content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def mvw_ledoit_wolf(prices, weight_bounds=(0.,1.), rf = 0., options = None): """ Calculates the mean-variance weights given a DataFrame of returns. Wraps mean_var_weights with ledoit_wolf covariance calculation method Args: * prices (DataFrame): Prices for multiple securities. * weight_bounds ((low, high)): Weigh limits for optimization. * rf (float): `Risk-free rate <https://www.investopedia.com/terms/r/risk-freerate.asp>`_ used in utility calculation * options (dict): options for minimizing, e.g. {'maxiter': 10000 } Returns: Series {col_name: weight} """ r = prices.to_returns().dropna() covar = ledoit_wolf(r)[0] return covar
086f6430d189fd12509d56ce4a96a351a178979b
3,651,100
def _PadLabels3d(logits, labels): """Pads or slices 3-d labels to match logits. Covers the case of 2-d softmax output, when labels is [batch, height, width] and logits is [batch, height, width, onehot] Args: logits: 4-d Pre-softmax fully-connected output. labels: 3-d, but not necessarily matching in size. Returns: labels: Resized by padding or clipping to match logits. """ logits_shape = shapes.tensor_shape(logits) labels_shape = shapes.tensor_shape(labels) labels = tf.reshape(labels, [-1, labels_shape[2]]) labels = _PadLabels2d(logits_shape[2], labels) labels = tf.reshape(labels, [labels_shape[0], -1]) labels = _PadLabels2d(logits_shape[1] * logits_shape[2], labels) return tf.reshape(labels, [labels_shape[0], logits_shape[1], logits_shape[2]])
223f7dfea9ebc970e62dbe71e2f27dfb5c9f161d
3,651,101
def intx(): """Returns the default int type, as a string. (e.g. 'int16', 'int32', 'int64'). # Returns String, the current default int type. """ return _INTX
57661ef00953e07228ff81abc93ec22c216797ff
3,651,102
import json def dev_end_hardware_script() -> Response: """Designate the end of a hardware script in flask log. Can be invoked by: curl http://localhost:4567/development/end_hardware_script """ return Response(json.dumps({}), mimetype="application/json")
714b448642180753e639992f2d101841074aeefd
3,651,103
def _init_train(opt): """Common initilization stuff for all training process.""" ArgumentParser.validate_prepare_opts(opt) if opt.train_from: # Load checkpoint if we resume from a previous training. checkpoint = load_checkpoint(ckpt_path=opt.train_from) fields = load_fields(opt.save_data, checkpoint) transforms_cls = get_transforms_cls(opt._all_transform) if (hasattr(checkpoint["opt"], '_all_transform') and len(opt._all_transform.symmetric_difference( checkpoint["opt"]._all_transform)) != 0): _msg = "configured transforms is different from checkpoint:" new_transf = opt._all_transform.difference( checkpoint["opt"]._all_transform) old_transf = checkpoint["opt"]._all_transform.difference( opt._all_transform) if len(new_transf) != 0: _msg += f" +{new_transf}" if len(old_transf) != 0: _msg += f" -{old_transf}." logger.warning(_msg) if opt.update_vocab: logger.info("Updating checkpoint vocabulary with new vocabulary") fields, transforms_cls = prepare_fields_transforms(opt) else: checkpoint = None #数据预处理准备阶段,目的是将数据处理成torchtext.field格式 fields, transforms_cls = prepare_fields_transforms(opt) # Report src and tgt vocab sizes for side in ['src', 'tgt']: f = fields[side] try: f_iter = iter(f) except TypeError: f_iter = [(side, f)] for sn, sf in f_iter: if sf.use_vocab: logger.info(' * %s vocab size = %d' % (sn, len(sf.vocab))) return checkpoint, fields, transforms_cls
bb2a043d1a59f996b303aabf9db724ced3505dbf
3,651,104
import os import fnmatch def main(wf): """Run workflow script.""" opts = docopt.docopt(__doc__, argv=wf.args, version=wf.version) if opts['list']: return list_actions(opts) dry_run = opts['--nothing'] log.info('=' * 50) log.debug('opts=%r', opts) log.info('looking for workflows using an outdated version ' 'of Alfred-Workflow...') # subprocess.call(['open', '-a', 'Console', wf.logfile]) root = get_workflow_directory() if not root: log.critical('could not find your workflow directory') print('ERROR: could not find workflow directory') return 1 log.info('workflow directory: %r', root) blacklisted = load_blacklist() updated = 0 failed = 0 # loop through subdirectories of workflow directory # 1. ignore symlinks # 2. ignore files # 3. ignore blacklisted workflows # 4. identify AW workflows # 5. check version of AW the workflow has # 6. if AW is outdated, backup the existing copy and replace # it with an up-to-date version of AW for dn in os.listdir(root): p = os.path.join(root, dn) if os.path.islink(p): log.info('ignoring symlink: %s', dn) continue if not os.path.isdir(p): log.debug('ignoring non-directory: %s', dn) continue try: info = get_workflow_info(p) except Exception as err: log.error('could not read workflow: %s: %s', dn, err) continue if not info or not info.aw.dir: log.debug('not an AW workflow: %s', dn) continue if info.id == wf.bundleid: log.debug('ignoring self') continue ok = True for pat in blacklisted: if fnmatch(info.id, pat): log.debug('blacklisted: "%s" matches "%s"', info.id, pat) log.info('skipping blacklisted workflow: %s', dn) ok = False break if not ok: continue log.info('') log.info('found AW workflow: %s', dn) log.info(' name: %s', info.name) log.info(' bundle ID: %s', info.id) log.info(' AW version: %s', info.aw.version) if info.aw.version >= MIN_VERSION: log.info('[OK] workflow "%s" has current version of ' 'Alfred-Workflow', info.name) log.info('') continue log.info('[!!] workflow "%s" is using outdated version ' '(%s) of Alfred-Workflow', info.name, info.aw.version) if not dry_run: try: update_workflow(info) except Exception as err: failed += 1 log.error('failed to update workflow "%s" (%s): %s', info.name, info.aw.dir, err, exc_info=True) log.info('') continue log.info('') updated += 1 if dry_run: log.info('[DONE] would update %d workflow(s) with a newer version of ' 'Alfred-Workflow', updated) print('Would update {} workflow(s)'.format(updated)) return else: if failed: log.info('[DONE] failed to update %d/%d workflow(s) with a ' 'newer version of Alfred-Workflow', failed, failed + updated) print('ERROR: Failed to update {}/{} workflow(s)'.format( failed, failed + updated)) return 1 else: log.info('[DONE] updated %d workflow(s) with a newer version of ' 'Alfred-Workflow', updated) print('Updated {} workflow(s)'.format(updated)) return
7d62c3e498374097eaf232bc8195da908a370dbd
3,651,105
def compare(isamAppliance1, isamAppliance2): """ Compare Update Servers between two appliances """ ret_obj1 = get_all(isamAppliance1) ret_obj2 = get_all(isamAppliance2) for obj in ret_obj1['data']: del obj['uuid'] for obj in ret_obj2['data']: del obj['uuid'] return ibmsecurity.utilities.tools.json_compare(ret_obj1, ret_obj2, deleted_keys=['uuid'])
e29025ca0af897f10b3b8498f8def86841b76c97
3,651,106
from rasterio import Affine, features from gisutils import get_authority_crs from fiona.crs import from_epsg, to_string def rasterize(feature, grid, id_column=None, include_ids=None, crs=None, epsg=None, proj4=None, dtype=np.float32, **kwargs): """Rasterize a feature onto the model grid, using the rasterio.features.rasterize method. Features are intersected if they contain the cell center. Parameters ---------- feature : str (shapefile path), list of shapely objects, or dataframe with geometry column id_column : str Column with unique integer identifying each feature; values from this column will be assigned to the output raster. grid : grid.StructuredGrid instance crs : obj A Python int, dict, str, or pyproj.crs.CRS instance passed to :meth:`pyproj.crs.CRS.from_user_input` Can be any of: - PROJ string - Dictionary of PROJ parameters - PROJ keyword arguments for parameters - JSON string with PROJ parameters - CRS WKT string - An authority string [i.e. 'epsg:4326'] - An EPSG integer code [i.e. 4326] - A tuple of ("auth_name": "auth_code") [i.e ('epsg', '4326')] - An object with a `to_wkt` method. - A :class:`pyproj.crs.CRS` class dtype : dtype Datatype for the output array **kwargs : keyword arguments to rasterio.features.rasterize() https://rasterio.readthedocs.io/en/stable/api/rasterio.features.html Returns ------- 2D numpy array with intersected values """ try: except: print('This method requires rasterio.') return if epsg is not None: warnings.warn("The epsg argument is deprecated. Use crs instead, " "which requires gisutils >= 0.2", DeprecationWarning) if proj4 is not None: warnings.warn("The epsg argument is deprecated. Use crs instead, " "which requires gisutils >= 0.2", DeprecationWarning) if crs is not None: if version.parse(gisutils.__version__) < version.parse('0.2.0'): raise ValueError("The crs argument requires gisutils >= 0.2") crs = get_authority_crs(crs) trans = grid.transform kwargs = {} if isinstance(feature, str): proj4 = get_proj_str(feature) kwargs = {'dest_crs': grid.crs} kwargs = get_input_arguments(kwargs, shp2df) df = shp2df(feature, **kwargs) elif isinstance(feature, pd.DataFrame): df = feature.copy() elif isinstance(feature, collections.Iterable): # list of shapefiles if isinstance(feature[0], str): proj4 = get_proj_str(feature[0]) kwargs = {'dest_crs': grid.crs} kwargs = get_input_arguments(kwargs, shp2df) df = shp2df(feature, **kwargs) else: df = pd.DataFrame({'geometry': feature}) elif not isinstance(feature, collections.Iterable): df = pd.DataFrame({'geometry': [feature]}) else: print('unrecognized feature input') return # handle shapefiles in different CRS than model grid if 'dest_crs' not in kwargs: reproject = False # todo: consolidate rasterize reprojection to just use crs if crs is not None: if crs != grid.crs: df['geometry'] = project(df.geometry.values, crs, grid.crs) if proj4 is not None: if proj4 != grid.proj_str: reproject = True elif epsg is not None and grid.epsg is not None: if epsg != grid.epsg: reproject = True proj4 = to_string(from_epsg(epsg)) if reproject: df['geometry'] = project(df.geometry.values, proj4, grid.proj_str) # subset to include_ids if id_column is not None and include_ids is not None: df = df.loc[df[id_column].isin(include_ids)].copy() # create list of GeoJSON features, with unique value for each feature if id_column is None: numbers = range(1, len(df)+1) # if IDs are strings, get a number for each one # pd.DataFrame.unique() generally preserves order elif isinstance(df[id_column].dtype, np.object): unique_values = df[id_column].unique() values = dict(zip(unique_values, range(1, len(unique_values) + 1))) numbers = [values[n] for n in df[id_column]] else: numbers = df[id_column].tolist() geoms = list(zip(df.geometry, numbers)) result = features.rasterize(geoms, out_shape=(grid.nrow, grid.ncol), transform=trans) assert result.sum(axis=(0, 1)) != 0, "Nothing was intersected!" return result.astype(dtype)
474fd8dc871d6d2b64eb459f2c026be764f6a48d
3,651,107
import random def get_random(): """ Retrieves the current issue of XKCD, chooses an issue 1 - current issue #, and returns a json object. Returns null if an requests error occurs. """ return get_issue(random.randint(1, int(get_current()["num"])))
10fbf75681901722510b0b9fbb2de298eb80b45e
3,651,108
def get_fasta_readlengths(fasta_file): """ Get a sorted list of contig lengths :return: (tuple) """ lens = [] with open_fasta_reader(fasta_file) as f: for record in f: lens.append(len(record.sequence)) lens.sort() return lens
769cf5af50ba684c107a1312d2aeaab2721a29c6
3,651,109
