of type, returns a representation of
that string in the native string type, encoding and decoding where
necessary. This assumes ASCII unless told otherwise.
"""
if isinstance(string, str):
out = string
else:
out = string.decode(encoding)
return out | b50fd0fc62b2cfc024c847b98e1f85b4b67d07e3 | 3,650,818 |
def load(path: str) -> model_lib.Model:
"""Deserializes a TensorFlow SavedModel at `path` to a `tff.learning.Model`.
Args:
path: The `str` path pointing to a SavedModel.
Returns:
A `tff.learning.Model`.
"""
py_typecheck.check_type(path, str)
if not path:
raise ValueError('`path` must be a non-empty string, cannot deserialize '
'models without an output path.')
return _LoadedSavedModel(tf.saved_model.load(path)) | 1bd16ed7b4a7955f2a78fc638e896bbd6d1ee5ac | 3,650,819 |
import os
def plot_feature_importance(obj, top_n=None, save_path=None):
"""
输出LGBM模型的feature importance,并绘制条形图
Parameters
----------
obj: lgbm object or DataFrame
训练好的Lightgbm模型,或是已经计算好的feature importan DataFrame
top_n: int, default None
展示TOP N的变量,若不填则展示全部变量,为保证显示效果,建议当变量个数多于30个时进行限制
save_path: str, default None
图片存放路径
Returns
-------
df_fi: DataFrame
模型的feature importance,包括以下几个指标:
'split': 被节点选为分裂特征的次数
'total_gain': 作为分裂特征时对损失函数的总增益
'cover': 作为分裂特征时平均每次覆盖的样本数量
'avg_gain': 作为分裂特征时平均每次对损失函数的增益
'split_weight': 单个特征的分裂次数占总分裂次数的比例
'gain_weight': 单个特征的增益占总分裂增益的比例
"""
if obj.__class__.__name__ == 'LGBMClassifier' or obj.__class__.__name__ == 'Booster':
if obj.__class__.__name__ == 'LGBMClassifier':
booster = obj.booster_
else:
booster = obj
df_fi = get_feature_importance(booster)
df_fi['avg_gain'] = df_fi['total_gain'] / df_fi['split']
df_fi['split_weight'] = df_fi['split'] / df_fi['split'].sum()
df_fi['gain_weight'] = df_fi['total_gain'] / df_fi['total_gain'].sum()
df_fi['split_rank'] = df_fi['split'].rank(method='first', ascending=False).values.reshape((-1,))
df_fi['gain_rank'] = df_fi['total_gain'].rank(method='first', ascending=False).values.reshape((-1,))
df_fi['avg_gain_rank'] = df_fi['avg_gain'].rank(method='first', ascending=False).values.reshape((-1,))
df_fi['cover_rank'] = df_fi['cover'].rank(method='first', ascending=False).values.reshape((-1,))
elif isinstance(obj, pd.DataFrame):
df_fi = obj
else:
raise ValueError('Unknown object type')
if top_n is not None:
df_gain_fi = df_fi.loc[df_fi['gain_rank'] <= top_n, :].copy().sort_values(by='gain_rank', ascending=False)
df_split_fi = df_fi.loc[df_fi['split_rank'] <= top_n, :].copy().sort_values(by='split_rank', ascending=False)
df_cover_fi = df_fi.loc[df_fi['cover_rank'] <= top_n, :].copy().sort_values(by='cover_rank', ascending=False)
title1 = 'Weight of Split Gain (Top {0})'.format(top_n)
title2 = 'Weight of Split Count (Top {0})'.format(top_n)
title3 = 'Sample Coverage across all splits (Top {0})'.format(top_n)
else:
df_gain_fi = df_fi.copy().sort_values(by='gain_rank', ascending=False)
df_split_fi = df_fi.copy().sort_values(by='split_rank', ascending=False)
df_cover_fi = df_fi.copy().sort_values(by='cover_rank', ascending=False)
title1 = 'Weight of Split Gain'
title2 = 'Weight of Split Count'
title3 = 'Sample coverage across all splits'
plt.figure(figsize=(4, 9), dpi=200)
plt.subplot(3, 1, 1)
plt.barh(np.arange(df_gain_fi.shape[0]), df_gain_fi['gain_weight'], height=0.6, color='lightskyblue')
for i, var in enumerate(df_gain_fi['var_name']):
plt.annotate(var, xy=(0.001, i), va='center', ha='left', fontsize=4, color='black', fontweight='normal')
ax = plt.gca()
for at in ['left', 'right', 'bottom', 'top']:
ax.spines[at].set_linewidth(0.7)
plt.xticks(fontsize=5)
plt.yticks([])
plt.xlabel('gain weight', fontsize=5)
plt.title(title1, fontsize=6)
plt.subplot(3, 1, 2)
plt.barh(np.arange(df_gain_fi.shape[0]), df_split_fi['split_weight'], height=0.6, color='lightgreen')
for i, var in enumerate(df_split_fi['var_name']):
plt.annotate(var, xy=(0.001, i), va='center', ha='left', fontsize=4, color='black', fontweight='normal')
ax = plt.gca()
for at in ['left', 'right', 'bottom', 'top']:
ax.spines[at].set_linewidth(0.7)
plt.xticks(fontsize=5)
plt.yticks([])
plt.xlabel('split weight', fontsize=5)
plt.title(title2, fontsize=6)
plt.tight_layout(pad=1.0, w_pad=1.0, h_pad=2.0)
plt.subplot(3, 1, 3)
plt.barh(np.arange(df_gain_fi.shape[0]), df_cover_fi['cover'], height=0.6, color='Salmon')
for i, var in enumerate(df_cover_fi['var_name']):
plt.annotate(var, xy=(0.001, i), va='center', ha='left', fontsize=4, color='black', fontweight='normal')
ax = plt.gca()
for at in ['left', 'right', 'bottom', 'top']:
ax.spines[at].set_linewidth(0.7)
plt.xticks(fontsize=5)
plt.yticks([])
plt.xlabel('sample coverage', fontsize=5)
plt.title(title3, fontsize=6)
plt.tight_layout(pad=1.0, w_pad=1.0, h_pad=2.0)
if save_path is not None:
if save_path.endswith('.png') or save_path.endswith('.jpg'):
plt.savefig(save_path, bbox_inches='tight')
elif os.path.isdir(save_path):
plt.savefig(os.path.join(save_path, 'lgbm_feature_importance.png'), bbox_inches='tight')
else:
raise ValueError('No such file or directory: {0}'.format(save_path))
plt.show()
plt.close()
return df_fi | e1d8fc6d05693ad4381281d21e0e5672b54a863e | 3,650,820 |
def parameters_from_object_schema(schema, in_='formData'):
"""Convert object schema to parameters."""
# We can only extract parameters from schema
if schema['type'] != 'object':
return []
properties = schema.get('properties', {})
required = schema.get('required', [])
parameters = []
for name, property in properties.items():
parameter = {
'name': name,
'in_': in_,
'required': (name in required),
}
parameter.update(property)
parameter = Parameter(**parameter)
parameters.append(parameter)
parameters = sorted(parameters, key=lambda x: x['name'])
return parameters | 7508fb066d6924fc0af4a10338636b70ef64b9b2 | 3,650,821 |
import os
def env_vars(request):
"""Sets environment variables to use .env and config.json files."""
os.environ["ENV"] = "TEST"
os.environ["DOTENV_FILE"] = str(DOTENV_FILE)
os.environ["CONFIG_FILE"] = str(CONFIG_FILE)
os.environ["DATABASE_URL"] = get_db_url()
return True | 22f4953d9f2defd4f2af159b821e408bb60e7db7 | 3,650,822 |
def any_toggle_enabled(*toggles):
"""
Return a view decorator for allowing access if any of the given toggles are
enabled. Example usage:
@toggles.any_toggle_enabled(REPORT_BUILDER, USER_CONFIGURABLE_REPORTS)
def delete_custom_report():
pass
"""
def decorator(view_func):
@wraps(view_func)
def wrapped_view(request, *args, **kwargs):
for t in toggles:
if (
(hasattr(request, 'user') and t.enabled(request.user.username))
or (hasattr(request, 'domain') and t.enabled(request.domain))
):
return view_func(request, *args, **kwargs)
raise Http404()
return wrapped_view
return decorator | 25f48e9227f5c6ff74ae9874ac0b3b7ad010861b | 3,650,823 |
def moguls(material, height, randomize, coverage, det, e0=20.0, withPoisson=True, nTraj=defaultNumTraj, dose=defaultDose, sf=True, bf=True, optimize=True, xtraParams=defaultXtraParams):
"""moguls(material, radius, randomize, det, [e0=20.0], [withPoisson=True], [nTraj=defaultNumTraj], [dose = 120.0], [sf=True], [bf=True], [optimize=True], [xtraParams={}])
Monte Carlo simulate a spectrum from a rough surface made up of close packed spheres.
+ material - Composition of material
+ height - mogul height = 0.5 * mogul radius
+ randomize - randomize the beam start position?
+ coverage - fractional likelihood of each bump existing (0.0 to 1.0)"""
tmp = u"MC simulation of a %0.2lg um %d%% %smogul bed of %s at %0.1f keV%s%s" % (1.0e6 * height, int(100.0*coverage), (" rand " if randomize else " "), material, e0, (" + CSF" if sf else ""), (" + BSF" if bf else ""))
return base(det, e0, withPoisson, nTraj, dose, sf, bf, tmp, buildMoguls, { "Coverage" : coverage, "Optimize": optimize, "Height" : height, "Material" : material, "Randomize" : randomize }, xtraParams) | 182aa248962877636e18860b46d20335eb535074 | 3,650,824 |
def link_datasets(yelp_results, dj_df, df_type="wages"):
"""
(Assisted by Record Linkage Toolkit library and documentation)
This functions compares the Yelp query results to database results and
produces the best matches based on computing the qgram score. Depending
on the specific database table characteristics the qgram calculation
will be between the zip_code, business name, address strings, latitude,
longitude, or a combination of those charateristics.
Inputs:
- yelp_results: a pandas dataframe of yelp business results based
on a user's input
- dj_df: a pandas dataframe of django results.
Ex. labour statistics, healthcode violations, Divvy, etc.
