content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def SecureBytesEqual( a, b ): """Returns the equivalent of 'a == b', but avoids content based short circuiting to reduce the vulnerability to timing attacks.""" # Consistent timing matters more here than data type flexibility # We do NOT want to support py2's str type because iterating over them # (below) produces different results. if type( a ) != bytes or type( b ) != bytes: raise TypeError( "inputs must be bytes instances" ) # We assume the length of the expected digest is public knowledge, # thus this early return isn't leaking anything an attacker wouldn't # already know if len( a ) != len( b ): return False # We assume that integers in the bytes range are all cached, # thus timing shouldn't vary much due to integer object creation result = 0 for x, y in zip( a, b ): result |= x ^ y return result == 0
1ba46089d94f544b53a47e09dbbcf95dd5b594a0
3,651,200
import base64 import pickle def encode(something): """ We encode all messages as base64-encoded pickle objects in case later on, we want to persist them or send them to another system. This is extraneous for now. """ return base64.b64encode(pickle.dumps(something))
89c9c855b8b66aadc55c1602e133906d3220691a
3,651,201
def scrape_proposal_page(browser, proposal_url): """ Navigates to the page giving details about a piece of legislation, scrapes that data, and adds a model to the database session. Returns the new DB model. """ browser.get(proposal_url) file_number = int(extract_text(browser.find_element_by_css_selector( '#ctl00_ContentPlaceHolder1_lblFile2' ))) proposal_title = extract_text(browser.find_element_by_css_selector( '#ctl00_ContentPlaceHolder1_lblTitle2' )) proposal_type = extract_text(browser.find_element_by_css_selector( '#ctl00_ContentPlaceHolder1_lblIntroduced2' )) proposal_status = extract_text(browser.find_element_by_css_selector( '#ctl00_ContentPlaceHolder1_lblStatus2' )) introduction_date = parse_date(extract_text( browser.find_element_by_css_selector( '#ctl00_ContentPlaceHolder1_lblIntroduced2' ) )) db_proposal = db.Proposal(file_number, proposal_title) db_proposal.status = proposal_status db_proposal.proposal_type = proposal_type db_proposal.introduction_date = introduction_date db.session.add(db_proposal) db.session.flush() # TODO probably should refactor this out a t least return db_proposal
a15b01721e9fea658d07a0a878df2f2ac58fa2f7
3,651,202
def installRecommendation(install, uninstall, working_set=working_set, tuples=False): """Human Readable advice on which modules have to be installed on current Working Set. """ installList = [] for i in install: is_in = False for p in working_set: if i[0] == p.key and i[1] == p.version: is_in = True break if not is_in: if not tuples: print('~~ Install: '+i[0]+' version '+i[1]) else: installList.append((i[0], i[1])) for u in uninstall: is_in = False for p in working_set: if u[0] == p.key and u[1] == p.version: is_in = True break if is_in: if not tuples: print('~~ Uninstall: '+u[0]+' version '+u[1]) return installList
bf3083d4bcb50bdc27c382ccd9ea1dfc7b8cdb71
3,651,203
def obsangle(thetas, phis, alpha_obs): """ Return the cosine of the observer angle for the different shockwave segments and and and observer at and angle alpha_obs with respect to the jet axis (contained in yz plane) """ #u_obs_x, u_obs_y, u_obs_z = 0., sin(alpha_obs), cos(alpha_obs) u_obs_y, u_obs_z = sin(alpha_obs), cos(alpha_obs) #seg_x = seg_y = sin(thetas)*sin(phis) seg_z = cos(thetas) #return arccos(u_obs_x*seg_x + u_obs_y*seg_y + u_obs_z*seg_z) return u_obs_y*seg_y + u_obs_z*seg_z
6fc03a386a97f63d3ad10d291d1528bf7fb45720
3,651,204
def _image_tensor_input_placeholder(input_shape=None): """Returns input placeholder and a 4-D uint8 image tensor.""" if input_shape is None: input_shape = (None, None, None, 3) input_tensor = tf.placeholder( dtype=tf.uint8, shape=input_shape, name='image_tensor') return input_tensor, input_tensor
bd3c339da4b8f0eea482687cecf28a4625d3f84c
3,651,205
def _load_top_bonds(f, topology, **kwargs): """Take a mol2 file section with the heading '@<TRIPOS>BOND' and save to the topology.bonds attribute.""" while True: line = f.readline() if _is_end_of_rti(line): line = line.split() bond = Bond( connection_members=( topology.sites[int(line[1]) - 1], topology.sites[int(line[2]) - 1], ) ) topology.add_connection(bond) else: break return line
e6605428a99720ff0d773a1db2a8363d61e38ca3
3,651,206
def timelength_to_phrase( timelength: spec.Timelength, from_representation: spec.TimelengthRepresentation = None, ) -> spec.TimelengthPhrase: """convert Timelength to TimelengthPhrase ## Inputs - timelength: Timelength - from_representation: str representation name of input timelength ## Returns - TimelengthPhrase timelength """ return convert_timelength( timelength=timelength, to_representation='TimelengthPhrase', from_representation=from_representation, )
a840b69625c968cda4a1e686a61298e2809ffde0
3,651,207
def order_columns(self: DataFrame, order: str = "asc", by_dtypes: bool = False): """ Rearrange the columns in alphabetical order. An option of rearrangement by dtypes is possible. :param self: :param by_dtypes: boolean to rearrange by dtypes first """ if order not in ['asc', 'desc']: raise Exception("'{}' is not an acceptable ordering value, you can only use {'asc','desc'}".format(order)) if by_dtypes: dtypes_dict = dict() for col, dtype in self.dtypes: dtypes_dict.setdefault(dtype, list()) dtypes_dict[dtype].append(col) dtypes_dict = dict(sorted(dtypes_dict.items())) columns = [col for values in dtypes_dict.values() for col in sorted(values)] return self.select(columns) else: return self.select(sorted(self.columns, reverse=False if order == "asc" else True))
c05f4b13b26b041c86816c15a375943713a6dcdb
3,651,208
import sys from sys import version import os def main(): """ do main work """ cmdArgs = sys.argv[1:] if not cmdArgs: msg = "There is no version in args. Current version: " msg += version.current() print(msg) if GIT_EXE: print("Result of 'git describe': ") print(_runGitCmd('describe')) msg = "\nUsage: " + sys.argv[0] + " x.y.z where x,y,z are numbers" print(msg) return 0 newVer = cmdArgs[0] if not version.checkFormat(newVer): print('Version %r has invalid format' % newVer) return 1 if not GIT_EXE: print("There is no 'git'. Install 'git' to use this script.") return 2 if not _checkChangeLog(newVer): print('There is no records for the version %r in changelog file' % newVer) return 3 question = 'Bump version to %s?' question += ' It will write the version to file,' question += '\nadd it to git repo, commit it and add git tag with the version.' answer = _getAnswerYesNo(question % newVer) if not answer: return 0 print("Bumping version to %r .." % newVer) _bumpVersion(newVer) print("Building distribution ..") _runPyScript('setup.py clean sdist bdist_wheel') answer = _getAnswerYesNo('Distribution was built successfully. Publish it to pypi?') if answer: print("Publishing distribution ..") _runPyScript('setup.py publish') print("Distribution was published.") answer = _getAnswerYesNo('Publish release to github?') if answer: scriptPath = os.path.join('scripts', 'publish-github-release.py') args = '%s %s' % (scriptPath, newVer) print("Publishing release to github ..") _runPyScript(args, tryPy3 = True) print("Release was published on github.") print("Writing new dev version to file %r .." % version.VERSION_FILE_PATH) nextVer = _writeNewDevVersion(newVer) print("New dev version %r was written to file." % nextVer) return 0
b6110be510bb9a8bdddbc076ada7c51eb2ad8427
3,651,209
import random def reorderWithinGroup(players_by_wins): """Shuffle players with the same score. Args: players_by_wins: a dictionary returned by splitByScore(). Returns a list of the re-ordered player ids. """ for score in players_by_wins.keys(): random.shuffle(players_by_wins[score]) # players_by_wins is a dictionary with scores as keys. When # converting to a list, need to make sure it is sorted by score, # from highest to lowest. players_ordered = [] score_keys = players_by_wins.keys() score_keys.sort(reverse=True) for score in score_keys: players_ordered.append(players_by_wins[score]) # Convert back to a list. players_ordered = list(chain.from_iterable(players_ordered)) # Return the ordered ids. ordered_ids = [x[0] for x in players_ordered] return(ordered_ids)
bd0afe4db36bf815ab7861e53cd674bd49e81775
3,651,210
def selection(population, method): """Apply selection method of a given population. Args: population: (list of) plans to apply the selection on. method: (str) selection method: - rws (Roulette Wheel Selection) - sus (Stochastic Universal Selection) - ts (Tournament Selection) Returns: (list of) plans representing the new pool """ if method == "rws": return roulette_wheel_selection(population) elif method == "sus": return stochastic_universal_sampling(population) elif method == "ts": return tournament_selection(population)
e5b05c62530babfd48b5061152b9f88e4a463456
3,651,211
def PSL_prefix(row, cols): """Returns the prefix a domain (www.images for www.images.example.com)""" psl_data = psl.search_tree(row[cols[0]]) if psl_data: return(psl_data[1], psl_data[0]) return (None, None)
e5e7809acae3be60eca9f0cd65aec7a93ac087de
3,651,212