def postprocess(p, gt, width_and_height, p_binary, false_positives=False, false_negatives=False): """ This function does matching and then postprocessing of p's and gt's :param p: the objects given from rcnn :param gt: the objects we get from the ground truth :param width_and_height: the width and height of the image :return: info_image: a list which contains the postprocessed p, rectangels for p, postprocessed gt, rectangles for gt, width and height """ len_p = len(p) len_gt = len(gt) elements_in_p = [i for i in xrange(len_p)] elements_in_gt = [i for i in xrange(len_gt)] matching_table = create_matching_table(p, gt) max_number_of_matches = min(matching_table.shape[0], matching_table.shape[1]) new_p = [] new_gt = [] new_rects_p = [] new_rects_gt = [] new_p_binary = [] new_gt_binary = [] threshold = 0.5 # on this part we create the real matches between p and gt for _ in xrange(max_number_of_matches): best_match = unravel_index(matching_table.argmax(), matching_table.shape) if matching_table[best_match[0], best_match[1]] > threshold: # check if it is a different value from 0 matching_table[best_match[0], :] = 0. matching_table[:, best_match[1]] = 0. new_p.append(p[best_match[0], :21]) new_p_binary.append(p_binary[best_match[0]]) new_gt_binary.append(np.array([1., 0.])) new_rects_p.append(p[best_match[0], 21:]) new_gt.append(gt[best_match[1], :21]) new_rects_gt.append(gt[best_match[1], 21:]) elements_in_p.remove(best_match[0]) elements_in_gt.remove(best_match[1]) # here we add the matches of false positives by inserting background class on the given rectangles on the ground # truth if false_positives: for element in elements_in_p: new_p.append(p[element, :21]) new_p_binary.append(p_binary[element]) new_rects_p.append(p[element, 21:]) new_gt.append(create_background_peak_array()) new_gt_binary.append(np.array([0., 1.])) # 0 - not background; 1 - background new_rects_gt.append(p[element, 21:]) # here we deal with false negatives, by adding them as r-cnn outputs equal to the ground truth if false_negatives: for element in elements_in_gt: new_p.append(gt[element, :21]) new_p_binary.append(np.array([1., 0.])) new_rects_p.append(gt[element, 21:]) new_gt.append(gt[element, :21]) new_gt_binary.append((np.array([1., 0.]))) new_rects_gt.append(gt[element, 21:]) # convert all the lists to numpy arrays new_p = np.asarray(new_p) new_rects_p = np.asarray(new_rects_p) new_gt = np.asarray(new_gt) new_rects_gt = np.asarray(new_rects_gt) # add all the postprocessed information to a list info_image = [new_p, new_gt, new_rects_p, new_rects_gt, width_and_height, new_p_binary, new_gt_binary] return info_image
dd83de4547f7c1461b64fcd2dfa4c3df54aefd10
3,651,110
from csb.bio.structure import TorsionAngles import numpy def deg(x): """ Convert an array of torsion angles in radians to torsion degrees ranging from -180 to 180. @param x: array of angles @type x: numpy array @rtype: numpy array """ func = numpy.vectorize(TorsionAngles.deg) return func(x)
95e37a0c644df1562e417c1ad61e4788bd46c279
3,651,111
import timeit def run_median_trial(): """Generate table for Median Trial.""" tbl = DataTable([10,15,15],['N', 'median_time', 'sort_median']) trials = [2**k+1 for k in range(8,20)] for n in trials: t_med = 1000*min(timeit.repeat(stmt='assert(linear_median(a) == {}//2)'.format(n), setup=''' import random from ch01.challenge import linear_median a = list(range({})) random.shuffle(a) '''.format(n), repeat=10, number=5))/5 t_sort = 1000*min(timeit.repeat(stmt='assert(median_from_sorted_list(a) == {0}//2)'.format(n), setup=''' import random from ch01.challenge import median_from_sorted_list a = list(range({})) random.shuffle(a) '''.format(n), repeat=10, number=5))/5 tbl.row([n, t_med, t_sort]) return tbl
ed4c5ebe8bd6259c4adc45c4b023cc5bb96a1055
3,651,112
def regroup(X, N): """ Regroups the rows and columns of X such that rows/cols that are N apart in X, are adjeacent in Y. If N is a 2 element vector, N[0] is used for rows and N[1] is used for columns. Parameters: X: m by n matrix to be regrouped. N: Integer or two element vector. Returns: Y: Regrouped matrix. """ m, n = X.shape if isinstance(N, int): N = [N, N] if m % N[0] != 0 or n % N[1] != 0: raise ValueError('X dimensions need to be multiple\ of elements in N') row_ind = np.ravel( [[i + k for i in np.arange(0, n, N[0])] for k in range(N[0])]) col_ind = np.ravel( [[i + k for i in np.arange(0, n, N[1])] for k in range(N[1])]) Y = X[row_ind, :] Y = Y[:, col_ind] return Y
7ad92b878cb6a55820ef9ad92c68e934184d725d
3,651,113
def return_estimators(n_components): """Returns all of the estimators that can be used to generate models. A larger selection of possible estimators have been commented out, but could be uncommented.""" estimators = [ ('PCArandom', decomposition.PCA(n_components=n_components, svd_solver='randomized', whiten=True)) ] # estimators = [ # ('PCArandom', # decomposition.PCA(n_components=n_components, # svd_solver='randomized', # whiten=True)), # ('PCAfull', # decomposition.PCA(n_components=n_components, # svd_solver='full', # whiten=True)), # ('PCAarpack', # decomposition.PCA(n_components=n_components, # svd_solver='arpack', # whiten=True)), # ('PCAauto', # decomposition.PCA(n_components=n_components, # svd_solver='auto', # whiten=True)) # ] return estimators
680aa1d50c4e2db0e4d3df9e60749350df437bb8
3,651,114
def _check_type_picks(picks): """helper to guarantee type integrity of picks""" err_msg = 'picks must be None, a list or an array of integers' if picks is None: pass elif isinstance(picks, list): if not all(isinstance(i, int) for i in picks): raise ValueError(err_msg) picks = np.array(picks) elif isinstance(picks, np.ndarray): if not picks.dtype.kind == 'i': raise ValueError(err_msg) else: raise ValueError(err_msg) return picks
79493f75db8e57f32a6369ad18900e0632d2bc18
3,651,115
def get_test_standard_scaler_str(): """ Get a pandas projection code str """ test_code = cleandoc(""" standard_scaler = StandardScaler() encoded_data = standard_scaler.fit_transform(df) """) return test_code
fd6e1daa7e0dddb603437e5b35c283a11e68ec00
3,651,116
from typing import List from typing import Tuple import re def add_command( command_list: List[Tuple[re.Pattern, callable]], func: callable, command_str: str ) -> List[Tuple[re.Pattern, callable]]: """Add a function and the command pattern to the command list. Args: func: Function it will be called command_str: command string that specifies the pattern """ command_pattern = build_command_pattern(command_str) command_list.append((command_pattern, func)) return command_list
f8076e4a6b37722591eae04a67feb1c25e606b84
3,651,117
def get_clusters_and_critical_nodes(G, k, rho_star, phi_in): """ The implementation of the main body of the partitioning Algorithm. The main while-loop of the algorithm is executed as long as a refinement is still possible. :param phi_in: An algorithm parameter used to lower bound the inner conductance of each cluster :param rho_star: A technical parameter of the algorithm :param G: A networkx graph :param k: The (supposed) number of clusters :return: a list containing an l-wise partitioning of the nodes of G, for some l <= k """ # A list of vertices in the graph G vertices = list(G.nodes()) # Initially the graph contains one cluster P_1 = V with core set core_1 = P_1. P_1 = vertices[:] core_1 = P_1[:] # num_clusters is the variable denoting the current number of clusters num_clusters = 1 # clusters is a list storing the current cluster structure of G (i.e. P_1, ..., P_l) clusters = [P_1] # core_sets is a list containing the current core_subsets of each cluster. # (i.e. core_1, ..., core_(num_clusters) with core_i being a subset of P_i) core_sets = [core_1] # A list of lists, where each element grouped_critical_nodes[i] is a list of critical nodes from the tree T_i of # cluster clusters[i] grouped_critical_nodes = [] # The main loop of the algorithm. We continue as long as an update is possible overall_update_is_found = True while overall_update_is_found: # At the beginning of the loop there is no update found overall_update_is_found = False # The main loop of the Partition Algorithm. We continue as long as a GT_update is possible GT_update_is_found = True while GT_update_is_found: # First we check if a GT_update is possible GT_update_is_found, index_cluster_to_update = check_if_GT_update_is_possible(G, clusters, core_sets, phi_in) if GT_update_is_found: GT_update_is_done = False # Notation of the corresponding sets of vertices P_i = clusters[index_cluster_to_update] core_i = core_sets[index_cluster_to_update] S = cheeger_cut.cheeger_cut(G.subgraph(P_i)) S_complement = diff(vertices, S) S_plus = intersect(S, core_i) S_plus_bar = intersect(S_complement, core_i) S_minus = intersect(diff(P_i, core_i), S) S_minus_bar = intersect(diff(P_i, core_i), S_complement) # Without loss of generality we assume vol(S_plus) < vol(core_i) / 2 if vol(G, S_plus) > vol(G, S_plus_bar): S_plus, S_plus_bar = S_plus_bar, S_plus S_minus, S_minus_bar = S_minus_bar, S_minus # First "if" in the algorithm if is_first_if_condition_satisfied(G, S_plus, S_plus_bar, k, num_clusters, rho_star): make_new_cluster_with_subset_T_bar_of_core_i( S_plus, S_plus_bar, clusters, core_sets, index_cluster_to_update) num_clusters += 1 # A sanity check update num_clusters = min(num_clusters, k) GT_update_is_done = True # Second "if" in the algorithm if not GT_update_is_done and is_second_if_condition_satisfied(G, S_plus, S_plus_bar, core_i, k): update_core_to_subset_T_or_T_bar(G, S_plus, S_plus_bar, core_sets, index_cluster_to_update) GT_update_is_done = True # Third "if" in the algorithm if not GT_update_is_done and is_third_if_condition_satisfied(G, S_minus, k, num_clusters, rho_star): make_new_cluster_with_subset_T_of_P_i(S_minus, clusters, core_sets, index_cluster_to_update) num_clusters += 1 # A sanity check update num_clusters = min(num_clusters, k) GT_update_is_done = True # At this point only a refinement of the partition is possible if not GT_update_is_done: # If there is a cluster P_j s.t. w(P_i - core_i -> P_i) < w(P_i - core_i -> P_j), # then merge (P_i - core_i) with argmax_(P_j){w(P_i - core_i -> P_j)} P_i_minus_core_i = diff(P_i, core_i) # Find the index j of argmax_(P_j){w(P_i - core_i -> P_j)}. best_cluster_index = find_cluster_P_j_that_maximises_weight_from_T_to_P_j(G, P_i_minus_core_i, clusters) # Forth "if" in the algorithm. if best_cluster_index != index_cluster_to_update: move_subset_T_from_P_i_to_P_j(P_i_minus_core_i, clusters, index_cluster_to_update, best_cluster_index) GT_update_is_done = True if not GT_update_is_done: # If there is a cluster P_j s.t. w(S_minus -> P_i) < w(S_minus -> P_j), # then merge S_minus with argmax_(P_j){w(S_minus -> P_j)} # Find the index j of argmax_(P_j){w(S_minus -> P_j)}. best_cluster_index = find_cluster_P_j_that_maximises_weight_from_T_to_P_j(G, S_minus, clusters) # Fifth "if" in the algorithm if best_cluster_index != index_cluster_to_update: move_subset_T_from_P_i_to_P_j(S_minus, clusters, index_cluster_to_update, best_cluster_index) GT_update_is_done = True if not GT_update_is_done: raise Exception('No GT_update performed in iteration') grouped_critical_nodes = [] # Check if critical nodes need refinements for i in range(len(clusters)): # Get the list of critical nodes in the degree based construction of the graph G_i = G[P_i] P_i = clusters[i] core_i = core_sets[i] G_i = G.subgraph(P_i) T_i = tree.Tree() T_i.make_tree(G_i, "degree") critical_nodes_of_T_i = T_i.get_critical_nodes() grouped_critical_nodes = grouped_critical_nodes + [critical_nodes_of_T_i] for node in critical_nodes_of_T_i: # Notation N = node.vertices N_complement = diff(vertices, N) N_plus = intersect(N, core_i) N_plus_bar = intersect(N_complement, core_i) N_minus = intersect(diff(P_i, core_i), N) N_minus_bar = intersect(diff(P_i, core_i), N_complement) # Sixth "if" of the algorithm, first "if" of the refinement of the nodes, if is_sixth_if_condition_satisfied(G, N_plus, N_plus_bar, k, num_clusters, rho_star): make_new_cluster_with_subset_T_bar_of_core_i( N_plus, N_plus_bar, clusters, core_sets, i) num_clusters += 1 # A sanity check update num_clusters = min(num_clusters, k) overall_update_is_found = True break # Seventh "if" of the algorithm, second if of the refinement of the nodes if not overall_update_is_found and is_seventh_if_condition_satisfied(G, N_plus, core_i, k): update_core_to_subset_T_or_T_bar(G, N_plus, N_plus_bar, core_sets, i) overall_update_is_found = True break # We attempt to move N_minus to the cluster P_j that maximises w(N_minus -> P_j) if not overall_update_is_found and vol(G, N_minus) <= vol(G, P_i) / 2: # Find the index j of argmax_(P_j){w(N_minus -> P_j)}. # If best_cluster_index = i, then the eighth "if" is not satisfied best_cluster_index = find_cluster_P_j_that_maximises_weight_from_T_to_P_j(G, N_minus, clusters) # Eighth "if" of the algorithm, third if of the refinement of the nodes. if weight(G, N_minus, P_i) < weight(G, N_minus, clusters[best_cluster_index]): move_subset_T_from_P_i_to_P_j(N_minus, clusters, i, best_cluster_index) overall_update_is_found = True break if overall_update_is_found: break return clusters, grouped_critical_nodes
e7374c9cad30a87477ee5b9ce4d0a0e9cb7de041
3,651,118
def get_edges_out_for_vertex(edges: list, vertex: int) -> list: """Get a sublist of edges that have the specified vertex as first element :param edges: edges of the graph :param vertex: vertex of which we want to find the corresponding edges :return: selected edges """ return [e for e in edges if e[0] == vertex]
21485073df1c754e7c8e2b7dd9cafef284e601e7
3,651,119
