content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import sys import os import shutil def CommitOffsite( backup_name, backup_suffix=None, output_stream=sys.stdout, preserve_ansi_escape_sequences=False, ): """\ Commits data previously generated by Offsite. This can be useful when additional steps must be taken (for example, upload) before a Backup can be considered as successful. """ with StreamDecorator.GenerateAnsiSequenceStream( output_stream, preserve_ansi_escape_sequences=preserve_ansi_escape_sequences, ) as output_stream: with output_stream.DoneManager( line_prefix="", prefix="\nResults: ", suffix="\n", ) as dm: json_filename = _CreateJsonFilename(backup_name) pending_json_filename = _CreatePendingJsonFilename(json_filename) if not os.path.isfile(pending_json_filename): dm.stream.write("ERROR: Pending data was not found.\n") dm.result = -1 return dm.result FileSystem.RemoveFile(json_filename) shutil.move(pending_json_filename, json_filename) if backup_suffix: shutil.copy2(json_filename, "{}.{}".format(json_filename, backup_suffix)) dm.stream.write("The pending data has been committed.\n") return dm.result
bfe523c2ecabb7c4bacd2fe3015929074dbae6f3
3,651,000
def get_impropers(bonds): """ Iterate over bonds to get impropers. Choose all three bonds that have one atom in common. For each set of bonds you have 3 impropers where one of the noncommon atoms is out of plane. Parameters ---------- bonds : list List of atom ids that make up bonds. Returns ------- list List of atom id quadruplets that make up a improper. """ impropers, checked = [], [] for bond in bonds: for atom in bond: if atom not in checked: bonded_list = [] for bond2 in bonds: if atom in bond2: bonded_list.append(bond2[1 - bond2.index(atom)]) if len(bonded_list) >= 3: for triplet in combinations(bonded_list, 3): for out_of_plane in triplet: imp = tuple([out_of_plane, atom] + sorted([i for i in triplet if i != out_of_plane])) impropers.append(imp) checked.append(atom) return sorted(impropers)
c5c2fe4684269407cd4387d86840bd982f1d3fa5
3,651,001
def get_ret_tev_return(*args): """get_ret_tev_return(int n) -> ea_t""" return _idaapi.get_ret_tev_return(*args)
94d476d12313b7df4da32cb45cfe644a0078debb
3,651,002
def make_figure_6(prefix=None, rng=None, colors=None): """ Figures 6, Comparison of Performance Ported from MATLAB Code Nicholas O'Donoughue 24 March 2021 :param prefix: output directory to place generated figure :param rng: random number generator :param colors: colormap for plotting :return: figure handle """ # Vary Time-Bandwidth Product tbwp_vec_db = np.arange(start=10., stop=31., step=10., dtype=int) tbwp_vec_lin = np.expand_dims(db_to_lin(tbwp_vec_db), axis=0).astype(int) input_snr_vec_db = np.arange(start=-20, stop=10.1, step=0.1) input_snr_vec_lin = np.expand_dims(db_to_lin(input_snr_vec_db), axis=1) output_snr_vec_lin = tbwp_vec_lin*input_snr_vec_lin**2/(1+2*input_snr_vec_lin) # output_snr_vec_db = lin_to_db(output_snr_vec_lin) # Energy Detector Performance prob_fa = 1e-6 threshold_ed = stats.chi2.ppf(q=1-prob_fa, df=2*tbwp_vec_lin) prob_det_ed = stats.ncx2.sf(x=threshold_ed, df=2*tbwp_vec_lin, nc=2*tbwp_vec_lin*input_snr_vec_lin) # Cross-Correlator Performance threshold_xc = stats.chi2.ppf(q=1-prob_fa, df=2) prob_det_xc = stats.ncx2.sf(x=threshold_xc/(1+2*input_snr_vec_lin), df=2, nc=2*output_snr_vec_lin) # Monte Carlo Trials input_snr_vec_coarse_db = input_snr_vec_db[::10] input_snr_vec_coarse_lin = db_to_lin(input_snr_vec_coarse_db) num_monte_carlo = int(1e4) num_tbwp = int(tbwp_vec_lin.size) num_snr = int(input_snr_vec_coarse_lin.size) # Generate noise vectors noise_pwr = 1 # Unit Variance prob_det_ed_mc = np.zeros(shape=(num_snr, num_tbwp)) prob_det_xc_mc = np.zeros(shape=(num_snr, num_tbwp)) for idx_tbwp, tbwp in enumerate(np.ravel(tbwp_vec_lin)): # Generate the noise vectors noise1 = np.sqrt(noise_pwr/2)*(rng.standard_normal(size=(tbwp, num_monte_carlo)) + 1j*rng.standard_normal(size=(tbwp, num_monte_carlo))) noise2 = np.sqrt(noise_pwr/2)*(rng.standard_normal(size=(tbwp, num_monte_carlo)) + 1j*rng.standard_normal(size=(tbwp, num_monte_carlo))) # Generate a signal vector signal = np.sqrt(1/2)*(rng.standard_normal(size=(tbwp, num_monte_carlo)) + 1j*rng.standard_normal(size=(tbwp, num_monte_carlo))) phase_difference = np.exp(1j*rng.uniform(low=0, high=2*np.pi, size=(1, num_monte_carlo))) for idx_snr, snr in enumerate(input_snr_vec_coarse_lin): # Scale the signal power to match SNR this_signal = signal * np.sqrt(snr) y1 = this_signal+noise1 y2 = this_signal*phase_difference+noise2 det_result_ed = detector.squareLaw.det_test(z=y1, noise_var=noise_pwr/2, prob_fa=prob_fa) prob_det_ed_mc[idx_snr, idx_tbwp] = np.sum(det_result_ed, axis=None)/num_monte_carlo det_result_xc = detector.xcorr.det_test(y1=y1, y2=y2, noise_var=noise_pwr, num_samples=tbwp, prob_fa=prob_fa) prob_det_xc_mc[idx_snr, idx_tbwp] = np.sum(det_result_xc, axis=None)/num_monte_carlo fig6 = plt.figure() for idx, tbwp in enumerate(tbwp_vec_lin[0, :]): if idx == 0: ed_label = 'ED' xc_label = 'XC' ed_mc_label = 'ED (Monte Carlo)' xc_mc_label = 'XC (Monte Carlo)' else: ed_label = None xc_label = None ed_mc_label = None xc_mc_label = None plt.plot(input_snr_vec_db, prob_det_ed[:, idx], color=colors(idx), linestyle='-', label=ed_label) plt.plot(input_snr_vec_db, prob_det_xc[:, idx], color=colors(idx), linestyle='--', label=xc_label) plt.scatter(input_snr_vec_coarse_db, prob_det_ed_mc[:, idx], color=colors(idx), marker='^', label=ed_mc_label) plt.scatter(input_snr_vec_coarse_db, prob_det_xc_mc[:, idx], color=colors(idx), marker='x', label=xc_mc_label) plt.legend(loc='lower right') # Create ellipses ax = plt.gca() ell = Ellipse(xy=(2, .4), width=5, height=.05) ell.set_fill(False) ell.set_edgecolor(colors(0)) ax.add_artist(ell) plt.annotate(s='TB=10', xy=(-.5, .4), xytext=(-16, .3), arrowprops=dict(arrowstyle='-', color=colors(0))) ell = Ellipse(xy=(-3.5, .5), width=3, height=.05) ell.set_fill(False) ell.set_edgecolor(colors(1)) ax.add_artist(ell) plt.annotate(s='TB=100', xy=(-5, .5), xytext=(-16, .5), arrowprops=dict(arrowstyle='-', color=colors(1))) ell = Ellipse(xy=(-8.5, .6), width=3, height=.05) ell.set_fill(False) ell.set_edgecolor(colors(2)) ax.add_artist(ell) plt.annotate(s='TB=1,000', xy=(-10, .6), xytext=(-16, .7), arrowprops=dict(arrowstyle='-', color=colors(2))) # Save figure if prefix is not None: plt.savefig(prefix + 'fig6.svg') plt.savefig(prefix + 'fig6.png') return fig6
761d6ddd541dfbe42e5b57cd680306c71ae978d9
3,651,003
def slim_form(domain_pk=None, form=None): """ What is going on? We want only one domain showing up in the choices. We are replacing the query set with just one object. Ther are two querysets. I'm not really sure what the first one does, but I know the second one (the widget) removes the choices. The third line removes the default u'--------' choice from the drop down. """ return form
7b58674e307fbbd31f0546b70309c0c723d1021c
3,651,004
def input(*args): """ Create a new input :param args: args the define a TensorType, can be either a TensorType or a shape and a DType :return: the input expression """ tensor_type = _tensor_type_polymorhpic(*args) return InputTensor(tensor_type, ExpressionDAG.num_inputs)
47ab3a08f412b7dc9c679ae72bb44c76123a9057
3,651,005
def commong_substring(input_list): """Finds the common substring in a list of strings""" def longest_substring_finder(string1, string2): """Finds the common substring between two strings""" answer = "" len1, len2 = len(string1), len(string2) for i in range(len1): match = "" for j in range(len2): if i + j < len1 and string1[i + j] == string2[j]: match += string2[j] else: if len(match) > len(answer): answer = match match = "" return answer if len(input_list) == 2: return longest_substring_finder(*input_list) if len(input_list) > 2: item0 = input_list[0] for i in range(len(input_list) - 1): item1 = input_list[i + 1] item0 = commong_substring([item0, item1]) return commong_substring([item0, item1]) if len(input_list) == 1: return input_list[0]
9e5e0878072a5416326ac1ed0d929adcb8511b37
3,651,006
def is_valid_url(url): """Checks if a URL is in proper format. Args: url (str): The URL that should be checked. Returns: bool: Result of the validity check in boolean form. """ valid = validators.url(url) if valid: return True else: return False
b55fd89267884dfc2507966825272a02e18d34f5
3,651,007
import re import requests def codepoint_to_url(codepoint, style): """ Given an emoji's codepoint (e.g. 'U+FE0E') and a non-apple emoji style, returns a url to to the png image of the emoji in that style. Only works for style = 'twemoji', 'noto', and 'blobmoji'. """ base = codepoint.replace('U+', '').lower() if style == 'twemoji': # See discussion in commit 8115b76 for more information about # why the base needs to be patched like this. patched = re.sub(r'0*([1-9a-f][0-9a-f]*)', lambda m: m.group(1), base.replace(' ', '-').replace('fe0f-20e3', '20e3').replace('1f441-fe0f-200d-1f5e8-fe0f', '1f441-200d-1f5e8')) response = requests.get('https://github.com/twitter/twemoji/raw/gh-pages/v/latest') version = response.text if response.ok else None if version: return 'https://github.com/twitter/twemoji/raw/gh-pages/v/%s/72x72/%s.png' \ % (version, patched) else: return 'https://github.com/twitter/twemoji/raw/master/assets/72x72/%s.png' \ % patched elif style == 'noto': return 'https://github.com/googlefonts/noto-emoji/raw/master/png/128/emoji_u%s.png' \ % base.replace(' ', '_') elif style == 'blobmoji': return 'https://github.com/C1710/blobmoji/raw/master/png/128/emoji_u%s.png' \ % base.replace(' ', '_')
a5b47f5409d465132e3fb7141d81dbd617981ca8
3,651,008
def getRNCS(ChargeSA): """The calculation of relative negative charge surface area -->RNCS """ charge=[] for i in ChargeSA: charge.append(float(i[1])) temp=[] for i in ChargeSA: temp.append(i[2]) try: RNCG = min(charge)/sum([i for i in charge if i < 0.0]) return temp[charge.index(min(charge))]/RNCG except: return 0.0
f03011de85e1bcac01b2aba4afde61a3dd9f7866
3,651,009
def handle_auth_manager_auth_exception(error): """Return a custom message and 403 status code""" response_header = {'X-REQUEST-ID': util.create_request_id()} return {'message': error.message}, 403, response_header
4b5212f4471a21cd54d012728705e83de5c7a86f
3,651,010
def get_default_converter(): """Intended only for advanced uses""" return _TYPECATS_DEFAULT_CONVERTER
f88cdb13d53a228ff1d77a9065c1dabd0f83ed1d
3,651,011