- df_type: a string of which specific dataframe is being passed to
be compared to the Yelp results
Outputs:
- link: a tuple containing the indices of Yelp query results dataframe
and the database dataframe AND the best matches qgram scores
"""
# set thresholds for comparing strings using qgram method
name_thresh = 0.55
addr_thresh = 0.55
strong_addr_thresh = 0.90
# initialize a Record Linkage comparison object
compare = rl.Compare()
# Labour & Food data comparisons to Yelp are made on zip, business name,
# and address
if df_type == "wages" or df_type == "food":
indexer = rl.BlockIndex(on='zip_code') # block on zip code
compare.numeric('zip_code', 'zip_code', method='linear',
scale=30.0, label='zip_score')
compare.string('name', 'name', method='qgram',
threshold=name_thresh, label='name_score')
compare.string('addr', 'addr', method='qgram',
threshold=addr_thresh, label='addr_score')
# Environmental data comparisons to Yelp are made on address
elif df_type == "enviro":
indexer = rl.FullIndex() # no blocking available
compare.string('addr', 'addr', method='qgram',
threshold=strong_addr_thresh, label='addr_score')
# all other data comparisons to Yelp
else:
indexer = rl.FullIndex()
pairs = indexer.index(yelp_results, dj_df)
# In addition to above comparisons, ALL data sets are also compared to
# Yelp based on latitude and longitude
compare.geo('latitude', 'longitude', 'latitude', 'longitude',
method='linear', scale=30.0, label='coord_score')
# compute record linkage scores
features = compare.compute(pairs, yelp_results, dj_df)
# set classification thresholds
zip_classif_thresh = 1.0
addr_classif_thresh = 1.0
coord_classif_thresh = 0.99
name_classif_thresh = 1.0
# Classification and final filtering
if df_type == "wages" or df_type == "food":
best_matches = features[(features['zip_score'] == zip_classif_thresh) &
(features['name_score'] == name_classif_thresh) &
(features['addr_score'] == addr_classif_thresh) &
(features['coord_score'] >= coord_classif_thresh)]
elif df_type == "enviro":
best_matches = features[(features['addr_score'] == addr_classif_thresh) &
(features['coord_score'] >= coord_classif_thresh)]
else:
best_matches = features[(features['coord_score'] >= coord_classif_thresh)]
# obtain the index values from best_matches
index_array = best_matches.index.values
# create tuple of indices and best matches df
link = (index_array, best_matches)
return link | 326857d5060ac5cedcac3de90ce284048b2d2fa7 | 3,650,825 |
def hello():
"""Say Hello, so that we can check shared code."""
return b"hello" | 7197ed31c5fde419d4607ca1b5dbec7f8cb20608 | 3,650,826 |
def loglog_mean_lines(x, ys, axis=0, label=None, alpha=0.1):
""" Log-log plot of lines and their mean. """
return _plot_mean_lines(partial(plt.loglog, x), ys, axis, label, alpha) | 2f4461ca21c2f8db9ddfd763f474ebc73f3bf636 | 3,650,827 |
import osgeo.ogr
def read_lines_from_shapefile(fpath):
""" Read coordinates of cutting line segments from a ESRI Shapefile
containing line features.
Parameters
----------
fpath
Name of a file containing coordinates of cutting lines
Returns
--------
list
List of coordinates of cutting lines
"""
driver = osgeo.ogr.GetDriverByName('ESRI Shapefile')
datasource = driver.Open(fpath, 0)
if datasource is None:
print('Could not open ' + fpath)
raise RuntimeError()
layer = datasource.GetLayer()
feature = layer.GetNextFeature()
lines = list()
while feature:
geometry = feature.GetGeometryRef()
line = geometry.GetPoints()
lines.append(line)
feature = layer.GetNextFeature()
return lines | 9eca9204a577dc0f7d675703c75ba5d407a0338b | 3,650,828 |
def generate_identifier(endpoint_description: str) -> str:
"""Generate ID for model."""
return (
Config.fdk_publishers_base_uri()
+ "/fdk-model-publisher/catalog/"
+ sha1(bytes(endpoint_description, encoding="utf-8")).hexdigest() # noqa
) | 30bfc15c12b47f637627391a45bb9b5f9355c4f7 | 3,650,829 |
def depthFirstSearch(problem):
"""Search the deepest nodes in the search tree first."""
stack = util.Stack() # Stack used as fringe list
stack.push((problem.getStartState(),[],0))
return genericSearch(problem,stack) | 67452934a29e9857f90b88f3fead67d101468471 | 3,650,830 |
import argparse
def parse_cli_args() -> argparse.Namespace:
"""
Parse arguments passed via Command Line Interface (CLI).
:return:
namespace with arguments
"""
parser = argparse.ArgumentParser(description='Algorithmic composition of dodecaphonic music.')
parser.add_argument(
'-c', '--config_path', type=str, default=None, help='path to configuration file'
)
cli_args = parser.parse_args()
return cli_args | 9014ee342b810ec1b63f7ed80811f55b7ed4d00f | 3,650,831 |
def create_app():
"""
Method to init and set up the Flask application
"""
flask_app = MyFlask(import_name="dipp_app")
_init_config(flask_app)
_setup_context(flask_app)
_register_blueprint(flask_app)
_register_api_error(flask_app)
return flask_app | bfb64ac71fcd076fe26c3b342c33af30370be8db | 3,650,832 |
def find_consumes(method_type):
"""
Determine mediaType for input parameters in request body.
"""
if method_type in ('get', 'delete'):
return None
return ['application/json'] | 785e70e41629b0386d8b86f247afaf5bff3b7ba9 | 3,650,833 |
def preprocess(text):
""" Simple Arabic tokenizer and sentencizer. It is a space-based tokenizer. I use some rules to handle
tokenition exception like words containing the preposition 'و'. For example 'ووالدته' is tokenized to 'و والدته'
:param text: Arabic text to handle
:return: list of tokenized sentences
"""
try:
text = text.decode('utf-8')
except(UnicodeDecodeError, AttributeError):
pass
text = text.strip()
tokenizer_exceptions = ["وظف", "وضعها", "وضعه", "وقفنا", "وصفوها", "وجهوا", "والدته", "والده", "وادي", "وضعية",
"واجهات", "وفرتها", "وقاية", "وفا", "وزيرنا", "وزارتي", "وجهاها", "واردة", "وضعته",
"وضعتها", "وجاهة", "وهمية", "واجهة", "واضعاً", "واقعي", "ودائع", "واعدا", "واع", "واسعا",
"ورائها", "وحدها", "وزارتي", "وزارتي", "والدة", "وزرائها", "وسطاء", "وليامز", "وافق",
"والدها", "وسم", "وافق", "وجهها", "واسعة", "واسع", "وزنها", "وزنه",
"وصلوا", "والدها", "وصولاً", "وضوحاً", "وجّهته", "وضعته", "ويكيليكس", "وحدها", "وزيراً",
"وقفات", "وعر", "واقيًا", "وقوف", "وصولهم", "وارسو", "واجهت", "وقائية", "وضعهم",
"وسطاء", "وظيفته", "ورائه", "واسع", "ورط", "وظفت", "وقوف", "وافقت", "وفدًا", "وصلتها",
"وثائقي", "ويليان", "وساط", "وُقّع", "وَقّع", "وخيمة", "ويست", "والتر", "وهران", "ولاعة",
"ولايت", "والي", "واجب", "وظيفتها", "ولايات", "واشنطن", "واصف",
"وقح", "وعد", "وقود", "وزن", "وقوع", "ورشة", "وقائع", "وتيرة", "وساطة", "وفود", "وفات",
"وصاية", "وشيك", "وثائق", "وطنية", "وجهات", "وجهت", "وعود", "وضعهم", "وون", "وسعها", "وسعه",
"ولاية", "واصفاً", "واصلت", "وليان", "وجدتها", "وجدته", "وديتي", "وطأت", "وطأ", "وعودها",
"وجوه", "وضوح", "وجيز", "ورثنا", "ورث", "واقع", "وهم", "واسعاً", "وراثية", "وراثي", "والاس",
"واجهنا", "وابل", "ويكيميديا", "واضحا", "واضح", "وصفته", "واتساب", "وحدات", "ون",
"وورلد", "والد", "وكلاء", "وتر", "وثيق", "وكالة", "وكالات", "و احدة", "واحد", "وصيته",
"وصيه", "ويلمينغتون", "ولد", "وزر", "وعي", "وفد", "وصول", "وقف", "وفاة", "ووتش", "وسط",
"وزراء", "وزارة", "ودي", "وصيف", "ويمبلدون", "وست", "وهج", "والد", "وليد", "وثار",
"وجد", "وجه", "وقت", "ويلز", "وجود", "وجيه", "وحد", "وحيد", "ودا", "وداد", "ودرو",
"ودى", "وديع", "وراء", "ورانس", "ورث", "ورَّث", "ورد", "وردة", "ورق", "ورم", "وزير",
"وسام", "وسائل", "وستون", "وسط", "وسن", "وسيط", "وسيلة", "وسيم", "وصاف", "وصف", "وصْفَ",
"وصل", "وضع", "وطن", "وعاء", "وفاء", "وفق", "وفيق", "وقت", "وقع", "وكال", "وكيل",
"ولاء", "ولف", "وهب", "وباء", "ونستون", "وضح", "وجب", "وقّع", "ولنغتون", "وحش",
"وفر", "ولادة", "ولي", "وفيات", "وزار", "وجّه", "وهماً", "وجَّه", "وظيفة", "وظائف", "وقائي"]
sentence_splitter_exceptions = ["د.", "كي.", "في.", "آر.", "بى.", "جى.", "دى.", "جيه.", "ان.", "ال.", "سى.", "اس.",
"اتش.", "اف."]
sentence_splitters = ['.', '!', '؟', '\n']
text = text.replace('،', ' ، ')
text = text.replace('*', ' * ')
text = text.replace('’', ' ’ ')
text = text.replace('‘', ' ‘ ')
text = text.replace(',', ' , ')
text = text.replace('(', ' ( ')
text = text.replace(')', ' ) ')
text = text.replace('/', ' / ')
text = text.replace('[', ' [ ')
text = text.replace(']', ' ] ')
text = text.replace('|', ' | ')
text = text.replace('؛', ' ؛ ')
text = text.replace('«', ' « ')
text = text.replace('»', ' » ')
text = text.replace('!', ' ! ')
text = text.replace('-', ' - ')
text = text.replace('“', ' “ ')
text = text.replace('”', ' ” ')
text = text.replace('"', ' " ')
text = text.replace('؟', ' ؟ ')
text = text.replace(':', ' : ')
text = text.replace('…', ' … ')
text = text.replace('..', ' .. ')
text = text.replace('...', ' ... ')
text = text.replace('\'', ' \' ')
text = text.replace('\n', ' \n ')
text = text.replace(' ', ' ')
tokens = text.split()
for i, token in enumerate(tokens):
if token[-1] in sentence_splitters:
is_exceptions = token in sentence_splitter_exceptions
if not is_exceptions:
tokens[i] = token[:-1] + ' ' + token[-1] + 'SENT_SPLITTER'
tokens = ' '.join(tokens).split()
for i, token in enumerate(tokens):
if token.startswith('و'):
is_exceptions = [token.startswith(exception) and len(token) <= len(exception) + 1 for exception in
tokenizer_exceptions]
if True not in is_exceptions:
tokens[i] = token[0] + ' ' + token[1:]
text = (' '.join(tokens))
text = text.replace(' وال', ' و ال')
text = text.replace(' لل', ' ل ل')
text = text.replace(' لإ', ' ل إ')
text = text.replace(' بالأ', ' ب الأ')
text = text.replace('وفقا ل', 'وفقا ل ')
text = text.replace('نسبة ل', 'نسبة ل ')
sentences = text.split('SENT_SPLITTER')
return sentences | 48a44391413045a49d6d9f2dff20dcd89734b4f2 | 3,650,834 |
def login(client, password="pass", ):
"""Helper function to log into our app.