def pellet_plot_multi_unaligned(FEDs, shade_dark, lights_on, lights_off,**kwargs): """ FED3 Viz: Plot cumulaive pellet retrieval for multiple FEDs, keeping the x-axis to show absolute time. Parameters ---------- FEDs : list of FED3_File objects FED3 files (loaded by load.FED3_File) shade_dark : bool Whether to shade lights-off periods lights_on : int Integer between 0 and 23 denoting the start of the light cycle. lights_off : int Integer between 0 and 23 denoting the end of the light cycle. **kwargs : ax : matplotlib.axes.Axes Axes to plot on, a new Figure and Axes are created if not passed date_filter : array A two-element array of datetimes (start, end) used to filter the data **kwargs also allows FED3 Viz to pass all settings to all functions. Returns ------- fig : matplotlib.figure.Figure """ if not isinstance(FEDs, list): FEDs = [FEDs] for file in FEDs: assert isinstance(file, FED3_File),'Non FED3_File passed to pellet_plot_multi()' if 'ax' not in kwargs: fig, ax = plt.subplots(figsize=(7,3.5), dpi=150) else: ax = kwargs['ax'] min_date = np.datetime64('2100') max_date = np.datetime64('1970') for file in FEDs: df = file.data if 'date_filter' in kwargs: s, e = kwargs['date_filter'] df = df[(df.index >= s) & (df.index <= e)].copy() x = df.index y = df['Pellet_Count'] ax.plot(x, y, label=file.filename, alpha=.6, lw=1) if max(x) > max_date: max_date = max(x) if min(x) < min_date: min_date = min(x) ax.set_xlabel('Time (h)') date_format_x(ax, min_date, max_date) ax.set_ylabel('Cumulative Pellets') title = ('Pellets Retrieved for Multiple FEDs') ax.set_title(title) if shade_dark: shade_darkness(ax, min_date, max_date, lights_on=lights_on, lights_off=lights_off) if len(FEDs) < 10: ax.legend(bbox_to_anchor=(1,1), loc='upper left') plt.tight_layout() return fig if 'ax' not in kwargs else None
3601e8ecff20a3d7978f7261ebaa5236d662a25e
3,651,120
import time def sync_via_mrmsdtw(f_chroma1: np.ndarray, f_chroma2: np.ndarray, f_DLNCO1: np.ndarray = None, f_DLNCO2: np.ndarray = None, input_feature_rate: float = 50, step_sizes: np.ndarray = np.array([[1, 0], [0, 1], [1, 1]], np.int32), step_weights: np.ndarray = np.array([1.0, 1.0, 1.0], np.float64), threshold_rec: int = 10000, win_len_smooth: np.ndarray = np.array([201, 101, 21, 1]), downsamp_smooth: np.ndarray = np.array([50, 25, 5, 1]), verbose: bool = False, dtw_implementation: str = 'synctoolbox', normalize_chroma: bool = True, chroma_norm_ord: int = 2, chroma_norm_threshold: float = 0.001): """Compute memory-restricted multi-scale DTW (MrMsDTW) using chroma and (optionally) DLNCO features. MrMsDTW is performed on multiple levels that get progressively finer, with rectangular constraint regions defined by the alignment found on the previous, coarser level. If DLNCO features are provided, these are used on the finest level in addition to chroma to provide higher synchronization accuracy. Parameters ---------- f_chroma1 : np.ndarray [shape=(12, N)] Chroma feature matrix of the first sequence f_chroma2 : np.ndarray [shape=(12, M)] Chroma feature matrix of the second sequence f_DLNCO1 : np.ndarray [shape=(12, N)] DLNCO feature matrix of the first sequence (optional, default: None) f_DLNCO2 : np.ndarray [shape=(12, M)] DLNCO feature matrix of the second sequence (optional, default: None) input_feature_rate: float Input feature rate of the chroma features (default: 50) step_sizes: np.ndarray DTW step sizes (default: np.array([[1, 0], [0, 1], [1, 1]])) step_weights: np.ndarray DTW step weights (np.array([1.0, 1.0, 1.0])) threshold_rec: int Defines the maximum area that is spanned by the rectangle of two consecutive elements in the alignment (default: 10000) win_len_smooth : np.ndarray Window lengths for chroma feature smoothing (default: np.array([201, 101, 21, 1])) downsamp_smooth : np.ndarray Downsampling factors (default: np.array([50, 25, 5, 1])) verbose : bool Set `True` for visualization (default: False) dtw_implementation : str DTW implementation, librosa or synctoolbox (default: synctoolbox) normalize_chroma : bool Set `True` to normalize input chroma features after each downsampling and smoothing operation. chroma_norm_ord: int Order of chroma normalization, relevant if ``normalize_chroma`` is True. (default: 2) chroma_norm_threshold: float If the norm falls below threshold for a feature vector, then the normalized feature vector is set to be the unit vector. Relevant, if ``normalize_chroma`` is True (default: 0.001) Returns ------- alignment : np.ndarray [shape=(2, T)] Resulting warping path """ # If DLNCO features are given as input, high resolution MrMsDTW is activated. high_res = False if f_DLNCO1 is not None and f_DLNCO2 is not None: high_res = True if high_res and (f_chroma1.shape[1] != f_DLNCO1.shape[1] or f_chroma2.shape[1] != f_DLNCO2.shape[1]): raise ValueError('Chroma and DLNCO features must be of the same length.') if downsamp_smooth[-1] != 1 or win_len_smooth[-1] != 1: raise ValueError('The downsampling factor of the last iteration must be equal to 1, i.e.' 'at the last iteration, it is computed at the input feature rate!') num_iterations = win_len_smooth.shape[0] cost_matrix_size_old = tuple() feature_rate_old = input_feature_rate / downsamp_smooth[0] alignment = None total_computation_time = 0.0 for it in range(num_iterations): tic1 = time.perf_counter() # Smooth and downsample given raw features f_chroma1_cur, _ = smooth_downsample_feature(f_chroma1, input_feature_rate=input_feature_rate, win_len_smooth=win_len_smooth[it], downsamp_smooth=downsamp_smooth[it]) f_chroma2_cur, feature_rate_new = smooth_downsample_feature(f_chroma2, input_feature_rate=input_feature_rate, win_len_smooth=win_len_smooth[it], downsamp_smooth=downsamp_smooth[it]) if normalize_chroma: f_chroma1_cur = normalize_feature(f_chroma1_cur, norm_ord=chroma_norm_ord, threshold=chroma_norm_threshold) f_chroma2_cur = normalize_feature(f_chroma2_cur, norm_ord=chroma_norm_ord, threshold=chroma_norm_threshold) # Project path onto new resolution cost_matrix_size_new = (f_chroma1_cur.shape[1], f_chroma2_cur.shape[1]) if alignment is None: # Initialize the alignment with the start and end frames of the feature sequence anchors = np.array([[0, f_chroma1_cur.shape[1] - 1], [0, f_chroma2_cur.shape[1] - 1]]) else: projected_alignment = project_alignment_on_a_new_feature_rate(alignment=alignment, feature_rate_old=feature_rate_old, feature_rate_new=feature_rate_new, cost_matrix_size_old=cost_matrix_size_old, cost_matrix_size_new=cost_matrix_size_new) anchors = derive_anchors_from_projected_alignment(projected_alignment=projected_alignment, threshold=threshold_rec) # Cost matrix and warping path computation if high_res and it == num_iterations - 1: # Compute cost considering chroma and pitch onset features and alignment only in the last iteration, # where the features are at the finest level. cost_matrices_step1 = compute_cost_matrices_between_anchors(f_chroma1=f_chroma1_cur, f_chroma2=f_chroma2_cur, f_DLNCO1=f_DLNCO1, f_DLNCO2=f_DLNCO2, anchors=anchors) else: cost_matrices_step1 = compute_cost_matrices_between_anchors(f_chroma1=f_chroma1_cur, f_chroma2=f_chroma2_cur, anchors=anchors) wp_list = compute_warping_paths_from_cost_matrices(cost_matrices_step1, step_sizes=step_sizes, step_weights=step_weights, implementation=dtw_implementation) # Concatenate warping paths wp = build_path_from_warping_paths(warping_paths=wp_list, anchors=anchors) anchors_step1 = None wp_step1 = None num_rows_step1 = 0 num_cols_step1 = 0 ax = None toc1 = time.perf_counter() if verbose and cost_matrices_step1 is not None: anchors_step1 = np.array(anchors, copy=True) wp_step1 = np.array(wp, copy=True) num_rows_step1, num_cols_step1 = np.sum(np.array([dtw_mat.shape for dtw_mat in cost_matrices_step1], int), axis=0) fig, ax = sync_visualize_step1(cost_matrices_step1, num_rows_step1, num_cols_step1, anchors, wp) tic2 = time.perf_counter() # Compute neighboring anchors and refine alignment using local path between neighboring anchors anchor_indices_in_warping_path = find_anchor_indices_in_warping_path(wp, anchors=anchors) # Compute neighboring anchors for refinement neighboring_anchors, neighboring_anchor_indices = \ derive_neighboring_anchors(wp, anchor_indices=anchor_indices_in_warping_path) if neighboring_anchor_indices.shape[0] > 1 \ and it == num_iterations - 1 and high_res: cost_matrices_step2 = compute_cost_matrices_between_anchors(f_chroma1=f_chroma1_cur, f_chroma2=f_chroma2_cur, f_DLNCO1=f_DLNCO1, f_DLNCO2=f_DLNCO2, anchors=neighboring_anchors) else: cost_matrices_step2 = compute_cost_matrices_between_anchors(f_chroma1=f_chroma1_cur, f_chroma2=f_chroma2_cur, anchors=neighboring_anchors) wp_list_refine = compute_warping_paths_from_cost_matrices(cost_matrices=cost_matrices_step2, step_sizes=step_sizes, step_weights=step_weights, implementation=dtw_implementation) wp = __refine_wp(wp, anchors, wp_list_refine, neighboring_anchors, neighboring_anchor_indices) toc2 = time.perf_counter() computation_time_it = toc2 - tic2 + toc1 - tic1 total_computation_time += computation_time_it alignment = wp feature_rate_old = feature_rate_new cost_matrix_size_old = cost_matrix_size_new if verbose and cost_matrices_step2 is not None: sync_visualize_step2(ax, cost_matrices_step2, wp, wp_step1, num_rows_step1, num_cols_step1, anchors_step1, neighboring_anchors) print('Level {} computation time: {:.2f} seconds'.format(it, computation_time_it)) if verbose: print('Computation time of MrMsDTW: {:.2f} seconds'.format(total_computation_time)) return alignment
00dac7bdde14597e0daece958e65761ec01d1494
3,651,121
def simulate_beta_binomial( K, D, sigma2, theta, mu=0, invlink=logistic, seed=None): """Simulates from binomial Gaussian process with Beta latent noise. Args: K: Cell-state kernel, for example as generated by create_linear_kernel or create_rbf_kernel. D: Array of total counts. sigma2: Kernel variance component. theta: Dispersion parameter. If zero, sample from a regular Binomial distribution instead. mu: Optional fixed effects on a logit scale. Defaults to zero, which corresponds to a binomial mean of 0.5. invlink: Inverse link function. Defaults to invlogit. seed: Random seed. Returns: List with alternative counts, latent rates as well as sampled binomial means. """ D = atleast_2d_column(D) n, p = D.shape rng = np.random.default_rng(seed) if sigma2 == 0: latent = mu * np.ones((n, p)) else: mu = mu * np.ones((n, 1)) latent = _sample_normal(p, mu, sigma2*K, rng) beta_mean = invlink(latent) if theta > 0: binomial_mean = rng.beta(a=beta_mean / theta, b=(1-beta_mean) / theta) else: binomial_mean = beta_mean a = rng.binomial(n=D, p=binomial_mean) return {'A': a, 'beta_mean': beta_mean, 'binomial_mean': binomial_mean}
de4648af70a6b35c7b7f5edc2c151a98db6d7603
3,651,122
def convert_to_floats(tsi): """ A helper function that tax all of the fields of a TaxSaveInputs model and converts them to floats, or list of floats """ def numberfy_one(x): if isinstance(x, float): return x else: return float(x) def numberfy(x): if isinstance(x, list): return [numberfy_one(i) for i in x] else: return numberfy_one(x) attrs = vars(tsi) return {k: numberfy(v) for k, v in list(attrs.items()) if v}
a6f93f402c547435fa9fe611481084215f52f13b
3,651,123
def properties_filter(mol): """ Calculates the properties that contain logP, MW, HBA, HBD, TPSA, NRB """ #frag = Chem.rdmolops.GetMolFrags(mol) # remove '.' #if len(frag) > 1: #return False MW_s = Descriptors.MolWt(mol) # MW if MW_s < 250 or MW_s > 750: return False ALOGP_s = Descriptors.MolLogP(mol) # ALOGP if ALOGP_s < -2 or ALOGP_s > 7: return False HBA_s = 0 for hba in Acceptors: # HBA if mol.HasSubstructMatch(hba): matches = mol.GetSubstructMatches(hba) HBA_s += len(matches) HBD_s = Descriptors.NumHDonors(mol) # HBD if HBA_s + HBD_s >= 10: return False TPSA_s = Descriptors.TPSA(mol) # TPSA if TPSA_s >= 150: return False NRB_s = Descriptors.NumRotatableBonds(mol) # NRB if NRB_s >= 10: return False return True
bc124620baddb828b4c5cb82e0b0374bdb51bad7
3,651,124
def _create_certificate_chain(): """ Construct and return a chain of certificates. 1. A new self-signed certificate authority certificate (cacert) 2. A new intermediate certificate signed by cacert (icert) 3. A new server certificate signed by icert (scert) """ caext = X509Extension(b('basicConstraints'), False, b('CA:true')) # Step 1 cakey = PKey() cakey.generate_key(TYPE_RSA, 512) cacert = X509() cacert.get_subject().commonName = "Authority Certificate" cacert.set_issuer(cacert.get_subject()) cacert.set_pubkey(cakey) cacert.set_notBefore(b("20000101000000Z")) cacert.set_notAfter(b("20200101000000Z")) cacert.add_extensions([caext]) cacert.set_serial_number(0) cacert.sign(cakey, "sha1") # Step 2 ikey = PKey() ikey.generate_key(TYPE_RSA, 512) icert = X509() icert.get_subject().commonName = "Intermediate Certificate" icert.set_issuer(cacert.get_subject()) icert.set_pubkey(ikey) icert.set_notBefore(b("20000101000000Z")) icert.set_notAfter(b("20200101000000Z")) icert.add_extensions([caext]) icert.set_serial_number(0) icert.sign(cakey, "sha1") # Step 3 skey = PKey() skey.generate_key(TYPE_RSA, 512) scert = X509() scert.get_subject().commonName = "Server Certificate" scert.set_issuer(icert.get_subject()) scert.set_pubkey(skey) scert.set_notBefore(b("20000101000000Z")) scert.set_notAfter(b("20200101000000Z")) scert.add_extensions([ X509Extension(b('basicConstraints'), True, b('CA:false'))]) scert.set_serial_number(0) scert.sign(ikey, "sha1") return [(cakey, cacert), (ikey, icert), (skey, scert)]