import json def login(request): """ :param: request :return: JSON data """ response = {} if request.method == 'GET': username = request.GET.get('username') password = request.GET.get('password') try: usr = models.User.objects.filter(username=username, password=password) if usr: response['status'] = 'success' response['error_msg'] = '' response['data'] = json.loads(serializers.serialize('json', usr)) else: response['status'] = 'failure' response['error_msg'] = '用户名或密码错误,请重试' response['data'] = None except Exception as e: response['status'] = 'error' response['error_msg'] = str(e) response['data'] = None return JsonResponse(response)
2d9b6791a2160ec63929d5a37e6d8336cca7709a
3,651,012
def average_win_rate(strategy, baseline=always_roll(4)): """Return the average win rate of STRATEGY against BASELINE. Averages the winrate when starting the game as player 0 and as player 1. """ win_rate_as_player_0 = 1 - make_averaged(winner)(strategy, baseline) win_rate_as_player_1 = make_averaged(winner)(baseline, strategy) return (win_rate_as_player_0 + win_rate_as_player_1) / 2
2e6b78127543456b7e931c837cf1a9468c013c33
3,651,013
def decode(chrom): """ Returns the communities of a locus-based adjacency codification in a vector of int where each position is a node id and the value of that position the id of the community where it belongs. To position with the same number means that those two nodes belongs to same community. """ try: size = len(chrom) last_c = 0 communities = [float("inf")] * size pending = set(range(size)) while len(pending) != 0: index = int(pending.pop()) neighbour = int(chrom[index]) if neighbour != -1: communities[index] = min(last_c, communities[index], communities[neighbour]) while neighbour in pending: pending.remove(neighbour) communities[neighbour] = min(last_c, communities[neighbour]) neighbour = int(chrom[neighbour]) last_c += 1 return communities except Exception as e: raise e
998a58e0d4efad2c079a9d023530aca37d0e226e
3,651,014
import math def bin_search(query, data): """ Query is a coordinate interval. Approximate binary search for the query in sorted data, which is a list of coordinates. Finishes when the closest overlapping value of query and data is found and returns the index in data. """ i = int(math.floor(len(data)/2)) # binary search prep lower, upper = 0, len(data) if not upper: return -1 tried = set() rightfound = '' # null value in place of 0, which is a valid value for rightfound while not (data[i][0] <= query[0] and data[i][1] >= query[0]): # query left coordinate not found in data yet if data[i][0] <= query[1] and data[i][1] >= query[1]: # query right found, will keep looking for left rightfound = i if data[i][1] < query[0]: # i is too low of an index lower = i i = int(math.floor((lower + upper)/2.)) else: # i is too high of an index upper = i i = int(math.floor((lower + upper)/2.)) if i in tried or i == upper: if data[i][0] >= query[0] and data[i][1] <= query[1]: # data interval sandwiched inside query break elif i + 1 < len(data) and data[i+1][0] > query[0] and data[i+1][1] < query[1]: # data can be incremented i = i + 1 else: i = rightfound if rightfound != '' else -1 break tried.add(i) return i
bb93034bc5c7e432c3fc55d4485949688e62b84a
3,651,015
def get_rating(business_id): """ GET Business rating""" rating = list( db.ratings.aggregate( [{"$group": {"_id": "$business", "pop": {"$avg": "$rating"}}}] ) ) if rating is None: return ( jsonify( { "success": False, "message": "Rating for business {} not found.".format(business_id), } ), 404, ) print(rating) return jsonify({"success": True, "rating": clean_dict_helper(rating)})
3a1cbf3e815c879b4ddaa5185477f141b261a859
3,651,016
def fwhm(x,y): """Calulate the FWHM for a set of x and y values. The FWHM is returned in the same units as those of x.""" maxVal = np.max(y) maxVal50 = 0.5*maxVal #this is to detect if there are multiple values biggerCondition = [a > maxVal50 for a in y] changePoints = [] xPoints = [] for k in range(len(biggerCondition)-1): if biggerCondition[k+1] != biggerCondition[k]: changePoints.append(k) assert len(changePoints) == 2, "More than two crossings of the threshold found." for k in changePoints: # do a polyfit # with the points before and after the point where the change occurs. # note that here we are fitting the x values as a function of the y values. # then we can use the polynom to compute the value of x at the threshold, i.e. at maxVal50. yPolyFit = x[k-1:k+2] xPolyFit = y[k-1:k+2] z = np.polyfit(xPolyFit,yPolyFit,2) p = np.poly1d(z) xThis = p(maxVal50) xPoints.append(xThis) if len(xPoints) == 2: linewidth = xPoints[1] - xPoints[0] else: linewidth = None print(sorted(xPoints)) return linewidth
2dc18d15d2940520acde39c5914413d89e9fbc71
3,651,017
import glob def parse_names(input_folder): """ :param input_folder: :return: """ name_set = set() if args.suffix: files = sorted(glob(f'{input_folder}/*{args.suffix}')) else: files = sorted(glob(f'{input_folder}/*')) for file in files: with open(file) as f: for record in SeqIO.parse(f, args.in_format): fname = record.description name = fname.split('_')[0] name_set.add(name) return files, sorted(list(name_set))
10b72d9822d6c8057f9bc45936c8d1bfb1a029b6
3,651,018
from typing import Iterable from typing import Tuple from typing import Mapping from typing import Union def build_charencoder(corpus: Iterable[str], wordlen: int=None) \ -> Tuple[int, Mapping[str, int], TextEncoder]: """ Create a char-level encoder: a Callable, mapping strings into integer arrays. Encoders dispatch on input type: if you pass a single string, you will get a 1D array, if you pass an Iterable of strings, you will get a 2D array where row i encodes the i-th string in the Iterable. :param corpus: an Iterable of strings to extract characters from. The encoder will map any non-ASCII character into the OOV code. :param wordlen: when `wordlen` is None and an encoder receives an Iterable of strings, the second dimension in the output array will be as long as the longest string, otherwise it will be `wordlen` long. In the latter case words exceeding `wordlen` will be trimmed. In both cases empty-spaces are filled with zeros. in the Iterable. If wordlen is not :return: the OOV code, a character mapping representing non-OOV character encodings, an encoder """ if wordlen and wordlen < 1: raise ValueError('`wordlen` must be positive') try: charmap = {char: i + 1 for i, char in enumerate(asciicharset(corpus))} except TypeError: raise ValueError('`corpus` can be either a string or an Iterable of ' 'strings') if not charmap: raise ValueError('the `corpus` is empty') oov = len(charmap) + 1 def encode_string(string: str) -> np.ndarray: if not string: raise ValueError("can't encode empty strings") return np.fromiter((charmap.get(char, oov) for char in string), np.int32, len(string)) def charencoder(target: Union[str, Iterable[str]]): if isinstance(target, str): return encode_string(target) encoded_strings = list(map(encode_string, target)) if not encoded_strings: raise ValueError('there are no `target`') return preprocessing.stack( encoded_strings, [wordlen or -1], np.int32, 0, True)[0] return oov, charmap, charencoder
207a5f499930f2c408ac88199ac45c60b3ed9d97
3,651,019
import struct def Decodingfunc(Codebyte): """This is the version 'A' of decoding function, that decodes data coded by 'A' coding function""" Decodedint=struct.unpack('b',Codebyte)[0] N=0 #number of repetitions L=0 # length of single/multiple sequence if Decodedint >= 0: #single N = 1 L = Decodedint+1 else: #multiple L = -Decodedint//16+1 N = -Decodedint-(L-1)*16+1 #print("N =",N," L =",L) return (N,L)
450a3e6057106e9567952b33271935392702aea9
3,651,020
def _metric_notification_text(metric: MetricNotificationData) -> str: """Return the notification text for the metric.""" new_value = "?" if metric.new_metric_value is None else metric.new_metric_value old_value = "?" if metric.old_metric_value is None else metric.old_metric_value unit = metric.metric_unit if metric.metric_unit.startswith("%") else f" {metric.metric_unit}" old_value_text = " (unchanged)" if new_value == old_value else f", was {old_value}{unit}" return ( f" * *{metric.metric_name}* status is {metric.new_metric_status}, was {metric.old_metric_status}. " f"Value is {new_value}{unit}{old_value_text}.\n" )
855ec000b3e37d9f54e4a12d7df4f973b15b706f
3,651,021
from typing import Optional from typing import Union from typing import List from typing import Dict def train_dist( domain: Text, config: Text, training_files: Optional[Union[Text, List[Text]]], output: Text = rasa.shared.constants.DEFAULT_MODELS_PATH, dry_run: bool = False, force_training: bool = False, fixed_model_name: Optional[Text] = None, persist_nlu_training_data: bool = False, core_additional_arguments: Optional[Dict] = None, nlu_additional_arguments: Optional[Dict] = None, model_to_finetune: Optional[Text] = None, finetuning_epoch_fraction: float = 1.0, ) -> TrainingResult: """Trains a Rasa model (Core and NLU). Args: domain: Path to the domain file. config: Path to the config file. training_files: List of paths to training data files. output: Output directory for the trained model. dry_run: If `True` then no training will be done, and the information about whether the training needs to be done will be printed. force_training: If `True` retrain model even if data has not changed. fixed_model_name: Name of model to be stored. persist_nlu_training_data: `True` if the NLU training data should be persisted with the model. core_additional_arguments: Additional training parameters for core training. nlu_additional_arguments: Additional training parameters forwarded to training method of each NLU component. model_to_finetune: Optional path to a model which should be finetuned or a directory in case the latest trained model should be used. finetuning_epoch_fraction: The fraction currently specified training epochs in the model configuration which should be used for finetuning. Returns: An instance of `TrainingResult`. """ file_importer = TrainingDataImporter.load_from_config( config, domain, training_files ) stories = file_importer.get_stories() nlu_data = file_importer.get_nlu_data() training_type = TrainingType.BOTH if nlu_data.has_e2e_examples(): rasa.shared.utils.common.mark_as_experimental_feature("end-to-end training") training_type = TrainingType.END_TO_END if stories.is_empty() and nlu_data.contains_no_pure_nlu_data(): rasa.shared.utils.cli.print_error( "No training data given. Please provide stories and NLU data in " "order to train a Rasa model using the '--data' argument." ) return TrainingResult(code=1) domain = file_importer.get_domain() if domain.is_empty(): rasa.shared.utils.cli.print_warning( "Core training was skipped because no valid domain file was found. " "Only an NLU-model was created. Please specify a valid domain using " "the '--domain' argument or check if the provided domain file exists." ) training_type = TrainingType.NLU elif stories.is_empty(): rasa.shared.utils.cli.print_warning( "No stories present. Just a Rasa NLU model will be trained." ) training_type = TrainingType.NLU # We will train nlu if there are any nlu example, including from e2e stories. elif nlu_data.contains_no_pure_nlu_data() and not nlu_data.has_e2e_examples(): rasa.shared.utils.cli.print_warning( "No NLU data present. Just a Rasa Core model will be trained." ) training_type = TrainingType.CORE with telemetry.track_model_training( file_importer, model_type="rasa", ): return _train_graph_dist( file_importer, training_type=training_type, output_path=output, fixed_model_name=fixed_model_name, model_to_finetune=model_to_finetune, force_full_training=force_training, persist_nlu_training_data=persist_nlu_training_data, finetuning_epoch_fraction=finetuning_epoch_fraction, dry_run=dry_run, **(core_additional_arguments or {}), **(nlu_additional_arguments or {}), )