def build_model(sess,t,Y,model='sde',sf0=1.0,ell0=[2,2],sfg0=1.0,ellg0=[1e5], W=6,ktype="id",whiten=True, fix_ell=False,fix_sf=False,fix_Z=False,fix_U=False,fix_sn=False, fix_ellg=False,fix_sfg=False,fix_Zg=True,fix_Ug=False): """ Args: sess: TensowFlow session needed for initialization and optimization t: Python array of numpy vectors storing observation times Y: Python array of numpy matrices storing observations. Observations are stored in rows. model: 'sde' or 'ode' sf0: Integer initial value of the signal variance of drift GP ell0: Python/numpy array of floats for the initial value of the lengthscale of drift GP sfg0: Integer initial value of the signal variance of diffusion GP ellg0: Python/numpy array of a single float for the initial value of the lengthscale of diffusion GP W: Integer denoting the width of the inducing point grid. If the problem dimension is D, total number of inducing points is W**D ktype: Kernel type. We have made experiments only with Kronecker kernel, denoted by 'id'. The other kernels are not supported. whiten: Boolean. Currently we perform the optimization only in the white domain fix_ell: Boolean - whether drift GP lengthscale is fixed or optimized fix_sf: Boolean - whether drift GP signal variance is fixed or optimized fix_Z: Boolean - whether drift GP inducing locations are fixed or optimized fix_U: Boolean - whether drift GP inducing vectors are fixed or optimized fix_sn: Boolean - whether noise variance is fixed or optimized fix_ellg: Boolean - whether diffusion GP lengthscale is fixed or optimized fix_sfg: Boolean - whether diffusion GP signal variance is fixed or optimized fix_Zg: Boolean - whether diffusion GP inducing locations are fixed or optimized fix_Ug: Boolean - whether diffusion GP inducing vectors are fixed or optimized Returns: npde: A new NPDE model """ print('Model being initialized...') def init_U0(Y=None,t=None,kern=None,Z0=None,whiten=None): Ug = (Y[1:,:] - Y[:-1,:]) / np.reshape(t[1:]-t[:-1],(-1,1)) with tf.name_scope("init_U0"): tmp = NPODE(Z0=Y[:-1,:],U0=Ug,sn0=0,kern=kern,jitter=0.25,whiten=False, fix_Z=True,fix_U=True,fix_sn=True) U0 = tmp.f(X=Z0) if whiten: Lz = tf.cholesky(kern.K(Z0)) U0 = tf.matrix_triangular_solve(Lz, U0, lower=True) U0 = sess.run(U0) return U0 D = len(ell0) Nt = len(Y) x0 = np.zeros((Nt,D)) Ys = np.zeros((0,D)) for i in range(Nt): x0[i,:] = Y[i][0,:] Ys = np.vstack((Ys,Y[i])) maxs = np.max(Ys,0) mins = np.min(Ys,0) grids = [] for i in range(D): grids.append(np.linspace(mins[i],maxs[i],W)) vecs = np.meshgrid(*grids) Z0 = np.zeros((0,W**D)) for i in range(D): Z0 = np.vstack((Z0,vecs[i].T.flatten())) Z0 = Z0.T tmp_kern = OperatorKernel(sf0,ell0,ktype="id",fix_ell=True,fix_sf=True) U0 = np.zeros(Z0.shape,dtype=np.float64) for i in range(len(Y)): U0 += init_U0(Y[i],t[i],tmp_kern,Z0,whiten) U0 /= len(Y) sn0 = 0.5*np.ones(D) Ug0 = np.ones([Z0.shape[0],1])*0.01 ell0 = np.asarray(ell0,dtype=np.float64) ellg0 = np.asarray(ellg0,dtype=np.float64) kern = OperatorKernel(sf0=sf0, ell0=ell0, ktype=ktype, fix_ell=fix_ell, fix_sf=fix_sf) if model is 'ode': npde = NPODE(Z0=Z0, U0=U0, sn0=sn0, kern=kern, whiten=whiten, fix_Z=fix_Z, fix_U=fix_U, fix_sn=fix_sn) sess.run(tf.global_variables_initializer()) return npde elif model is 'sde': diffus = BrownianMotion(sf0=sfg0, ell0=ellg0, U0=Ug0, Z0=Z0, whiten=whiten,\ fix_sf=fix_sfg, fix_ell=fix_ellg, fix_Z=fix_Zg, fix_U=fix_Ug) npde = NPSDE(Z0=Z0, U0=U0, sn0=sn0, kern=kern, diffus=diffus, whiten=whiten,\ fix_Z=fix_Z, fix_U=fix_U, fix_sn=fix_sn) sess.run(tf.global_variables_initializer()) return npde else: raise NotImplementedError("model parameter should be either 'ode' or 'sde', not {:s}\n".format(model))
f5d691aca815df25d1c34ae9c7fa9810c3aae1ab
3,651,213
import re def paginatedUrls(pattern, view, kwargs=None, name=None): """ Takes a group of url tuples and adds paginated urls. Extends a url tuple to include paginated urls. Currently doesn't handle url() compiled patterns. """ results = [(pattern, view, kwargs, name)] tail = '' mtail = re.search('(/+\+?\\*?\??\$?)$', pattern) if mtail: tail = mtail.group(1) pattern = pattern[:len(pattern) - len(tail)] results += [(pattern + "/(?P<page_number>\d+)" + tail, view, kwargs)] results += [(pattern + "/(?P<page_number>\d+)\|(?P<page_limit>\d+)" + tail, view, kwargs)] if not kwargs: kwargs = dict() kwargs['page_limit'] = 0 results += [(pattern + "/?\|(?P<page_limit>all)" + tail, view, kwargs)] return results
2102309434e02e0df49888978d41ffce2de0e2dc
3,651,214
from typing import Tuple def _to_intraday_trix(date: pd.Timestamp, provider: providers.DataProvider, period: int)-> Tuple[nd.NDArray, nd.NDArray]: """ Returns an ndarray containing the TRIX for a given +data+ and +provider+, averaged across a given +period+. """ # First, get the triple-smoothed 15 period exponential moving average data = _get_intraday_data(date, provider) ewm1 = pd.Series.ewm(data['close'], span=period).mean() ewm2 = pd.Series.ewm(ewm1, span=period).mean() ewm3 = pd.Series.ewm(ewm2, span=period).mean() # Return the percentage change from last period ewm3_yesterday = ewm3.shift(periods=1, fill_value=ewm3[0]) trix = (ewm3 / ewm3_yesterday) - 1 return nd.array(trix.values, utils.try_gpu(0))
14c621afa6128fb3b33058b357e2ca79723a42f9
3,651,215
def _decode(integer): """ Decode the given 32-bit integer into a MAX_LENGTH character string according to the scheme in the specification. Returns a string. """ if integer.bit_length() > 32: raise ValueError("Can only decode 32-bit integers.") decoded_int = 0 # Since each byte has its bits distributed along the given integer at # BIT_SHIFT intervals, we'll get the bits from one byte at a time. for input_start in range(4): # Move to the beginning of the correct output byte. output_pos = input_start * 8 # Read the bits from the input at BIT_SHIFT intervals, lowest-order # bits first. for input_bit in range(input_start, integer.bit_length(), BIT_SHIFT): current_bit = getBit(integer, input_bit) # If the current bit is 1, set the corresponding bit in the result. # Otherwise, we can leave the result bit as 0. if current_bit: decoded_int = setBit(decoded_int, output_pos) # Move to the next position in the output byte. output_pos += 1 # Get a byte array from the decoded integer. We're reversing the byte order # because we read the input integer from lowest-order bit to highest-order. decoded_bytes = decoded_int.to_bytes(4, byteorder="little") # Get the characters represented by each byte, ignoring empty bytes. chars = [] for byte in decoded_bytes: if byte: chars.append(chr(byte)) return "".join(chars)
156b75e8907bbcf6ae69f0a3429fb29777651f8e
3,651,216
def register(name): """Registers a new data loader function under the given name.""" def add_to_dict(func): _LOADERS[name] = func return func return add_to_dict
ea672cdf3c8d34f090d98e2498b77ea929aee6e6
3,651,217
def get_api_host(staging): """If 'staging' is truthy, return staging API host instead of prod.""" return STAGING_API_HOST if staging else PROD_API_HOST
d2b0003669422ef4481ffe4db76497de1485d0f7
3,651,218
import requests import os def get(path, params={}): """Make an authenticated GET request to the GitHub API.""" return requests.get( os.path.join("https://api.github.com/", path), auth=(USER, PASS), params=params ).json()
b35d416f762a7d42a97169133d686b33dac74a59
3,651,219
def delete_user(auth, client): """ Delete a user :auth: dict :client: users_client object """ log("What user you want to delete?") user_to_delete = find_user_by_username(auth, client) if user_to_delete is False: log("Could not find user.", serv="ERROR") return False confirmation = yes_or_no("You really want to delete %s?" % user_to_delete["username"]) if confirmation is False: log("Aborted...") return False try: client.users_user_id_delete(int(user_to_delete["id"])) log("Successfully deleted user %s" % user_to_delete["username"], serv="SUCCESS") return True except: log("Could not delete user %s. Error by backend" % user_to_delete["username"], serv="ERROR") return False
db51c7d7d9f5fbd164bde010f3887f43e998fbef
3,651,220
from datetime import datetime import requests def get_buildbot_stats(time_window : datetime.datetime) -> BuildStats: """Get the statistics for the all builders.""" print('getting list of builders...') stats = BuildStats() for builder in requests.get(BASE_URL).json().keys(): # TODO: maybe filter the builds to the ones we care about stats += get_builder_stats(builder, time_window ) return stats
dc27d0672b9c03967575bef2ccbc95791502a8ab
3,651,221
def remove_empty(s): """\ Remove empty strings from a list. >>> a = ['a', 2, '', 'b', ''] >>> remove_empty(a) [{u}'a', 2, {u}'b'] """ while True: try: s.remove('') except ValueError: break return s
98778e4cc90f11b9b74ac6d26b203cbfc958fd7b
3,651,222
import math from typing import Tuple from typing import Any import itertools def quantum_ia(nb_stick: int, past: list, backend_sim: Aer) -> list: """Quantum IA. Args: nb_stick: nb of stick left past: past turn backend_sim: backend for quantum Return: Prediction to use """ def quadratibot(nb_stick: int, past: list, backend_sim: Aer) -> list: """Quadratic + QAOA function Args: nb_stick: nb of stick left past: past turn backend_sim: backend for quantum Return: Gates to use """ def get_quantum_solution_for( quadprog: QuadraticProgram, quantumInstance: QuantumInstance, optimizer=None ): _eval_count = 0 def callback(eval_count, parameters, mean, std): nonlocal _eval_count _eval_count = eval_count # Create solver and optimizer solver = QAOA( optimizer=optimizer, quantum_instance=quantumInstance, callback=callback, max_evals_grouped=3, ) # Create optimizer for solver optimizer = MinimumEigenOptimizer(solver) # Get result from optimizer result = optimizer.solve(quadprog) return result, _eval_count # Check number of stick max if nb_stick >= 3: max_stick = 3 else: max_stick = nb_stick # Check the past poten_stick = nb_stick for i in range(len(past)): if past[i] == "/": poten_stick += 0.5 if past[i] == "¬": u = 1 if len(past) - 1 >= i + u: while past[i + u] == "¬": u += 1 if past[i + u] == "/": poten_stick += 0.5 # Check last turn last_st = 0 if past[0] == "¬": u = 1 while past[0 + u] == "¬": u += 1 if past[0 + u] == "/": last_st = 0.5 if past[0] == "/": last_st = 0.5 quadprog = QuadraticProgram(name="qnim") quadprog.integer_var(name="x", lowerbound=0, upperbound=max_stick) quadprog.integer_var(name="sup", lowerbound=0, upperbound=max_stick) quadprog.integer_var(name="intric", lowerbound=0, upperbound=max_stick) quadprog.maximize( linear={"x": 1, "sup": 0.5, "intric": last_st}, quadratic={("sup", "intric"): 0.5}, ) # General constraints quadprog.linear_constraint( linear={"x": 1, "sup": 1, "intric": 1}, sense=">", rhs=0, name="gen_min" ) quadprog.linear_constraint( linear={"x": 1, "sup": 1, "intric": 1}, sense="<=", rhs=max_stick, name="gen_max", ) # Mod4 constraints if math.ceil(poten_stick % 4) - 0.5 > 0: quadprog.linear_constraint( linear={"x": 1, "sup": 1}, sense="<=", rhs=math.ceil(poten_stick % 4), name="qua_mod4", ) if nb_stick % 4 - 1 > 0: quadprog.linear_constraint( linear={"x": 1, "sup": 1, "intric": 1}, sense="<=", rhs=nb_stick % 4 - 1, name="cla_mod4", ) # Get QAOA result final_result = [] simulator_instance = QuantumInstance(backend=backend_sim) qaoa_result, qaoa_eval_count = get_quantum_solution_for( quadprog, simulator_instance ) # Format and print result for cropHectares, cropName in zip(qaoa_result.x, qaoa_result.variable_names): for i in range(int(cropHectares)): final_result.append(cropName) return final_result def gronim(output: list, backend_sim: Aer) -> Tuple[Any, ...]: """Grover for best predict. Args: output: every possible prediction backend_sim: backend for quantum Return: best predict """ def diffuser(nqubits): qc = QuantumCircuit(nqubits) for qubit in range(nqubits): qc.h(qubit) for qubit in range(nqubits): qc.x(qubit) qc.h(nqubits - 1) qc.mct(list(range(nqubits - 1)), nqubits - 1) qc.h(nqubits - 1) for qubit in range(nqubits): qc.x(qubit) for qubit in