156a61e8159b1826def8fa33d5c5965add2c7f2e
3,651,125
def build_job_spec_name(file_name, version="develop"): """ :param file_name: :param version: :return: str, ex. job-hello_world:develop """ name = file_name.split('.')[-1] job_name = 'job-%s:%s' % (name, version) return job_name
55a45052852e6b24cb4370f7efe5c213da83e423
3,651,126
import torch def draw_mask(im: torch.Tensor, mask: torch.Tensor, t=0.2, color=(255, 255, 255), visualize_instances=True): """ Visualize mask where mask = 0. Supports multiple instances. mask shape: [N, C, H, W], where C is different instances in same image. """ assert len(mask.shape) in (3, 4), mask.shape mask = mask.view(-1, *mask.shape[-3:]) im = im.view(-1, *im.shape[-3:]) assert im.dtype == torch.uint8, im.dtype assert 0 <= t <= 1 if not visualize_instances: mask = mask.any(dim=1, keepdim=True) mask = mask.float() kernel = torch.ones((3, 3), dtype=mask.dtype, device=mask.device) outer_border = dilation(mask, kernel).logical_xor(mask) outer_border = outer_border.any(dim=1, keepdim=True).repeat(1, 3, 1, 1) > 0 inner_border = erosion(mask, kernel).logical_xor(mask) inner_border = inner_border.any(dim=1, keepdim=True).repeat(1, 3, 1, 1) > 0 mask = (mask == 0).any(dim=1, keepdim=True).repeat(1, 3, 1, 1) color = torch.tensor(color).to(im.device).byte().view(1, 3, 1, 1)#.repeat(1, *im.shape[1:]) color = color.repeat(im.shape[0], 1, *im.shape[-2:]) im[mask] = (im[mask] * (1-t) + t * color[mask]).byte() im[outer_border] = 255 im[inner_border] = 0 return im
45d12dbc695755f0231ca2a8d0f8d1cdf2f423ff
3,651,127
def view_about(): """ shows the about page :return: :rtype: """ return render_template('about.html', title="About Flask AWS Template")
a364842c165864aba34605f3ffdd8c1d412015e8
3,651,128
import numpy def viterbi(observed_values, transition_probabilities, emission_probabilities, initial_distribution, file_name, log=True): """Calculates the viterbi-path for a given hidden-markov-model, heavily inspired by Abhisek Janas Blogpost "Implement Viterbi Algorithm in Hidden Markov Model using Python and R" at February 21, 2019. The Blog as well as the original source-code can be found under http://www.adeveloperdiary.com/data-science/machine-learning/implement-viterbi-algorithm-in-hidden-markov-model-using-python-and-r/ #noqa Args: observed_values (np.array): visible part of the hidden-markov-model transition_probabilities (np.array): transition probabilities for the hidden part of the hidden-markov-model emission_probabilities (np.array): transition probabilities for the visible part of the hidden-markov-model initial_distribution (np.array): probabilities for the initial status log (bool) = True: The results are calculated using the logarithmic projection Returns: (np.array): the viterbi-path for the given hidden-markov-model """ # Amount of steps epochs = observed_values.shape[0] # Amount of states states = transition_probabilities.shape[0] # Hightest probability to end in specific state omega = numpy.zeros((epochs, states), dtype=numpy.longdouble) prev = numpy.zeros((epochs - 1, states), dtype=numpy.longdouble) # Two Dimensional Array, which holds all forward probability for every # state and epoch forward_probs = numpy.zeros((epochs, states), dtype=numpy.longdouble) # Two Dimensional Array, which holds all backword probability for every # state and epoch backward_probs = numpy.zeros((epochs, states), dtype=numpy.longdouble) # Since we start at the pack of the list we need to init it with a one, # instead of a zero backward_probs[epochs - 1] = numpy.ones((states)) # Two Dimensional Array, which holds all posteriori probability for every # state and epoch posteriori_probs = numpy.zeros((epochs, states), dtype=numpy.longdouble) # Calculation of the probability for the observed initial state if log: omega[0, :] = numpy.log(initial_distribution * emission_probabilities[:, observed_values[0]-1]) #noqa else: omega[0, :] = initial_distribution * emission_probabilities[:, observed_values[0]-1] #noqa forward_probs[0, :] = initial_distribution * emission_probabilities[:, observed_values[0]-1] #noqa for epoch in range(1, epochs): for state in range(1, -1, -1): # Calculate the probability of obtaining the observed value for # each possible transition. if log: probability = omega[epoch - 1] + \ numpy.log(transition_probabilities[:, state]) + \ numpy.log(emission_probabilities[state, observed_values[epoch]-1]) #noqa else: probability = omega[epoch - 1] * \ transition_probabilities[:, state] * \ emission_probabilities[state, observed_values[epoch]-1] # This is our most probable state given previous state at epoch prev[epoch - 1, state] = numpy.argmax(probability) # save probability of the most probable state omega[epoch, state] = numpy.max(probability) # Calculate forward probability's for Posteriori-Decoding # The sum of the equations is calculated with matrix # multiplication(.dot), since that way a generice implementation # is provided! if not log: forward_probs[epoch, state] = emission_probabilities[state, observed_values[epoch]-1] * forward_probs[epoch - 1].dot(transition_probabilities[:, state]) #noqa # Path Array path = numpy.zeros(epochs) # Find the most probable last hidden state last_state = numpy.argmax(omega[epochs - 1, :]).astype(int) # Start building the path path[0] = last_state # Start backtracking backtrack_index = 1 for i in range(epochs - 2, -1, -1): # Calculate the next hidden state based on its successor next_hidden = prev[i, last_state] # Add state to the path path[backtrack_index] = next_hidden # Save state for the next backtracking step last_state = next_hidden.astype(int) backtrack_index += 1 # Posteriori-Decoding, calculate backward probability's. # The sum of the equations is calculated with matrix # multiplication(.dot), since that way a generice implementation is # provided! # The results are at this point in the reversed order, since we started # do calculate them from the end! if not log: for state in range(states): backward_probs[i, state] = (backward_probs[i+1]*emission_probabilities[:, observed_values[i]-1]).dot(transition_probabilities[state, :]) #noqa # Flip the path array since we were backtracking path = numpy.flip(path, axis=0) # Convert numeric values to actual hidden states result = "" for element in path: if element == 0: result = result + "F" else: result = result + "L" # Posteriori-Decoding, calculate posteriori probability's. if not log: # Flip the backward probability's to provide the probability's in # the correct order backward_probs = numpy.flip(backward_probs, axis=0) increase = 1 for i in range(epochs): # A counter to manage the constant multiplication used if(i % 20 == 0): # increase the multiplication factor increase *= numpy.longdouble(10**5) # Calculate the posteriori probability based on the given algorithm posteriori_probs[i, :] = ((forward_probs[i, :]*increase) * (backward_probs[i, :]*increase)) / (numpy.max(omega[epochs-1, :])*increase) #noqa # Remove the constant factor and override the current posteriori # probability, to give a correct value posteriori_probs[i, :] = posteriori_probs[i, :] / increase numpy.savetxt("results\\posteriori-decoding"+file_name, posteriori_probs) #noqa dirName = "results\\viterbi-Path"+file_name text_file = open(dirName, "w") text_file.write(result) text_file.close() return result
b063e5c5bbf566afb0f16175d9d229bef7a953f1
3,651,129
def extract_psf_fitting_names(psf): """ Determine the names of the x coordinate, y coordinate, and flux from a model. Returns (xname, yname, fluxname) """ if hasattr(psf, 'xname'): xname = psf.xname elif 'x_0' in psf.param_names: xname = 'x_0' else: raise ValueError('Could not determine x coordinate name for ' 'psf_photometry.') if hasattr(psf, 'yname'): yname = psf.yname elif 'y_0' in psf.param_names: yname = 'y_0' else: raise ValueError('Could not determine y coordinate name for ' 'psf_photometry.') if hasattr(psf, 'fluxname'): fluxname = psf.fluxname elif 'flux' in psf.param_names: fluxname = 'flux' else: raise ValueError('Could not determine flux name for psf_photometry.') return xname, yname, fluxname
cee108dd1f97e506b60ba621c7f08efa7b5c33d7
3,651,130
def parseargs(p): """ Add arguments and `func` to `p`. :param p: ArgumentParser :return: ArgumentParser """ # TODO: Implement --date, --time and -t p.set_defaults(func=func) p.description = ( "Update the access and modification times of each " + "FILE to the current time. A FILE argument that does " + "not exist is created empty. A FILE argument string " + "of - is handled specially and causes touch to" ) p.add_argument('FILE', nargs='*') p.add_argument( "-a", action="store_true", dest="accessonly", help="change only the access time" ) p.add_argument( "-c", "--no-create", action="store_true", dest="nocreate", help="do not create any files", ) p.add_argument( "-f", action="store_true", dest="thisoptionshouldbeignored", help="(ignored)" ) p.add_argument( "-m", action="store_true", dest="modonly", help="change only the modification time", ) p.add_argument( "-r", "--reference", dest="reference", help="use this file's times instead of current time", ) return p
b6689761da04ebf3ac7e1b9682b4291c5dd4e9c1
3,651,131
def config_check_conformance(cookie, dn): """ Auto-generated UCS XML API Method. """ method = ExternalMethod("ConfigCheckConformance") method.cookie = cookie method.dn = dn xml_request = method.to_xml(option=WriteXmlOption.DIRTY) return xml_request
598fbd665dcf18a35104400bf7debfc64347c3b5
3,651,132
def get_dist_to_port(geotiff): """ Extract "truth" dist_to_port from geotiff """ with Geotiff(geotiff) as tif: dist_to_port = tif.values return dist_to_port
1a77c2ac905eea2d1796529297168dac394b4bdb
3,651,133
import inspect def build_dataset_exporter( dataset_type, strip_none=True, warn_unused=True, **kwargs ): """Builds the :class:`DatasetExporter` instance for the given parameters. Args: dataset_type: the :class:`fiftyone.types.dataset_types.Dataset` type strip_none (True): whether to exclude None-valued items from ``kwargs`` warn_unused (True): whether to issue warnings for any non-None unused parameters encountered **kwargs: keyword arguments to pass to the dataset exporter's constructor via ``DatasetExporter(**kwargs)`` Returns: a tuple of: - the :class:`DatasetExporter` instance - a dict of unused keyword arguments """ if dataset_type is None: raise ValueError( "You must provide a `dataset_type` in order to build a dataset " "exporter" ) if inspect.isclass(dataset_type): dataset_type = dataset_type() dataset_exporter_cls = dataset_type.get_dataset_exporter_cls() if strip_none: kwargs = {k: v for k, v in kwargs.items() if v is not None} kwargs, unused_kwargs = fou.extract_kwargs_for_class( dataset_exporter_cls, kwargs ) try: dataset_exporter = dataset_exporter_cls(**kwargs) except Exception as e: raise ValueError( "Failed to construct exporter of type %s using the provided " "parameters. See above for the error. You may need to supply " "additional mandatory arguments. Please consult the documentation " "of %s to learn more" % (dataset_exporter_cls, dataset_exporter_cls) ) from e if warn_unused: for key, value in unused_kwargs.items(): if value is not None: logger.warning( "Ignoring unsupported parameter '%s' for exporter type %s", key, dataset_exporter_cls, ) return dataset_exporter, unused_kwargs
6a21c90ee2a9c297ad86515f5078221459b1fb01
3,651,134
def conditions(x): """ This function will check whether the constraints that apply to our optimization are met or not. """ if ( (10/x[0]) > 66.0 ): return False elif ( (10/x[0] + 12/x[1]) > 88.0 ): return False elif ( (10/x[0] + 12/x[1] + 7/x[2]) > 107.0 ): return False elif ( (10/x[0] + 12/x[1] + 7/x[2] + 14/x[3]) > 128.0 ): return False elif ( (10/x[0] + 12/x[1] + 7/x[2] + 14/x[3] + 15/x[4]) > 157.0 ): return False elif ( (10/x[0] + 12/x[1] + 7/x[2] + 14/x[3] + 15/x[4] + 20/x[5]) > 192.0 ): return False elif ( (10/x[0] + 12/x[1] + 7/x[2] + 14/x[3] + 15/x[4] + 20/x[5] + 10/x[6]) > 222.0 ): return False elif ( (10/x[0] + 12/x[1] + 7/x[2] + 14/x[3] + 15/x[4] + 20/x[5] + 10/x[6] + 10/x[7]) > 242.0 ): return False elif ( (10/x[0] + 12/x[1] + 7/x[2] + 14/x[3] + 15/x[4] + 20/x[5] + 10/x[6] + 10/x[7] + 16/x[8]) > 268.0 ): return False elif ( (10/x[0] + 12/x[1] + 7/x[2] + 14/x[3] + 15/x[4] + 20/x[5] + 10/x[6] + 10/x[7] + 16/x[8] + 8/x[9]) > 292.0 ): return False return True