1d1f55dca4a6274713cdd17a7ff5efcc90b46d14
3,651,022
import logging def convert_image_to_nifti(path_image, path_out_dir=None): """ converting normal image to Nifty Image :param str path_image: input image :param str path_out_dir: path to output folder :return str: resulted image >>> path_img = os.path.join(update_path('data-images'), 'images', ... 'artificial_moving-affine.jpg') >>> path_img2 = convert_image_to_nifti(path_img, '.') >>> path_img2 # doctest: +ELLIPSIS '...artificial_moving-affine.nii' >>> os.path.isfile(path_img2) True >>> path_img3 = convert_image_from_nifti(path_img2) >>> os.path.isfile(path_img3) True >>> list(map(os.remove, [path_img2, path_img3])) # doctest: +ELLIPSIS [...] """ path_image = update_path(path_image) path_img_out = _gene_out_path(path_image, '.nii', path_out_dir) logging.debug('Convert image to Nifti format "%s" -> "%s"', path_image, path_img_out) # img = Image.open(path_file).convert('LA') img = load_image(path_image) nim = nibabel.Nifti1Pair(img, np.eye(4)) del img nibabel.save(nim, path_img_out) return path_img_out
96783ad091e9b0949aa74a729b75337b9c96a0d0
3,651,023
def wav2vec2_base() -> Wav2Vec2Model: """Build wav2vec2 model with "base" configuration This is one of the model architecture used in *wav2vec 2.0* [:footcite:`baevski2020wav2vec`] for pretraining. Returns: Wav2Vec2Model: """ return _get_model( extractor_mode="group_norm", extractor_conv_layer_config=None, extractor_conv_bias=False, encoder_embed_dim=768, encoder_projection_dropout=0.1, encoder_pos_conv_kernel=128, encoder_pos_conv_groups=16, encoder_num_layers=12, encoder_num_heads=12, encoder_attention_dropout=0.1, encoder_ff_interm_features=3072, encoder_ff_interm_dropout=0.1, encoder_dropout=0.1, encoder_layer_norm_first=False, encoder_layer_drop=0.1, aux_num_out=None, )
fb288116f5ef57b314ecfde4a85b1a9bb5d437ce
3,651,024
from unittest.mock import patch def dont_handle_lock_expired_mock(app): """Takes in a raiden app and returns a mock context where lock_expired is not processed """ def do_nothing(raiden, message): # pylint: disable=unused-argument return [] return patch.object( app.raiden.message_handler, "handle_message_lockexpired", side_effect=do_nothing )
2a893e7e755010104071b2b1a93b60a0417e5457
3,651,025
import sys import _warnings def _find_spec(name, path, target=None): """Find a module's spec.""" meta_path = sys.meta_path if meta_path is None: # PyImport_Cleanup() is running or has been called. raise ImportError("sys.meta_path is None, Python is likely " "shutting down") if not meta_path: _warnings.warn('sys.meta_path is empty', ImportWarning) # We check sys.modules here for the reload case. While a passed-in # target will usually indicate a reload there is no guarantee, whereas # sys.modules provides one. is_reload = name in sys.modules for finder in meta_path: with _ImportLockContext(): try: find_spec = finder.find_spec except AttributeError: spec = _find_spec_legacy(finder, name, path) if spec is None: continue else: spec = find_spec(name, path, target) if spec is not None: # The parent import may have already imported this module. if not is_reload and name in sys.modules: module = sys.modules[name] try: __spec__ = module.__spec__ except AttributeError: # We use the found spec since that is the one that # we would have used if the parent module hadn't # beaten us to the punch. return spec else: if __spec__ is None: return spec else: return __spec__ else: return spec else: return None
17fe8116db7f2fedd92ab98755d4e1b4971fac96
3,651,026
def system(_printer, ast): """Prints the instance system initialization.""" process_names_str = ' < '.join(map(lambda proc_block: ', '.join(proc_block), ast["processNames"])) return f'system {process_names_str};'
f16c6d5ebe1a029c07efd1f34d3079dd02eb4ac0
3,651,027
import random def genmove(proc, colour, pluck_random=True): """ Send either a `genmove` command to the client, or generate a random move until it is accepted by the client """ if pluck_random and random() < 0.05: for _count in range(100): proc.stdin.write('1000 play %s %s\n' % (colour, random_vertex(),)) proc.stdin.flush() for line in proc.stdout: line = (str(line) or '').strip() print(line) if line.startswith('=1000'): vertex = line.split(' ', maxsplit=2)[-1].strip() return vertex elif line.startswith('?1000'): break return 'pass' else: proc.stdin.write('2000 genmove %s\n' % (colour,)) proc.stdin.flush() for line in proc.stdout: line = (str(line) or '').strip() print(line) if line.startswith('=2000'): vertex = line.split(' ', maxsplit=2)[-1].strip() return vertex return None
589a054be52c40507d8aba5f10a3d67489ec301b
3,651,028
def geojson_to_meta_str(txt): """ txt is assumed to be small """ vlayer = QgsVectorLayer(txt, "tmp", "ogr") crs_str = vlayer.sourceCrs().toWkt() wkb_type = vlayer.wkbType() geom_str = QgsWkbTypes.displayString(wkb_type) feat_cnt = vlayer.featureCount() return geom_str, crs_str, feat_cnt
33b0a2055ec70c2142977469384a20b99d26cee8
3,651,029
def tdf_UppestID(*args): """ * Returns ID 'ffffffff-ffff-ffff-ffff-ffffffffffff'. :rtype: Standard_GUID """ return _TDF.tdf_UppestID(*args)
1d9d5c528a2f202d49c104b7a56dd7a75b9bc795
3,651,030
def blend_multiply(cb: float, cs: float) -> float: """Blend mode 'multiply'.""" return cb * cs
d53c3a49585cf0c12bf05c233fc6a9dd30ad25b9
3,651,031
def print_data_distribution(y_classes, class_names): """ :param y_classes: class of each instance, for example, if there are 3 classes, and y[i] is [1,0,0], then instance[i] belongs to class[0] :param class_names: name of each class :return: None """ count = np.zeros(len(class_names)) pro = [] num = [] for y in y_classes: class_index = np.argmax(y) count[class_index] = count[class_index] + 1 for i, class_name in enumerate(class_names): print(class_name, count[i]) pro.append(class_name) num.append(count[i]) return pro, num
289ada7cab00153f894e81dd32980b8d224d637c
3,651,032
import collections def reorder_conj_pols(pols): """ Reorders a list of pols, swapping pols that are conjugates of one another. For example ('xx', 'xy', 'yx', 'yy') -> ('xx', 'yx', 'xy', 'yy') This is useful for the _key2inds function in the case where an antenna pair is specified but the conjugate pair exists in the data. The conjugated data should be returned in the order of the polarization axis, so after conjugating the data, the pols need to be reordered. For example, if a file contains antpair (0, 1) and pols 'xy' and 'yx', but the user requests antpair (1, 0), they should get: [(1x, 0y), (1y, 0x)] = [conj(0y, 1x), conj(0x, 1y)] Args: pols: Polarization array (strings or ints) Returns: conj_order: Indices to reorder polarization axis """ if not isinstance(pols, collections.Iterable): raise ValueError('reorder_conj_pols must be given an array of polarizations.') cpols = np.array([conj_pol(p) for p in pols]) # Array needed for np.where conj_order = [np.where(cpols == p)[0][0] if p in cpols else -1 for p in pols] if -1 in conj_order: raise ValueError('Not all conjugate pols exist in the polarization array provided.') return conj_order
98730f8434eff02c9a63506e01fbcd478e23e76e
3,651,033
def get_machine_from_uuid(uuid): """Helper function that returns a Machine instance of this uuid.""" machine = Machine() machine.get_from_uuid(uuid) return machine
6f78afd9547af5c83abf49a1ac56209ee0e6b506
3,651,034
def convert_numbers(text): """Convert numbers to number words""" tokens = [] for token in text.split(" "): try: word = w2n.num_to_word(token) tokens.append(word) except: tokens.append(token) return " ".join(tokens)
8d6eb622076a0404824db2dbeaaba704f3bf6e79
3,651,035
def init_emulator(rom: bytes): """ For use in interactive mode """ emulator = NitroEmulator() emulator.load_nds_rom(rom, True) return emulator
9ecaa2a876b8e5bd93deece3ccc62b41ef9c6f3f
3,651,036
from typing import Dict from typing import Union import torch def sub_module_name_of_named_params(named_params: kParamDictType, module_name_sub_dict: Dict[str, str]) \ -> Union[Dict[str, nn.Parameter], Dict[str, torch.Tensor]]: """Sub named_parameters key's module name part with module_name_sub_dict. Args: named_params: Key-value pair of param name and param value. module_name_sub_dict: Module names' sub dict. Returns: named parameters whose module name part of it's param name is subbed by module_name_sub_dict. """ sub_named_params = dict() for module_param_name, value in named_params.items(): param_name, module_name = map(lambda inverse_name: inverse_name[::-1], module_param_name[::-1].split('.', maxsplit=1)) if module_name not in module_name_sub_dict: sub_named_params[module_param_name] = value else: sub_named_params[module_name_sub_dict[module_name] + '.' + param_name] = value return sub_named_params
8bbcdb865f2b0c452c773bc18767128561e806c7
3,651,037
import inspect def add_mongodb_document( m_client_db=get_mongodb_database(), collection=None, index_name=None, doc_type=None, doc_uuid=None, doc_body=None ): """ Funtion to add a MongoDB document by providing index_name, document type, document contents as doc and document id. """ status = { 'status_code' : 200 } log_.debug( "function : %s", inspect.stack()[0][3] ) log_.debug( "locals() : \n%s", pformat(locals())) db = m_client_db[ collection ] ### TO DO try : res = db.insert_one( doc_body, ) res_add = { 'item_id' : str(res.inserted_id), 'operation' : "item added" } except : res = {} res_add = { 'item_id' : None, 'operation' : 'not added...' } status = { 'status_code' : 500, 'error' : "", 'info' : "" } # log_.debug( "res : \n%s", pformat(res.__dict__)) log_.debug( "res_add : \n%s", pformat(res_add)) print() return res_add, status