range(nqubits): qc.h(qubit) U_s = qc.to_gate() U_s.name = "$Diff$" return U_s def ram(nqubits, lists_final): list_qram = [i for i in range(nqubits)] qram = QuantumRegister(nqubits, "qram") qalgo = QuantumRegister(nqubits, "algo") qc = QuantumCircuit(qram, qalgo) control_h = MCMT("h", nqubits, 1).to_gate() map_ram_2 = [["x", "x"], ["o", "x"], ["x", "o"], ["o", "o"]] map_ram_3 = [ ["x", "x", "x"], ["o", "x", "x"], ["x", "o", "x"], ["o", "o", "x"], ["x", "x", "o"], ["o", "x", "o"], ["x", "o", "o"], ["o", "o", "o"], ] if len(bin(len(lists_final))[2:]) == 3: map_ram = map_ram_3 if len(bin(len(lists_final))[2:]) == 2: map_ram = map_ram_2 for i, m_ram in zip(range(len(lists_final)), map_ram): # qc.barrier() for index, gate in enumerate(m_ram): if gate == "x": qc.x(qram[index]) if lists_final[i][0] == "x" or lists_final[i][0] == "sup": qc.mcx(qram, qalgo[0]) else: qc.append(control_h, [*list_qram, qalgo[0]]) if len(lists_final[i]) == 3: if lists_final[i][1] == "x": qc.mcx(qram, qalgo[1]) elif lists_final[i][1] == "intric": qc.mcx([qram[0], qram[1], qram[2], qalgo[0]], qalgo[1]) else: qc.append(control_h, [*list_qram, qalgo[1]]) if lists_final[i][-1] == "x": qc.mcx(qram, qalgo[-1]) elif lists_final[i][-1] == "intric": if len(lists_final[i]) == 3: qc.mcx([qram[0], qram[1], qram[2], qalgo[1]], qalgo[-1]) else: qc.mcx([qram[0], qram[1], qalgo[0]], qalgo[-1]) else: qc.append(control_h, [*list_qram, qalgo[-1]]) for index, gate in enumerate(m_ram): if gate == "x": qc.x(qram[index]) # print(qc.draw()) U_s = qc.to_gate() U_s.name = "$Qram$" return U_s def algo(nqubits): qc = QuantumCircuit(nqubits) qc.h(0) qc.x(0) U_s = qc.to_gate() U_s.name = "$Algo$" return U_s lists_final = [] lists_full = list(itertools.permutations(output, len(output))) for u in lists_full: if u not in lists_final: lists_final.append(u) len_qram = len(bin(len(lists_final))[2:]) qram = QuantumRegister(len_qram, "qram") qalgo = QuantumRegister(len_qram, "algo") oracle = QuantumRegister(1, "oracle") c = ClassicalRegister(len_qram, "measurement") qc = QuantumCircuit(qram, qalgo, oracle, c) # Init qc.h(qram) qc.x(oracle) qc.h(oracle) qc.barrier() # Qram qc.append(ram(len_qram, lists_final), [*[i for i in range(len_qram * 2)]]) qc.barrier() # Algorithm qc.append(algo(len_qram), [*[i for i in range(len_qram, len_qram * 2)]]) qc.barrier() # Oracle qc.mcx([qalgo[0], qalgo[-1]], oracle) qc.barrier() # Revert Algo + Qram qc.append( algo(len_qram).inverse(), [*[i for i in range(len_qram, len_qram * 2)]] ) qc.append( ram(len_qram, lists_final).inverse(), [*[i for i in range(len_qram * 2)]] ) qc.barrier() # Diffuser qc.append(diffuser(len_qram), [*[i for i in range(len_qram)]]) # Measure of the outputs qc.barrier() qc.measure(qram, c) job = execute(qc, backend_sim, shots=512, memory=True) result_job = job.result() result_count = result_job.get_counts() result_memory = job.result().get_memory() if len(result_count) == 1: final_result = int(result_memory[0], 2) else: final_result = max(result_count, key=result_count.get) final_result = int(final_result, 2) to_return = lists_final[final_result] return to_return gates = quadratibot(nb_stick, past, backend_sim) if len(gates) < 2: predict = gates elif len(set(gates)) != len(gates): predict = gates else: predict = gronim(gates, backend_sim) return predict
7e13f554e6eb901ec43ec80bf346005f17ec55d5
3,651,223
def construct_model_cnn_gram(num_classes, input_shape): """ construct model architecture :param num_classes: number of output classes of the model [int] :return: model - Keras model object """ model = Sequential() model.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same', input_shape=input_shape)) model.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same')) model.add(MaxPool2D((2, 2))) model.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same')) model.add(Conv2D(64, (3, 3), activation='relu', kernel_initializer='he_uniform', padding='same')) model.add(MaxPool2D((2, 2))) model.add(Flatten()) model.add(Dense(128, activation='relu', kernel_initializer='he_uniform')) model.add(Dense(num_classes, activation='softmax')) return model
ddffb66efe6b4f94a9c2a0ccc976206eebb503a6
3,651,224
def get_basic_data(match_info, event): """input: dictionary | output: dictionary updated""" match_info['status'] = event['status']['type']['name'] match_info['start_time'] = event['date'] match_info['match_id'] = event['id'] match_info['time'] = event['status']['displayClock'] match_info['period'] = event['status']['period'] match_info['display_period'] = give_display_period(match_info['period']) match_info['detail'] = event['status']['type']['detail'] match_info['match_type_id'] = event['status']['type']['id'] return match_info
fae755e195b5bbf12c9fccf20b9ba2c2f9e700c6
3,651,225
import os import subprocess def handle_solution(f, problem_id, user, lang): """ When user uploads the solution, this function takes care of it. It runs the grader, saves the running time and output and saves the submission info to database. :param f: submission file (program) :param problem_id: the id of the problem user submitted solution to :param user: user id of user that made submission :param lang: what language did user use :return grade: grade that user got in this submission :return submission.grade: best grade user got on this problem :return error: -1 if no errors, otherwise output of agrader.sh """ # Get directory where files are stored. directory = os.popen('echo $CG_FILES_UPLOADED').read().strip() # Create directory where user's problem submission stuff will get stored. problem_dir = "{0}/{1}/{2}".format(directory, user, problem_id) try: os.mkdir(problem_dir) except OSError: pass # directory already exists # Write the submission file to previously created directory, rename it. _, end = f.name.split('.') f_local = '{2}_{0}.{1}'.format(user, end, problem_id) with open('{0}/{1}'.format(problem_dir, f_local), 'wb+') as destination: for chunk in f.chunks(): destination.write(chunk) # Grade the task using agrader.sh. First compile the program if necessary and then copy # files to docker container. Then run the program and check the grade # with grader. runner_ret_val = -1 grade = -1 error = -1 compiler_output = \ subprocess.check_output('bash problem/grader/compile_and_copy.sh {0} {1} {2}'.format(f_local, problem_id, user), shell=True).split('\n')[-2] if compiler_output == 'OK': if end == 'py': if lang == 'Python 2': runner_ret_val = subprocess.call('bash problem/grader/run_py.sh {0} {1}'.format(user, problem_id), shell=True) elif lang == 'Python 3': runner_ret_val = subprocess.call('bash problem/grader/run_py3.sh {0} {1}'.format(user, problem_id), shell=True) elif end == 'java': runner_ret_val = subprocess.call('bash problem/grader/run_java.sh {0} {1}'.format(user, problem_id), shell=True) elif end == 'cs': runner_ret_val = subprocess.call('bash problem/grader/run_cs.sh {0} {1}'.format(user, problem_id), shell=True) else: runner_ret_val = subprocess.call('bash problem/grader/run_c.sh {0} {1}'.format(user, problem_id), shell=True) if runner_ret_val == 0: grader_out = subprocess.check_output('bash problem/grader/grade.sh {0} {1}'.format(user, problem_id), shell=True).split('\n')[-2] try: grade = int(grader_out) except ValueError: grade = -1 error = grader_out else: error = "RTE" else: error = compiler_output # Add submission user = User.objects.get(username=user) today = date.today() today_str = '{0}-{1}-{2}'.format(today.year, today.month, today.day) try: # if user has already submitted solution for this problem before submission = Submission.objects.get(user=user.id, problem=problem_id) submission.tries += 1 if grade > submission.grade: submission.grade = grade submission.date = today_str # Save newer solution with same points. if grade >= submission.grade: os.system('bash problem/grader/move_output.sh {0} {1} {2}'.format(user.username, problem_id, 1)) else: os.system('bash problem/grader/move_output.sh {0} {1} {2}'.format(user.username, problem_id, 0)) except ObjectDoesNotExist: # this is user's first submission submission = Submission() submission.user_id = user.id submission.problem_id = problem_id submission.grade = grade submission.date = today_str submission.tries = 1 os.system('bash problem/grader/move_output.sh {0} {1} {2}'.format(user.username, problem_id, 1)) finally: # at the end we need to update some data about best submissions if grade == 10 and submission.tries_until_correct == 0: submission.tries_until_correct = submission.tries # Update number of people that solved this problem. problem = Problem.objects.get(pk=problem_id) if problem.solved_by_how_many == 0: problem.first_solved_by = user problem.first_solved_on = today_str problem.solved_by_how_many += 1 problem.last_successful_try = today_str submission.save() return grade, submission.grade, error
6373e5d55c8135ede8e401cc8f2c9b1464bda1bf
3,651,226
def convert_blockgrad(node, **kwargs): """ Skip operator """ return create_basic_op_node('Identity', node, kwargs)
12803d387a30884da08779b878e9cdf3e06226a7
3,651,227
def is_complete(node): """ all children of a sum node have same scope as the parent """ assert node is not None for sum_node in reversed(get_nodes_by_type(node, Sum)): nscope = set(sum_node.scope) if len(sum_node.children) == 0: return False, "Sum node %s has no children" % sum_node.id for child in sum_node.children: if nscope != set(child.scope): return False, "children of (sum) node %s do not have the same scope as parent" % sum_node.id return True, None
a92741f4770757518e91a44e757e4d8037958066
3,651,228
import torch def step_inplace(Ts, ae, target, weight, depth, intrinsics, lm=.0001, ep=10.0): """ dense gauss newton update with computing similiarity matrix """ pts = pops.inv_project(depth, intrinsics) pts = pts.permute(0,3,1,2).contiguous() # tensor representation of SE3 se3 = Ts.data.permute(0,3,1,2).contiguous() ae = ae / 8.0 # build the linear system H, b = SE3BuilderInplace.apply(se3, ae, pts, target, weight, intrinsics) I = torch.eye(6, device=H.device)[...,None,None] H = H + (lm*H + ep) * I # damping dx = SE3Solver.apply(H, b) dx = dx.permute(0,3,4,1,2).squeeze(-1).contiguous() Ts = SE3.exp(dx) * Ts return Ts
9f1fc6911d1fb11bc6956d63dda8f59b8f6654cd
3,651,229
def _compute_extent_axis(axis_range, grid_steps): """Compute extent for matplotlib.pyplot.imshow() along one axis. :param axis_range: 1D numpy float array with 2 elements; axis range for plotting :param grid_steps: positive integer, number of grid steps in each dimension :return: 1D numpy float array with 2 elements """ delta = (axis_range[1] - axis_range[0]) / (2.0 * (grid_steps - 1)) # the range is covered by grid_steps - 1 pixels with one half of a pixel overlapping on each side; delta is half the # pixel width return np.array([axis_range[0] - delta, axis_range[1] + delta])