Parameters
----------
client : test client object
Passed here is the flask test client used to send the request.
password : str
Dummy password for logging into the app.
Return
-------
post request object
The test client is instructed to send a post request to the /login
route. The request contains the fields values to be posted by the form.
"""
return client.post('/login',
data=dict(pass_field=password, remember_me=True),
follow_redirects=True) | 5adca2e7d54dabe47ae92f0bcebb93e0984617b1 | 3,650,835 |
def define_dagstermill_solid(
name,
notebook_path,
input_defs=None,
output_defs=None,
config_schema=None,
required_resource_keys=None,
output_notebook=None,
output_notebook_name=None,
asset_key_prefix=None,
description=None,
tags=None,
):
"""Wrap a Jupyter notebook in a solid.
Arguments:
name (str): The name of the solid.
notebook_path (str): Path to the backing notebook.
input_defs (Optional[List[InputDefinition]]): The solid's inputs.
output_defs (Optional[List[OutputDefinition]]): The solid's outputs. Your notebook should
call :py:func:`~dagstermill.yield_result` to yield each of these outputs.
required_resource_keys (Optional[Set[str]]): The string names of any required resources.
output_notebook (Optional[str]): If set, will be used as the name of an injected output of
type :py:class:`~dagster.FileHandle` that will point to the executed notebook (in
addition to the :py:class:`~dagster.AssetMaterialization` that is always created). This
respects the :py:class:`~dagster.core.storage.file_manager.FileManager` configured on
the pipeline resources via the "file_manager" resource key, so, e.g.,
if :py:class:`~dagster_aws.s3.s3_file_manager` is configured, the output will be a :
py:class:`~dagster_aws.s3.S3FileHandle`.
output_notebook_name: (Optional[str]): If set, will be used as the name of an injected output
of type of :py:class:`~dagster.BufferedIOBase` that is the file object of the executed
notebook (in addition to the :py:class:`~dagster.AssetMaterialization` that is always
created). It allows the downstream solids to access the executed notebook via a file
object.
asset_key_prefix (Optional[Union[List[str], str]]): If set, will be used to prefix the
asset keys for materialized notebooks.
description (Optional[str]): If set, description used for solid.
tags (Optional[Dict[str, str]]): If set, additional tags used to annotate solid.
Dagster uses the tag keys `notebook_path` and `kind`, which cannot be
overwritten by the user.
Returns:
:py:class:`~dagster.SolidDefinition`
"""
check.str_param(name, "name")
check.str_param(notebook_path, "notebook_path")
input_defs = check.opt_list_param(input_defs, "input_defs", of_type=InputDefinition)
output_defs = check.opt_list_param(output_defs, "output_defs", of_type=OutputDefinition)
required_resource_keys = check.opt_set_param(
required_resource_keys, "required_resource_keys", of_type=str
)
extra_output_defs = []
if output_notebook_name is not None:
required_resource_keys.add("output_notebook_io_manager")
extra_output_defs.append(
OutputDefinition(name=output_notebook_name, io_manager_key="output_notebook_io_manager")
)
# backcompact
if output_notebook is not None:
rename_warning(
new_name="output_notebook_name", old_name="output_notebook", breaking_version="0.14.0"
)
required_resource_keys.add("file_manager")
extra_output_defs.append(OutputDefinition(dagster_type=FileHandle, name=output_notebook))
if isinstance(asset_key_prefix, str):
asset_key_prefix = [asset_key_prefix]
asset_key_prefix = check.opt_list_param(asset_key_prefix, "asset_key_prefix", of_type=str)
default_description = f"This solid is backed by the notebook at {notebook_path}"
description = check.opt_str_param(description, "description", default=default_description)
user_tags = validate_tags(tags)
if tags is not None:
check.invariant(
"notebook_path" not in tags,
"user-defined solid tags contains the `notebook_path` key, but the `notebook_path` key is reserved for use by Dagster",
)
check.invariant(
"kind" not in tags,
"user-defined solid tags contains the `kind` key, but the `kind` key is reserved for use by Dagster",
)
default_tags = {"notebook_path": notebook_path, "kind": "ipynb"}
return SolidDefinition(
name=name,
input_defs=input_defs,
compute_fn=_dm_solid_compute(
name,
notebook_path,
output_notebook_name,
asset_key_prefix=asset_key_prefix,
output_notebook=output_notebook, # backcompact
),
output_defs=output_defs + extra_output_defs,
config_schema=config_schema,
required_resource_keys=required_resource_keys,
description=description,
tags={**user_tags, **default_tags},
) | 48097a7bed7ef84ad8d9df4eeef835f3723cb391 | 3,650,836 |
import torch
def denormalize_laf(LAF: torch.Tensor, images: torch.Tensor) -> torch.Tensor:
"""De-normalizes LAFs from scale to image scale.
B,N,H,W = images.size()
MIN_SIZE = min(H,W)
[a11 a21 x]
[a21 a22 y]
becomes
[a11*MIN_SIZE a21*MIN_SIZE x*W]
[a21*MIN_SIZE a22*MIN_SIZE y*H]
Args:
LAF:
images: images, LAFs are detected in.
Returns:
the denormalized lafs.
Shape:
- Input: :math:`(B, N, 2, 3)`
- Output: :math:`(B, N, 2, 3)`
"""
raise_error_if_laf_is_not_valid(LAF)
n, ch, h, w = images.size()
wf = float(w)
hf = float(h)
min_size = min(hf, wf)
coef = torch.ones(1, 1, 2, 3).to(LAF.dtype).to(LAF.device) * min_size
coef[0, 0, 0, 2] = wf
coef[0, 0, 1, 2] = hf
return coef.expand_as(LAF) * LAF | 51b8c81359237a9e102c1cd33bb7d1ab16c39893 | 3,650,837 |
import os
import shutil
def project_main(GIS_files_path, topath):
""" This main function reads the GIS-layers in GIS_files_path and separates them by raster and vector data.
Projects the data to WGS84 UMT37S
Moves all files to ../Projected_files
Merges the files named 'kV' to two merged shape file of Transmission and Medium Voltage lines
Merges the files named 'MiniGrid' to one merged shape file
:param GIS_files_path:
:return:
"""
print(os.getcwd())
basedir = os.getcwd()
os.chdir(GIS_files_path)
current = os.getcwd()
print(os.getcwd())
#All shp-files in all folders in dir current
adm = project_vector(os.path.join(current,'gadm36_KEN_shp\gadm36_KEN_0.shp'))
adm.to_file(os.path.join(current,'gadm36_KEN_shp\gadm36_KEN_0_UMT37S.shp'))
shpFiles = [os.path.join(dp, f) for dp, dn, filenames in os.walk(current) for f in filenames if
os.path.splitext(f)[1] == '.shp']
for s in shpFiles:
path, filename = os.path.split(s)
projected = project_vector(s)
clip_vector(os.path.join(current,'gadm36_KEN_shp\gadm36_KEN_0_UMT37S.shp'), projected, s, os.path.join(path, "UMT37S_%s" % (filename)))
#All tif-files in all folders in dir current
tifFiles = [os.path.join(dp, f) for dp, dn, filenames in os.walk(current) for f in filenames if
os.path.splitext(f)[1] == '.tif']
for t in tifFiles:
path, filename = os.path.split(t)
masking(os.path.join(current,'gadm36_KEN_shp\gadm36_KEN_0.shp'), t)
project_raster(os.path.join(path,'%s' % (filename)), os.path.join(path,"masked_UMT37S_%s" % (filename)))
#All files containing "UMT37S" is copied to ../Projected_files dir
def create_dir(dir):
if not os.path.exists(dir):
os.makedirs(dir)
create_dir((topath))
allFiles = [os.path.join(dp, f) for dp, dn, filenames in os.walk(current) for f in filenames]
keyword = 'UMT37S'
for fname in allFiles:
if keyword in fname:
shutil.copy("\\\\?\\"+fname, os.path.join(current, topath)) #Due to really long name the \\\\?\\ can trick Windows accepting it
os.chdir(basedir)
merge_transmission(topath)
merge_minigrid(topath)
merge_mv(topath)
return () | a686608a7c82aed75e7a8606e2ca1ca5b3bc7f02 | 3,650,838 |
import re
def parse_regex_flags(raw_flags: str = 'gim'):
"""
parse flags user input and convert them to re flags.
Args:
raw_flags: string chars representing er flags
Returns:
(re flags, whether to return multiple matches)
"""
raw_flags = raw_flags.lstrip('-') # compatibility with original MatchRegex script.
multiple_matches = 'g' in raw_flags
raw_flags = raw_flags.replace('g', '')
flags = re.RegexFlag(0)
for c in raw_flags:
if c in LETTER_TO_REGEX_FLAGS:
flags |= LETTER_TO_REGEX_FLAGS[c]
else:
raise ValueError(f'Invalid regex flag "{c}".\n'
f'Supported flags are {", ".join(LETTER_TO_REGEX_FLAGS.keys())}')
return flags, multiple_matches | 71816c57f4e4f6dac82b4746b534a680745bc730 | 3,650,839 |
import argparse
def create_parser():
""" Create argparse object for this CLI """
parser = argparse.ArgumentParser(
description="Remove doubled extensions from files")
parser.add_argument("filename", metavar="file",
help="File to process")
return parser | c5acd1d51161d7001d7a6842fa87ff0cf61a03ef | 3,650,840 |
def has_answer(answers, retrieved_text, match='string', tokenized: bool = False):
"""Check if retrieved_text contains an answer string.