08917c72a183d30d30d7e62ff4b5a827cf11de17
3,651,038
def my_func_1(x, y): """ Возвращает возведение числа x в степень y. Именованные параметры: x -- число y -- степень (number, number) -> number >>> my_func_1(2, 2) 4 """ return x ** y
9572566f1660a087056118bf974bf1913348dfa4
3,651,039
def indexer_testapp(es_app): """ Indexer testapp, meant for manually triggering indexing runs by posting to /index. Always uses the ES app (obviously, but not so obvious previously) """ environ = { 'HTTP_ACCEPT': 'application/json', 'REMOTE_USER': 'INDEXER', } return webtest.TestApp(es_app, environ)
59343963307c39e43034664febb0ebf00f6ab1bd
3,651,040
def BNN_like(NN,cls=tfp.layers.DenseReparameterization,copy_weight=False,**kwargs): """ Create Bayesian Neural Network like input Neural Network shape Parameters ---------- NN : tf.keras.Model Neural Network for imitating shape cls : tfp.layers Bayes layers class copy_weight : bool, optional Copy weight from NN when `True`. The default is `False` Returns ------- model : tf.keras.Model Bayes Neural Network """ inputs = tf.keras.Input(shape=(tf.shape(NN.layers[0].kernel)[0],)) x = inputs for i, L in enumerate(NN.layers): layer_kwargs = { **kwargs } if copy_weight: layer_kwargs["kernel_prior_fn": multivariate_normal_fn(L.kernel)] layer_kwargs["bias_prior_fn": multivariate_normal_fn(L.bias)] x = cls(L.units,activation=L.activation,**layer_kwargs)(x) return tf.keras.Model(inputs=inputs,outputs=x)
9039f70701fd832843fd160cd71d5d46f7b17b56
3,651,041
def matrix_mult(a, b): """ Function that multiplies two matrices a and b Parameters ---------- a,b : matrices Returns ------- new_array : matrix The matrix product of the inputs """ new_array = [] for i in range(len(a)): new_array.append([0 for i in range(len(b[0]))]) for j in range(len(b[0])): for k in range(len(a[0])): new_array[i][j] += a[i][k] * b[k][j] return new_array
5e0f27f29b6977ea38987fa243f08bb1748d4567
3,651,042
from typing import Tuple from typing import List from typing import Type from typing import _Final def build_type(tp) -> Tuple[str, List[Type]]: """ Build typescript type from python type. """ tokens = tokenize_python_type(tp) dependencies = [ token for token in tokens if token not in TYPE_MAPPING_WITH_GENERIC_FALLBACK and not type(token) in TRIVIAL_TYPE_MAPPING and not isinstance(token, _Final) ] return _build_type(tokens), dependencies
475362488b7fe07db035ce70ddb3ac40580412dd
3,651,043
def laplacian_radial_kernel(distance, bandwidth=1.0): """Laplacian radial kernel. Parameters ---------- distance : array-like Array of non-negative real values. bandwidth : float, optional (default=1.0) Positive scale parameter of the kernel. Returns ------- weight : array-like Array of non-negative real values of the same shape than parameter 'distance'. Returns ------- http://crsouza.com/2010/03/17/ kernel-functions-for-machine-learning-applications/ https://data-flair.training/blogs/svm-kernel-functions/ """ distance = _check_distance(distance) bandwidth = _check_bandwidth(bandwidth) scaled_distance = distance / bandwidth weight = gs.exp(- scaled_distance) return weight
fd5f777b0d21e3a7673a6589a76dd50f48384029
3,651,044
def build_eslog_config_param( group_id, task_name, rt_id, tasks, topic, table_name, hosts, http_port, transport, es_cluster_name, es_version, enable_auth, user, password, ): """ es参数构建 :param group_id: 集群名 :param task_name: 任务名 :param rt_id: rt_id :param tasks: 任务数 :param topic: 来源topic :param table_name: 表名 :param hosts: es的host :param http_port: es的port :param transport: es transport的port :param es_cluster_name: es集群名称 :param es_version es集群版本 :param enable_auth 是否启用验证 :param user: 用户名 :param password: 密码, 加密过的 :return: 参数 """ return { "group.id": group_id, "rt.id": rt_id, "topics": topic, "type.name": table_name, "tasks.max": "%s" % tasks, "es.index.prefix": table_name.lower(), "es.cluster.name": es_cluster_name, "es.cluster.version": es_version, "es.hosts": hosts, "es.transport.port": transport, "es.host": hosts, "es.http.port": http_port, "connector.class": "com.tencent.bk.base.datahub.databus.connect.sink.es.EsSinkConnector", "flush.timeout.ms": "10000", "batch.size": "10000", "max.in.flight.requests": "5", "retry.backoff.ms": "5000", "max.retry": "5", "es.cluster.enable.auth": enable_auth, "es.cluster.enable.PlaintextPwd": False, # 当前都是加密后的密码 "es.cluster.username": user, "es.cluster.password": password, }
826b8d97ef14792845b4ced98ab5dcb3f36e57f3
3,651,045
def disclosure(input_df, cur_period): """ Reading in a csv, converting to a data frame and converting some cols to int. :param input_df: The csv file that is converted into a data frame. :param cur_period: The current period for the results process. :return: None. """ input_df = pd.read_csv(input_df, dtype={"Q601_asphalting_sand": int, 'Q602_building_soft_sand': int, 'Q603_concreting_sand': int, 'Q604_bituminous_gravel': int, 'Q605_concreting_gravel': int, 'Q606_other_gravel': int, 'Q607_constructional_fill': int, 'Q608_total': int, 'enterprise_ref': int, 'period': int, 'region': int}) input_df["disclosive"] = None input_df["publish"] = None input_df["reason"] = None def run_disclosure(row): if row['Q608_total'] == 0: row['disclosive'] = 'N' row['publish'] = 'Publish' row['reason'] = ' Total is zero' else: row['disclosive'] = 'Y' row['publish'] = 'N/A' return row disaggregated_data = input_df[input_df.period == cur_period] region_agg = disaggregated_data.groupby('region') region_agg = region_agg.agg({'Q608_total': 'sum', 'Q607_constructional_fill': 'sum', 'Q606_other_gravel': 'sum', 'Q605_concreting_gravel': 'sum', 'Q604_bituminous_gravel': 'sum', 'Q603_concreting_sand': 'sum', 'Q602_building_soft_sand': 'sum', 'Q601_asphalting_sand': 'sum', 'enterprise_ref': 'nunique'}) region_agg = region_agg.apply(run_disclosure, axis=1) # regionlorm = disaggregated_data.groupby(['region']) region_agg_lorm = disaggregated_data.groupby(['region', 'land_or_marine']) return region_agg_lorm
65702fa309884206f284b35c48e2e8c8a34aef2b
3,651,046
import os def get_all_file_paths(directory): """ Gets all the files in the specified input directory """ file_paths = [] for root, _, files in os.walk(directory): for filename in files: filepath = os.path.join(root, filename) file_paths.append(filepath) return file_paths
7055a3f3f3be5f6e0074cef55689c6234d38deb6
3,651,047
def kitchen_sink(): """Combines all of the test data.""" return word_frequencies.load(_KITCHEN_SINK_DATA)
4e0b0d38465fb02cd4f8aeb5e54c2f6bcbdf2cda
3,651,048
import torch def sim_matrix(a, b, eps=1e-8): """ added eps for numerical stability """ a = normalize_embeddings(a, eps) b = normalize_embeddings(b, eps) sim_mt = torch.mm(a, b.transpose(0, 1)) return sim_mt
d0caa5ce6e9f86b861910221321b80752b4f24e4
3,651,049
def read_addon_xml(path): """Parse the addon.xml and return an info dictionary""" info = dict( path='./', # '/storage/.kodi/addons/plugin.video.vrt.nu', profile='special://userdata', # 'special://profile/addon_data/plugin.video.vrt.nu/', type='xbmc.python.pluginsource', ) tree = ET.parse(path) root = tree.getroot() info.update(root.attrib) # Add 'id', 'name' and 'version' info['author'] = info.pop('provider-name') for child in root: if child.attrib.get('point') != 'xbmc.addon.metadata': continue for grandchild in child: # Handle assets differently if grandchild.tag == 'assets': for asset in grandchild: info[asset.tag] = asset.text continue # Not in English ? Drop it if grandchild.attrib.get('lang', 'en_GB') != 'en_GB': continue # Add metadata info[grandchild.tag] = grandchild.text return {info['name']: info}
6ead602b97c12bfd78ddc7194102a84793aa631b
3,651,050
import requests def get_submission_list(start_timestamp, end_timestamp, args=None): """ Scrapes a subreddit for submissions between to given dates. Due to limitations of the underlying service, it may not return all the possible submissions, so it will be necessary to call this method again. The method requests the results in descending orders, so in subsequent calls, you should only update end_timestamp. :param start_timestamp: request results after this date/time. :param end_timestamp: request results before this date/time. :param args: the args to pass to the endpoint :return: the JSON object returned by the service. """ # Generic parameters: for each submission we want its ID and timestamp, # 500 is the maximum limit, sorted temporally by the most recent params = "fields=id,created_utc,subreddit&limit=500&sort=desc&sort_type=created_utc" if args: for key, value in args.items(): params += "&{0}={1}".format(key, value) url = "{0}?before={1}&after={2}&{3}".format( PUSHSHIFT_ENDPOINT, end_timestamp, start_timestamp, params ) resp = requests.get(url) return resp.json()
7fa053c27787136420a9004721c1954318deeedb
3,651,051
def loadDataSet(): """ load data from data set Args: Returns: dataSet: train input of x labelSet: train input of y """ # initialize x-trainInput,y-trainInput dataSet = [] labelSet = [] # open file reader fr = open('testSet.txt') for line in fr.readlines(): # strip() -- get rid of the space on both side # split() -- division as tab lineArr = line.strip().split() # padding data in list # x0 = 1.0 , x1 = column1 , x2 = column2 dataSet.append([1.0, float(lineArr[0]), float(lineArr[1])]) # label = column3 labelSet.append(float(lineArr[2])) return dataSet,labelSet
38f42a8a7c6b12e3d46d757d98565222e931149f
3,651,052
def xds_read_xparm_new_style(xparm_file): """Parse the XPARM file to a dictionary.""" data = map(float, " ".join(open(xparm_file, "r").readlines()[1:]).split()) starting_frame = int(data[0]) phi_start, phi_width = data[1:3] axis = data[3:6] wavelength = data[6] beam = data[7:10] spacegroup = int(data[10]) cell = data[11:17] a, b, c = data[17:20], data[20:23], data[23:26] assert int(data[26]) == 1 nx, ny = map(int, data[27:29]) px, py = data[29:31] ox, oy = data[31:33] distance = data[33] x, y = data[34:37], data[37:40] normal = data[40:43] results = { "starting_frame": starting_frame, "phi_start": phi_start, "phi_width": phi_width, "axis": axis, "wavelength": wavelength, "beam": beam, "nx": nx, "ny": ny, "px": px, "py": py, "distance": distance, "ox": ox, "oy": oy, "x": x, "y": y, "normal": normal, "spacegroup": spacegroup, "cell": cell, "a": a, "b": b, "c": c, } return results
ba5a851c68c54aa0c9f82df1dc2334f427c8cea8
3,651,053
def clear_bit(val, offs): """Clear bit at offset 'offs' in value.""" return val & ~(1 << offs)