e83a251b4055639435342d19960d1e75a6d33ba8
3,651,230
import pathlib import os def normalize_path(filepath, expand_vars=False): """ Fully normalizes a given filepath to an absolute path. :param str filepath: The filepath to normalize :param bool expand_vars: Expands embedded environment variables if True :returns: The fully noralized filepath :rtype: str """ filepath = str(pathlib.Path(filepath).expanduser().resolve()) if expand_vars: filepath = os.path.expandvars(filepath) return filepath
d408d6c1cd86072473a52f626821fcebd380c29d
3,651,231
import os def _make_relative_path(base_path, full_path): """ Strip out the base_path from full_path and make it relative. """ flask.current_app.logger.debug( 'got base_path: %s and full_path: %s' % (base_path, full_path)) if base_path in full_path: # Get the common prefix common_prefix =\ os.path.commonprefix([base_path, full_path]) rel_path = full_path[len(common_prefix):] # Remove '/' from the beginning if os.path.isabs(rel_path): rel_path = rel_path[1:] return rel_path
c40252232bf02aa51411f4a9a50d9d71d5447348
3,651,232
import hashlib def md5_hash_file(fh): """Return the md5 hash of the given file-object""" md5 = hashlib.md5() while True: data = fh.read(8192) if not data: break md5.update(data) return md5.hexdigest()
f572ec27add8024e5fa8b9a82b5d694905e4d0f8
3,651,233
def rule(request): """Administration rule content""" if request.user.is_authenticated(): return helpers.render_page('rule.html', show_descriptions=True) else: return redirect('ahmia.views_admin.login')
514f767235660b812126c5cfc2dabeec40a7b22a
3,651,234
def get_tenant_info(schema_name): """ get_tenant_info return the first tenant object by schema_name """ with schema_context(schema_name): return Pharmacy.objects.filter(schema_name=schema_name).first()
388d51c50fec60a331822bd157da1d53c88cc170
3,651,235
def get_lr(curr_epoch, hparams, iteration=None): """Returns the learning rate during training based on the current epoch.""" assert iteration is not None batches_per_epoch = int(hparams.train_size / hparams.batch_size) if 'svhn' in hparams.dataset and 'wrn' in hparams.model_name: lr = step_lr(hparams.lr, curr_epoch) elif 'cifar' in hparams.dataset or ('svhn' in hparams.dataset and 'shake_shake' in hparams.model_name): lr = cosine_lr(hparams.lr, curr_epoch, iteration, batches_per_epoch, hparams.num_epochs) else: lr = hparams.lr tf.logging.log_first_n(tf.logging.WARN, 'Default not changing learning rate.', 1) return lr
42df4a185dd41d0eb02845d78dbd061f4658fba8
3,651,236
import glob import os def delete_map(): """ Delete all maps Returns ------- (response, status_code): (dict, int) The response is a dictionary with the keys -> status, message and result. The status is a bool that says if the operation was successful. The message is a str with comments for the user. The result is an empty list. The status_code is always 204 (deleted). """ # Delete all metadata_map figures # Loop Through the folder projects all files and deleting them one by one for file_map in glob.glob(f'{fig_folder}/metadata_map*'): os.remove(file_map) response = { 'status': True, 'message': 'All maps deleted', 'result': [] } status_code = 204 return response, status_code
0a4b8ef8975f33e37ecde4b50324d98c45f8a691
3,651,237
def delete_page(shortname): """Delete page from the database.""" # Check page existency if get_page(shortname) is None: abort(404) if shortname is None: flash("No parameters for page deletion!") return redirect(url_for("admin")) else: query_db("DELETE FROM pages WHERE shortname = ?", (shortname,)) commit_db() flash("Page '" + shortname + "' deleted!") return redirect(url_for("admin"))
b1bb9526832209e1cddf1c86851aeef7c6701d3d
3,651,238
def has_property(name, match=None): """Matches if object has a property with a given name whose value satisfies a given matcher. :param name: The name of the property. :param match: Optional matcher to satisfy. This matcher determines if the evaluated object has a property with a given name. If no such property is found, ``has_property`` is not satisfied. If the property is found, its value is passed to a given matcher for evaluation. If the ``match`` argument is not a matcher, it is implicitly wrapped in an :py:func:`~hamcrest.core.core.isequal.equal_to` matcher to check for equality. If the ``match`` argument is not provided, the :py:func:`~hamcrest.core.core.isanything.anything` matcher is used so that ``has_property`` is satisfied if a matching property is found. Examples:: has_property('name', starts_with('J')) has_property('name', 'Jon') has_property('name') """ if match is None: match = anything() return IsObjectWithProperty(name, wrap_shortcut(match))
a5c562b1f5a36fc2c591d700d84b5ee9ca54ccde
3,651,239
import glob def gain_stability_task(run, det_name, fe55_files): """ This task fits the Fe55 clusters to the cluster data from each frame sequence and writes a pickle file with the gains as a function of sequence number and MJD-OBS. Parameters ---------- run: str Run number. det_name: str Sensor name in the focal plane, e.g., 'R22_S11'. fe55_files: list Raw Fe55 for the sensor being consider. The MJD-OBS values will be extracted from these files. Returns: (pandas.DataFrame, str), i.e., a tuple of the data frame containing the gain sequence and the file name of the output pickle file. """ file_prefix = make_file_prefix(run, det_name) # Extract MJD-OBS values into a dict to provide look up table in # case there are missing sequence frames in the psf results table. mjd_obs = dict() for item in fe55_files: with fits.open(item) as hdus: mjd_obs[hdus[0].header['SEQNUM']] = hdus[0].header['MJD-OBS'] psf_results_file = sorted(glob.glob(f'{file_prefix}_psf_results*.fits'))[0] try: df = sensorTest.gain_sequence(det_name, psf_results_file) except ValueError as eobj: print("ValueError in gain_stability_task:", eobj) return None df['mjd'] = [mjd_obs[seqnum] for seqnum in df['seqnum']] outfile = f'{file_prefix}_gain_sequence.pickle' df.to_pickle(outfile) return df, outfile
a285879fc963342ed51b61ec9fae8ac08c089bc6
3,651,240
from datetime import datetime def get_datetime(timestamp): """Parse several representations of time into a datetime object""" if isinstance(timestamp, datetime.datetime): # Timestamp is already a datetime object. return timestamp elif isinstance(timestamp, (int, float)): try: # Handle Unix timestamps. return datetime.datetime.fromtimestamp(timestamp) except ValueError: pass try: # Handle Unix timestamps in milliseconds. return datetime.datetime.fromtimestamp(timestamp / 1000) except ValueError: pass elif isinstance(timestamp, string_types): try: timestamp = float(timestamp) except (ValueError, TypeError): pass else: # Timestamp is probably Unix timestamp given as string. return get_datetime(timestamp) try: # Try to parse as string date in common formats. return iso8601.parse_date(timestamp) except: pass # Fuck this shit. raise ValueError("Couldn't extract date object from %r" % timestamp)
d8277a1de3876106de02b9d75e02369061261996
3,651,241
def conda_installed_files(prefix, exclude_self_build=False): """ Return the set of files which have been installed (using conda) into a given prefix. """ res = set() for dist in install.linked(prefix): meta = install.is_linked(prefix, dist) if exclude_self_build and 'file_hash' in meta: continue res.update(set(meta['files'])) return res
e81051e19f7829bf149c71f0533bd51c80c7e2a1
3,651,242
def computeStarsItembased(corated, target_bid, model): """ corated - {bid: star, ...} """ if corated == None: return None corated.pop(target_bid, None) bid_cor = list(corated.keys()) collect = [] for b in bid_cor: pair = None if b < target_bid: pair = (b, target_bid) else: pair = (target_bid, b) # if b == target_bid: # print('same:', pair) w = model.get(pair) if w != None: # pair may not have a value in the model # when b == target_bid, pair have no value, too collect.append((pair, w, b)) # else: # collect.append((pair, 0, b)) # print(collect) collect.sort(key=lambda x: x[1], reverse=True) neighbors = collect[:N_NEIGHBORS_ITEMBASED] sum_w = 0 n = 0 for p, w, b in neighbors: star = corated[b] n += star * w sum_w += w if sum_w == 0: return None else: return n / sum_w
7b3cd5bd103d35fe09477be96b5cbcc378927c65
3,651,243
import psutil import re def beacon(config): """ Monitor the memory usage of the minion Specify thresholds for percent used and only emit a beacon if it is exceeded. .. code-block:: yaml beacons: memusage: - percent: 63% """ ret = [] _config = {} list(map(_config.update, config)) _current_usage = psutil.virtual_memory() current_usage = _current_usage.percent monitor_usage = _config["percent"] if isinstance(monitor_usage, str) and "%" in monitor_usage: monitor_usage = re.sub("%", "", monitor_usage) monitor_usage = float(monitor_usage) if current_usage >= monitor_usage: ret.append({"memusage": current_usage}) return ret
ac10e85d47fef403148ad2e00c4e10ced2cc226c
3,651,244
def get_surrounding_points(search_values, point_set): """ #for each value p[i] in search_values, returns a pair of surrounding points from point_set the surrounding points are a tuplet of the form (lb[i], ub[i]) where - lb[i] < p[i] < ub[i] if p[i] is not in point_set, and p[i] is within range - lb[i] == p[i] == ub[i] if p[i] in point_set, p[i] < min(point_set), p[i] > max(point_set) :param search_values: set of points that need neighbors :param point_set: set of points that need be sorted :return: list of points in point_set that surround search_values """ # http://stackoverflow.com/questions/2566412/find-nearest-value-in-numpy-array upper_indices = np.searchsorted(point_set, search_values, side="left") n_points = len(point_set) n_search = len(search_values) neighbors = [] for i in range(n_search): idx = upper_indices[i] val = search_values[i] if idx == 0: n = (point_set[0], point_set[0]) elif idx == n_points: n = (point_set[-1], point_set[-1]) else: n = (point_set[idx-1], point_set[idx]) neighbors.append(n) return neighbors
d4ec055946c19b999ed9523aa260d7bd28ffd269
3,651,245
def _scriptable_get(obj, name): """ The getter for a scriptable trait. """ global _outermost_call saved_outermost = _outermost_call _outermost_call = False try: result = getattr(obj, '_' + name, None) if result is None: result = obj.trait(name).default finally: _outermost_call = saved_outermost if saved_outermost: get_script_manager().record_trait_get(obj, name, result) return result
53da00cb49d73065281306c90a51a95e1670e14e