263fdc3fd07aa656982401f71071fcd684b8625f
3,651,135
import scipy from typing import Mapping from typing import OrderedDict import logging def load_reco_param(source): """Load reco parameterisation (energy-dependent) from file or dictionary. Parameters ---------- source : string or mapping Source of the parameterization. If string, treat as file path or resource location and load from the file; this must yield a mapping. If `source` is a mapping, it is used directly. See notes below on format. Returns ------- reco_params : OrderedDict Keys are stringified flavintgroups and values are dicts of strings representing the different reco dimensions and lists of distribution properties. These latter have a 'fraction', a 'dist' and a 'kwargs' key. The former two hold callables, while the latter holds a dict of key-callable pairs ('loc', 'scale'), which can be evaluated at the desired energies and passed into the respective `scipy.stats` distribution. The distributions for a given dimension will be superimposed according to their relative weights to form the reco kernels (via integration) when called with energy values (parameterisations are functions of energy only!). Notes ----- The mapping passed via `source` or loaded therefrom must have the format: { <flavintgroup_string>: { <dimension_string>:[ { "dist": dist_id, "fraction": val, "kwargs": { "loc": val, "scale": val, ... } }, ... ] }, <flavintgroup_string>: ... } `flavintgroup_string`s must be parsable by pisa.utils.flavInt.NuFlavIntGroup. Note that the `transform_groups` defined in a pipeline config file using this must match the groupings defined above. `dimension_string`s denote the observables/dimensions whose reco error distribution is parameterised (`"energy"` or `"coszen"`). `dist_id` needs to be a string identifying a probability distribution/statistical function provided by `scipy.stats`. No implicit assumptions about the distribution will be made if the `"dist"` key is missing. `"fraction"` holds the relative weight of the distribution. For a given dimension, the sum of all fractions present must be 1. Valid kwargs for distributions must at least include `"loc"` and `"scale"` - these will be passed into the respective `scipy.stats` function. `val`s can be one of the following: - Callable with one argument - String such that `eval(val)` yields a callable with one argument """ if not (source is None or isinstance(source, (basestring, Mapping))): raise TypeError('`source` must be string, mapping, or None') if isinstance(source, basestring): orig_dict = from_file(source) elif isinstance(source, Mapping): orig_dict = source else: raise TypeError('Cannot load reco parameterizations from a %s' % type(source)) valid_dimensions = ('coszen', 'energy') required_keys = ('dist', 'fraction', 'kwargs') # Build dict of parameterizations (each a callable) per flavintgroup reco_params = OrderedDict() for flavint_key, dim_dict in orig_dict.iteritems(): flavintgroup = NuFlavIntGroup(flavint_key) reco_params[flavintgroup] = {} for dimension in dim_dict.iterkeys(): dim_dist_list = [] if not isinstance(dimension, basestring): raise TypeError("The dimension needs to be given as a string!" " Allowed: %s."%valid_dimensions) if dimension not in valid_dimensions: raise ValueError("Dimension '%s' not recognised!"%dimension) for dist_dict in dim_dict[dimension]: dist_spec_dict = {} # allow reading in even if kwargs not present - computation of # transform will fail because "loc" and "scale" hard-coded # requirement for required in required_keys: if required not in dist_dict: raise ValueError("Found distribution property dict " "without required '%s' key for " "%s - %s!" %(required, flavintgroup, dimension)) for k in dist_dict.iterkeys(): if k not in required_keys: logging.warn("Unrecognised key in distribution" " property dict: '%s'"%k) dist_spec = dist_dict['dist'] if not isinstance(dist_spec, basestring): raise TypeError(" The resolution function needs to be" " given as a string!") if not dist_spec: raise ValueError("Empty string found for resolution" " function!") try: dist = getattr(stats, dist_spec.lower()) except AttributeError: try: sp_ver_str = scipy.__version__ except: sp_ver_str = "N/A" raise AttributeError("'%s' is not a valid distribution" " from scipy.stats (your scipy" " version: '%s')." %(dist_spec.lower(), sp_ver_str)) logging.debug("Found %s - %s resolution function: '%s'" %(flavintgroup, dimension, dist.name)) dist_spec_dict['dist'] = dist frac = dist_dict['fraction'] if isinstance(frac, basestring): frac_func = eval(frac) elif callable(frac): frac_func = frac else: raise TypeError( "Expected 'fraction' to be either a string" " that can be interpreted by eval or a callable." " Got '%s'." % type(frac) ) dist_spec_dict['fraction'] = frac_func kwargs = dist_dict['kwargs'] if not isinstance(kwargs, dict): raise TypeError( "'kwargs' must hold a dictionary. Got '%s' instead." % type(kwargs) ) dist_spec_dict['kwargs'] = kwargs for kwarg, kwarg_spec in kwargs.iteritems(): if isinstance(kwarg_spec, basestring): kwarg_eval = eval(kwarg_spec) elif callable(kwarg_spec) or isscalar(kwarg_spec): kwarg_eval = kwarg_spec else: raise TypeError( "Expected kwarg '%s' spec to be either a string" " that can be interpreted by eval, a callable or" " a scalar. Got '%s'." % type(kwarg_spec) ) dist_spec_dict['kwargs'][kwarg] = kwarg_eval dim_dist_list.append(dist_spec_dict) reco_params[flavintgroup][dimension] = dim_dist_list return reco_params
9d707f3403e0225223b6fe081158d31476b8281c
3,651,136
def get_commit_ancestors_graph(refenv, starting_commit): """returns a DAG of all commits starting at some hash pointing to the repo root. Parameters ---------- refenv : lmdb.Environment lmdb environment where the commit refs are stored starting_commit : string commit hash to start creating the DAG from Returns ------- dict a dictionary where each key is a commit hash encountered along the way, and it's value is a list containing either one or two elements which identify the child commits of that parent hash. """ parent_commit = starting_commit commit_graph = {} seen = set(starting_commit) more_work = [] end_commit = False if parent_commit == '': end_commit = True while end_commit is not True: childCommit = get_commit_ancestors(refenv, parent_commit) if ((childCommit.master_ancestor == '') or (childCommit.master_ancestor in seen)): end_commit = True commit_graph[parent_commit] = [childCommit.master_ancestor] if len(more_work) != 0: master_commit = more_work.pop(0) end_commit = False else: continue elif childCommit.is_merge_commit is True: master_commit = childCommit.master_ancestor dev_commit = childCommit.dev_ancestor more_work.append(dev_commit) commit_graph[parent_commit] = [master_commit, dev_commit] seen.add(master_commit) seen.add(dev_commit) else: master_commit = childCommit.master_ancestor commit_graph[parent_commit] = [master_commit] seen.add(master_commit) parent_commit = master_commit return commit_graph
078819cf0291a5e4e1e8ad4ea409f475c0df93fd
3,651,137
def is_verification_handshake(rjson): """ Determines if the request is the Slack application APIs verification handshake :rtype: bool """ # Check body contains the right keys for x in ['token', 'challenge', 'type']: if x not in rjson: return False # Check type is correct if rjson['type'] != "url_verification": return False # Note: no need to check the token, we check the request is signed # before this code is ever run. # It's a verification request log.info("Received URL verification handshake request") return True
1ceccd9ca578bd09e9629cd59e565bc523502030
3,651,138
def template_node(scope_key): """ Create and return a new template node. Parameters ---------- scope_key : object The key for the local scope in the local storage maps. Returns ------- result : TemplateNode A new compiler template node. """ node = TemplateNode() node.scope_key = scope_key return node
4cd9721dd9f9f91cb84326391630274b8f5764a7
3,651,139
def GetAutoResult(chroot_path, buildbucket_id): """Returns the conversion of the result of 'cros buildresult'.""" # Calls 'cros buildresult' to get the status of the tryjob. build_result = GetStatusFromCrosBuildResult(chroot_path, buildbucket_id) # The string returned by 'cros buildresult' might not be in the mapping. if build_result not in builder_status_mapping: raise ValueError( '"cros buildresult" return value is invalid: %s' % build_result) return builder_status_mapping[build_result]
705fbc011c11fa67d0b61f130a3b6f024a6dcd44
3,651,140
def rft(x): """ Real Fourier Transform """ # XXX figure out what exactly this is doing... s = x.shape[-1] xp = np.zeros(x.shape,dtype="complex64") xp[...,1:s/2] = x[...,1:-1:2]+x[...,2::2]*1.j xp[...,0] = x[...,0]/2. xp[...,s/2] = x[...,-1]/2. return np.array(nmr_reorder(np.fft.fft(2*xp,axis=-1).real),dtype="float32")
3a65f0a0059df4c74b223f3284e996b82d7ebf02
3,651,141
def yam_path(manifestsdir): """Bundletracker manifest.""" return join(manifestsdir, 'yam.json')
5d1b5162bd8285d8e33c822a3b5edcc996452719
3,651,142
def single_from(iterable): """Check that an iterable contains one unique value, and return it.""" unique_vals = set(iterable) if len(unique_vals) != 1: raise ValueError('multiple unique values found') return unique_vals.pop()
c8fb8864083195ad913ff1ddf0114b5a50068902
3,651,143
import requests def vthash(filehash: str): """Returns the analysis data class for a file in VirusTotal's database""" endpoint_path = f'/files/{filehash}' endpoint = f"{api_base_url}{endpoint_path}" r = requests.get(endpoint, headers=header) if r.status_code == 404 and r.json()['error']['code'] == 'NotFoundError': return None elif r.status_code == 200: return analysisdata(r)
bf4f334ad7a35e1141f9e00a44544fdd0709b411
3,651,144
def prod(x, axis=None, keepdims=False): """ product of all element in the array Parameters ---------- x : tensor_like input array axis : int, tuple of ints axis or axes along which a product is performed keepdims : bool keep dimensionality or not Returns ------- product : tensor_like product of all element """ return Product(axis=axis, keepdims=keepdims).forward(x)
8962e7b6abd16c9354f076c0c6d718b82fe44223
3,651,145
from typing import List import difflib def menu(queue: List[str] = None): """Fred Menu""" fred_controller = FredController(queue) an_input = "HELP_ME" while True: # There is a command in the queue if fred_controller.queue and len(fred_controller.queue) > 0: # If the command is quitting the menu we want to return in here if fred_controller.queue[0] in ("q", "..", "quit"): print("") if len(fred_controller.queue) > 1: return fred_controller.queue[1:] return [] # Consume 1 element from the queue an_input = fred_controller.queue[0] fred_controller.queue = fred_controller.queue[1:] # Print the current location because this was an instruction and we want user to know what was the action if an_input and an_input.split(" ")[0] in fred_controller.CHOICES_COMMANDS: print(f"{get_flair()} /economy/fred/ $ {an_input}") # Get input command from user else: # Display help menu when entering on this menu from a level above if an_input == "HELP_ME": fred_controller.print_help() # Get input from user using auto-completion if session and gtff.USE_PROMPT_TOOLKIT and fred_controller.completer: an_input = session.prompt( f"{get_flair()} /economy/fred/ $ ", completer=fred_controller.completer, search_ignore_case=True, ) # Get input from user without auto-completion else: an_input = input(f"{get_flair()} /economy/fred/ $ ") try: # Process the input command fred_controller.queue = fred_controller.switch(an_input) except SystemExit: print( f"\nThe command '{an_input}' doesn't exist on the /economy/fred menu.", end="", ) similar_cmd = difflib.get_close_matches( an_input.split(" ")[0] if " " in an_input else an_input, fred_controller.CHOICES, n=1, cutoff=0.7, ) if similar_cmd: if " " in an_input: candidate_input = ( f"{similar_cmd[0]} {' '.join(an_input.split(' ')[1:])}" ) if candidate_input == an_input: an_input = "" fred_controller.queue = [] print("\n") continue an_input = candidate_input else: an_input = similar_cmd[0] print(f" Replacing by '{an_input}'.") fred_controller.queue.insert(0, an_input) else: print("\n")
b8133dd748f0a48099359b6503edee6c9f875fb6
3,651,146