e50e5f8ccc3fe08d9b19248e290c2117b78379ee
3,651,054
def get_org_details(orgs): """Get node and site details, store in Org object""" org_details = [] for org in orgs: org_id = org['id'] org_name = org['name'] org_longname = org['longname'] Org = namedtuple('Org', ['org_id', 'org_name', 'org_longname']) org_details.extend([Org(org_id, org_name, org_longname)]) return org_details
94bec33c2fbee35210ca61f6b8d3694d198c80ee
3,651,055
import logging def flush_after(handler, delay): """Add 'handler' to the queue so that it is flushed after 'delay' seconds by the flush thread. Return the scheduled event which may be used for later cancellation (see cancel()). """ if not isinstance(handler, logging.Handler): raise TypeError("handler must be a logging.Handler instance") return _FLUSH_THREAD.submit(handler.flush, delay)
a8cb8197643dbd092f709bed0726d076997e4715
3,651,056
def _ExtractCLPath(output_of_where): """Gets the path to cl.exe based on the output of calling the environment setup batch file, followed by the equivalent of `where`.""" # Take the first line, as that's the first found in the PATH. for line in output_of_where.strip().splitlines(): if line.startswith('LOC:'): return line[len('LOC:'):].strip()
6a0c0d4aa74b4e84de69de023e2721edd95c36bd
3,651,057
import math def logGamma(x): """The natural logarithm of the gamma function. Based on public domain NETLIB (Fortran) code by W. J. Cody and L. Stoltz<BR> Applied Mathematics Division<BR> Argonne National Laboratory<BR> Argonne, IL 60439<BR> <P> References: <OL> <LI>W. J. Cody and K. E. Hillstrom, 'Chebyshev Approximations for the Natural Logarithm of the Gamma Function,' Math. Comp. 21, 1967, pp. 198-203. <LI>K. E. Hillstrom, ANL/AMD Program ANLC366S, DGAMMA/DLGAMA, May, 1969. <LI>Hart, Et. Al., Computer Approximations, Wiley and sons, New York, 1968. </OL></P><P> From the original documentation: </P><P> This routine calculates the LOG(GAMMA) function for a positive real argument X. Computation is based on an algorithm outlined in references 1 and 2. The program uses rational functions that theoretically approximate LOG(GAMMA) to at least 18 significant decimal digits. The approximation for X > 12 is from reference 3, while approximations for X < 12.0 are similar to those in reference 1, but are unpublished. The accuracy achieved depends on the arithmetic system, the compiler, the intrinsic functions, and proper selection of the machine-dependent constants. </P><P> Error returns:<BR> The program returns the value XINF for X .LE. 0.0 or when overflow would occur. The computation is believed to be free of underflow and overflow.""" y = x if y < 0.0 or y > LOG_GAMMA_X_MAX_VALUE: # Bad arguments return float("inf") if y <= EPS: return -math.log(y) if y <= 1.5: if (y < pnt68): corr = -math.log(y) xm1 = y else: corr = 0.0; xm1 = y - 1.0; if y <= 0.5 or y >= pnt68: xden = 1.0; xnum = 0.0; for i in xrange(8): xnum = xnum * xm1 + lg_p1[i]; xden = xden * xm1 + lg_q1[i]; return corr + xm1 * (lg_d1 + xm1 * (xnum / xden)); else: xm2 = y - 1.0; xden = 1.0; xnum = 0.0; for i in xrange(8): xnum = xnum * xm2 + lg_p2[i]; xden = xden * xm2 + lg_q2[i]; return corr + xm2 * (lg_d2 + xm2 * (xnum / xden)); if (y <= 4.0): xm2 = y - 2.0; xden = 1.0; xnum = 0.0; for i in xrange(8): xnum = xnum * xm2 + lg_p2[i]; xden = xden * xm2 + lg_q2[i]; return xm2 * (lg_d2 + xm2 * (xnum / xden)); if y <= 12.0: xm4 = y - 4.0; xden = -1.0; xnum = 0.0; for i in xrange(8): xnum = xnum * xm4 + lg_p4[i]; xden = xden * xm4 + lg_q4[i]; return lg_d4 + xm4 * (xnum / xden); assert y <= lg_frtbig res = lg_c[6]; ysq = y * y; for i in xrange(6): res = res / ysq + lg_c[i]; res /= y; corr = math.log(y); res = res + LOGSQRT2PI - 0.5 * corr; res += y * (corr - 1.0); return res
36128e9a4b765dcc85ef42866fdbe7d16140ea1d
3,651,058
def regional_validity(query_point, regional_inclusion, regional_exclusions): """ regional_validity Returns whether a coordinate point is inside a polygon and outside of excluded regions. Input: A Point object, a Polygon Object of the inclusion region; a list of Polygon Objects of excluded regions. Output: True if the query point is both inside the regional polygon and outside all exlusions; False otherwise. """ if query_point.within(regional_inclusion): # Check if the point co-occurs with city areas... for city in regional_exclusions: if query_point.within(city): return False return True return False
68e06b3d89e4783130f123d6c91dc5c43a9788ba
3,651,059
def get_word_vector_list(doc, w2v): """Get all the vectors for a text""" vectors = [] for word in doc: try: vectors.append(w2v.wv[word]) except KeyError: continue return vectors
f228c2100b6a622fdb677954257e2d1590dcc0ff
3,651,060
def solve(lines, n): """Apply the rules specified in the input lines to the starting pattern for n iterations. The number of lit pixels in the final pattern is returned. """ rules = load_rulebook(lines) pattern = START for _ in range(n): pattern = enhance(pattern, rules) return sum([row.count('#') for row in pattern])
781c349bfa186ac04daea60fe7e954431787ea15
3,651,061
def _to_plotly_color(scl, transparence=None): """ converts a rgb color in format (0-1,0-1,0-1) to a plotly color 'rgb(0-255,0-255,0-255)' """ plotly_col = [255 * _c for _c in mplc.to_rgba(scl)] if len(scl) == 3 else [255 * _c for _c in mplc.to_rgb(scl)] if transparence is not None: assert 0. <= transparence <= 1.0 plotly_col[3] = transparence return "rgba({:.0f}, {:.0f}, {:.0f}, {:.4f})".format(*plotly_col) else: return "rgb({:.0f}, {:.0f}, {:.0f})".format(*plotly_col[:3])
95b7686f913c69792e18f127176db68a3f72622f
3,651,062
def dense_attention_block(seqs_repr, is_training, num_layers, decay_variable, decay_constant, units, dropout, query_dropout, l2_scale, name=''): """ """ for i in range(num_layers): with tf.variable_scope('dense_attention{}'.format(i), reuse=tf.AUTO_REUSE): #seqs_repr = tf.Print(seqs_repr, [tf.shape(seqs_repr)], "{}".format(i)) seqs_repr = attention_block(seqs_repr, is_training, decay_variable, decay_constant, dropout, query_dropout, l2_scale) layer_reprs.append(seqs_repr) return seqs_repr
db50dd5e4d8d61622a9f989ec0ae9c02c5a4cfe1
3,651,063
def generate_schema_type(app_name: str, model: object) -> DjangoObjectType: """ Take a Django model and generate a Graphene Type class definition. Args: app_name (str): name of the application or plugin the Model is part of. model (object): Django Model Example: For a model with a name of "Device", the following class definition is generated: Class DeviceType(DjangoObjectType): Meta: model = Device fields = ["__all__"] if a FilterSet exist for this model at '<app_name>.filters.<ModelName>FilterSet' The filterset will be store in filterset_class as follow Class DeviceType(DjangoObjectType): Meta: model = Device fields = ["__all__"] filterset_class = DeviceFilterSet """ main_attrs = {} meta_attrs = {"model": model, "fields": "__all__"} # We'll attempt to find a FilterSet corresponding to the model # Not all models have a FilterSet defined so the function return none if it can't find a filterset meta_attrs["filterset_class"] = get_filterset_for_model(model) main_attrs["Meta"] = type("Meta", (object,), meta_attrs) schema_type = type(f"{model.__name__}Type", (DjangoObjectType,), main_attrs) return schema_type
b57cd78cce59dacf1fdb1d14c667405b6cfdcc90
3,651,064
def do_authorize(): """ Send a token request to the OP. """ oauth2.client_do_authorize() try: redirect = flask.session.pop("redirect") return flask.redirect(redirect) except KeyError: return flask.jsonify({"success": "connected with fence"})
1e19f501ac6da94058619e8dd5905d6cd2ab1a69
3,651,065
import re def get_windows(): """ Return all windows found by WM with CPU, fullscreen, process name, and class information. """ # Basic window information result = check_output('nice -n 19 wmctrl -l -p', shell=True) lines = [a for a in result.decode('utf8').split('\n') if a != ''] windows = [re.split(r'\s+', a, maxsplit=4) for a in lines] # Window properties window_index = {} for window in windows: window_id = window[0] r = check_output('nice -n 19 xprop -id {}'.format(window_id), shell=True) wm_classes = [] r_class = re.search(br'WM_CLASS\(STRING\) = (.*)\n', r) if r_class: wm_classes = re.findall('\"(.*?)\"', r_class.group(1).decode('ascii')) fullscreen = b'WM_STATE_FULLSCREEN' in r window_index[window_id] = (fullscreen, wm_classes) # Basic process information usable_lines = [] result = check_output('nice -n 19 top -b -n 2', shell=True) lines = [a for a in result.decode('utf8').split('\n') if a != ''] first_found = False for i, line in enumerate(lines): r = re.search(r'PID\s+USER\s+PR\s+NI', line) if r: if first_found: usable_lines = lines[i + 1:] break else: first_found = True processes = [re.split(r'\s+', a.strip()) for a in usable_lines] process_index = {a[0]: (a[8], a[11]) for a in processes} result = [] for window in windows: cpu, name = process_index.get(window[2], (None, None)) fullscreen, wm_classes = window_index.get(window[0], None) result.append(Window(*window, cpu=cpu, fullscreen=fullscreen, name=name, wm_classes=wm_classes)) return result
dd0f6f702592cf7f2fdd8541959682890dcc271e
3,651,066
import google def get_google_open_id_connect_token(service_account_credentials): """Get an OpenID Connect token issued by Google for the service account. This function: 1. Generates a JWT signed with the service account's private key containing a special "target_audience" claim. 2. Sends it to the OAUTH_TOKEN_URI endpoint. Because the JWT in #1 has a target_audience claim, that endpoint will respond with an OpenID Connect token for the service account -- in other words, a JWT signed by *Google*. The aud claim in this JWT will be set to the value from the target_audience claim in #1. For more information, see https://developers.google.com/identity/protocols/OAuth2ServiceAccount . The HTTP/REST example on that page describes the JWT structure and demonstrates how to call the token endpoint. (The example on that page shows how to get an OAuth2 access token; this code is using a modified version of it to get an OpenID Connect token.) """ service_account_jwt = ( service_account_credentials._make_authorization_grant_assertion()) request = google.auth.transport.requests.Request() body = { 'assertion': service_account_jwt, 'grant_type': google.oauth2._client._JWT_GRANT_TYPE, } token_response = google.oauth2._client._token_endpoint_request( request, OAUTH_TOKEN_URI, body) return token_response['id_token']
08e483865d26772112ffaf9837692f001598ced5
3,651,067