If `match` is string, token matching is done between the text and answer.
If `match` is regex, we search the whole text with the regex.
"""
if not isinstance(answers, list):
answers = [answers]
if match == 'string':
if tokenized:
text = md.detokenize(retrieved_text)
t_text = retrieved_text
else:
text = retrieved_text
t_text = spacy_tokenize(retrieved_text, uncase=True)
for single_answer in answers:
single_answer = spacy_tokenize(single_answer, uncase=True)
for i in range(0, len(t_text) - len(single_answer) + 1):
if single_answer == t_text[i: i + len(single_answer)]:
return True
for single_answer in answers: # If raw covered.
if single_answer in text:
return True
elif match == 'regex':
if tokenized:
text = md.detokenize(retrieved_text)
else:
text = retrieved_text
# Answer is a regex
single_answer = normalize(answers[0])
if regex_match(text, single_answer):
return True
return False | f0107006d2796e620cd1a47ef9e79c1c5cc1fd7a | 3,650,841 |
def get_utm_zone(srs):
"""
extracts the utm_zone from an osr.SpatialReference object (srs)
returns the utm_zone as an int, returns None if utm_zone not found
"""
if not isinstance(srs, osr.SpatialReference):
raise TypeError('srs is not a osr.SpatialReference instance')
if srs.IsProjected() != 1:
return None
projcs = srs.GetAttrValue('projcs')
assert 'UTM' in projcs
datum = None
if 'NAD83' in projcs:
datum = 'NAD83'
elif 'WGS84' in projcs:
datum = 'WGS84'
elif 'NAD27' in projcs:
datum = 'NAD27'
# should be something like NAD83 / UTM zone 11N...
if '/' in projcs:
utm_token = projcs.split('/')[1]
else:
utm_token = projcs
if 'UTM' not in utm_token:
return None
# noinspection PyBroadException
try:
utm_zone = int(''.join([k for k in utm_token if k in '0123456789']))
except Exception:
return None
if utm_zone < 0 or utm_zone > 60:
return None
hemisphere = projcs[-1]
return datum, utm_zone, hemisphere | 3ee1f9780ce0fbfd843ea6b72627e90e16fd1549 | 3,650,842 |
def get_documents_meta_url(project_id: int, limit: int = 10, host: str = KONFUZIO_HOST) -> str:
"""
Generate URL to load meta information about the Documents in the Project.
:param project_id: ID of the Project
:param host: Konfuzio host
:return: URL to get all the Documents details.
"""
return f"{host}/api/projects/{project_id}/docs/?limit={limit}" | b538d028844a2f769e8700995d1052b440592046 | 3,650,843 |
def parse_params_from_string(paramStr: str) -> dict:
""" Create a dictionary representation of parameters in PBC format
"""
params = dict()
lines = paramStr.split('\n')
for line in lines:
if line:
name, value = parse_param_line(line)
add_param(params, name, value)
return params | fbf8c8cfffd0c411cc4a83760f373dd4e02eec1e | 3,650,844 |
def hstack(gctoos, remove_all_metadata_fields=False, error_report_file=None, fields_to_remove=[], reset_ids=False):
""" Horizontally concatenate gctoos.
Args:
gctoos (list of gctoo objects)
remove_all_metadata_fields (bool): ignore/strip all common metadata when combining gctoos
error_report_file (string): path to write file containing error report indicating
problems that occurred during hstack, mainly for inconsistencies in common metadata
fields_to_remove (list of strings): fields to be removed from the
common metadata because they don't agree across files
reset_ids (bool): set to True if sample ids are not unique
Return:
concated (gctoo object)
"""
# Separate each gctoo into its component dfs
row_meta_dfs = []
col_meta_dfs = []
data_dfs = []
srcs = []
for g in gctoos:
row_meta_dfs.append(g.row_metadata_df)
col_meta_dfs.append(g.col_metadata_df)
data_dfs.append(g.data_df)
srcs.append(g.src)
logger.debug("shapes of row_meta_dfs: {}".format([x.shape for x in row_meta_dfs]))
# Concatenate row metadata
all_row_metadata_df = assemble_common_meta(row_meta_dfs, fields_to_remove, srcs, remove_all_metadata_fields, error_report_file)
# Concatenate col metadata
all_col_metadata_df = assemble_concatenated_meta(col_meta_dfs, remove_all_metadata_fields)
# Concatenate the data_dfs
all_data_df = assemble_data(data_dfs, "horiz")
# Make sure df shapes are correct
assert all_data_df.shape[0] == all_row_metadata_df.shape[0], "Number of rows in metadata does not match number of rows in data - all_data_df.shape[0]: {} all_row_metadata_df.shape[0]: {}".format(all_data_df.shape[0], all_row_metadata_df.shape[0])
assert all_data_df.shape[1] == all_col_metadata_df.shape[0], "Number of columns in data does not match number of columns metadata - all_data_df.shape[1]: {} all_col_metadata_df.shape[0]: {}".format(all_data_df.shape[1], all_col_metadata_df.shape[0])
# If requested, reset sample ids to be unique integers and move old sample
# ids into column metadata
if reset_ids:
do_reset_ids(all_col_metadata_df, all_data_df, "horiz")
logger.info("Build GCToo of all...")
concated = GCToo.GCToo(row_metadata_df=all_row_metadata_df,
col_metadata_df=all_col_metadata_df,
data_df=all_data_df)
return concated | 5da84b3db052dd54c8f3a41ecf0cc20dd3d2f187 | 3,650,845 |
def number_fixed_unused_variables(block):
"""
Method to return the number of fixed Var components which do not appear
within any activated Constraint in a model.
Args:
block : model to be studied
Returns:
Number of fixed Var components which do not appear within any activated
Constraints in block
"""
return len(fixed_unused_variables_set(block)) | a6432160bc52ac3e5682b255c951388242bbc2b0 | 3,650,846 |
def tunnelX11( node, display=None):
"""Create an X11 tunnel from node:6000 to the root host
display: display on root host (optional)
returns: node $DISPLAY, Popen object for tunnel"""
if display is None and 'DISPLAY' in environ:
display = environ[ 'DISPLAY' ]
if display is None:
error( "Error: Cannot connect to display\n" )
return None, None
host, screen = display.split( ':' )
# Unix sockets should work
if not host or host == 'unix':
# GDM3 doesn't put credentials in .Xauthority,
# so allow root to just connect
quietRun( 'xhost +si:localuser:root' )
return display, None
else:
# Create a tunnel for the TCP connection
port = 6000 + int( float( screen ) )
connection = r'TCP\:%s\:%s' % ( host, port )
cmd = [ "socat", "TCP-LISTEN:%d,fork,reuseaddr" % port,
"EXEC:'mnexec -a 1 socat STDIO %s'" % connection ]
return 'localhost:' + screen, node.popen( cmd ) | a0e824bef4d23dd3a8a5c25653bf778731de180e | 3,650,847 |
import os
def static_docs(file_path):
"""Serve the 'docs' folder static files and redirect folders to index.html.
:param file_path: File path inside the 'docs' folder.
:return: Full HTTPResponse for the static file.
"""
if os.path.isdir(os.path.join(document_root, 'docs', file_path)):
return redirect('/docs/%s/index.html' % file_path)
return static_file(file_path, root=os.path.join(document_root, 'docs')) | 14af4c310d09756e3dcd63335bc3d03d2be28dca | 3,650,848 |
import collections
def get_aws_account_id_file_section_dict() -> collections.OrderedDict:
"""~/.aws_accounts_for_set_aws_mfa から Section 情報を取得する"""
# ~/.aws_accounts_for_set_aws_mfa の有無を確認し、なければ生成する
prepare_aws_account_id_file()
# 該当 ini ファイルのセクション dictionary を取得
return Config._sections | 51eb94857d62b91c5fcfe978b3cd2a32cbefb6ae | 3,650,849 |
from datetime import datetime
def profile(request, session_key):
"""download_audio.html renderer.
:param request: rest API request object.
:type request: Request
:param session_key: string representing the session key for the user
:type session_key: str
:return: Just another django mambo.
:rtype: HttpResponse
"""
# This may be different from the one provided in the URL.
my_session_key = request.session.session_key
last_week = datetime.date.today() - datetime.timedelta(days=7)
# Get the weekly counts.
last_weeks = [datetime.date.today() - datetime.timedelta(days=days) for days in [6, 13, 20, 27, 34]]
dates = []
weekly_counts = []
for week in last_weeks:
dates.append(week.strftime('%m/%d/%Y'))
count = AnnotatedRecording.objects.filter(
file__gt='', file__isnull=False, session_id=session_key, timestamp__gt=week,
timestamp__lt=week + datetime.timedelta(days=7)).count()
weekly_counts.append(count)
recording_count = AnnotatedRecording.objects.filter(
file__gt='', file__isnull=False).count()
# Construct dictionaries of the user's recordings.
user_recording_count = AnnotatedRecording.objects.filter(
file__gt='', file__isnull=False, session_id=session_key).count()
recent_recordings = AnnotatedRecording.objects.filter(
file__gt='', file__isnull=False, session_id=session_key, timestamp__gt=last_week)
recent_dict = defaultdict(list)
[recent_dict[rec.surah_num].append((rec.ayah_num, rec.file.url)) for rec in recent_recordings]
old_recordings = AnnotatedRecording.objects.filter(
file__gt='', file__isnull=False, session_id=session_key, timestamp__lt=last_week)
old_dict = defaultdict(list)
[old_dict[rec.surah_num].append((rec.ayah_num, rec.file.url)) for rec in old_recordings]
recent_lists = _sort_recitations_dict_into_lists(recent_dict)
old_lists = _sort_recitations_dict_into_lists(old_dict)
return render(request, 'audio/profile.html', {'session_key': my_session_key,
'recent_dict': dict(recent_dict),
'recent_lists': recent_lists,
'old_lists': old_lists,
'dates': dates[::-1],
'weekly_counts': weekly_counts[::-1],
'old_dict': dict(old_dict),
'recording_count': recording_count,
'user_recording_count': user_recording_count}) | ba39b5a69c062ab62f83f46f7044f403120016ca | 3,650,850 |
import requests
def pipFetchLatestVersion(pkg_name: str) -> str:
"""
Fetches the latest version of a python package from pypi.org
:param pkg_name: package to search for
:return: latest version of the package or 'not found' if error was returned
"""
base_url = "https://pypi.org/pypi"
request = f"{base_url}/{pkg_name}/json"
response = requests.get(request)
if response.status_code == requests.codes.ok:
json = response.json()
newest_version = json["info"]["version"]
else:
newest_version = NOT_FOUND
return newest_version | f1a49d31f4765a1a2ddc5942792a74be211fef49 | 3,650,851 |
import subprocess
def _GetLastAuthor():
"""Returns a string with the author of the last commit."""
author = subprocess.check_output(['git', 'log',
'-1',
'--pretty=format:"%an"']).splitlines()
return author | 82159cf4d882d6cace29802892dacda1bfe6b6b2 | 3,650,852 |
def mock_datasource_http_oauth2(mock_datasource):
"""Mock DataSource object with http oauth2 credentials"""
mock_datasource.credentials = b"client_id: FOO\nclient_secret: oldisfjowe84uwosdijf"
mock_datasource.location = "http://foo.com"
return mock_datasource | 8496f6b9ac60af193571f762eb2ea925915a1223 | 3,650,853 |
def find_certificate_name(file_name):
"""Search the CRT for the actual aggregator name."""