3,651,246
def Iq(q, intercept, slope): """ :param q: Input q-value :param intercept: Intrecept in linear model :param slope: Slope in linear model :return: Calculated Intensity """ inten = intercept + slope*q return inten
af3e580e6061089b431ef25f1f08def6f29c8ef6
3,651,247
import os import logging import math import numpy import audioop def read_sph(input_file_name, mode='p'): """ Read a SPHERE audio file :param input_file_name: name of the file to read :param mode: specifies the following (\* =default) .. note:: - Scaling: - 's' Auto scale to make data peak = +-1 (use with caution if reading in chunks) - 'r' Raw unscaled data (integer values) - 'p' Scaled to make +-1 equal full scale - 'o' Scale to bin centre rather than bin edge (e.g. 127 rather than 127.5 for 8 bit values, can be combined with n+p,r,s modes) - 'n' Scale to negative peak rather than positive peak (e.g. 128.5 rather than 127.5 for 8 bit values, can be combined with o+p,r,s modes) - Format - 'l' Little endian data (Intel,DEC) (overrides indication in file) - 'b' Big endian data (non Intel/DEC) (overrides indication in file) - File I/O - 'f' Do not close file on exit - 'd' Look in data directory: voicebox('dir_data') - 'w' Also read the annotation file \*.wrd if present (as in TIMIT) - 't' Also read the phonetic transcription file \*.phn if present (as in TIMIT) - NMAX maximum number of samples to read (or -1 for unlimited [default]) - NSKIP number of samples to skip from start of file (or -1 to continue from previous read when FFX is given instead of FILENAME [default]) :return: a tupple such that (Y, FS) .. note:: - Y data matrix of dimension (samples,channels) - FS sample frequency in Hz - WRD{\*,2} cell array with word annotations: WRD{\*,:)={[t_start t_end],'text'} where times are in seconds only present if 'w' option is given - PHN{\*,2} cell array with phoneme annotations: PHN{\*,:)={[t_start t_end],'phoneme'} where times are in seconds only present if 't' option is present - FFX Cell array containing 1. filename 2. header information 1. first header field name 2. first header field value 3. format string (e.g. NIST_1A) 4. 1. file id 2. current position in file 3. dataoff byte offset in file to start of data 4. order byte order (l or b) 5. nsamp number of samples 6. number of channels 7. nbytes bytes per data value 8. bits number of bits of precision 9. fs sample frequency 10. min value 11. max value 12. coding 0=PCM,1=uLAW + 0=no compression, 0=shorten,20=wavpack,30=shortpack 13. file not yet decompressed 5. temporary filename If no output parameters are specified, header information will be printed. The code to decode shorten-encoded files, is not yet released with this toolkit. """ codings = dict([('pcm', 1), ('ulaw', 2)]) compressions = dict([(',embedded-shorten-', 1), (',embedded-wavpack-', 2), (',embedded-shortpack-', 3)]) byteorder = 'l' endianess = dict([('l', '<'), ('b', '>')]) if not mode == 'p': mode = [mode, 'p'] k = list((m >= 'p') & (m <= 's') for m in mode) # scale to input limits not output limits mno = all([m != 'o' for m in mode]) sc = '' if k[0]: sc = mode[0] # Get byte order (little/big endian) if any([m == 'l' for m in mode]): byteorder = 'l' elif any([m == 'b' for m in mode]): byteorder = 'b' ffx = ['', '', '', '', ''] if isinstance(input_file_name, str): if os.path.exists(input_file_name): fid = open(input_file_name, 'rb') elif os.path.exists("".join((input_file_name, '.sph'))): input_file_name = "".join((input_file_name, '.sph')) fid = open(input_file_name, 'rb') else: raise Exception('Cannot find file {}'.format(input_file_name)) ffx[0] = input_file_name elif not isinstance(input_file_name, str): ffx = input_file_name else: fid = input_file_name # Read the header if ffx[3] == '': fid.seek(0, 0) # go to the begining of the file l1 = fid.readline().decode("utf-8") l2 = fid.readline().decode("utf-8") if not (l1 == 'NIST_1A\n') & (l2 == ' 1024\n'): logging.warning('File does not begin with a SPHERE header') ffx[2] = l1.rstrip() hlen = int(l2[3:7]) hdr = {} while True: # Read the header and fill a dictionary st = fid.readline().decode("utf-8").rstrip() if st[0] != ';': elt = st.split(' ') if elt[0] == 'end_head': break if elt[1][0] != '-': logging.warning('Missing ''-'' in SPHERE header') break if elt[1][1] == 's': hdr[elt[0]] = elt[2] elif elt[1][1] == 'i': hdr[elt[0]] = int(elt[2]) else: hdr[elt[0]] = float(elt[2]) if 'sample_byte_format' in list(hdr.keys()): if hdr['sample_byte_format'][0] == '0': bord = 'l' else: bord = 'b' if (bord != byteorder) & all([m != 'b' for m in mode]) \ & all([m != 'l' for m in mode]): byteorder = bord icode = 0 # Get encoding, default is PCM if 'sample_coding' in list(hdr.keys()): icode = -1 # unknown code for coding in list(codings.keys()): if hdr['sample_coding'].startswith(coding): # is the signal compressed # if len(hdr['sample_coding']) > codings[coding]: if len(hdr['sample_coding']) > len(coding): for compression in list(compressions.keys()): if hdr['sample_coding'].endswith(compression): icode = 10 * compressions[compression] \ + codings[coding] - 1 break else: # if the signal is not compressed icode = codings[coding] - 1 break # initialize info of the files with default values info = [fid, 0, hlen, ord(byteorder), 0, 1, 2, 16, 1, 1, -1, icode] # Get existing info from the header if 'sample_count' in list(hdr.keys()): info[4] = hdr['sample_count'] if not info[4]: # if no info sample_count or zero # go to the end of the file fid.seek(0, 2) # Go to te end of the file # get the sample count info[4] = int(math.floor((fid.tell() - info[2]) / (info[5] * info[6]))) # get the sample_count if 'channel_count' in list(hdr.keys()): info[5] = hdr['channel_count'] if 'sample_n_bytes' in list(hdr.keys()): info[6] = hdr['sample_n_bytes'] if 'sample_sig_bits' in list(hdr.keys()): info[7] = hdr['sample_sig_bits'] if 'sample_rate' in list(hdr.keys()): info[8] = hdr['sample_rate'] if 'sample_min' in list(hdr.keys()): info[9] = hdr['sample_min'] if 'sample_max' in list(hdr.keys()): info[10] = hdr['sample_max'] ffx[1] = hdr ffx[3] = info info = ffx[3] ksamples = info[4] if ksamples > 0: fid = info[0] if (icode >= 10) & (ffx[4] == ''): # read compressed signal # need to use a script with SHORTEN raise Exception('compressed signal, need to unpack in a script with SHORTEN') info[1] = ksamples # use modes o and n to determine effective peak pk = 2 ** (8 * info[6] - 1) * (1 + (float(mno) / 2 - int(all([m != 'b' for m in mode]))) / 2 ** info[7]) fid.seek(1024) # jump after the header nsamples = info[5] * ksamples if info[6] < 3: if info[6] < 2: logging.debug('Sphere i1 PCM') y = numpy.fromfile(fid, endianess[byteorder]+"i1", -1) if info[11] % 10 == 1: if y.shape[0] % 2: y = numpy.frombuffer(audioop.ulaw2lin( numpy.concatenate((y, numpy.zeros(1, 'int8'))), 2), numpy.int16)[:-1]/32768. else: y = numpy.frombuffer(audioop.ulaw2lin(y, 2), numpy.int16)/32768. pk = 1. else: y = y - 128 else: logging.debug('Sphere i2') y = numpy.fromfile(fid, endianess[byteorder]+"i2", -1) else: # non verifie if info[6] < 4: y = numpy.fromfile(fid, endianess[byteorder]+"i1", -1) y = y.reshape(nsamples, 3).transpose() y = (numpy.dot(numpy.array([1, 256, 65536]), y) - (numpy.dot(y[2, :], 2 ** (-7)).astype(int) * 2 ** 24)) else: y = numpy.fromfile(fid, endianess[byteorder]+"i4", -1) if sc != 'r': if sc == 's': if info[9] > info[10]: info[9] = numpy.min(y) info[10] = numpy.max(y) sf = 1 / numpy.max(list(list(map(abs, info[9:11]))), axis=0) else: sf = 1 / pk y = sf * y if info[5] > 1: y = y.reshape(ksamples, info[5]) else: y = numpy.array([]) if mode != 'f': fid.close() info[0] = -1 if not ffx[4] == '': pass # VERIFY SCRIPT, WHICH CASE IS HANDLED HERE return y.astype(numpy.float32), int(info[8]), int(info[6])
4d06b14fffc8203c2ac0ec0a3c1086cc0904d193
3,651,248
import os import pathlib import yaml def unpack(path, catalog_name): """ Place a catalog configuration file in the user configuration area. Parameters ---------- path: Path Path to output from pack catalog_name: Str A unique name for the catalog Returns ------- config_path: Path Location of new catalog configuration file """ # Validate user input. if not os.path.isdir(path): raise ValueError(f"{path} is not a directory") source_catalog_file_path = pathlib.Path(path, "catalog.yml") if not os.path.isfile(source_catalog_file_path): raise ValueError(f"Cold not find 'catalog.yml' in {path}") if catalog_name in databroker.utils.list_configs(): raise CatalogNameExists(catalog_name) config_dir = databroker.catalog_search_path()[0] with open(source_catalog_file_path) as file: catalog = yaml.safe_load(file) source = catalog["sources"].pop("packed_catalog") # Handle temporary condition where 'pack' puts absolute paths in "args" # and puts relative paths off to the side. if any(pathlib.Path(p).is_absolute() for p in source["args"]["paths"]): relative_paths = source["metadata"]["relative_paths"] new_paths = [str(pathlib.Path(path, rel_path)) for rel_path in relative_paths] source["args"]["paths"] = new_paths # The root_map values may be relative inside a pack, given relative to the # catalog file. Now that we are going to use a catalog file in a config # directory, we need to make these paths absolute. for k, v in source["args"].get("root_map", {}).items(): if not pathlib.Path(v).is_absolute(): source["args"]["root_map"][k] = str(pathlib.Path(path, v)) catalog["sources"][catalog_name] = source config_filename = f"databroker_unpack_{catalog_name}.yml" config_path = pathlib.Path(config_dir, config_filename) os.makedirs(config_dir, exist_ok=True) with open(config_path, "xt") as file: yaml.dump(catalog, file) return config_path
ae40f5d9f9521e6df34b598c034d657b8239a389
3,651,249
def psi4ToStrain(mp_psi4, f0): """ Convert the input mp_psi4 data to the strain of the gravitational wave mp_psi4 = Weyl scalar result from simulation f0 = cutoff frequency return = strain (h) of the gravitational wave """ #TODO: Check for uniform spacing in time t0 = mp_psi4[:, 0] list_len = len(t0) complexPsi = np.zeros(list_len, dtype=np.complex_) complexPsi = mp_psi4[:, 1]+1.j*mp_psi4[:, 2] freq, psif = myFourierTransform(t0, complexPsi) dhf = ffi(freq, psif, f0) hf = ffi(freq, dhf, f0) time, h = myFourierTransformInverse(freq, hf, t0[0]) hTable = np.column_stack((time, h)) return hTable
4ab3320a44bd10403e73015e4a215142529b8029
3,651,250