def term_to_atoms(terms): """Visitor to list atoms in term.""" if not isinstance(terms, list): terms = [terms] new_terms = [] for term in terms: if isinstance(term, And): new_terms += term_to_atoms(term.to_list()) elif isinstance(term, Or): new_terms += term_to_atoms(term.to_list()) elif isinstance(term, Not): new_terms.append(term.child) else: new_terms.append(term) return new_terms
6262ea7b1df124a4717d1452a23c33175b5da7a8
3,651,068
def expr_max(argv): """ Max aggregator function for :class:`Expression` objects Returns ------- exp : :class:`Expression` Max of given arguments Examples -------- >>> x = so.VariableGroup(10, name='x') >>> y = so.expr_max(2*x[i] for i in range(10)) """ return expr_nested(argv, 'max')
182157a627b12db6c41c79a99f135a7a493d4410
3,651,069
def handle_size(bytes_in=False, bytes_out=False): """ a function that converts bytes to human readable form. returns a string like: 42.31 TB. example: your_variable_name = make_readable(value_in_bytes) """ tib = 1024 ** 4 gib = 1024 ** 3 mib = 1024 ** 2 kib = 1024 if bytes_in: data = float(bytes_in) if data >= tib: symbol = 'TB' new_data = data / tib elif data >= gib: symbol = 'GB' new_data = data / gib elif data >= mib: symbol = 'MB' new_data = data / mib elif data >= kib: symbol = 'KB' new_data = data / kib elif data >= 0: symbol = ' B' new_data = data formated_data = "{0:.2f}".format(new_data) converted_data = str(formated_data) + symbol return converted_data elif bytes_out: symbol = bytes_out[-1].lower() data = bytes_out[0:-1] try: bytes = int(data) except Exception as e: print("couldnt convert " + data + " to int!") print(e) exit() if symbol == 't': converted_data = bytes * tib elif symbol == 'g': converted_data = bytes * gib elif symbol == 'm': converted_data = bytes * mib elif symbol == 'k': converted_data = bytes * kib else: print("unsupported size type! expected t, g, m, or k!") exit() return converted_data
6e2b3b758e1afc1cea43bbe7ac0c6179b1d32c5f
3,651,070
def return_elapsed(gs): """Returns a description of the elapsed time of recent operations. Args: gs: global state. Returns: A dictionary containing the count, minimum elapsed time, maximum elapsed time, average elapsed time, and list of elapsed time records. """ assert isinstance(gs, global_state.GlobalState) elapsed_list = [] elapsed_sum = 0.0 elapsed_min = None elapsed_max = None for elapsed_record in gs.get_elapsed(): duration = elapsed_record.elapsed_seconds elapsed_list.append( {'start_time': utilities.seconds_to_timestamp( elapsed_record.start_time), 'what': elapsed_record.what, 'threadIdentifier': elapsed_record.thread_identifier, 'elapsed_seconds': duration}) elapsed_sum += duration if (elapsed_min is None) or (elapsed_max is None): elapsed_min = duration elapsed_max = duration else: elapsed_min = min(elapsed_min, duration) elapsed_max = max(elapsed_max, duration) return {'count': len(elapsed_list), 'min': elapsed_min, 'max': elapsed_max, 'average': elapsed_sum / len(elapsed_list) if elapsed_list else None, 'items': elapsed_list}
af832a3bac239e24f610e39c5dee8fde6a1a25c8
3,651,071
def calculate_per_class_lwlrap(truth, scores): """Calculate label-weighted label-ranking average precision. Arguments: truth: np.array of (num_samples, num_classes) giving boolean ground-truth of presence of that class in that sample. scores: np.array of (num_samples, num_classes) giving the classifier-under- test's real-valued score for each class for each sample. Returns: per_class_lwlrap: np.array of (num_classes,) giving the lwlrap for each class. weight_per_class: np.array of (num_classes,) giving the prior of each class within the truth labels. Then the overall unbalanced lwlrap is simply np.sum(per_class_lwlrap * weight_per_class) """ assert truth.shape == scores.shape num_samples, num_classes = scores.shape # Space to store a distinct precision value for each class on each sample. # Only the classes that are true for each sample will be filled in. precisions_for_samples_by_classes = np.zeros((num_samples, num_classes)) for sample_num in range(num_samples): pos_class_indices, precision_at_hits = ( _one_sample_positive_class_precisions(scores[sample_num, :], truth[sample_num, :])) precisions_for_samples_by_classes[sample_num, pos_class_indices] = ( precision_at_hits) labels_per_class = np.sum(truth > 0, axis=0) weight_per_class = labels_per_class / float(np.sum(labels_per_class)) # Form average of each column, i.e. all the precisions assigned to labels in # a particular class. per_class_lwlrap = (np.sum(precisions_for_samples_by_classes, axis=0) / np.maximum(1, labels_per_class)) # overall_lwlrap = simple average of all the actual per-class, per-sample precisions # = np.sum(precisions_for_samples_by_classes) / np.sum(precisions_for_samples_by_classes > 0) # also = weighted mean of per-class lwlraps, weighted by class label prior across samples # = np.sum(per_class_lwlrap * weight_per_class) return per_class_lwlrap, weight_per_class
7cc9187f96d0899d0ce554164df553cc9b5f79a0
3,651,072
from typing import Tuple def chan_faces(n1: int, n2: int, xform, dim1: Tuple[float, float, float, float], dim2: Tuple[float, float, float, float]): """ ^y | 0--------7 | | | | | 5-----6 | | | +--|--|-------> z | | | 4-----3 | | 1--------2 <----> e/zsc <--------> bflange """ faces = [ # front face [0, 5, 6, 7], [0, 1, 4, 5], [1, 2, 3, 4], # back face [8, 13, 14, 15], [8, 9, 12, 13], [9, 10, 11, 12], # around the C (counter-clockwise) [0, 8, 9, 1], [1, 9, 10, 2], [2, 10, 11, 3], [3, 11, 12, 4], [4, 12, 13, 5], [5, 13, 14, 6], [6, 14, 15, 7], [7, 15, 8, 0], ] points_list = [] for nid, dim in [(n1, dim1), (n2, dim2)]: bflange, hall, tweb, tflange = dim # distance from shear center to neutral axis #zsc_na = 3 * bflange ** 2 / (6 * bflange + h) # per msc 2018 refman zsc = 0. ## TODO: consider the shear center #if 0: # pragma: no cover # msc 2018 refman; p.670 #h = hall - tflange #tw = tweb #tf = tflange #b = bflange - tw / 2. #bf = bflange - tw #hw = hall - 2. * tf #A = 2 * tf * bf + (h + tf) * tw #zc = bf * tf * (bf + tw) / A #zsc = b**2 * tf / (2*b*tw + 1/3. * h * tf) #E = zs - tw / 2. #zna = zc + zsc points = np.array([ [0., hall/2, zsc], # 0 [0., -hall/2, zsc], # 1 [0., -hall/2, zsc + bflange], # 2 [0., -hall/2 + tflange, zsc + bflange], # 3 [0., -hall/2 + tflange, zsc + tweb], # 4 [0., hall/2 - tflange, zsc + tweb], # 5 [0., hall/2 - tflange, zsc + bflange], # 6 [0., hall/2, zsc + bflange], # 7 ]) # 16 x 3 pointsi = points @ xform + nid points_list.append(pointsi) return faces, np.vstack(points_list)
eb1b67dc3e0700adf1df83c7400e6fb076e0c3dd
3,651,073
import hashlib import zipfile from datetime import datetime def generate_manifest(name, p, h=None): """ generate_manifest(name, p, h) -> mapping Generates a mapping used as the manifest file. :param name: a dotted package name, as in setup.py :param p: the zip file with package content. :param h: optional hash function to use. :returns: the path to the created manifest file. """ if h is None: h = hashlib.sha256 m = {} fh = m["files"] = {} order = [] with zipfile.ZipFile(p) as zf: for fi in zf.filelist: order.append(fi.filename) hash_all = h() for fn in sorted(order): contents = zf.read(fn) hash_all.update(contents) fh[fn] = h(contents).hexdigest() m["name"] = name m["sum"] = hash_all.hexdigest() m["date"] = datetime.datetime.now().isoformat() return m
13c10ae405dbc6fe5acf92180e7981d07fdb9c60
3,651,074
def benchrun(methods, model, case_args, filename, cpus=1,): """ Parameters ---------- methods : list of str Voter systems to be assessed by the election model. model : func Election model running function as >>> e = func(**kwargs) Where - `e` is an Election object - `kwargs` is a dict of arguments generated by `case_args` case_args : generator Generator that creates the parametric arguments to input into the model. Must accept argument `methods` -- >>> generator = case_args(methods) >>> args = next(generator) filename : str Naming prefix for output files cpus : int Number of processes or CPU's to use Returns ------- df : Dataframe Results for every election iteration assessed """ b = _BenchRunner(model=model, case_args=case_args, filename=filename) if cpus > 1: return b.runmult(methods, cpus=cpus) else: return b.run(methods)
414c96deb9a8d2f64b6808323465f8647aa5e48a
3,651,075
def retry( exceptions,times=3,sleep_second=0): """ Retry Decorator Retries the wrapped function/method `times` times if the exceptions listed in ``exceptions`` are thrown :param times: The number of times to repeat the wrapped function/method :type times: Int :param Exceptions: Lists of exceptions that trigger a retry attempt :type Exceptions: Tuple of Exceptions """ if not py.iterable(exceptions):exceptions=[exceptions] def decorator(func): def newfn(*args, **kwargs): attempt = 0 while attempt < times: try: return func(*args, **kwargs) except Exception as e: for i in exceptions: if isinstance(e,i): log( 'Exception thrown when attempting to run %s, attempt ' '%d of %d' % (func, attempt, times), exc_info=True ) attempt += 1 if sleep_second:sleep(sleep_second) break else:#when no break raise e return func(*args, **kwargs) return newfn return decorator
de715a0f903386358265c3fe4a13f1d91bcb177e
3,651,076
def positiveId(obj): """Return id(obj) as a non-negative integer.""" result = id(obj) if result < 0: result += _address_mask assert result > 0 return result
5d3f987c621cf3d43ac31e9300a4d54ba208a7a0
3,651,077
import zipfile import os def get_vroitems_from_package(package): """Get all the items from the vRO Package. Args: package (str): Path to a package file. Returns: VROElementMetadata[]: a list of VROElementMetadata. """ vro_items_id, vro_items = [], [] with zipfile.ZipFile(package, 'r') as zip_ref: for x in zip_ref.namelist(): if x.startswith("elements"): item_id = os.path.basename(os.path.split(x)[0]) if item_id not in vro_items_id: with zip_ref.open('elements/' + item_id + '/info', 'r') as xml_info_file: xml_info = xml_info_file.read() with zip_ref.open('elements/' + item_id + '/data', 'r') as data_file: data = data_file.read() vro_item = VROElementMetadata(item_id, xml_info, data) vro_items.append(vro_item) vro_items_id.append(item_id) logger.info("New item %s" % vro_item) return vro_items
9e9257094f7da00da057dcb126b0355f2117281d
3,651,078