def generic_repr(name, obj, deferred): """ Generic pretty printer for NDTable and NDArray. Output is of the form:: Array(3, int32) values := [Numpy(ptr=60597776, dtype=int64, shape=(3,))]; metadata := [contigious] layout := Identity; [1 2 3] """ if deferred: if _show_details: header = "%s\n" % (name) header += " datashape := %s \n" % str(obj._datashape) header += " metadata := %s \n" % obj._metadata else: header = '' else: if _show_details: header = "%s\n" % (name) header += " datashape := %s \n" % str(obj._datashape) header += " values := %s \n" % list(obj.space) header += " metadata := %s \n" % obj._metadata header += " layout := %s \n" % obj._layout.desc else: header = '' # Show the data below fullrepr = header + generic_str(obj, deferred) return fullrepr
c9de29b792d943420b02455752f01a9c12fcf66c
3,651,147
def build_model(X, y, ann_hidden_dim, num_passes=20000): """ :param ann_hidden_dim: Number of nodes in the hidden layer :param num_passes: Number of passes through the training data for gradient descent :return: returns the parameters of artificial neural network for prediction using forward propagation of the parameters """ model = {} # Initialize the parameters to random values. np.random.seed(0) w1 = np.random.randn(ann_input_dim, ann_hidden_dim) / np.sqrt(ann_input_dim) c1 = np.zeros((1, ann_hidden_dim)) w2 = np.random.randn(ann_hidden_dim, ann_output_dim) / np.sqrt(ann_hidden_dim) c2 = np.zeros((1, ann_output_dim)) # Batch gradient descent for i in range(0, num_passes): # Forward propagation z1 = X.dot(w1) + c1 a1 = np.tanh(z1) z2 = a1.dot(w2) + c2 exp_scores = np.exp(z2) probs = exp_scores / np.sum(exp_scores, axis=1, keepdims=True) # Back propagation delta3 = probs delta3[range(len(X)), y] -= 1 dw2 = (a1.T).dot(delta3) dc2 = np.sum(delta3, axis=0, keepdims=True) delta2 = delta3.dot(w2.T) * (1 - np.power(a1, 2)) dw1 = np.dot(X.T, delta2) dc1 = np.sum(delta2, axis=0) # Add regularization terms (c1 and c2 don't have regularization terms) dw2 += REG_LAMBDA * w2 dw1 += REG_LAMBDA * w1 # Gradient descent parameter update w1 += -EPSILON * dw1 c1 += -EPSILON * dc1 w2 += -EPSILON * dw2 c2 += -EPSILON * dc2 # Assign new parameters to the model model = {'w1': w1, 'c1': c1, 'w2': w2, 'c2': c2} return model
bccdf828050af8a6ff5943eb84b574756f9f54ab
3,651,148
def g_square_dis(dm, x, y, s): """G square test for discrete data. Args: dm: the data matrix to be used (as a numpy.ndarray). x: the first node (as an integer). y: the second node (as an integer). s: the set of neibouring nodes of x and y (as a set()). levels: levels of each column in the data matrix (as a list()). Returns: p_val: the p-value of conditional independence. """ levels = np.amax(dm, axis=0) + 1 def _calculate_tlog(x, y, s, dof, levels, dm): prod_levels = np.prod(list(map(lambda x: levels[x], s))) nijk = np.zeros((levels[x], levels[y], prod_levels)) s_size = len(s) z = [] for z_index in range(s_size): z.append(s.pop()) pass for row_index in range(dm.shape[0]): i = dm[row_index, x] j = dm[row_index, y] k = [] k_index = 0 for s_index in range(s_size): if s_index == 0: k_index += dm[row_index, z[s_index]] else: lprod = np.prod(list(map(lambda x: levels[x], z[:s_index]))) k_index += (dm[row_index, z[s_index]] * lprod) pass pass nijk[i, j, k_index] += 1 pass nik = np.ndarray((levels[x], prod_levels)) njk = np.ndarray((levels[y], prod_levels)) for k_index in range(prod_levels): nik[:, k_index] = nijk[:, :, k_index].sum(axis = 1) njk[:, k_index] = nijk[:, :, k_index].sum(axis = 0) pass nk = njk.sum(axis = 0) tlog = np.zeros((levels[x], levels[y], prod_levels)) tlog.fill(np.nan) for k in range(prod_levels): tx = np.array([nik[:, k]]).T ty = np.array([njk[:, k]]) tdijk = tx.dot(ty) tlog[:, :, k] = nijk[:, :, k] * nk[k] / tdijk pass return (nijk, tlog) row_size = dm.shape[0] s_size = len(s) dof = ((levels[x] - 1) * (levels[y] - 1) * np.prod(list(map(lambda x: levels[x], s)))) row_size_required = 10 * dof nijk = None if s_size < 5: if s_size == 0: nijk = np.zeros((levels[x], levels[y])) for row_index in range(row_size): i = dm[row_index, x] j = dm[row_index, y] nijk[i, j] += 1 pass tx = np.array([nijk.sum(axis = 1)]).T ty = np.array([nijk.sum(axis = 0)]) tdij = tx.dot(ty) tlog = nijk * row_size / tdij pass if s_size > 0: nijk, tlog = _calculate_tlog(x, y, s, dof, levels, dm) pass pass else: nijk = np.zeros((levels[x], levels[y], 1)) i = dm[0, x] j = dm[0, y] k = [] for z in s: k.append(dm[:, z]) pass k = np.array(k).T parents_count = 1 parents_val = np.array([k[0, :]]) nijk[i, j, parents_count - 1] = 1 for it_sample in range(1, row_size): is_new = True i = dm[it_sample, x] j = dm[it_sample, y] tcomp = parents_val[:parents_count, :] == k[it_sample, :] for it_parents in range(parents_count): if np.all(tcomp[it_parents, :]): nijk[i, j, it_parents] += 1 is_new = False break pass if is_new is True: parents_count += 1 parents_val = np.r_[parents_val, [k[it_sample, :]]] nnijk = np.zeros((levels[x], levels[y], parents_count)) for p in range(parents_count - 1): nnijk[:, :, p] = nijk[:, :, p] pass nnijk[i, j, parents_count - 1] = 1 nijk = nnijk pass pass nik = np.ndarray((levels[x], parents_count)) njk = np.ndarray((levels[y], parents_count)) for k_index in range(parents_count): nik[:, k_index] = nijk[:, :, k_index].sum(axis = 1) njk[:, k_index] = nijk[:, :, k_index].sum(axis = 0) pass nk = njk.sum(axis = 0) tlog = np.zeros((levels[x], levels[y], parents_count)) tlog.fill(np.nan) for k in range(parents_count): tx = np.array([nik[:, k]]).T ty = np.array([njk[:, k]]) tdijk = tx.dot(ty) tlog[:, :, k] = nijk[:, :, k] * nk[k] / tdijk pass pass log_tlog = np.log(tlog) G2 = np.nansum(2 * nijk * log_tlog) if dof == 0: p_val = 1 else: p_val = chi2.sf(G2, dof) if s_size == 0: nijk = nijk.reshape((nijk.shape[0], nijk.shape[1], 1)) log_tlog = log_tlog.reshape((log_tlog.shape[0], log_tlog.shape[1], 1)) return G2, p_val, nijk, log_tlog
2f0f0b44a919177c0f5775a34e0493c62720a21d
3,651,149
def start(name): """ Start the specified service CLI Example: .. code-block:: bash salt '*' service.start <service name> """ cmd = "/usr/sbin/svcadm enable -s -t {0}".format(name) retcode = __salt__["cmd.retcode"](cmd, python_shell=False) if not retcode: return True if retcode == 3: # Return code 3 means there was a problem with the service # A common case is being in the 'maintenance' state # Attempt a clear and try one more time clear_cmd = "/usr/sbin/svcadm clear {0}".format(name) __salt__["cmd.retcode"](clear_cmd, python_shell=False) return not __salt__["cmd.retcode"](cmd, python_shell=False) return False
607b559281c6b13002d7237b8c4409533074d0bc
3,651,150
from typing import Dict def line_coloring(num_vertices) -> Dict: """ Creates an edge coloring of the line graph, corresponding to the optimal line swap strategy, given as a dictionary where the keys correspond to the different colors and the values are lists of edges (where edges are specified as tuples). The graph coloring consists of one color for all even-numbered edges and one color for all odd-numbered edges. Args: num_vertices: The number of vertices in the line graph Returns: Graph coloring as a dictionary of edge lists """ line_coloring = {} for i in range(num_vertices - 1): line_coloring[(i, i + 1)] = i % 2 line_coloring[(i + 1, i)] = i % 2 return line_coloring
423e626ecbf4f48e0a192241375484a077fbe0b2
3,651,151
def flatten_outputs(predictions, number_of_classes): """Flatten the prediction batch except the prediction dimensions""" logits_permuted = predictions.permute(0, 2, 3, 1) logits_permuted_cont = logits_permuted.contiguous() outputs_flatten = logits_permuted_cont.view(-1, number_of_classes) return outputs_flatten # outputs_flatten = torch.tensor(predictions
c58fb965443a5402e9bec32afaebe9376c74653f
3,651,152
def get_r_vals(cell_obj): """Get radial distances for inner and outer membranes for the cell object""" r_i = cell_obj.coords.calc_rc(cell_obj.data.data_dict['storm_inner']['x'], cell_obj.data.data_dict['storm_inner']['y']) r_o = cell_obj.coords.calc_rc(cell_obj.data.data_dict['storm_outer']['x'], cell_obj.data.data_dict['storm_outer']['y']) return r_i, r_o
d51c926791845006dfe9a97cbd9c82c041ea701b
3,651,153
def get_all_migrations(ctxt, inactive=0): """Get all non-deleted source hypervisors. Pass true as argument if you want deleted sources returned also. """ return db.migration_get_all(ctxt, inactive)
c8e8ae084ca42d560e79412e4ff56d79059055a6
3,651,154
def extract(input_data: str) -> tuple: """take input data and return the appropriate data structure""" rules = input_data.split('\n') graph = dict() reverse_graph = dict() for rule in rules: container, contents = rule.split('contain') container = ' '.join(container.split()[:2]) content_graph = dict() for content in contents.split(','): if content == " no other bags.": break parts = content.split() amount = int(parts[0]) color = ' '.join(parts[1:3]) content_graph[color] = amount if color in reverse_graph.keys(): reverse_graph[color].append(container) else: reverse_graph[color] = [container] graph[container] = content_graph return (graph, reverse_graph)
f71cdc23fdfaf6ef0d054c0c68e513db66289c12
3,651,155
def get_total_indemnity(date_of_joining, to_date): """To Calculate the total Indemnity of an employee based on employee's Joining date. Args: date_of_joining ([date]): Employee's Joining Date to_date ([data]): up until date Returns: total_allocation: Total Indemnity Allocation calculated from joining date till 'to_date'. """ #get no. of year and days employee has worked. total_working_year = relativedelta(to_date, date_of_joining ).years total_working_days = (to_date - date_of_joining).days #reason: Any no. of days after completing 5 years as different calculation. five_year_in_days = 5*365 # up until 5 years of working year, the monthly calculation takes "15 days" salary in to consideration. if total_working_year < 5 or (total_working_year == 5 and total_working_days == 5*365): #15 days salary is divided over a year and that becomes each day's allocation. return 15 / 365 * total_working_days elif total_working_year >= 5 and total_working_days > 5*365: #calculation takes 15 days salary for 5 years and 30 days salary after 5 years return (15 / 365 * five_year_in_days) + (30 / 365 * (total_working_days-five_year_in_days))
1b09d0dc7971ab4c3d63c303a93f64da924dcfa4
3,651,156
import os def run_species_phylogeny_iqtree(roary_folder, collection_dir, threads=8, overwrite=False, timing_log=None): """ Run iqtree to create phylogeny tree from core gene alignment. If the list of samples has not changed, and none of the samples has changed, the existing tree will be kept unless overwrite is set to True Parameters ---------- report: object A report object collection_dir: str working directory of the collection threads: int number of threads to use overwrite: bool whether to overwrite existing result even if input did not change timing_log: str file to log timing Returns report object ------- """ phylogeny_folder = os.path.join(collection_dir, 'phylogeny') if not os.path.exists(phylogeny_folder): os.makedirs(phylogeny_folder) #report['phylogeny'] = phylogeny_folder phylogeny_file = os.path.join(phylogeny_folder, 'core_gene_alignment.treefile') if os.path.isfile(phylogeny_file) and (not overwrite): logger.info('phylogeny tree exists and input has not changed, skip phylogeny analysis') return phylogeny_folder aln_file = os.path.join(phylogeny_folder, 'core_gene_alignment.aln.gz') if not os.path.isfile(aln_file): aln_file = os.path.join(report['roary'], 'core_gene_alignment.aln.gz') cmd = 'iqtree -s {alignment} --prefix {prefix} -B 1000 -T {threads} -czb -keep-ident'.format( alignment=aln_file, prefix=phylogeny_folder+'/core_gene_alignment', threads=threads) ret = run_command(cmd, timing_log) if ret != 0: raise Exception('iqtree fail to create phylogeny tree from core gene alignment!') return phylogeny_folder
a5a6cd8e77cc3622264f4827753a2260e38d9f70
3,651,157
def api_2_gamma_oil(value): """ converts density in API(American Petroleum Institute gravity) to gamma_oil (oil relative density by water) :param value: density in API(American Petroleum Institute gravity) :return: oil relative density by water """ return (value + 131.5) / 141.5
20e625f22092461fcf4bc2e2361525abf8051f97
3,651,158