# This loop looks for the collaborator name in the key
with open(file_name, 'r') as f:
for line in f:
if 'Subject: CN=' in line:
col_name = line.split('=')[-1].strip()
break
return col_name | 853ec62b69feebd86c7a56e1d47b2c12e7f56d63 | 3,650,854 |
import sys
import os
import imp
def _find_module(module):
"""Find module using imp.find_module.
While imp is deprecated, it provides a Python 2/3 compatible
interface for finding a module. We use the result later to load
the module with imp.load_module with the '__main__' name, causing
it to execute.
The non-deprecated method of using importlib.util.find_spec and
loader.execute_module is not supported in Python 2.
The _find_module implementation uses a novel approach to bypass
imp.find_module's requirement that package directories contain
__init__.py/__init__.pyc markers. This lets users specify
namespace packages in main modules, which are not otherwise
supported by imp.find_module.
"""
parts = module.split(".")
module_path = parts[0:-1]
module_name_part = parts[-1]
# See function docstring for the rationale of this algorithm.
for sys_path_item in sys.path:
cur_path = os.path.join(sys_path_item, *module_path)
try:
return imp.find_module(module_name_part, [cur_path])
except ImportError:
pass
raise ImportError("No module named %s" % module) | b76b72cfc666e78b5b880c95bdc196b469722822 | 3,650,855 |
from typing import List
def float2bin(p: float, min_bits: int = 10, max_bits: int = 20, relative_error_tol=1e-02) -> List[bool]:
""" Converts probability `p` into binary list `b`.
Args:
p: probability such that 0 < p < 1
min_bits: minimum number of bits before testing relative error.
max_bits: maximum number of bits for truncation.
relative_error_tol: relative error tolerance
Returns:
b: List[bool]
Examples:
Probability 0.5 becomes:
>>> float2bin(0.5) # Is 0.1
[1]
Moreover 0.125 is:
>>> float2bin(0.125) # Is 0.001
[0, 0, 1]
Some numbers get truncated. For example, probability 1/3 becomes:
>>> float2bin(1/3) # Is 0.0101010101...
[0, 1, 0, 1, 0, 1, 0, 1, 0]
You can increase the maximum number of bits to reach float precision, for example:
>>> 1/3
0.3333333333333333
>>> q = float2bin(1/3, 64)
>>> bin2float(q)
0.3333333333333333
>>> 1/3 == bin2float(q)
True
"""
assert 1 > p > 0
b = []
i = 1
original_p = 1 - p
while p != 0 or i > max_bits:
if i > min_bits:
if isclose(1 - bin2float(b), original_p, rtol=relative_error_tol, atol=0):
break
if p >= 2 ** -i:
b.append(True)
p -= 2 ** -i
else:
b.append(False)
i += 1
return b | 1b25f84255ace0503f06ae2ab9f8dc650206176c | 3,650,856 |
def bin_thresh(img: np.ndarray, thresh: Number) -> np.ndarray:
"""
Performs binary thresholding of an image
Parameters
----------
img : np.ndarray
Image to filter.
thresh : int
Pixel values >= thresh are set to 1, else 0.
Returns
-------
np.ndarray :
Binarized image, same shape as input
"""
res = img >= thresh
return res | 9064fb5f50c22aabc73bf63d3a818b6898a19a58 | 3,650,857 |
from mathutils import Matrix, Vector, Euler
def add_object_align_init(context, operator):
"""
Return a matrix using the operator settings and view context.
:arg context: The context to use.
:type context: :class:`bpy.types.Context`
:arg operator: The operator, checked for location and rotation properties.
:type operator: :class:`bpy.types.Operator`
:return: the matrix from the context and settings.
:rtype: :class:`mathutils.Matrix`
"""
properties = operator.properties if operator is not None else None
space_data = context.space_data
if space_data and space_data.type != 'VIEW_3D':
space_data = None
# location
if operator and properties.is_property_set("location"):
location = Matrix.Translation(Vector(properties.location))
else:
if space_data: # local view cursor is detected below
location = Matrix.Translation(space_data.cursor_location)
else:
location = Matrix.Translation(context.scene.cursor_location)
if operator:
properties.location = location.to_translation()
# rotation
view_align = (context.user_preferences.edit.object_align == 'VIEW')
view_align_force = False
if operator:
if properties.is_property_set("view_align"):
view_align = view_align_force = operator.view_align
else:
if properties.is_property_set("rotation"):
# ugh, 'view_align' callback resets
value = properties.rotation[:]
properties.view_align = view_align
properties.rotation = value
del value
else:
properties.view_align = view_align
if operator and (properties.is_property_set("rotation") and
not view_align_force):
rotation = Euler(properties.rotation).to_matrix().to_4x4()
else:
if view_align and space_data:
rotation = space_data.region_3d.view_matrix.to_3x3().inverted()
rotation.resize_4x4()
else:
rotation = Matrix()
# set the operator properties
if operator:
properties.rotation = rotation.to_euler()
return location * rotation | 6bd32226c7024245b1252c3a51f5ae713f43a1b2 | 3,650,858 |
import pickle
def load_dataset():
"""
load dataset
:return: dataset in numpy style
"""
data_location = 'data.pk'
data = pickle.load(open(data_location, 'rb'))
return data | 9467826bebfc9ca3ad1594904e9f3195e345c065 | 3,650,859 |
def video_feed():
"""Return camera live feed."""
return Response(gen(Camera()),
mimetype='multipart/x-mixed-replace; boundary=frame') | 87c9ae8aa84fe17a16b040d56fbdaac6351e0706 | 3,650,860 |
def area_in_squaremeters(geodataframe):
"""Calculates the area sizes of a geo dataframe in square meters.
Following https://gis.stackexchange.com/a/20056/77760 I am choosing equal-area projections
to receive a most accurate determination of the size of polygons in the geo dataframe.
Instead of Gall-Peters, as suggested in the answer, I am using EPSG_3035 which is
particularly usefull for Europe.
Returns a pandas series of area sizes in square meters.
"""
return geodataframe.to_crs(EPSG_3035_PROJ4).area | 47a2ae042c8cda7fa6b66ccd011d0293afb36504 | 3,650,861 |
import scipy
def add_eges_grayscale(image):
""" Edge detect.
Keep original image grayscale value where no edge.
"""
greyscale = rgb2gray(image)
laplacian = np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]])
edges = scipy.ndimage.filters.correlate(greyscale, laplacian)
for index,value in np.ndenumerate(edges):
edges[index] = 255-greyscale[index] if value == 0 else 0
return edges | 0cba5152578722693d0d796252a99973e980b365 | 3,650,862 |
def generateFromSitePaymentObject(signature: str, account_data: dict, data: dict)->dict:
"""[summary]
Creates object for from site chargment request
Args:
signature (str): signature hash string
account_data (dict): merchant_account: str
merchant_domain: str
data (dict): order + personal data to create charge
orderReference (str): timestamp
amount (float): order total amount
currency (str): 'USD', 'UAH', 'RUB'
card (str): user card number
expMonth (str): card expires month
expYear (str): card expires year
cardCvv (str): card cvv
cardHolder (str): full name of card holder "Test test"
productName (list[str]): product names list
productPrice (list[float]): product price list
productCount (list[int]): product count list
clientFirstName (str): client first name
clientLastName (str): client last name
clientCountry (str): client country
clientEmail (str): client email
clientPhone (str): client phone
Returns:
dict: [description]
"""
return {
"transactionType":"CHARGE",
'merchantAccount': account_data['merchant_account'],
"merchantAuthType":"SimpleSignature",
'merchantDomainName': account_data['merchant_domain'],
"merchantTransactionType":"AUTH",
"merchantTransactionSecureType": "NON3DS",
'merchantSignature': signature,
"apiVersion":1,
'orderReference': str(data['orderReference']),
'orderDate': str(data['orderReference']),
"amount":data["amount"],
'currency': data['currency'],
"card":data['card'],
"expMonth":data['expMonth'],
"expYear":data['expYear'],
"cardCvv":data['cardCvv'],
"cardHolder":data['cardHolder'],
'productName': list(map(str, data['productName'])),
'productPrice': list(map(float, data['productPrice'])),
'productCount': list(map(int, data['productCount'])),
"clientFirstName":data['clientFirstName'],
"clientLastName":data['clientLastName'],
"clientCountry":data['clientCountry'],
"clientEmail":data['clientEmail'],
"clientPhone":data['clientPhone'],
} | 149434694e985956dede9bf8b6b0da1215ac9963 | 3,650,863 |
def deal_weights(node, data=None):
""" deal the weights of the custom layer
"""
layer_type = node.layer_type
weights_func = custom_layers[layer_type]['weights']
name = node.layer_name
return weights_func(name, data) | a2a271ea0aeb94a1267dbc06da8997985b81633e | 3,650,864 |
def label_brand_generic(df):
""" Correct the formatting of the brand and generic drug names """
df = df.reset_index(drop=True)
df = df.drop(['drug_brand_name', 'drug_generic_name'], axis=1)
df['generic_compare'] = df['generic_name'].str.replace('-', ' ')
df['generic_compare'] = df['generic_compare'].str.replace('with ', '')
df['generic_compare'] = df['generic_compare'].str.replace('/', ' ')
df['brand_compare'] = df['brand_name'].str.replace('-', ' ')
df['brand_compare'] = df['brand_compare'].str.replace('with ', '')
df['brand_compare'] = df['brand_compare'].str.replace('/', ' ')
df_na = df.fillna(0) #df.dropna().sort_values(by='generic_name')
risk_class_list = []
# Find contingency table for each generic
# format [[brand_ad_ev, brand_bene], [generic_ad_ev, generic_bene]]
for i, val in enumerate(df_na['generic_compare']):
if ((df_na.iloc[i]['brand_compare'] == val) | (df_na.iloc[i]['brand_compare'] in val) |
(val in df_na.iloc[i]['brand_compare'])):
# GENERIC NEG = -1
risk_class_list.append(-1)
else:
# BRAND POS = 1
risk_class_list.append(1)
risk_series = pd.Series(risk_class_list).replace(np.inf, np.nan)
risk_series = risk_series.replace(-np.inf, np.nan)
df_na['risk_class'] = risk_series
df['risk_class'] = risk_series
# Drop columns that are redunant from name matching
df_na = df_na.drop(['generic_compare', 'brand_compare'], axis = 1)
df = df.drop(['generic_compare', 'brand_compare'], axis = 1)
df_class_generic_count = pd.pivot_table(df, index = ['generic_name'],
values = ['risk_class'], aggfunc = 'count')
df_class_generic_count.rename(columns={'risk_class' : 'risk_count'}, inplace=True)
df = df.merge(df_class_generic_count, right_index=True, left_on = 'generic_name', how='inner')
return df | a421eece6e595159847821abcaf2cf7dd8dc88c5 | 3,650,865 |
def RMSRE(
image_true: np.ndarray,
image_test: np.ndarray,
mask: np.ndarray = None,
epsilon: float = 1e-9,
) -> float:
"""Root mean squared relative error (RMSRE) between two images within the
specified mask. If not mask is specified the entire image is used.