def compute_annualized_total_return_over_months(df, column_price, months): """ Computed the annualized total return over the specified number of months. This is equivalent to Compound Annual Growth Rate (CAGR). Note: If the period is less than one year, it is best not to use annualized total return as it could result in a very large (positive or negative) number that is not meaningful. :param df: dataframe (sorted in ascending time order) :param column_price: name of source column in dataframe with price values (adjusted for splits and dividends) to compute annualized total return :param months: time period in months (e.g. 1 = 1 month, 2 = 2 months, 2.5 = 1 month and ~15 days, etc.) :return: annualized total return over months """ # calculate cumulative total return total_return = compute_cumulative_total_return(df, column_price) # calculate annualized total returns over months annualized_total_return = ((1 + total_return)**(12/months)) - 1 return annualized_total_return
a75886ae85ab5bb146d93bd159a0a2a32f950678
3,651,079
from functools import reduce def build_sparse_ts_from_distributions(start_date, end_date, seasonalities, time_interval, dist_dict, **kwargs): """constructs a time series with given distributions and seasonalities in a given frequency time_interval""" ts_list = [] for (name, dist), seasonality in zip(dist_dict.items(), seasonalities): ts_list.append(build_sparse_ts_by_seasonality(dist, start_date, end_date, seasonality, time_interval, **kwargs.get(name, {}))) ts = reduce(lambda x, y: add_ts_with_different_dates(x, y), ts_list) # add time series together return ts
81d2ebc32a2b62ed967377faf90b3b58e7c753ff
3,651,080
def preprocess_label(labels, scored_classes, equivalent_classes): """ convert string labels to binary labels """ y = np.zeros((len(scored_classes)), np.float32) for label in labels: if label in equivalent_classes: label = equivalent_classes[label] if label in scored_classes: y[scored_classes.index(label)] = 1 return y
3e2465bb0db04afaaca0576f6c97847bd0fd2b2e
3,651,081
from typing import Iterable import os from typing import cast import platform import stat def compile_on_disk(source_file: str, parser_name: str = '', compiler_suite: str = "", extension: str = ".xml") -> Iterable[Error]: """ Compiles the a source file with a given compiler and writes the result to a file. If no ``compiler_suite`` is given it is assumed that the source file is an EBNF grammar. In this case the result will be a Python script containing a parser for that grammar as well as the skeletons for a preprocessor, AST transformation table, and compiler. If the Python script already exists only the parser name in the script will be updated. (For this to work, the different names need to be delimited section marker blocks.). `compile_on_disk()` returns a list of error messages or an empty list if no errors occurred. :param source_file: The file name of the source text to be compiled. :param parser_name: The name of the generated parser. If the empty string is passed, the default name "...Parser.py" will be used. :param compiler_suite: The file name of the parser/compiler-suite (usually ending with 'Parser.py'), with which the source file shall be compiled. If this is left empty, the source file is assumed to be an EBNF-Grammar that will be compiled with the internal EBNF-Compiler. :param extension: The result of the compilation (if successful) is written to a file with the same name but a different extension than the source file. This parameter sets the extension. :returns: A (potentially empty) list of error or warning messages. """ filepath = os.path.normpath(source_file) rootname = os.path.splitext(filepath)[0] if not parser_name: parser_name = rootname + 'Parser.py' f = None # Optional[TextIO] with open(source_file, encoding="utf-8") as f: source = f.read() # dhpath = relative_path(os.path.dirname(rootname), DHPARSER_PARENTDIR) compiler_name = as_identifier(os.path.basename(rootname)) if compiler_suite: sfactory, pfactory, tfactory, cfactory = load_compiler_suite(compiler_suite) compiler1 = cfactory() else: sfactory = get_ebnf_preprocessor # PreprocessorFactoryFunc pfactory = get_ebnf_grammar # ParserFactoryFunc tfactory = get_ebnf_transformer # TransformerFactoryFunc cfactory = get_ebnf_compiler # CompilerFactoryFunc compiler1 = cfactory() # Compiler is_ebnf_compiler = False # type: bool if isinstance(compiler1, EBNFCompiler): is_ebnf_compiler = True compiler1.set_grammar_name(compiler_name, source_file) result, messages, _ = compile_source(source, sfactory(), pfactory(), tfactory(), compiler1) if has_errors(messages): return messages elif is_ebnf_compiler: # trans == get_ebnf_transformer or trans == EBNFTransformer: # either an EBNF- or no compiler suite given ebnf_compiler = cast(EBNFCompiler, compiler1) # type: EBNFCompiler global SECTION_MARKER, RX_SECTION_MARKER, PREPROCESSOR_SECTION, PARSER_SECTION, \ AST_SECTION, COMPILER_SECTION, END_SECTIONS_MARKER, RX_WHITESPACE f = None try: f = open(parser_name, 'r', encoding="utf-8") source = f.read() sections = split_source(parser_name, source) intro, imports, preprocessor, _, ast, compiler, outro = sections ast_trans_python_src = imports + ast ast_trans_table = dict() # type: TransformationDict try: ast_trans_table = compile_python_object(ast_trans_python_src, r'(?:\w+_)?AST_transformation_table$') except Exception as e: if isinstance(e, NameError): err_str = 'NameError "{}" while compiling AST-Transformation. ' \ 'Possibly due to a forgotten import at the beginning ' \ 'of the AST-Block (!)'.format(str(e)) else: err_str = 'Exception {} while compiling AST-Transformation: {}' \ .format(str(type(e)), str(e)) messages.append(Error(err_str, 0, CANNOT_VERIFY_TRANSTABLE_WARNING)) if is_logging(): with open(os.path.join(log_dir(), rootname + '_AST_src.py'), 'w', encoding='utf-8') as f: f.write(ast_trans_python_src) messages.extend(ebnf_compiler.verify_transformation_table(ast_trans_table)) # TODO: Verify compiler except (PermissionError, FileNotFoundError, IOError): intro, imports, preprocessor, _, ast, compiler, outro = '', '', '', '', '', '', '' finally: if f: f.close() f = None if RX_WHITESPACE.fullmatch(intro): intro = '#!/usr/bin/env python3' if RX_WHITESPACE.fullmatch(outro): outro = read_template('DSLParser.pyi').format(NAME=compiler_name) if RX_WHITESPACE.fullmatch(imports): imports = DHParser.ebnf.DHPARSER_IMPORTS if RX_WHITESPACE.fullmatch(preprocessor): preprocessor = ebnf_compiler.gen_preprocessor_skeleton() if RX_WHITESPACE.fullmatch(ast): ast = ebnf_compiler.gen_transformer_skeleton() if RX_WHITESPACE.fullmatch(compiler): compiler = ebnf_compiler.gen_compiler_skeleton() try: f = open(parser_name, 'w', encoding="utf-8") f.write(intro) f.write(SECTION_MARKER.format(marker=SYMBOLS_SECTION)) f.write(imports) f.write(SECTION_MARKER.format(marker=PREPROCESSOR_SECTION)) f.write(preprocessor) f.write(SECTION_MARKER.format(marker=PARSER_SECTION)) f.write(cast(str, result)) f.write(SECTION_MARKER.format(marker=AST_SECTION)) f.write(ast) f.write(SECTION_MARKER.format(marker=COMPILER_SECTION)) f.write(compiler) f.write(SECTION_MARKER.format(marker=END_SECTIONS_MARKER)) f.write(outro) except (PermissionError, FileNotFoundError, IOError) as error: print(f'# Could not write file "{parser_name}" because of: ' + "\n# ".join(str(error).split('\n)'))) print(result) finally: if f: f.close() if platform.system() != "Windows": # set file permissions so that the parser_name can be executed st = os.stat(parser_name) os.chmod(parser_name, st.st_mode | stat.S_IEXEC) else: f = None try: f = open(rootname + extension, 'w', encoding="utf-8") if isinstance(result, Node): if extension.lower() == '.xml': f.write(result.as_xml()) else: f.write(result.as_sxpr()) elif isinstance(result, str): f.write(result) else: raise AssertionError('Illegal result type: ' + str(type(result))) except (PermissionError, FileNotFoundError, IOError) as error: print('# Could not write file "' + rootname + '.py" because of: ' + "\n# ".join(str(error).split('\n)'))) print(result) finally: if f: f.close() return messages
39ec45c2dc65bd9e289b7fd8726f2efd6a128085
3,651,082
import logging import yaml def load_settings(filename='settings.yaml'): """Read settings from a file. Keyword arguments: filename -- the source file (default settings.yaml) """ with open(filename, 'r') as settings_yaml: logging.debug("Reading settings from file: %s", filename) return yaml.load(settings_yaml)
42a983d048b79f2ed5e8744ec32486b44c8f8a82
3,651,083
import math def vec_abs(field: SampledField): """ See `phi.math.vec_abs()` """ if isinstance(field, StaggeredGrid): field = field.at_centers() return field.with_values(math.vec_abs(field.values))
91395513b7e457bdfdded484db1069e8c3b95805
3,651,084
def spoofRequest(app): """ Make REQUEST variable to be available on the Zope application server. This allows acquisition to work properly """ _policy=PermissiveSecurityPolicy() _oldpolicy=setSecurityPolicy(_policy) newSecurityManager(None, OmnipotentUser().__of__(app.acl_users)) info = {'SERVER_NAME': 'isaw4.atlantides.org', 'SERVER_PORT': '8083', 'REQUEST_METHOD': 'GET'} return makerequest(app, environ=info)
d1b3bd1a37d69f6500d23e55b5318b6519ed04be
3,651,085
def data_to_percentage(data_list: pd.DataFrame) -> pd.DataFrame: """ Takes a dataframe with one or more columns filled with digits and returns a dataframe with the percentages corresponding to the number of times the numbers 1-9 appear in each column. Args: data_list: a dataframe of integers representing all of the leading digits from a dataset (in this case, the number of vote counts). Each columns is a category and is a Series with digits. threshold: (int) minimum number of integers in column for percentage to be found in it and for it to be returned. Returns: returns a dataframe of Series with the percentages of each column that are each unique number in that column. Any numbers outside of [1, 9] are not included and any column with fewer unique digits than another column is dropped. """ def per_column_percentage(column: pd.Series) -> pd.Series: number_of_occurrences = column.value_counts() number_of_occurrences = number_of_occurrences[ (number_of_occurrences.index > 0) & (number_of_occurrences.index < 10) ] return number_of_occurrences.multiply( 100 / sum(number_of_occurrences) ).sort_index() return data_list.apply(per_column_percentage).dropna(axis=1)
18316ddf999419290d572e77d2934241359e45a3
3,651,086
from .models.models import EncoderClassifier import torch def create_classifier_from_encoder(data:DataBunch, encoder_path:str=None, path=None, dropout1=0.5, device: torch.device = torch.device('cuda', 0), **kwargs): """Factory function to create classifier from encoder to allow transfer learning.""" path = data.path if path is None else path if encoder_path is None: logger.info("WARNING: `encoder_path` is None, not using pretrained feature extractor") encoder = None else: encoder = torch.load(encoder_path, map_location='cpu') model = EncoderClassifier(data.train_ds.shape, encoder, len(data.classes),dropout1=dropout1) learn = Learner(data, model, path, model_type="classifier", device=device, **kwargs) learn.freeze_encoder() return learn