def compute_metrics(pred, label): """Compute metrics like True/False Positive, True/False Negative.` MUST HAVE ONLY 2 CLASSES: BACKGROUND, OBJECT. Args: pred (numpy.ndarray): Prediction, one-hot encoded. Shape: [2, H, W], dtype: uint8 label (numpy.ndarray): Ground Truth, one-hot encoded. Shape: [H, W], dtype: uint8 Returns: float: IOU, TP, TN, FP, FN """ if len(pred.shape) > 3: raise ValueError("pred should have shape [2, H, W], got: {}".format(pred.shape)) if len(label.shape) > 2: raise ValueError("label should have shape [H, W], got: {}".format(label.shape)) total_pixels = pred.shape[0] * pred.shape[1] tp = np.sum(np.logical_and(pred == 1, label > 0)) tn = np.sum(np.logical_and(pred == 0, label == 0)) fp = np.sum(np.logical_and(pred == 1, label == 0)) fn = np.sum(np.logical_and(pred == 0, label > 0)) if (tp + tn + fp + fn) != total_pixels: raise ValueError('The number of total pixels ({}) and sum of tp,fp,tn,fn ({}) is not equal'.format( total_pixels, (tp + tn + fp + fn))) iou = tp / (tp + fp + fn) _tp = tp / np.sum(label == 1) tp_rate = (tp / (tp + fn)) * 100 fp_rate = (fp / (fp + tn)) * 100 tn_rate = (tn / (tn + fp)) * 100 fn_rate = (fn / (fn + tp)) * 100 return iou, tp_rate, tn_rate, fp_rate, fn_rate
be8415c997197c06a5998671ffe09e70c6d3719c
3,651,159
import jinja2 def expand_template(template, variables, imports, raw_imports=None): """Expand a template.""" if raw_imports is None: raw_imports = imports env = jinja2.Environment(loader=OneFileLoader(template)) template = env.get_template(template) return template.render(imports=imports, variables=variables, raw_imports=raw_imports)
c5ebe1610a6e2fa9e0b18afa7d23652c1f7c25ba
3,651,160
from typing import Any from operator import truth def __contains__(container: Any, item: Any, /) -> bool: """Check if the first item contains the second item: `b in a`.""" container_type = type(container) try: contains_method = debuiltins._mro_getattr(container_type, "__contains__") except AttributeError: # Cheating until `for` is unravelled (and thus iterators). return debuiltins.any(x is item or x == item for x in container) else: if contains_method is None: raise TypeError(f"{container_type.__name__!r} object is not a container") is_contained = contains_method(container, item) return truth(is_contained)
b58a5f400895df472f83a5e2410dff9cd112fc91
3,651,161
def generate_search_url(request_type): """Given a request type, generate a query URL for kitsu.io.""" url = BASE_URL_KITSUIO.format(request_type) return url
9508d909fb8eb018770b2191f7d62ccb3881f285
3,651,162
from typing import Callable def register_magic(func: Callable[[Expr], Expr]): """ Make a magic command more like Julia's macro system. Instead of using string, you can register a magic that uses Expr as the input and return a modified Expr. It is usually easier and safer to execute metaprogramming this way. Parameters ---------- func : Callable[[Expr], Expr] Function that will used as a magic command. Returns ------- Callable Registered function itself. Examples -------- .. code-block:: python @register_magic def print_code(expr): print(expr) return expr The ``print_code`` magic is registered as an ipython magic. .. code-block:: python %print_code a = 1 .. code-block:: python %%print_code def func(a): return a + 1 """ @register_line_cell_magic @needs_local_scope @wraps(func) def _ipy_magic(line: str, cell: str = None, local_ns=None): if cell is None: cell = line block = parse(cell) block_out = func(block) return block_out.eval(local_ns, local_ns) return func
06d93f8a48758dc39679af396c10a54927e3696e
3,651,163
import os def flowcellDirFastqToBwaBamFlow(self, taskPrefix="", dependencies=set()) : """ Takes as input 'flowcellFastqDir' pointing to the CASAVA 1.8 flowcell project/sample fastq directory structure. For each project/sample, the fastqs are aligned using BWA, sorted and merged into a single BAM file. The bam output is placed in a parallel project/sample directory structure below 'flowcellBamDir' params: samtoolsBin flowcellFastqDir flowcellBamDir calls: FastqPairToBwaBamFlow supplies: bamFile fastq1File fastq2File """ # # 1. separate fastqs into matching pairs: # fqs = {} fqDigger = FileDigger(".fastq.gz", ["Project_", "Sample_"]) for (project, sample, fqPath) in fqDigger.getNextFile(self.params.flowcellFastqDir) : if (self.params.sampleNameList != None) and \ (len(self.params.sampleNameList) != 0) and \ (sample not in self.params.sampleNameList) : continue fqFile = os.path.basename(fqPath) w = (fqFile.split(".")[0]).split("_") if len(w) != 5 : raise Exception("Unexpected fastq filename format: '%s'" % (fqPath)) (sample2, index, lane, read, num) = w if sample != sample2 : raise Exception("Fastq name sample disagrees with directory sample: '%s;" % (fqPath)) key = (project, sample, index, lane, num) if key not in fqs : fqs[key] = [None, None] readNo = int(read[1]) if fqs[key][readNo - 1] != None : raise Exceptoin("Unresolvable repeated fastq file pattern in sample: '%s'" % (fqPath)) fqs[key][readNo - 1] = fqPath ensureDir(self.params.flowcellBamDir) # # 2. run all fastq pairs through BWA: # nextWait = set() for key in fqs.keys() : (project, sample, index, lane, num) = key sampleBamDir = os.path.join(self.params.flowcellBamDir, "Project_" + project, "Sample_" + sample) ensureDir(sampleBamDir) keytag = "_".join(key) self.params.bamFile = os.path.join(sampleBamDir, keytag + ".bam") self.params.fastq1File = fqs[key][0] self.params.fastq2File = fqs[key][1] nextWait.add(self.addWorkflowTask(preJoin(taskPrefix, keytag), FastqPairToBwaBamFlow(self.params), dependencies=dependencies)) return nextWait
6f18083fc2c9e4a260e87c332d40d9322f2c7bc1
3,651,164
def ValidatePregnum(resp): """Validate pregnum in the respondent file. resp: respondent DataFrame """ # read the pregnancy frame preg = nsfg.ReadFemPreg() # make the map from caseid to list of pregnancy indices preg_map = nsfg.MakePregMap(preg) # iterate through the respondent pregnum series for index, pregnum in resp.pregnum.items(): caseid = resp.caseid[index] indices = preg_map[caseid] # check that pregnum from the respondent file equals # the number of records in the pregnancy file if len(indices) != pregnum: print(caseid, len(indices), pregnum) return False return True
a51f3af130cbad4a5cd3d3c9707788f783302000
3,651,165
def is_super_admin(view, view_args, view_kwargs, *args, **kwargs): """ Permission function for things allowed exclusively to super admin. Do not use this if the resource is also accessible by a normal admin, use the is_admin decorator instead. :return: """ user = current_user if not user.is_super_admin: return ForbiddenError({'source': ''}, 'Super admin access is required').respond() return view(*view_args, **view_kwargs)
503550fcd52e62053d42a3059aba298009d3eb01
3,651,166
def normalize_depth(val, min_v, max_v): """ print 'nomalized depth value' nomalize values to 0-255 & close distance value has high value. (similar to stereo vision's disparity map) """ return (((max_v - val) / (max_v - min_v)) * 255).astype(np.uint8)
431cda7af30ef1127c60069b6958ef4d8234eaae
3,651,167
def parse_iori_block(block): """Turn IORI data blocks into `IoriData` objects. Convert rotation from Quaternion format to Euler angles. Parameters ---------- block: list of KVLItem A list of KVLItem corresponding to a IORI data block. Returns ------- iori_data: IoriData A IoriData object holding the IORI information of a block. """ block_dict = { s.key: s for s in block } data = block_dict['IORI'].value * 1.0 / block_dict["SCAL"].value rotation = np.array([R.from_quat(q).as_euler('zyx', degrees=True) for q in data]) z, y, x = rotation.T return IoriData( cts = block_dict['STMP'].value, z = z, y = y, x = x, )
b9ad59677e51c30b2bec51a0503fc2718cde0f7d
3,651,168
def ungap_all(align): """ Removes all gaps (``-`` symbols) from all sequences of the :class:`~data.Align` instance *align* and returns the resulting ~data.Container instance. """ result = data.Container() for n,s,g in align: result.append(n, s.translate(None, '-'), g) return result
511b6aeb7fc262b733a97b5180a23c7f044fea06
3,651,169
def expandBcv(bcv): """If the bcv is an interval, expand if. """ if len(bcv) == 6: return bcv else: return "-".join(splitBcv(bcv))
abfb1bf31acca579fecb526d571b32cefa7ecd61
3,651,170
import os def get_starting_dir_abs_path() -> str: """ Returns the absolute path to the starting directory of the project. Starting directory is used for example for turning relative paths (from Settings) into absolute paths (those paths are relative to the starting directory). """ if _starting_dir is None: dir_path = os.getenv("QF_STARTING_DIRECTORY") if dir_path is None: raise KeyError("Starting directory wasn't set. Use set_starting_dir_abs_path() function " "or set the environment variable QF_STARTING_DIRECTORY to the proper value") else: return dir_path else: return _starting_dir
af91f10a2dd9af8ba010f75fe295acb2406e9372
3,651,171
def cluster_profile_platform(cluster_profile): """Translate from steps.cluster_profile to workflow.as slugs.""" if cluster_profile == 'azure4': return 'azure' if cluster_profile == 'packet': return 'metal' return cluster_profile
0a01f566562002fe43c3acbb00d5efcc09d25314
3,651,172
def get_price_lambda_star_lp_1_cvxpy(w: np.ndarray, c_plus: np.ndarray, psi_plus: np.ndarray) \ -> float: """ Computes lambda_star based on dual program of the projection of w_star. :param w: current state in workload space. :param c_plus: vector normal to the level set in the monotone region 'right above' the face. :param psi_plus: vector normal to the closest face. :return: lambda_star: price of random oscillations along the closest face. """ assert not StrategicIdlingHedging._is_w_inside_artificial_monotone_region(w, psi_plus) num_wl = w.shape[0] lambda_var = cvx.Variable(1) v_dagger_var = cvx.Variable((num_wl, 1)) objective = cvx.Maximize(v_dagger_var.T @ w) constraints = [c_plus - v_dagger_var - lambda_var * psi_plus == 0, v_dagger_var >= 0] prob = cvx.Problem(objective, constraints) _ = prob.solve(solver=cvx.SCS, eps=1e-8) lambda_star = lambda_var.value[0] if prob.status != 'optimal': lambda_star = None return lambda_star
0a1a658cd86a0253fe3caf8a5e162393926b351a
3,651,173
import typing import random def _get_nodes( network: typing.Union[NetworkIdentifier, Network], sample_size: typing.Optional[int], predicate: typing.Callable, ) -> typing.List[Node]: """Decaches domain objects: Node. """ nodeset = [i for i in get_nodes(network) if predicate(i)] if sample_size is not None: sample_size = min(sample_size, len(nodeset)) return nodeset if sample_size is None else random.sample(nodeset, sample_size)
f3be401c2fd0adf58f10b679d254ff2075f4546b
3,651,174
def cdl_key(): """Four-class system (grain, forage, vegetable, orchard. Plus 5: non-ag/undefined""" key = {1: ('Corn', 1), 2: ('Cotton', 1), 3: ('Rice', 1), 4: ('Sorghum', 1), 5: ('Soybeans', 1), 6: ('Sunflower', 1), 7: ('', 5), 8: ('', 5), 9: ('', 5), 10: ('Peanuts', 1), 11: ('Tobacco', 2), 12: ('Sweet Corn', 1), 13: ('Pop or Orn Corn', 1), 14: ('Mint', 2), 15: ('', 5), 16: ('', 5), 17: ('', 5), 18: ('', 5), 19: ('', 5), 20: ('', 5), 21: ('Barley', 1), 22: ('Durum Wheat', 1), 23: ('Spring Wheat', 1), 24: ('Winter Wheat', 1), 25: ('Other Small Grains', 1), 26: ('Dbl Crop WinWht/Soybeans', 1), 27: ('Rye', 1), 28: ('Oats', 1), 29: ('Millet', 1), 30: ('Speltz', 1), 31: ('Canola', 1), 32: ('Flaxseed', 1), 33: ('Safflower', 1), 34: ('Rape Seed', 1), 35: ('Mustard', 1), 36: ('Alfalfa', 3), 37: ('Other Hay/Non Alfalfa', 3), 38: ('Camelina', 1), 39: ('Buckwheat', 1), 40: ('', 5), 41: ('Sugarbeets', 2), 42: ('Dry Beans', 2), 43: ('Potatoes', 2), 44: ('Other Crops', 2), 45: ('Sugarcane', 2), 46: ('Sweet Potatoes', 2), 47: ('Misc Vegs & Fruits', 2), 48: ('Watermelons', 2), 49: ('Onions', 2), 50: ('Cucumbers', 2), 51: ('Chick Peas', 2), 52: ('Lentils', 2), 53: ('Peas', 2), 54: ('Tomatoes', 2), 55: ('Caneberries', 2), 56: ('Hops', 2), 57: ('Herbs', 2), 58: ('Clover/Wildflowers', 3), 59: ('Sod/Grass Seed', 3), 60: ('Switchgrass', 3), 61: ('Fallow/Idle Cropland', 3), 62: ('Pasture/Grass', 3), 63: ('Forest', 5), 64: ('Shrubland', 5), 65: ('Barren', 5), 66: ('Cherries', 4), 67: ('Peaches', 4), 68: ('Apples', 4), 69: ('Grapes', 4), 70: ('Christmas Trees', 4), 71: ('Other Tree Crops', 4), 72: ('Citrus', 4), 73: ('', 5), 74: ('Pecans', 4), 75: ('Almonds', 4), 76: ('Walnuts', 4), 77: ('Pears', 4), 78: ('', 5), 79: ('', 5), 80: ('', 5), 81: ('Clouds/No Data', 5), 82: ('Developed', 5), 83: ('Water', 5), 84: ('', 5), 85: ('', 5), 86: ('', 5), 87: ('Wetlands', 5), 88: ('Nonag/Undefined', 5), 89: ('', 5), 90: ('', 5), 91: ('', 5), 92: ('Aquaculture', 5), 93: ('', 5), 94: ('', 5), 95: ('', 5), 96: ('', 5), 97: ('', 5), 98: ('', 5), 99: ('', 5), 100: ('', 5), 101: ('', 5), 102: ('', 5), 103: ('', 5), 104: ('', 5), 105: ('', 5), 106: ('', 5), 107: ('', 5), 108: ('', 5), 109: ('', 5), 110: ('', 5), 111: ('Open Water', 5), 112: ('Perennial Ice/Snow', 5), 113: ('', 5), 114: ('', 5), 115: ('', 5), 116: ('', 5), 117: ('', 5), 118: ('', 5), 119: ('', 5), 120: ('', 5), 121: ('Developed/Open Space', 5), 122: ('Developed/Low Intensity', 5), 123: ('Developed/Med Intensity', 5), 124: ('Developed/High