Parameters
----------
image_true : np.ndarray
ground truth image.
image_test : np.ndarray
predicted image.
mask : np.ndarray, optional
mask to compute the RMSRE in, by default None
epsilon : float, optional
epsilon used to stabilize the calculation of the relative error,
by default 1e-9
Returns
-------
float
RMSRE value between the images within the specified mask.
"""
if mask is None:
mask = np.ones_like(image_true)
mask_flat = mask.reshape(-1).astype(bool)
# flatten
relativeErrorImageFlat = (
image_test.reshape(-1)[mask_flat] - image_true.reshape(-1)[mask_flat]
) / (image_true.reshape(-1)[mask_flat] + epsilon)
return np.sqrt(
np.mean(relativeErrorImageFlat) ** 2 + np.std(relativeErrorImageFlat) ** 2
) | 6b377b2588ef0c02f059248d3214e0d7960ca25b | 3,650,866 |
import PIL
import logging
def getImage(imageData, flag):
"""
Returns the PIL image object from imageData based on the flag.
"""
image = None
try:
if flag == ENHANCED:
image = PIL.Image.open(imageData.enhancedImage.file)
elif flag == UNENHANCED:
image = PIL.Image.open(imageData.unenhancedImage.file)
elif flag == DISPLAY:
image = PIL.Image.open(imageData.image.file)
except:
logging.error("image cannot be read from the image data")
return None
return image | a3aaa80bc396fcdf099d5963706d21d63a6dcf0d | 3,650,867 |
def save_record(record_type,
record_source,
info,
indicator,
date=None):
"""
A convenience function that calls 'create_record' and also saves the resulting record.
:param record_type: The record type, which should be a value from the RecordType enumeration
:param record_source: The source for the record, which should be a value from the RecordSource enumeration
:param info: The actual data to be stored in the record
:param date: The date to use with this record, or None to use the current date
:return: The new IndicatorRecord instance
"""
record = create_record(record_type, record_source, info, indicator, date)
record.save()
logger.info("%s (%s) record from %s saved successfully",
record_type.name,
record_type.title,
record_source.title)
return record | 903eb7333cfd2cc534812c5417e5e32a7769ffe4 | 3,650,868 |
def update_product_price(pid: str, new_price: int):
""" Update product's price
Args:
pid (str): product id
new_price (int): new price
Returns:
dict: status(success, error)
"""
playload = {'status': ''}
try:
connection = create_connection()
with connection:
with connection.cursor() as cursor:
sql = "UPDATE `product` SET `PRICE` = %s WHERE `PID` = %s"
cursor.execute(sql, (new_price, pid))
connection.commit()
playload['status'] = 'success'
return playload
except:
playload['status'] = 'error'
return playload | fff3723a9138724f1957cd9a669cdcf79e4ed4e5 | 3,650,869 |
def select_n_products(lst, n):
"""Select the top N products (by number of reviews)
args:
lst: a list of lists that are (key,value) pairs for (ASIN, N-reviews)
sorted on the number of reviews in reverse order
n: a list of three numbers,
returns:
a list of lists with N products
"""
top_products = []
first_third = lst[100:100 + n[0] + 1]
second_third = lst[1000:1000 + n[1] + 1]
third_third = lst[50000:50000 + n[2] + 1]
top_products.extend(first_third)
top_products.extend(second_third)
top_products.extend(third_third)
n_reviews = sum([x[1] for x in top_products])
print "The number of products is: {} and the number of reviews is: {}".format(
sum(n), n_reviews)
return(top_products) | ed052708010512758845186ae9e4fb33b41bc511 | 3,650,870 |
def load_vanHateren(params):
"""
Load van Hateren data and format as a Dataset object
Inputs:
params [obj] containing attributes:
data_dir [str] directory to van Hateren data
rand_state (optional) [obj] numpy random state object
num_images (optional) [int] how many images to extract. Default (None) is all images.
image_edge_size (optional) [int] how many pixels on an edge. Default (None) is full-size.
"""
# Parse params
assert hasattr(params, "data_dir"), ("function input must have 'data_dir' kwarg")
data_dir = params.data_dir
if hasattr(params, "rand_state"):
rand_state = params.rand_state
else:
#assert hasattr(params, "rand_seed"), ("Params must specify a random state or seed")
if hasattr(params, "rand_seed"):
rand_state = np.random.RandomState(params.rand_seed)
else:
rand_state = np.random.RandomState(None)
print("WARNING: Params did not specify a random state or seed")
num_images = int(params.num_images) if hasattr(params, "num_images") else None
image_edge_size = int(params.image_edge_size) if hasattr(params, "image_edge_size") else None
# Get data
img_filename = data_dir+"/img/images_curated.h5" # pre-curated dataset
vh_data = vanHateren(img_filename, num_images, rand_state)
image_dataset = Dataset(vh_data.images, lbls=None, ignore_lbls=None, rand_state=rand_state)
# Resize data
if image_edge_size is not None:
edge_scale = image_edge_size/image_dataset.shape[1] #vh has square images
assert edge_scale <= 1.0, (
"image_edge_size (%g) must be less than or equal to the original size (%g)."%(image_edge_size,
image_dataset.shape[1]))
scale_factor = [1.0, edge_scale, edge_scale, 1.0] # batch & channel don't get downsampled
image_dataset.downsample(scale_factor, order=3)
return {"train":image_dataset} | ca32f182f5534da89df0bd5454e74a586c6ca4d6 | 3,650,871 |
import argparse
def build_parser() -> argparse.ArgumentParser:
"""Builds and returns the CLI parser."""
# Help parser
help_parser = argparse.ArgumentParser(add_help=False)
group = help_parser.add_argument_group('Help and debug')
group.add_argument('--debug',
help='Enable debug output.',
action='store_true')
group.add_argument('-h', '--help',
help='Show this help message and exit.',
action='help')
# IO parser
io_parser = argparse.ArgumentParser(add_help=False)
group = io_parser.add_argument_group('Input/Output')
group.add_argument('-i', '--input',
help='Input document.',
required=True)
group.add_argument('-o', '--output',
help='Output file path.')
# Main parser
main_parser = argparse.ArgumentParser(prog=EXE_NAME,
description='Detects design patterns in class diagrams.',
parents=[help_parser],
add_help=False)
subparsers = main_parser.add_subparsers(title='Subcommands')
# 'patterns' subcommand
description = 'List detected design patterns.'
patterns_parser = subparsers.add_parser('patterns',
description=description,
help=description,
parents=[help_parser, io_parser],
add_help=False)
patterns_parser.add_argument('-p', '--pattern',
choices=ALL_PATTERNS,
nargs='*',
help='Patterns to match.')
patterns_parser.set_defaults(func=patterns_sub)
# 'cycles' subcommand
description = 'List detected dependency cycles.'
cycles_parser = subparsers.add_parser('cycles',
description=description,
help=description,
parents=[help_parser, io_parser],
add_help=False)
cycles_parser.set_defaults(func=cycles_sub)
# 'metrics' subcommand
description = 'Print metrics computed from the class diagram.'
metrics_parser = subparsers.add_parser('metrics',
description=description,
help=description,
parents=[help_parser, io_parser],
add_help=False)
metrics_parser.add_argument('-c', '--config',
help='Configuration file.')
metrics_parser.set_defaults(func=metrics_sub)
return main_parser | 0be83ee2e497f2c5ccfd21c4a4414c587304e6ee | 3,650,872 |
import argparse
import sys
def parse_args():
"""Parse command-line args.