736cfec768b6d659ab6fa1f087474a482409b66e
3,651,087
from typing import Hashable def filter_string( df: pd.DataFrame, column_name: Hashable, search_string: str, complement: bool = False, case: bool = True, flags: int = 0, na=None, regex: bool = True, ) -> pd.DataFrame: """Filter a string-based column according to whether it contains a substring. This is super sugary syntax that builds on top of `pandas.Series.str.contains`. It is meant to be the method-chaining equivalent of the following: ```python df = df[df[column_name].str.contains(search_string)]] ``` This method does not mutate the original DataFrame. Example: Retain rows whose column values contain a particular substring. >>> import pandas as pd >>> import janitor >>> df = pd.DataFrame({"a": range(3, 6), "b": ["bear", "peeL", "sail"]}) >>> df a b 0 3 bear 1 4 peeL 2 5 sail >>> df.filter_string(column_name="b", search_string="ee") a b 1 4 peeL >>> df.filter_string(column_name="b", search_string="L", case=False) a b 1 4 peeL 2 5 sail Example: Filter names does not contain `'.'` (disable regex mode). >>> import pandas as pd >>> import janitor >>> df = pd.Series(["JoseChen", "Brian.Salvi"], name="Name").to_frame() >>> df Name 0 JoseChen 1 Brian.Salvi >>> df.filter_string(column_name="Name", search_string=".", regex=False, complement=True) Name 0 JoseChen :param df: A pandas DataFrame. :param column_name: The column to filter. The column should contain strings. :param search_string: A regex pattern or a (sub-)string to search. :param complement: Whether to return the complement of the filter or not. If set to True, then the rows for which the string search fails are retained instead. :param case: If True, case sensitive. :param flags: Flags to pass through to the re module, e.g. re.IGNORECASE. :param na: Fill value for missing values. The default depends on dtype of the array. For object-dtype, `numpy.nan` is used. For `StringDtype`, `pandas.NA` is used. :param regex: If True, assumes `search_string` is a regular expression. If False, treats the `search_string` as a literal string. :returns: A filtered pandas DataFrame. """ # noqa: E501 criteria = df[column_name].str.contains( pat=search_string, case=case, flags=flags, na=na, regex=regex, ) if complement: return df[~criteria] return df[criteria]
9e5598a4afcff41ec5dc67c38b68efbacf3f09ec
3,651,088
from typing import List from typing import Dict from typing import Union import functools def on_demand_feature_view( features: List[Feature], inputs: Dict[str, Union[FeatureView, RequestDataSource]] ): """ Declare an on-demand feature view :param features: Output schema with feature names :param inputs: The inputs passed into the transform. :return: An On Demand Feature View. """ def decorator(user_function): on_demand_feature_view_obj = OnDemandFeatureView( name=user_function.__name__, inputs=inputs, features=features, udf=user_function, ) functools.update_wrapper( wrapper=on_demand_feature_view_obj, wrapped=user_function ) return on_demand_feature_view_obj return decorator
0ea45df22cb167ad2aa919a0be40f2a11574a69a
3,651,089
from typing import cast def get_error_string(ftdi): """ get_error_string(context ftdi) -> char * Get string representation for last error code Parameters: ----------- ftdi: pointer to ftdi_context Returns: -------- Pointer: to error string """ errstr = ftdi_get_error_string(ftdi) return cast(errstr, c_char_p).value.decode('ascii')
e0d3eaa19014fff9840e7a8e629651107ae25495
3,651,090
def DenseNet52k12(growth_rate = 12, reduction = 0.5): """ Parameters: ---------- Returns ------- """ return DenseNet(reduction = reduction, growth_rate = growth_rate, layers=52)
a295bcae685ae36bcbe356099d404403f7b8c0b6
3,651,091
def construct_fid_mask(catalog): """ Constructs the fidelity mask based off my results, not Robertos :param catalog: :return: """ line_widths = [i for i in range(3, 21, 2)] fid_catalog = load_table("fidelity_snr.out", start=0) fid_limit = 0.4 six_fids = [] for width in line_widths: f = interp1d(fid_catalog["fbin"], fid_catalog["pure{}".format(width)], kind='slinear') xdata = np.linspace(5.85, 7.85, 10000) six_fids.append(xdata[np.argmax(f(xdata) >= fid_limit)]) masks = [] line_widths = [i for i in range(3, 21, 2)] #six_fids = [6.3, 6.2, 6.1, 6.15, 6.1, 6.20, 6.1, 6.20, 6.05] # six_fids = [6.35, 6.25, 6.15, 6.15, 6.15, 6.25, 6.15, 6.25, 6.05] # six_fids = [6.25, 6.2, 6.1, 6.1, 6.1, 6.15, 6.1, 6.15, 6.05] for index, width in enumerate(line_widths): print(six_fids[index]) masks.append(catalog[((catalog['width'] == width) & (catalog['rsnrrbin'] >= six_fids[index]))]) total = masks[0] t_sum = 0 for mask in masks[1:]: t_sum += len(mask) total = vstack((total, mask)) print("Total One: {}".format(len(total))) return total
81f50ae4dd092482eb406bef331075245989d2f3
3,651,092
import os import sys def get_template(filename): """ return html mail template """ current_dir = os.path.dirname(__file__) tpl = read_file(os.path.join(current_dir,'templates',filename)) if not tpl: _log('Mailer error: could not load file "%s"'%filename) sys.exit(1) return tpl
1a253d02c6fc90e13088d530c8e02272c8bcc28c
3,651,093
def _run_job(tgt, fun, arg, kwarg, tgt_type, timeout, retry): """ Helper function to send execution module command using ``client.run_job`` method and collect results using ``client.get_event_iter_returns``. Implements basic retry mechanism. If ``client.get_event_iter_returns`` return no results, ``_run_job`` will retry the command until minions return results or ``retry`` threshold reached, in latter case ``CommandExecutionError`` raised with job details """ ret = {} attempt = 1 while attempt <= retry: # publish job command pub_data = client.run_job( tgt=tgt, fun=fun, arg=arg, kwarg=kwarg, tgt_type=tgt_type, timeout=timeout ) # collect job results job_results = client.get_event_iter_returns(timeout=timeout, **pub_data) for item in job_results: ret.update(item) if not set(pub_data["minions"]) == set(ret.keys()): minions_no_return = set(pub_data["minions"]) - set(ret.keys()) log.warning( "Nornir-runner:_run_job - {}s timeout; no results from {}; returned {}; jid {}; attempt: {}".format( timeout, list(minions_no_return), list(ret.keys()), pub_data["jid"], attempt, ) ) if ret: break attempt += 1 else: raise CommandExecutionError( "Nornir-runner:_run_job - no results from minions; tgt: {}; fun: {}; tgt_type: {}; timeout: {}; retry: {}; kwarg: {}".format( tgt, fun, tgt_type, timeout, retry, kwarg ) ) return ret
e23c189063e5d7df542d8e774acf655f4af61289
3,651,094
def _set_rank_colorbar(ax, img, norm): """ Set color bar for rankshow on the right of the ax """ divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) plt.colorbar(img, cax=cax) y_tick_values = cax.get_yticks() boundary_means = [np.mean((y_tick_values[ii],y_tick_values[ii-1])) for ii in range(1, len(y_tick_values))] print(norm.boundaries) category_names = [(str(norm.boundaries[ii-1])+'~'+ str(norm.boundaries[ii])) for ii in range(1, len(norm.boundaries))] # category_names[0] = '<='+str(norm.boundaries[1]) category_names[-1] = '>'+str(norm.boundaries[-2]) cax.yaxis.set_ticks(boundary_means) cax.yaxis.set_ticklabels(category_names,rotation=0) return cax
f21f59ac69c79cf9449d28710abdeeb730004077
3,651,095
from typing import Optional from pathlib import Path import importlib def destination(stub: str) -> Optional[Path]: """Determine stub path Only handle micropython stubs, ignoring any cPython stdlib equivalents. """ prefix, _, suffix = stub.partition(".") if importlib.util.find_spec(prefix): # type: ignore return # in cPython stdlib, skip prefix = Path(prefix) if suffix in ("py", "pyi"): # module return prefix / f"__init__.{suffix}" return prefix / suffix
8b2552513dbeaa9dc09cb85703b736e17c4788b5
3,651,096
from os.path import join, isfile from wpylib.sugar import is_iterable from wpylib.file.file_utils import list_dir_entries from pyqmc.results.gafqmc_info import is_gafqmc_info def is_gafqmc_result_dir(D, files=None, dirs=None, file_pattern=None, parse_file=True): """Tests whether the directory D, containing `files' (and softlinks) and directories `dirs' is a result directory for a GAFQMC-type calculation. Returns the score of the test, where higher score means more reliability. Input arguments `files' and `dirs' are not necessary (in fact, not recommended) unless you use this in conjunction with os.walk, where the files and dirs would have been gathered during the iteration cycle. Return flag: an integer or-ed 1 = output file name exists 2 = AND output file does exists as a regular file 4 = AND output file is indeed a GAFQMC output file 8 = AND input filename exists that matches the output """ if files == None or dirs == None: dirs, files = list_dir_entries(D)[:2] rslt = 0 if file_pattern == None: file_pattern = gafqmc_out_file_patterns if isinstance(file_pattern, (set, tuple, list)) or is_iterable(file_pattern): if not isinstance(file_pattern, set): file_pattern = set(file_pattern) fset = set(files) fset_good = file_pattern & fset if len(fset_good) > 0: # WARNING: This will create uncertainty if there are more than one file # matching the pattern. BE WARNED! info_file = sorted(list(fset_good))[0] rslt |= 1 else: raise NotImplementedError if rslt: # At least the filename is found: info_path = join(D, info_file) if isfile(info_path): rslt |= 2 if parse_file and is_gafqmc_info(info_path): rslt |= 4 # the next if's are TO BE IMPLEMENTED LATER return rslt
938584931f4b1064dd2101e6230a134b9ce90a0b
3,651,097
def train_IPCA(X,n_dims,batch_size,model='ipca'): """ name: train_IPCA Linear dimensionality reduction using Singular Value Decomposition of centered data, keeping only the most significant singular vectors to project the data to a lower dimensional space. returns: the transformer model """ estimator=transformer[model].set_params(pca__n_components=n_dims,pca__batch_size=batch_size) estimator.fit(X) return estimator
282c885a562b5b3dbe356050ef5f270f49d7014d
3,651,098
def _str_cell(cell: Cell) -> str: """Строковое представление клетки. Данной строкой клетка будет выводится на экран. """ if cell.is_open: if cell.is_empty: return " " elif cell.value: return f" {cell.value} " elif cell.is_flagged: return "[F]" else: return "[ ]"
2e4428196601a726b488e3ec4d966072033c5bfe
3,651,099