def get_optimizer(library, solver): """Constructs Optimizer given and optimization library and optimization solver specification""" options = { 'maxiter': 100 } if library == 'scipy': optimizer = optimize.ScipyOptimizer(method=solver, options=options) elif library == 'ipopt': optimizer = optimize.IpoptOptimizer() elif library == 'dlib': optimizer = optimize.DlibOptimizer(options=options) elif library == 'pyswarm': optimizer = optimize.PyswarmOptimizer(options=options) elif library == 'cmaes': optimizer = optimize.CmaesOptimizer(options=options) elif library == 'scipydiffevolopt': optimizer = optimize.ScipyDifferentialEvolutionOptimizer( options=options) elif library == 'pyswarms': optimizer = optimize.PyswarmsOptimizer(options=options) elif library == 'nlopt': optimizer = optimize.NLoptOptimizer(method=solver, options=options) elif library == 'fides': options[fides.Options.SUBSPACE_DIM] = solver[1] optimizer = optimize.FidesOptimizer(options=options, hessian_update=solver[0]) else: raise ValueError(f"Optimizer not recognized: {library}") return optimizer
be72fc9115abf0d087049debe470139b248ef47f
3,651,251
def _cast_query(query, col): """ ALlow different query types (e.g. numerical, list, str) """ query = query.strip() if col in {"t", "d"}: return query if query.startswith("[") and query.endswith("]"): if "," in query: query = ",".split(query[1:-1]) return [i.strip() for i in query] if query.isdigit(): return int(query) try: return float(query) except Exception: return query
4b6cfc823f8b2e78f343e73683b418112e66f43d
3,651,252
import torch def binary_loss(pred_raw, label_raw, loss_func, weight=None, class_weight=None, class_weight_norm=False, reduction='mean', avg_factor=None, smooth=1.0): """ :param pred: [N, C, *] scores without softmax :param label: [N, *] in [0, C], 0 stands for background, 1~C stands for pred in 0~C-1 :return: reduction([N]) """ pred = pred_raw.clone() label = label_raw.clone() num_classes = pred.shape[1] if class_weight is not None: class_weight = class_weight.float() if pred.shape != label.shape: label = _make_one_hot(label, num_classes) pred = torch.sigmoid(pred) loss = 0. for i in range(num_classes): if isinstance(loss_func, tuple): loss_function = loss_func[i] else: loss_function = loss_func class_loss = loss_function(pred[:, i], label[:, i], smooth=smooth) if class_weight is not None: class_loss *= class_weight[i] loss += class_loss if class_weight is not None and class_weight_norm: loss = loss / torch.sum(class_weight) else: loss = loss / num_classes loss = weight_reduce_loss(loss, weight=weight, reduction=reduction, avg_factor=avg_factor) return loss
9154c8e46a48485e643de496554d302f9db294ac
3,651,253
import os import uuid def picture_upload_to(instance, filename): """ Returns a unique filename for picture which is hard to guess. Will use uuid.uuid4() the chances of collision are very very very low. """ ext = os.path.splitext(filename)[1].strip('.') if not ext: ext = 'jpg' filename = '%s.%s' % (uuid.uuid4(), ext) return os.path.join(UPLOAD_TO, filename)
0bdaa002105cdbc85c68019eebe1c6f54ab9173f
3,651,254
def showerActivityModel(sol, flux_max, b, sol_max): """ Activity model taken from: Jenniskens, P. (1994). Meteor stream activity I. The annual streams. Astronomy and Astrophysics, 287., equation 8. Arguments: sol: [float] Solar longitude for which the activity is computed (radians). flux_max: [float] Peak relative flux. b: [float] Slope of the shower. sol_max: [float] Solar longitude of the peak of the shower (radians). """ # Compute the flux at given solar longitude flux = flux_max*10**(-b*np.degrees(np.abs(sol - sol_max))) return flux
0a4cc6d8c490b36412140cfeeca0c30464c11577
3,651,255
import os def create_directories(directory_name): """ Create directories """ # Create directory try: # Create target Directory os.mkdir(directory_name) logger.info("Directory %s Created", directory_name) except FileExistsError: logger.info("Directory %s already exists", directory_name) exit(1) subdirectory_name = os.path.join(directory_name, 'res') # Create target directory & all intermediate directories if don't exists try: os.makedirs(subdirectory_name) logger.info("Directory %s Created", subdirectory_name) except FileExistsError: logger.info("Directory %s already exists", subdirectory_name) return subdirectory_name
453399c5e5b4200478c14d414efdd7a4cf8ced1f
3,651,256
import json def request_slow_log(db_cluster_id, start_datetime, end_datetime, page_number, page_size): """ 请求慢SQL日志 :param db_cluster_id: :param start_datetime: :param end_datetime: :param page_number: :param page_size: :return: """ request = DescribeSlowLogRecordsRequest() request.set_accept_format('json') request.set_DBClusterId(db_cluster_id) # 格式化前一天的日期 request.set_StartTime(start_datetime) request.set_EndTime(end_datetime) request.set_PageNumber(page_number) request.set_PageSize(page_size) response = client.do_action_with_exception(request) response = str(response, encoding='utf-8') resp_result = json.loads(response) return resp_result
e49a006e59f04067eb43f72dfcd29fd71def4fb1
3,651,257
def pad_omni_image(image, pad_size, image_dims=None): """Pad an omni-directional image with the correct image wrapping at the edges. Parameters ---------- image Image to perform the padding on *[batch_shape,h,w,d]* pad_size Number of pixels to pad. image_dims Image dimensions. Inferred from Inputs if None. (Default value = None) Returns ------- ret New padded omni-directional image *[batch_shape,h+ps,w+ps,d]* """ if image_dims is None: image_dims = image.shape[-3:-1] # BS x PS x W/2 x D top_left = image[..., 0:pad_size, int(image_dims[1] / 2):, :] top_right = image[..., 0:pad_size, 0:int(image_dims[1] / 2), :] # BS x PS x W x D top_border = _ivy.flip(_ivy.concatenate((top_left, top_right), -2), -3) # BS x PS x W/2 x D bottom_left = image[..., -pad_size:, int(image_dims[1] / 2):, :] bottom_right = image[..., -pad_size:, 0:int(image_dims[1] / 2), :] # BS x PS x W x D bottom_border = _ivy.flip(_ivy.concatenate((bottom_left, bottom_right), -2), -3) # BS x H+2PS x W x D image_expanded = _ivy.concatenate((top_border, image, bottom_border), -3) # BS x H+2PS x PS x D left_border = image_expanded[..., -pad_size:, :] right_border = image_expanded[..., 0:pad_size, :] # BS x H+2PS x W+2PS x D return _ivy.concatenate((left_border, image_expanded, right_border), -2)
e54d732508bea3f969eb2a78ec3238e88e33a30f
3,651,258
from typing import Any def add_film( film: FilmCreate, db: Session = Depends(get_db), user: User = Depends(get_current_user), ) -> Any: """ Add new film """ if not user.role.can_add_films: raise ForbiddenAction db_film = db.query(Film).filter(Film.name == film.name).first() if db_film is not None: raise FilmAlreadyExists db_film = Film( name=film.name, released_year=film.released_year, owner_user=user, ) db.add(db_film) db.flush() film_model = FilmGet.from_orm(db_film) db.commit() return { 'status': 'ok', 'data': film_model, }
510f80969570e186233a6313277093b6d939a9ea
3,651,259
def load_cube_file(lines, target_mode=None, cls=ImageFilter.Color3DLUT): """Loads 3D lookup table from .cube file format. :param lines: Filename or iterable list of strings with file content. :param target_mode: Image mode which should be after color transformation. The default is None, which means mode doesn't change. :param cls: A class which handles the parsed file. Default is ``ImageFilter.Color3DLUT``. """ name, size = None, None channels = 3 file = None lines = open(lines, 'rt') try: iterator = iter(lines) for i, line in enumerate(iterator, 1): line = line.strip() if line.startswith('TITLE "'): name = line.split('"')[1] continue if line.startswith('LUT_3D_SIZE '): size = [int(x) for x in line.split()[1:]] if len(size) == 1: size = size[0] continue if line.startswith('CHANNELS '): channels = int(line.split()[1]) if line.startswith('LUT_1D_SIZE '): raise ValueError("1D LUT cube files aren't supported") try: float(line.partition(' ')[0]) except ValueError: pass else: # Data starts break if size is None: raise ValueError('No size found in the file') table = [] for i, line in enumerate(chain([line], iterator), i): line = line.strip() if not line or line.startswith('#'): continue try: pixel = [float(x) for x in line.split()] except ValueError: raise ValueError("Not a number on line {}".format(i)) if len(pixel) != channels: raise ValueError( "Wrong number of colors on line {}".format(i)) table.extend(pixel) finally: if file is not None: file.close() instance = cls(size, table, channels=channels, target_mode=target_mode, _copy_table=False) if name is not None: instance.name = name return instance
bf87c0e686b689a429297bae4ec84402dd12dc3d
3,651,260
import torch def vector_to_Hermitian(vec): """Construct a Hermitian matrix from a vector of N**2 independent real-valued elements. Args: vec (torch.Tensor): (..., N ** 2) Returns: mat (ComplexTensor): (..., N, N) """ # noqa: H405, D205, D400 N = int(np.sqrt(vec.shape[-1])) mat = torch.zeros(size=vec.shape[:-1] + (N, N, 2), device=vec.device) # real component triu = np.triu_indices(N, 0) triu2 = np.triu_indices(N, 1) # above main diagonal tril = (triu2[1], triu2[0]) # below main diagonal; for symmetry mat[(...,) + triu + (np.zeros(triu[0].shape[0]),)] = vec[..., : triu[0].shape[0]] start = triu[0].shape[0] mat[(...,) + tril + (np.zeros(tril[0].shape[0]),)] = mat[ (...,) + triu2 + (np.zeros(triu2[0].shape[0]),) ] # imaginary component mat[(...,) + triu2 + (np.ones(triu2[0].shape[0]),)] = vec[ ..., start : start + triu2[0].shape[0] ] mat[(...,) + tril + (np.ones(tril[0].shape[0]),)] = -mat[ (...,) + triu2 + (np.ones(triu2[0].shape[0]),) ] return ComplexTensor(mat[..., 0], mat[..., 1])
8bd32d93e9865305a8f75711d72990beaea5d897
3,651,261
import os import yaml import plistlib def new_recipe(argv): """Makes a new recipe template""" verb = argv[1] parser = gen_common_parser() parser.set_usage( f"Usage: %prog {verb} [options] recipe_pathname\n" "Make a new template recipe." ) # Parse arguments parser.add_option("-i", "--identifier", help="Recipe identifier") parser.add_option( "-p", "--parent-identifier", help="Parent recipe identifier for this recipe." ) parser.add_option( "--format", action="store", default="plist", help=( "The format of the new recipe to be created. " "Valid options include: 'plist' (default) or 'yaml'" ), ) (options, arguments) = common_parse(parser, argv) if len(arguments) != 1: log_err("Must specify exactly one recipe pathname!") log_err(parser.get_usage()) return -1 filename = arguments[0] name = os.path.basename(filename).split(".")[0] identifier = options.identifier or "local." + name recipe = { "Description": "Recipe description", "Identifier": identifier, "Input": {"NAME": name}, "MinimumVersion": "1.0", "Process": [ { "Arguments": {"Argument1": "Value1", "Argument2": "Value2"}, "Processor": "ProcessorName", } ], } if options.parent_identifier: recipe["ParentRecipe"] = options.parent_identifier try: if options.format == "yaml" or filename.endswith(".recipe.yaml"): # Yaml recipes require AutoPkg 2.3 or later. recipe["MinimumVersion"] = "2.3" with open(filename, "wb") as f: yaml.dump(recipe, f, encoding="utf-8") else: with open(filename, "wb") as f: plistlib.dump(recipe, f) log(f"Saved new recipe to {filename}") except Exception as err: log_err(f"Failed to write recipe: {err}")