"""
parser = argparse.ArgumentParser(description = 'Upload (JSON-encoded) conformance resources from FHIR IGPack tar archive.', add_help = False)
parser.add_argument('-h', '--help', action = 'store_true', help = 'show this help message and exit')
parser.add_argument('-i', '--igpack', help = 'IGPack filename (e.g. us-core-v3.1.1-package.tgz)')
parser.add_argument('-t', '--target', help = 'FHIR API base URL for target server (e.g. http://localhost:8080/r4)')
args = parser.parse_args()
usage = False
error = False
if getattr(args, 'help'):
usage = True
else:
for arg in vars(args):
if getattr(args, arg) == None:
print('Error - missing required argument: --{}'.format(arg), file=sys.stderr, flush=True)
error = True
if usage or error:
parser.print_help()
print()
print('Additionally, if the ACCESS_TOKEN environment variable is defined,')
print('its value will be used as an OAuth bearer token for the FHIR API.', flush=True)
if error:
raise RuntimeError('Command-line argument error.')
return args | 7c0ae02e07706ef212417ee7d0c4dd11a1de945c | 3,650,873 |
import torch
def wrap_to_pi(inp, mask=None):
"""Wraps to [-pi, pi)"""
if mask is None:
mask = torch.ones(1, inp.size(1))
if mask.dim() == 1:
mask = mask.unsqueeze(0)
mask = mask.to(dtype=inp.dtype)
val = torch.fmod((inp + pi) * mask, 2 * pi)
neg_mask = (val * mask) < 0
val = val + 2 * pi * neg_mask.to(val.dtype)
val = (val - pi)
inp = (1 - mask) * inp + mask * val
return inp | 7aca43bb2146c1cad07f9a070a7099e6fb8ad857 | 3,650,874 |
import pandas
def if_pandas(func):
"""Test decorator that skips test if pandas not installed."""
@wraps(func)
def run_test(*args, **kwargs):
try:
except ImportError:
pytest.skip('Pandas not available.')
else:
return func(*args, **kwargs)
return run_test | b39f88543559c4f4f1b9bb5bb30768916d3708d6 | 3,650,875 |
def handle_front_pots(pots, next_pots):
"""Handle front, additional pots in pots."""
if next_pots[2] == PLANT:
first_pot = pots[0][1]
pots = [
[next_pots[2], first_pot - 1]] + pots
return pots, next_pots[2:]
return pots, next_pots[3:] | 53ec905a449c0402946cb8c28852e81da80a92ef | 3,650,876 |
import types
def environment(envdata):
"""
Class decorator that allows to run tests in sandbox against different Qubell environments.
Each test method in suite is converted to <test_name>_on_environemnt_<environment_name>
:param params: dict
"""
#assert isinstance(params, dict), "@environment decorator should take 'dict' with environments"
def copy(func, name=None):
return types.FunctionType(func.func_code, func.func_globals, name=name,
argdefs=func.func_defaults,
closure=func.func_closure)
def wraps_class(clazz):
if "environments" in clazz.__dict__:
log.warn("Class {0} environment attribute is overridden".format(clazz.__name__))
params = format_as_api(envdata)
clazz.environments = params
methods = [method
for _, method in clazz.__dict__.items()
if isinstance(method, types.FunctionType) and method.func_name.startswith("test")]
for env in params:
if env['name'] != DEFAULT_ENV_NAME():
env['name'] += '_for_%s' % clazz.__name__ # Each test class should have it's own set of envs.
for method in methods:
delattr(clazz, method.func_name)
log.info("Test '{0}' multiplied per environment in {1}".format(method.func_name, clazz.__name__))
for env in params:
new_name = method.func_name + "_on_environment_" + env['name']
setattr(clazz, new_name, copy(method, new_name))
return clazz
return wraps_class | 9ce82ff8ee3627f8795b7bc9634c298e8ff195bc | 3,650,877 |
def get_domain_name(url):
""" Returns the domain name from a URL """
parsed_uri = urlparse(url)
return parsed_uri.netloc | 00160285a29a4b2d1fe42fb8ec1648ca4c31fa8b | 3,650,878 |
def get_answer_str(answers: list, scale: str):
"""
:param ans_type: span, multi-span, arithmetic, count
:param ans_list:
:param scale: "", thousand, million, billion, percent
:param mode:
:return:
"""
sorted_ans = sorted(answers)
ans_temp = []
for ans in sorted_ans:
ans_str = str(ans)
if is_number(ans_str):
ans_num = to_number(ans_str)
if ans_num is None:
if scale:
ans_str = ans_str + " " + str(scale)
else:
if '%' in ans_str: # has been handled the answer itself is a percentage
ans_str = '%.4f' % ans_num
else:
ans_str = '%.4f' % (round(ans_num, 2) * scale_to_num(scale))
else:
if scale:
ans_str = ans_str + " " + str(scale)
ans_temp.append(ans_str)
return [" ".join(ans_temp)] | 734015503ccec63265a0531aa05e8bd8514c7c15 | 3,650,879 |
def user_0post(users):
"""
Fixture that returns a test user with 0 posts.
"""
return users['user2'] | 5401e7f356e769b5ae68873f2374ef74a2d439c6 | 3,650,880 |
import os
def initialize():
"""
Initialize some parameters, such as API key
"""
api_key = os.environ.get("api_key") # None when not exist
if api_key and len(api_key) == 64: # length of a key should be 64
return api_key
print("Please set a valid api_key in the environment variables.")
exit() | 2589aeea4db2d1d1f20de03bc2425e1835eb2f69 | 3,650,881 |
def plot_tuning_curve_evo(data, epochs=None, ax=None, cmap='inferno_r',
linewidth=0.3, ylim='auto',
include_true=True,
xlabel='Bandwidths',
ylabel='Average Firing Rate'):
"""
Plot evolution of TC averaged over noise (zs).
.. WARNING:: It is not used for a long time.
.. TODO:: Make `plot_tuning_curve_evo` accept `.GANRecords`.
Parameters
----------
data : `.GANData`
"""
if ax is None:
_, ax = pyplot.subplots()
if epochs is None:
epochs = len(data.tuning)
elif isinstance(epochs, int):
epochs = range(10)
cmap = matplotlib.cm.get_cmap(cmap)
norm = matplotlib.colors.Normalize(min(epochs), max(epochs))
mappable = matplotlib.cm.ScalarMappable(norm=norm, cmap=cmap)
mappable.set_array([])
fig = ax.get_figure()
cb = fig.colorbar(mappable, ax=ax)
cb.set_label('epochs')
bandwidths = data.bandwidths
for i in epochs:
ax.plot(bandwidths, data.model_tuning[i], color=cmap(norm(i)),
linewidth=linewidth)
if include_true:
ax.plot(bandwidths, data.true_tuning[0],
linewidth=3, linestyle='--')
if ylim == 'auto':
y = data.model_tuning[epochs]
q3 = np.percentile(y, 75)
q1 = np.percentile(y, 25)
iqr = q3 - q1
yamp = y[y < q3 + 1.5 * iqr].max()
ax.set_ylim(- yamp * 0.05, yamp * 1.2)
elif ylim:
ax.set_ylim(ylim)
if xlabel:
ax.set_xlabel(xlabel)
if ylabel:
ax.set_ylabel(ylabel)
return ax | f571339b8a306304e1807ef3dd0f4b93e6856dd5 | 3,650,882 |
import json
def transportinfo_decoder(obj):
"""Decode programme object from json."""
transportinfo = json.loads(obj)
if "__type__" in transportinfo and transportinfo["__type__"] == "__transportinfo__":
return TransportInfo(**transportinfo["attributes"])
return transportinfo | 8a311cb419e9985ef0a184b82888220c0f3258b2 | 3,650,883 |
def group_events_data(events):
"""
Group events according to the date.
"""
# e.timestamp is a datetime.datetime in UTC
# change from UTC timezone to current seahub timezone
def utc_to_local(dt):
tz = timezone.get_default_timezone()
utc = dt.replace(tzinfo=timezone.utc)
local = timezone.make_naive(utc, tz)
return local
event_groups = []
for e in events:
e.time = utc_to_local(e.timestamp)
e.date = e.time.strftime("%Y-%m-%d")
if e.etype == 'repo-update':
e.author = e.commit.creator_name
elif e.etype == 'repo-create':
e.author = e.creator
else:
e.author = e.repo_owner
if len(event_groups) == 0 or \
len(event_groups) > 0 and e.date != event_groups[-1]['date']:
event_group = {}
event_group['date'] = e.date
event_group['events'] = [e]
event_groups.append(event_group)
else:
event_groups[-1]['events'].append(e)
return event_groups | de2f2031bdcaaf2faffdb99c67bbbb1e15828ef8 | 3,650,884 |
def create_matrix(PBC=None):
"""
Used for calculating distances in lattices with periodic boundary conditions. When multiplied with a set of points, generates additional points in cells adjacent to and diagonal to the original cell
Args:
PBC: an axis which does not have periodic boundary condition. Ex: PBC=1 cancels periodic boundary conditions along the x axis
Returns:
A numpy array of matrices which can be multiplied by a set of coordinates
"""
matrix = []
i_list = [-1, 0, 1]
j_list = [-1, 0, 1]
k_list = [-1, 0, 1]
if PBC == 1:
i_list = [0]
elif PBC == 2:
j_list = [0]
elif PBC == 3:
k_list = [0]
for i in i_list:
for j in j_list:
for k in k_list:
matrix.append([i,j,k])
return np.array(matrix, dtype=float) | 7470803fe8297ef2db1ce4bd159e9d9c93d34787 | 3,650,885 |
def get_additive_seasonality_linear_trend() -> pd.Series:
"""Get example data for additive seasonality tutorial"""
dates = pd.date_range(start="2017-06-01", end="2021-06-01", freq="MS")
T = len(dates)
base_trend = 2
state = np.random.get_state()
np.random.seed(13)
observations = base_trend * np.arange(T) + np.random.normal(loc=4, size=T)
np.random.set_state(state)
seasonality = 12
time = np.arange(0, T / seasonality, 1 / seasonality)
amplitude = 10
sin_cos_wave = amplitude * np.cos(2 * np.pi * time) + amplitude * np.sin(
2 * np.pi * time
)
observations += sin_cos_wave
output = pd.Series(observations, index=dates)
return output | 034b4ca9e086e95fa1663704fda91ae3986694b4 | 3,650,886 |
def is_client_trafic_trace(conf_list, text):
"""Determine if text is client trafic that should be included."""
for index in range(len(conf_list)):
if text.find(conf_list[index].ident_text) != -1:
return True
return False | 0b7fdf58e199444ea52476d5621ea9353475b0a0 | 3,650,887 |
def isinf(x):
"""
For an ``mpf`` *x*, determines whether *x* is infinite::
>>> from sympy.mpmath import *
>>> isinf(inf), isinf(-inf), isinf(3)
(True, True, False)
"""
if not isinstance(x, mpf):
return False
return x._mpf_ in (finf, fninf) | 4d5ca6ac2f8ed233a70c706b7fff97bf171c4f21 | 3,650,888 |
def formalize_switches(switches):
"""
Create all entries for the switches in the topology.json
"""
switches_formal=dict()
for s, switch in enumerate(switches):
switches_formal["s_"+switch]=formalize_switch(switch, s)
return switches_formal | 8dbb9987e5bc9c9f81afc0432428a746e2f05fc4 | 3,650,889 |
def arp_scores(run):
"""
This function computes the Average Retrieval Performance (ARP) scores according to the following paper:
Timo Breuer, Nicola Ferro, Norbert Fuhr, Maria Maistro, Tetsuya Sakai, Philipp Schaer, Ian Soboroff.
How to Measure the Reproducibility of System-oriented IR Experiments.
Proceedings of SIGIR, pages 349-358, 2020.
The ARP score is defined by the mean across the different topic scores of a run.
For all measures outputted by trec_eval, the ARP scores will be determined.
@param run: The run to be evaluated.
@return: Dictionary containing the ARP scores for every measure outputted by trec_eval.
"""
return dict(_arp_scores(run)) | 0e23eb1d6ee3c2502408585b1d0dbb0993ca7628 | 3,650,890 |
from typing import Tuple
from typing import Optional
import scipy
def bayesian_proportion_test(
x:Tuple[int,int],
n:Tuple[int,int],
prior:Tuple[float,float]=(0.5,0.5),
prior2:Optional[Tuple[float,float]]=None,
num_samples:int=1000,
seed:int=8675309) -> Tuple[float,float,float]:
""" Perform a Bayesian test to identify significantly different proportions.
This test is based on a beta-binomial conjugate model. It uses Monte Carlo
simulations to estimate the posterior of the difference between the
proportions, as well as the likelihood that :math:`\pi_1 > \pi_2` (where
:math:`\pi_i` is the likelihood of success in sample :math:`i`).
Parameters
----------
x : typing.Tuple[int,int]
The number of successes in each sample
n : typing.Tuple[int,int]
The number of trials in each sample
prior : typing.Tuple[float,float]
The parameters of the beta distribution used as the prior in the conjugate
model for the first sample.
prior2 : typing.Optional[typing.Tuple[float,float]]
The parameters of the beta distribution used as the prior in the conjugate
model for the second sample. If this is not specified, then `prior` is used.
num_samples : int
The number of simulations
seed : int
The seed for the random number generator
Returns
-------
difference_{mean,var} : float
The posterior mean and variance of the difference in the likelihood of success
in the two samples. A negative mean indicates that the likelihood in sample 2
is higher.
p_pi_1_greater : float
The probability that :math:`\pi_1 > \pi_2`
"""
# copy over the prior if not specified for sample 2
if prior2 is None:
prior2 = prior
# check the bounds
if len(x) != 2:
msg = "[bayesian_proportion_test]: please ensure x has exactly two elements"
raise ValueError(msg)
if len(n) != 2:
msg = "[bayesian_proportion_test]: please ensure n has exactly two elements"
raise ValueError(msg)
if len(prior) != 2:
msg = "[bayesian_proportion_test]: please ensure prior has exactly two elements"
raise ValueError(msg)
if len(prior2) != 2:
msg = "[bayesian_proportion_test]: please ensure prior2 has exactly two elements"
raise ValueError(msg)
# set the seed
if seed is not None:
np.random.seed(seed)
# perform the test
a = prior[0]+x[0]
b = prior[0]+n[0]-x[0]
s1_posterior_samples = scipy.stats.beta.rvs(a, b, size=num_samples)
a = prior[1]+x[1]
b = prior[1]+n[1]-x[1]
s2_posterior_samples = scipy.stats.beta.rvs(a, b, size=num_samples)
diff_posterior_samples = s1_posterior_samples - s2_posterior_samples
diff_posterior_mean = np.mean(diff_posterior_samples)
diff_posterior_var = np.var(diff_posterior_samples)
p_pi_1_greater = sum(s1_posterior_samples > s2_posterior_samples) / num_samples
return diff_posterior_mean, diff_posterior_var, p_pi_1_greater | 5f63424b9dcb6e235b13a9e63f0b9a2dc1e95b31 | 3,650,891 |
import torch
def _create_triangular_filterbank(
all_freqs: Tensor,
f_pts: Tensor,
) -> Tensor:
"""Create a triangular filter bank.
Args:
all_freqs (Tensor): STFT freq points of size (`n_freqs`).
f_pts (Tensor): Filter mid points of size (`n_filter`).
Returns:
fb (Tensor): The filter bank of size (`n_freqs`, `n_filter`).
"""
# Adopted from Librosa
# calculate the difference between each filter mid point and each stft freq point in hertz
f_diff = f_pts[1:] - f_pts[:-1] # (n_filter + 1)
slopes = f_pts.unsqueeze(0) - all_freqs.unsqueeze(1) # (n_freqs, n_filter + 2)
# create overlapping triangles
zero = torch.zeros(1)
down_slopes = (-1.0 * slopes[:, :-2]) / f_diff[:-1] # (n_freqs, n_filter)
up_slopes = slopes[:, 2:] / f_diff[1:] # (n_freqs, n_filter)
fb = torch.max(zero, torch.min(down_slopes, up_slopes))
return fb | 1ad5bd58d673626a15e27b6d9d68829299fe7636 | 3,650,892 |
def convert_millis(track_dur_lst):
""" Convert milliseconds to 00:00:00 format """
converted_track_times = []
for track_dur in track_dur_lst:
seconds = (int(track_dur)/1000)%60
minutes = int(int(track_dur)/60000)
hours = int(int(track_dur)/(60000*60))
converted_time = '%02d:%02d:%02d' % (hours, minutes, seconds)
converted_track_times.append(converted_time)
return converted_track_times | 3d5199da01529f72b7eb6095a26e337277f3c2c9 | 3,650,893 |
def sync_xlims(*axes):
"""Synchronize the x-axis data limits for multiple axes. Uses the maximum
upper limit and minimum lower limit across all given axes.
Parameters
----------
*axes : axis objects
List of matplotlib axis objects to format
Returns
-------
out : yxin, xmax
The computed bounds
"""
xmins, xmaxs = zip(*[ax.get_xlim() for ax in axes])
xmin = min(xmins)
xmax = max(xmaxs)
for ax in axes:
ax.set_xlim(xmin, xmax)
return xmin, xmax | a377877a9647dfc241db482f8a2c630fe3eed146 | 3,650,894 |
def algo_config_to_class(algo_config):
"""
Maps algo config to the IRIS algo class to instantiate, along with additional algo kwargs.
Args:
algo_config (Config instance): algo config
Returns:
algo_class: subclass of Algo
algo_kwargs (dict): dictionary of additional kwargs to pass to algorithm
"""
pol_cls, _ = algo_name_to_factory_func("bc")(algo_config.actor)
plan_cls, _ = algo_name_to_factory_func("gl")(algo_config.value_planner.planner)
value_cls, _ = algo_name_to_factory_func("bcq")(algo_config.value_planner.value)
return IRIS, dict(policy_algo_class=pol_cls, planner_algo_class=plan_cls, value_algo_class=value_cls) | 884ab7a91d9d8c901d078f9b477d5d21cba3e5ff | 3,650,895 |
def group_by_key(dirnames, key):
"""Group a set of output directories according to a model parameter.
Parameters
----------
dirnames: list[str]
Output directories
key: various
A field of a :class:`Model` instance.
Returns
-------
groups: dict[various: list[str]]
For each value of `key` that is found at least once in the models, a
list of the output directories where `key` is that value.
"""
groups = defaultdict(lambda: [])
for dirname in dirnames:
m = get_recent_model(dirname)
groups[m.__dict__[key]].append(dirname)
return dict(groups) | b291cd889c72fb198400b513e52ff9417c8d93b7 | 3,650,896 |
def redistrict_grouped(df, kind, group_cols, district_col=None,
value_cols=None, **kwargs):
"""Redistrict dataframe by groups
Args:
df (pandas.DataFrame): input dataframe
kind (string): identifier of redistrict info (e.g. de/kreise)
group_cols (list): List of column names to group by
district_col (string): Name of district column
value_cols (list): List of column names with values to operate on
**kwargs: see redistrict function
Returns:
pandas.Dataframe: Redistricted dataframe
"""
return pd.concat(redistrict_grouped_dataframe(df, kind, group_cols,
district_col=district_col, value_cols=value_cols,
**kwargs)) | 21f6514ca15d5fff57d03dab9d0bb7693c132e95 | 3,650,897 |
from typing import Tuple
from typing import List
import torch
def count_wraps_rand(
nr_parties: int, shape: Tuple[int]
) -> Tuple[List[ShareTensor], List[ShareTensor]]:
"""Count wraps random.
The Trusted Third Party (TTP) or Crypto provider should generate:
- a set of shares for a random number
- a set of shares for the number of wraparounds for that number
Those shares are used when doing a public division, such that the
end result would be the correct one.
Args:
nr_parties (int): Number of parties
shape (Tuple[int]): The shape for the random value
Returns:
List[List[List[ShareTensor, ShareTensor]]: a list of instaces with the shares
for a random integer value and shares for the number of wraparounds that are done when
reconstructing the random value
"""
rand_val = torch.empty(size=shape, dtype=torch.long).random_(
generator=ttp_generator
)
r_shares = MPCTensor.generate_shares(
secret=rand_val,
nr_parties=nr_parties,
tensor_type=torch.long,
encoder_precision=0,
)
wraps = count_wraps([share.tensor for share in r_shares])
theta_r_shares = MPCTensor.generate_shares(
secret=wraps, nr_parties=nr_parties, tensor_type=torch.long, encoder_precision=0
)
# We are always creating only an instance
primitives_sequential = [(r_shares, theta_r_shares)]
primitives = list(
map(list, zip(*map(lambda x: map(list, zip(*x)), primitives_sequential)))
)
return primitives | b16e21be2d421e134866df8929a319a19bdd304a | 3,650,898 |
from typing import Sequence
def text_sim(
sc1: Sequence,
sc2: Sequence,
) -> float:
"""Returns the Text_Sim similarity measure between two pitch class sets.
"""
sc1 = prime_form(sc1)
sc2 = prime_form(sc2)
corpus = [text_set_class(x) for x in sorted(allClasses)]
vectorizer = TfidfVectorizer()
trsfm = vectorizer.fit_transform(corpus)
text_similarity = cosine_similarity(trsfm)
names = [str(x) for x in sorted(allClasses)]
df = pd.DataFrame(text_similarity.round(3), columns=names, index=names)
return df[str(sc1)][str(sc2)] | 6479ad4916fb78d69935fb9b618c5eb02951f05a | 3,650,899 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.