598577761487497a65f2bb6bdd16c308859af278
3,651,262
def view_payment(request): """ A view that renders the payment page template """ user = request.user # Check if user has already paid and redirect them to definitions app. if user.has_perm('definitionssoftware.access_paid_definitions_app'): return redirect(reverse('view_definitionssoftware')) # Get stripe environment variables stripe_public_key = settings.STRIPE_PUBLIC_KEY stripe_secret_key = settings.STRIPE_SECRET_KEY if request.method == 'POST': request.session['payment_successful'] = True return redirect(reverse('payment_success')) # Create Stripe Payment Intent stripe_total = 2500 stripe.api_key = stripe_secret_key intent = stripe.PaymentIntent.create( amount=stripe_total, currency=settings.STRIPE_CURRENCY, ) print(intent) if not stripe_public_key: messages.warning(request, 'Stripe public key is missing. \ Did you forget to set it in your environment?') template = 'payment/payment.html' context = { 'stripe_public_key': stripe_public_key, 'client_secret': intent.client_secret, } return render(request, template, context)
fc86a79c759bc4e4005d634b5c9a204473a3a3a7
3,651,263
def augment_bag(store, bag, username=None): """ Augment a bag object with information about it's policy type. """ if not bag.store: bag = store.get(bag) if not username: username = bag.policy.owner policy_type = determine_tank_type(bag, username) bag.icon = POLICY_ICONS[policy_type] bag.type = policy_type return bag
1fbda85f3db346e46e52b86d2d4b5784f8c4d2ab
3,651,264
from typing import Dict def province_id_to_home_sc_power() -> Dict[utils.ProvinceID, int]: """Which power is this a home sc for?""" content = get_mdf_content(MapMDF.STANDARD_MAP) home_sc_line = content.splitlines()[2] tag_to_id = _tag_to_id(get_mdf_content(MapMDF.STANDARD_MAP)) # Assume powers are ordered correctly id_to_power = {} power = -1 words = str(home_sc_line).split(' ') for w in words: if w in ['(', ')']: pass elif w in tag_to_id: # Is a province id_to_power[tag_to_id[w]] = power else: # Must be a power tag power += 1 return id_to_power
f87081ce053e3a50bb48deaae28b0e919e224216
3,651,265
def evaluate_cubic_spline(x, y, r, t): """Evaluate cubic spline at points. Parameters: x : rank-1 np.array of np.float64 data x coordinates y : rank-1 np.array of np.float64 data y coordinates r : rank-1 np.array of np.float64 output of solve_coeffs() for your data t : rank-1 np.array of np.float64 points where to evaluate. Must satisfy (x[0] <= t <= x[-1]).all(). Returns: s : rank-1 np.array of np.float64 Value of the spline at the points t. """ return _evaluate_generic(x,y,r,t, _evaluate_cubic_spline_one)
52d6c4ac0440da88ee908bc0a6cfa2b755ca606f
3,651,266
def get_username(host, meta_host, config): """Find username from sources db/metadata/config.""" username = host.username or meta_host.get("username") if is_windows_host(meta_host): username = username or "Administrator" default_user = get_config_value(config["users"], meta_host["os"]) username = username or default_user return username
4e220816442e64d43f1da15aa0bd19508e186f19
3,651,267
def get_all_tests(): """ Collect all tests and return them :return: A test suite as returned by xunitparser with all the tests available in the w3af framework source code, without any selectors. """ return _get_tests('all.xml')
11acff501fb717ac5c9bdc16343742f124f2a120
3,651,268
def main(): """Builds OSS-Fuzz project's fuzzers for CI tools. Note: The resulting fuzz target binaries of this build are placed in the directory: ${GITHUB_WORKSPACE}/out Returns: 0 on success or nonzero on failure. """ return build_fuzzers_entrypoint()
cd7c386c2a5d126c0abc1504a1cb3dfe6026173c
3,651,269
def find_first_img_dim(import_gen): """ Loads in the first image in a provided data set and returns its dimensions Intentionally returns on first iteration of the loop :param import_gen: PyTorch DataLoader utilizing ImageFolderWithPaths for its dataset :return: dimensions of image """ for x, _, _ in import_gen: return x[0].shape[-2], x[0].shape[-1]
3ccaccdfb20d7b2ca4d339adacd3c706a460fdef
3,651,270
def restaurantJSON(): """ Returns all restaurants by JSON call """ restaurants = session.query(Restaurant) return jsonify(Restaurants=[r.serialize for r in restaurants])
350df909de7798da9567a7fe0a972d660c40ff8c
3,651,271
def _to_histogram_plotgroup(use_spec, plotgroup_id, plot_id, read_type, bincounts, output_dir, png_name): """ Create a histogram of length distribution. """ plot_spec = use_spec.get_plot_spec(plotgroup_id, plot_id) png_file = op.join(output_dir, png_name) png, thumb = plot_read_lengths_binned(bincounts, png_file, read_type=read_type, title=plot_spec.title, color=get_blue(3), edgecolor=get_blue(2)) return to_plotgroup(plotgroup_id, plot_id, png, thumb)
18ae412af24800098ec2c01c9ba5c456455540f5
3,651,272
def prepare_string(x, max_length=None): """ Converts a string from LaTeX escapes to UTF8 and truncates it to max_length """ # data = latex2text(x, tolerant_parsing=True) try: data = latex_to_unicode(filter_using_re(x)) if max_length is not None: data = (data[:max_length-5] + '[...]') if len(data) > max_length else data return smart_text(data) except TypeError: logger.warning("Encountered a TypeError which may be linked to unicode handling " "in bibtexparser when processing the following string: %s."%x) return ""
043d0d063e22ef18943459a7ba0a8928244bca12
3,651,273
import math def q_b(m0, m1, m2, n0, n1, n2): """Stretch""" return math.sqrt((m0 - n0)**2 + (m1 - n1)**2 + (m2 - n2)**2)
61cf1b5eec6c89be7f822cbdbc03564b805a1920
3,651,274
def poly_union(poly_det, poly_gt): """Calculate the union area between two polygon. Args: poly_det (Polygon): A polygon predicted by detector. poly_gt (Polygon): A gt polygon. Returns: union_area (float): The union area between two polygons. """ assert isinstance(poly_det, plg.Polygon) assert isinstance(poly_gt, plg.Polygon) area_det = poly_det.area() area_gt = poly_gt.area() area_inters, _ = poly_intersection(poly_det, poly_gt) return area_det + area_gt - area_inters
fbd13a9b1ef4acee27fac7d04b00fc1cfc46ca08
3,651,275
def get_stoich(geom_i, geom_j): """ get the overall combined stoichiometry """ form_i = automol.geom.formula(geom_i) form_j = automol.geom.formula(geom_j) form = automol.formula.join(form_i, form_j) stoich = '' for key, val in form.items(): stoich += key + str(val) return stoich
eaba89508d7c913a77ebf91097d620dc6fdff5a6
3,651,276
import requests from bs4 import BeautifulSoup def get_all_text(url): """Retrieves all text in paragraphs. :param str url: The URL to scrap. :rtype: str :return: Text in the URL. """ try: response = requests.get(url) # If the response was successful, no Exception will be raised response.raise_for_status() except HTTPError as http_err: print(f'HTTP error occurred: {http_err}') # Python 3.6 return None # sys.exit() except Exception as err: print(f'Other error occurred: {err}') # Python 3.6 return None # sys.exit() soup = BeautifulSoup(response.text, "lxml") text = "" for i in soup.find_all('p'): # soup.select # i.encode("utf-8") # default # Delete citations (e.g. "The Alhambra is a UNESCO World Heritage Site.[2]") text += i.get_text() + '\n' text = clean_text.del_nonAscii(clean_text.del_refs(text)) return text
364150aee7c1c093367d3d95bc5c0836dde978db
3,651,277
from typing import List def metadata_partitioner(rx_txt: str) -> List[str]: """Extract Relax program and metadata section. Parameters ---------- rx_txt : str The input relax text. Returns ------- output : List[str] The result list of partitioned text, the first element is the relax program, and the second is metadata section. """ partitions = [] left_curly = 0 meta_start = 0 meta_end = 0 for i, char in enumerate(rx_txt): if i < 0: raise ValueError("The program is invalid.") if char == "{": if meta_start == 0: meta_start = i left_curly += 1 elif char == "}": left_curly -= 1 if left_curly == 0: meta_end = i + 1 break if meta_end == 0: raise ValueError("The metadata section was not found.") metadata = rx_txt[meta_start:meta_end] rx_program = rx_txt[meta_end:-1] partitions.append(rx_program) partitions.append(metadata) return partitions
dd09aff9ea517813d43ff307fb9fc425b7338943
3,651,278
def make_aware(value, timezone): """ Makes a naive datetime.datetime in a given time zone aware. """ if hasattr(timezone, 'localize'): # available for pytz time zones return timezone.localize(value, is_dst=None) else: # may be wrong around DST changes return value.replace(tzinfo=timezone)
b466b4fda2daf54b7aa5e8f00ad7b10397e61c7b
3,651,279
def to_dict(funs): """Convert an object to a dict using a dictionary of functions. to_dict(funs)(an_object) => a dictionary with keys calculated from functions on an_object Note the dictionary is copied, not modified in-place. If you want to modify a dictionary in-place, do adict.update(to_dict(funs)(a_dict)) Use to_dict(funs) in a map, and you can generate a list of dictionaries from a list of objects (which could also be dictionaries). :: K is hashable type => {K: (X -> V)} -> [X] -> {K: V} Equivalent to the following in Python 3: {k: f(an_object) for (k, f) in funs.items()} >>> from operator import itemgetter >>> funs = {'id': itemgetter('id'), 'fullname': lambda x: '%(forename)s %(surname)s' % x} >>> an_object = {'id': 1, 'forename': 'Fred', 'surname': 'Bloggs'} >>> result = to_dict(funs)(an_object) >>> result['id'] 1 >>> result['fullname'] 'Fred Bloggs' >>> 'forename' in result # Original keys are left out False """ def to_dict_funs(an_object): return dict((k, f(an_object)) for (k, f) in funs.items()) return to_dict_funs
d22bbcb3c1913361c3906fd2e7f3d254dc67de28
3,651,280
import re def parse_duration_string_ms(duration): """Parses a duration string of the form 1h2h3m4s5.6ms4.5us7.8ns into milliseconds.""" pattern = r'(?P<value>[0-9]+\.?[0-9]*?)(?P<units>\D+)' matches = list(re.finditer(pattern, duration)) assert matches, 'Failed to parse duration string %s' % duration times = {'h': 0, 'm': 0, 's': 0, 'ms': 0} for match in matches: parsed = match.groupdict() times[parsed['units']] = float(parsed['value']) return (times['h'] * 60 * 60 + times['m'] * 60 + times['s']) * 1000 + times['ms']
da2981590d70f32ee3514873602621a77b70cbe2
3,651,281
def fin(activity): """Return the end time of the activity. """ return activity.finish
ed5b1d1e0f29f403cfee357a264d05d5cc88093e
3,651,282
def unfreeze_map(obj): """ Unfreezes all elements of mappables """ return {key: unfreeze(value) for key, value in obj.items()}
2ba48f6cf89f44001b7940076c4763dc820d9aa1
3,651,283
from typing import Optional from typing import Union from datetime import datetime def get_date( value: Optional[Union[date, datetime, str]], raise_error=False ) -> Optional[date]: """ Convert a given value to a date. Args: raise_error: flag to raise error if return is None or not value: to be converted. Can be date/datetime obj as well as str formatted in date/datetime Returns: date obj Raises: ValueError: If raise_error flag is True and parsed_date is None Examples: >>> get_date(date(2021, 1, 1)) datetime.date(2021, 1, 1) >>> get_date(datetime(2021, 1, 1, 0, 2)) datetime.date(2021, 1, 1) >>> get_date('2020-01-01 13:12:13') datetime.date(2020, 1, 1) >>> get_date('sadasadasdas') is None True >>> get_date(None) is None True >>> get_date('2021-20-20-20-20', raise_error=True) Traceback (most recent call last): ... ValueError: Invalid date 2021-20-20-20-20 """ if isinstance(value, datetime): return value.date() if isinstance(value, date): return value if value is not None: # A common date is in the form "2020-01-01", 10 characters if len(value) > 10: parsed_date = parse_datetime(value) parsed_date = parsed_date.date() if parsed_date else None else: parsed_date = parse_date(value) else: parsed_date = None if parsed_date is None and raise_error: raise ValueError(f"Invalid date {value}") return parsed_date
501b2363aa2d40f16f6144995db8d840e62f750a
3,651,284
import os.path, os def make_working_directories (): """ Creates directories that we will be working in. In particular, we will have DOC_ROOT/stage-PID and DOC_ROOT/packages-PID """ global doc_root stage_dir = os.path.join (doc_root, "stage-" + str (os.getpid ())) package_dir = os.path.join (doc_root, "package-" + str (os.getpid ())) os.mkdir (stage_dir) os.mkdir (package_dir) return (stage_dir, package_dir)
e92fb9f27c5c7b13d1666175ea89705c473d8323
3,651,285
def k_param(kguess, s): """ Finds the root of the maximum likelihood estimator for k using Newton's method. Routines for using Newton's method exist within the scipy package but they were not explored. This function is sufficiently well behaved such that we should not have problems solving for k, especially since we have a good estimate of k to use as a starting point. """ k = kguess val = np.log(k) - sps.psi(k) - s counter = 0 while np.abs(val) >= 0.0001: k = k - (np.log(k)-sps.psi(k)-s)/(1/k-sps.polygamma(1, k)) val = np.log(k) - sps.psi(k) - s # sps.polygamma(1,k) is first derivative of sps.psi(k) counter += 1 if counter > MAX_NEWTON_ITERATIONS: raise Exception("Max Newton's method iterations exceeded") return k
24df48746d53fd4573db10093065e7b49d5c7bfe
3,651,286
def hex_to_bin(value: hex) -> bin: """ convert a hexadecimal to binary 0xf -> '0b1111' """ return bin(value)
b82c4fea08fc258a3b50be9a5e77b3d076a33459
3,651,287
def four_oneports_2_twoport(s11: Network, s12: Network, s21: Network, s22: Network, *args, **kwargs) -> Network: """ Builds a 2-port Network from list of four 1-ports Parameters ---------- s11 : one-port :class:`Network` s11 s12 : one-port :class:`Network` s12 s21 : one-port :class:`Network` s21 s22 : one-port :class:`Network` s22 \*args, \*\*kwargs : passed to :func:`Network.__init__` for the twoport Returns ------- twoport : two-port :class:`Network` result See Also -------- n_oneports_2_nport three_twoports_2_threeport """ return n_oneports_2_nport([s11, s12, s21, s22], *args, **kwargs)
2f8b365b2ccb06c252337630f6e34b794a3a3eba
3,651,288
def find_xml_command(rvt_version, xml_path): """ Finds name index src path and group of Commands in RevitPythonShell.xml configuration. :param rvt_version: rvt version to find the appropriate RevitPythonShell.xml. :param xml_path: path where RevitPythonShell.xml resides. :return: Commands dictionary: {com_name:[index, src_path, group]} """ if not xml_path: xml_path = op.join(op.expanduser("~"), "AppData\\Roaming\\RevitPythonShell{0}\\RevitPythonShell.xml").format(rvt_version) xml_tree = ETree.parse(xml_path) xml_root = xml_tree.getroot() commands = defaultdict(list) for child in xml_root: if child.tag == 'Commands': com_children = child.getchildren() for i, com_child in enumerate(com_children): com_name = com_child.attrib["name"] commands[com_name].append(i) commands[com_name].append(com_child.attrib["src"]) commands[com_name].append(com_child.attrib["group"]) return commands
1effc1b313d93e92b25deef1d62fc65c8f3e6975
3,651,289
import mimetypes def put_data_to_s3(data, bucket, key, acl=None): """data is bytes not string""" content_type = mimetypes.guess_type(key)[0] if content_type is None: content_type = 'binary/octet-stream' put_object_args = {'Bucket': bucket, 'Key': key, 'Body': data, 'ContentType': content_type} if acl: put_object_args.update({'ACL': acl}) return boto3.client('s3').put_object(**put_object_args)
042fc8eea230559efdc60ca9f18db2e9d1766286
3,651,290
from pathlib import Path def join_analysis_json_path(data_path: Path, analysis_id: str, sample_id: str) -> Path: """ Join the path to an analysis JSON file for the given sample-analysis ID combination. Analysis JSON files are created when the analysis data is too large for a MongoDB document. :param data_path: the path to the application data :param analysis_id: the ID of the analysis :param sample_id: the ID of the sample :return: a path """ return join_analysis_path(data_path, analysis_id, sample_id) / "results.json"
5ae25e5c0df4801b23a34cdac09db709733844ca
3,651,291
def user_profile(uname=None): """ Frontend gets user's profile by user name or modify user profile (to do). Return user's complete profile and the recommendations for him (brief events). :param uname: user's name, a string :return: a json structured as {'user': [(0, 'who', 'password', '[email protected]', 'address', 'Limoges')], 'event': [{'event_id': 1234, 'title': '...', ...},{'event_id': 2345, ...}, ...]} """ verify_headers(request.headers) if request.method == 'GET': user = user_manager.return_user_data(uname) if len(user) == 0: abort(404) preferred_events_id = rcmd_manager.get_recommendations_for_user(user_manager.return_user_id(uname)) preferred_events = [] for pair in preferred_events_id: preferred_events.append({'activity': event_manager.get_event_with_nearest(pair[0]), 'score': pair[1]}) return jsonify({'user': user, 'event': preferred_events}) elif request.method == 'POST': if not request.json: abort(400) # to do for user profile modification
b43ab64b0d44e7d19342a90da261bf96489fed3a
3,651,292
def circuit_status(self, handle: ResultHandle) -> CircuitStatus: """ Return a CircuitStatus reporting the status of the circuit execution corresponding to the ResultHandle """ if handle in self._cache: return CircuitStatus(StatusEnum.COMPLETED) raise CircuitNotRunError(handle)
7de17e03e3177f7b7c2de31650a0c341ab7e4fa6
3,651,293
import os import json def run_pyfunnel(test_dir): """Run pyfunnel compareAndReport function. The test is run: * with the parameters, reference and test values from the test directory passed as argument; * from current directory (to which output directory path is relative). Args: test_dir (str): path of test directory Returns: int: exit status of funnel binary """ with open(os.path.join(test_dir, 'param.json'), 'r') as f: par = json.load(f) ref = pd.read_csv(os.path.join(test_dir, par['reference'])) test = pd.read_csv(os.path.join(test_dir, par['test'])) par['outputDirectory'] = par['output'] for t in ['atolx', 'atoly', 'ltolx', 'ltoly', 'rtolx', 'rtoly']: try: par[t] except KeyError: par[t] = None rc = pyfunnel.compareAndReport( ref.iloc(axis=1)[0], ref.iloc(axis=1)[1], test.iloc(axis=1)[0], test.iloc(axis=1)[1], **{k: par[k] for k in ['outputDirectory', 'atolx', 'atoly', 'ltolx', 'ltoly', 'rtolx', 'rtoly']} ) return rc
ef88e40aad9be05dbfdb4f281b9cb1c5b934d49e
3,651,294
def get_portfolio() -> pd.DataFrame: """ Get complete user portfolio Returns: pd.DataFrame: complete portfolio """ portfolio = get_simple_portfolio() full_portfolio = pd.DataFrame() for ticket in portfolio.index: full_portfolio = full_portfolio.append( _clear_individual_information(get_individual_information(ticket))) return full_portfolio
c04df5cf88e936cab9bd7f30a63ab3e695efd771
3,651,295
def findZeros( vec, tol = 0.00001 ): """Given a vector of a data, finds all the zeros returns a Nx2 array of data each row is a zero, first column is the time of the zero, second column indicates increasing or decreasing (+1 or -1 respectively)""" zeros = [] for i in range( vec.size - 1 ): a = float( vec[ i ] ) b = float( vec[ i + 1] ) increasing = 1 if ( b < a ): increasing = -1 if ( a * b < 0 ): t = -a / ( b - a ) zeros.append( ( i + t, increasing ) ) if ( abs( vec[ -1 ] ) < tol ): if ( vec[-1] > vec[-2] ): zeros.append( ( vec.size - 1, 1 ) ) else: zeros.append( ( vec.size - 1, -1 ) ) return np.array( zeros, dtype=np.int )
173f734c9b3abf876b48d194e691b517fd0ec816
3,651,296
from typing import List def get_index(square_num: int) -> List[int]: """ Gets the indices of a square given the square number :param square_num: An integer representing a square :return: Returns a union with 2 indices """ for i in range(4): for j in range(4): if puzzle_state[i][j] == square_num: return [i, j]
e9896ba58b76ea43069b408a445720f0b418488d
3,651,297
def _ResolveName(item): """Apply custom name info if provided by metadata""" # ---------------------------------------------------------------------- def IsValidName(value): return bool(value) # ---------------------------------------------------------------------- if Attributes.UNIVERSAL_NAME_OVERRIDE_ATTRIBUTE_NAME in item.metadata.Values: metadata_value = item.metadata.Values[Attributes.UNIVERSAL_NAME_OVERRIDE_ATTRIBUTE_NAME] if not IsValidName(metadata_value.Value): raise Exceptions.ResolveInvalidCustomNameException( metadata_value.Source, metadata_value.Line, metadata_value.Column, name=metadata_value.Value, ) item.name = metadata_value.Value del item.metadata.Values[Attributes.UNIVERSAL_NAME_OVERRIDE_ATTRIBUTE_NAME]
0d303cb4577503b4e39f14da699cf77c9adf462f
3,651,298
import re def extract_errno(errstr): """ Given an error response from a proxyfs RPC, extracts the error number from it, or None if the error isn't in the usual format. """ # A proxyfs error response looks like "errno: 18" m = re.match(PFS_ERRNO_RE, errstr) if m: return int(m.group(1))
adff11595d391a1bb4403c3c93a0bb4ab182254a
3,651,299