Intensity', 5), 125: ('', 5), 126: ('', 5), 127: ('', 5), 128: ('', 5), 129: ('', 5), 130: ('', 5), 131: ('Barren', 5), 132: ('', 5), 133: ('', 5), 134: ('', 5), 135: ('', 5), 136: ('', 5), 137: ('', 5), 138: ('', 5), 139: ('', 5), 140: ('', 5), 141: ('Deciduous Forest', 5), 142: ('Evergreen Forest', 5), 143: ('Mixed Forest', 5), 144: ('', 5), 145: ('', 5), 146: ('', 5), 147: ('', 5), 148: ('', 5), 149: ('', 5), 150: ('', 5), 151: ('', 5), 152: ('Shrubland', 5), 153: ('', 5), 154: ('', 5), 155: ('', 5), 156: ('', 5), 157: ('', 5), 158: ('', 5), 159: ('', 5), 160: ('', 5), 161: ('', 5), 162: ('', 5), 163: ('', 5), 164: ('', 5), 165: ('', 5), 166: ('', 5), 167: ('', 5), 168: ('', 5), 169: ('', 5), 170: ('', 5), 171: ('', 5), 172: ('', 5), 173: ('', 5), 174: ('', 5), 175: ('', 5), 176: ('Grassland/Pasture', 5), 177: ('', 5), 178: ('', 5), 179: ('', 5), 180: ('', 5), 181: ('', 5), 182: ('', 5), 183: ('', 5), 184: ('', 5), 185: ('', 5), 186: ('', 5), 187: ('', 5), 188: ('', 5), 189: ('', 5), 190: ('Woody Wetlands', 5), 191: ('', 5), 192: ('', 5), 193: ('', 5), 194: ('', 5), 195: ('Herbaceous Wetlands', 5), 196: ('', 5), 197: ('', 5), 198: ('', 5), 199: ('', 5), 200: ('', 5), 201: ('', 5), 202: ('', 5), 203: ('', 5), 204: ('Pistachios', 4), 205: ('Triticale', 1), 206: ('Carrots', 2), 207: ('Asparagus', 2), 208: ('Garlic', 2), 209: ('Cantaloupes', 2), 210: ('Prunes', 2), 211: ('Olives', 2), 212: ('Oranges', 3), 213: ('Honeydew Melons', 2), 214: ('Broccoli', 2), 215: ('Avocados', 2), 216: ('Peppers', 2), 217: ('Pomegranates', 4), 218: ('Nectarines', 4), 219: ('Greens', 2), 220: ('Plums', 4), 221: ('Strawberries', 2), 222: ('Squash', 2), 223: ('Apricots', 4), 224: ('Vetch', 3), 225: ('Dbl Crop WinWht/Corn', 1), 226: ('Dbl Crop Oats/Corn', 1), 227: ('Lettuce', 2), 228: ('', 1), 229: ('Pumpkins', 2), 230: ('Dbl Crop Lettuce/Durum Wht', 2), 231: ('Dbl Crop Lettuce/Cantaloupe', 2), 232: ('Dbl Crop Lettuce/Cotton', 2), 233: ('Dbl Crop Lettuce/Barley', 2), 234: ('Dbl Crop Durum Wht/Sorghum', 1), 235: ('Dbl Crop Barley/Sorghum', 1), 236: ('Dbl Crop WinWht/Sorghum', 1), 237: ('Dbl Crop Barley/Corn', 1), 238: ('Dbl Crop WinWht/Cotton', 1), 239: ('Dbl Crop Soybeans/Cotton', 1), 240: ('Dbl Crop Soybeans/Oats', 1), 241: ('Dbl Crop Corn/Soybeans', 1), 242: ('Blueberries', 2), 243: ('Cabbage', 2), 244: ('Cauliflower', 2), 245: ('Celery', 2), 246: ('Radishes', 2), 247: ('Turnips', 2), 248: ('Eggplants', 2), 249: ('Gourds', 2), 250: ('Cranberries', 2), 251: ('', 5), 252: ('', 5), 253: ('', 5), 254: ('Dbl Crop Barley/Soybeans', 1), 255: ('', 5)} return key
634a35d2962695dd0ef1b38a0c353498ca3dea89
3,651,175
def colmeta(colname, infile=None, name=None, units=None, ucd=None, desc=None, outfile=None): """ Modifies the metadata of one or more columns. Some or all of the name, units, ucd, utype and description of the column(s), identified by "colname" can be set by using some or all of the listed flags. Typically, "colname" will simply be the name of a single column. :param colname: string, name of the column to change meta data for :param infile: string, the location and file name for the input file, if not defined will return the STILTS command string :param outfile: string, the location and file name for the output file, if not defined will default to infile :param name: string, new name for the column :param units: string, new unit for the column :param ucd: string, new UCD for the column :param desc: string, new description for the column :return: """ cmdstr = "colmeta " if name is None and units is None and ucd is None and desc is None: return 0 if name is not None: cmdstr += '-name {0} '.format(__checkq__(str(name))) if units is not None: cmdstr += '-units {0} '.format(__checkq__(str(units))) if ucd is not None: cmdstr += '-ucd {0} '.format(__checkq__(str(ucd))) if desc is not None: cmdstr += '-desc {0} '.format(__checkq__(str(desc))) cmdstr += '{0}'.format(colname) if infile is None: return cmdstr if outfile is not None: tpipe(cmdstr, infile=infile, outfile=outfile) else: tpipe(cmdstr, infile=infile, outfile=infile)
15fc5b53e4ebd3563b00ef771a707d2ad2473ad7
3,651,176
def get_confusion_matrix_chart(cm, title): """Plot custom confusion matrix chart.""" source = pd.DataFrame([[0, 0, cm['TN']], [0, 1, cm['FP']], [1, 0, cm['FN']], [1, 1, cm['TP']], ], columns=["actual values", "predicted values", "count"]) base = alt.Chart(source).encode( y='actual values:O', x='predicted values:O', ).properties( width=200, height=200, title=title, ) rects = base.mark_rect().encode( color='count:Q', ) text = base.mark_text( align='center', baseline='middle', color='black', size=12, dx=0, ).encode( text='count:Q', ) return rects + text
28884c46a51f3baf51dc5a6f3c0396a5c8f24e10
3,651,177
def get_ppo_plus_eco_params(scenario): """Returns the param for the 'ppo_plus_eco' method.""" assert scenario in DMLAB_SCENARIOS, ( 'Non-DMLab scenarios not supported as of today by PPO+ECO method') if scenario == 'noreward' or scenario == 'norewardnofire': return md(get_common_params(scenario), { 'action_set': '' if scenario == 'noreward' else 'nofire', '_gin.create_single_env.run_oracle_before_monitor': True, '_gin.CuriosityEnvWrapper.scale_task_reward': 0.0, '_gin.create_environments.scale_task_reward_for_eval': 0, '_gin.create_environments.scale_surrogate_reward_for_eval': 1, '_gin.OracleExplorationReward.reward_grid_size': 30, 'r_checkpoint': '', '_gin.CuriosityEnvWrapper.scale_surrogate_reward': 0.03017241379310345, '_gin.train.ent_coef': 0.002053525026457146, '_gin.create_environments.online_r_training': True, '_gin.RNetworkTrainer.observation_history_size': 60000, '_gin.RNetworkTrainer.training_interval': -1, '_gin.CuriosityEnvWrapper.exploration_reward_min_step': 60000, '_gin.RNetworkTrainer.num_epochs': 10, }) else: return md(get_common_params(scenario), { 'action_set': '', 'r_checkpoint': '', '_gin.EpisodicMemory.capacity': 200, '_gin.similarity_to_memory.similarity_aggregation': 'percentile', '_gin.EpisodicMemory.replacement': 'random', '_gin.CuriosityEnvWrapper.scale_task_reward': 1.0, '_gin.CuriosityEnvWrapper.scale_surrogate_reward': 0.03017241379310345, '_gin.train.ent_coef': 0.002053525026457146, '_gin.create_environments.online_r_training': True, '_gin.RNetworkTrainer.observation_history_size': 60000, '_gin.RNetworkTrainer.training_interval': -1, '_gin.CuriosityEnvWrapper.exploration_reward_min_step': 60000, '_gin.RNetworkTrainer.num_epochs': 10, })
26bb3db0cf14eceea86cd659332c9bbc0195ab9b
3,651,178
def field_display(name): """ Works with Django's get_FOO_display mechanism for fields with choices set. Given the name of a field, returns a producer that calls get_<name>_display. """ return qs.include_fields(name), producers.method(f"get_{name}_display")
7fbc17dddfa398934496099f605f6cee97a802ad
3,651,179
import time def set_trace(response): """ Set a header containing the request duration and push detailed trace to the MQ :param response: :return: """ if TRACE_PERFORMANCE: req_time = int((time.time() - g.request_start) * 1000) trace = { "duration": req_time, "depth": g.request_depth, "method": g.request_method, "url": g.request_url, "uuid": g.request_uuid, "sequence": g.request_seq_this, "responseCode": response.status_code, "dbTime": g.db_time } if g.first_request: trace["totalRequestCount"] = g.request_seq_next trace_publisher.push('trace', trace) flask_logger.debug(f'request trace: {req_time} ms ({g.request_method} {g.request_url})') response.headers.add('x-trace-request-time', str(req_time)) response.headers.add('x-trace-seq-next', str(g.request_seq_next)) return response
1b7067daaf9fd3b72cf9b2db9a78b33b64bf8fb9
3,651,180
from typing import Dict from typing import List def extract_attachments(payload: Dict) -> List[Image]: """ Extract images from attachments. There could be other attachments, but currently we only extract images. """ attachments = [] for item in payload.get('attachment', []): # noinspection PyProtectedMember if item.get("type") in ("Document", "Image") and item.get("mediaType") in Image._valid_media_types: if item.get('pyfed:inlineImage', False): # Skip this image as it's indicated to be inline in content and source already continue attachments.append( ActivitypubImage( url=item.get('url'), name=item.get('name') or "", media_type=item.get("mediaType"), ) ) return attachments
afb9d959e680c51fc327d6c7e5f5e74fdc5db5e6
3,651,181
from ...model_zoo import get_model def yolo3_mobilenet1_0_custom( classes, transfer=None, pretrained_base=True, pretrained=False, norm_layer=BatchNorm, norm_kwargs=None, **kwargs): """YOLO3 multi-scale with mobilenet base network on custom dataset. Parameters ---------- classes : iterable of str Names of custom foreground classes. `len(classes)` is the number of foreground classes. transfer : str or None If not `None`, will try to reuse pre-trained weights from yolo networks trained on other datasets. pretrained_base : boolean Whether fetch and load pretrained weights for base network. norm_layer : object Normalization layer used (default: :class:`mxnet.gluon.nn.BatchNorm`) Can be :class:`mxnet.gluon.nn.BatchNorm` or :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`. norm_kwargs : dict Additional `norm_layer` arguments, for example `num_devices=4` for :class:`mxnet.gluon.contrib.nn.SyncBatchNorm`. Returns ------- mxnet.gluon.HybridBlock Fully hybrid yolo3 network. """ if transfer is None: base_net = get_mobilenet(multiplier=1, pretrained=pretrained_base, norm_layer=norm_layer, norm_kwargs=norm_kwargs, **kwargs) stages = [base_net.features[:33], base_net.features[33:69], base_net.features[69:-2]] anchors = [ [10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]] strides = [8, 16, 32] net = get_yolov3( 'mobilenet1.0', stages, [512, 256, 128], anchors, strides, classes, 'voc', pretrained=pretrained, norm_layer=norm_layer, norm_kwargs=norm_kwargs, **kwargs) else: net = get_model( 'yolo3_mobilenet1.0_' + str(transfer), pretrained=True, **kwargs) net.reset_class(classes) return net
2da86fe66538e3cd9a21c456c00312a217ab5ca0
3,651,182
def calculate_levenshtein_distance(str_1, str_2): """ The Levenshtein distance is a string metric for measuring the difference between two sequences. It is calculated as the minimum number of single-character edits necessary to transform one string into another """ distance = 0 buffer_removed = buffer_added = 0 for x in ndiff(str_1, str_2): code = x[0] # Code ? is ignored as it does not translate to any modification if code == ' ': distance += max(buffer_removed, buffer_added) buffer_removed = buffer_added = 0 elif code == '-': buffer_removed += 1 elif code == '+': buffer_added += 1 distance += max(buffer_removed, buffer_added) return distance
949d54fbcbd2169aa06cedc7341e98c12412d03c
3,651,183
from datetime import datetime def make_datetime(value, *, format_=DATETIME_FORMAT): """ >>> make_datetime('2001-12-31T23:59:59') datetime.datetime(2001, 12, 31, 23, 59, 59) """ return datetime.datetime.strptime(value, format_)
5c6d79ae0ddc9f4c47592a90ed3232f556df0a49
3,651,184
import inspect def named_struct_dict(typename, field_names=None, default=None, fixed=False, *, structdict_module=__name__, base_dict=None, sorted_repr=None, verbose=False, rename=False, module=None, qualname_prefix=None, frame_depth=1): """Returns a new subclass of StructDict with all fields as properties.""" # Validate the field names. At the user's option, either generate an error # message or automatically replace the field name with a valid name. if fixed: mixin_type = NamedFixedStructDictMixin.__name__ else: mixin_type = NamedStructDictMixin.__name__ if inspect.isclass(base_dict): base_dict = base_dict.__name__ if base_dict is None: base_dict = 'dict' elif base_dict not in ('dict', 'OrderedDict', 'SortedDict'): raise NotImplementedError(f"base_dict: {base_dict} is not supported.") if sorted_repr is None: sorted_repr = True if base_dict in ('dict',) else False if isinstance(field_names, str): field_names = field_names.replace(',', ' ').split() field_names = list(map(str, field_names)) if field_names else [] typename = str(typename) if rename: seen = set() for index, name in enumerate(field_names): if (not name.isidentifier() or _iskeyword(name) or name.startswith('_') or name in seen): field_names[index] = f"_{index}" seen.add(name) for name in [typename, structdict_module] + field_names: if type(name) is not str: raise TypeError('Type names, field names and structdict_module must be strings') if name is not structdict_module and not name.isidentifier(): raise ValueError(f"Type names and field names must be valid identifiers: {name!r}") if _iskeyword(name): raise ValueError(f"Type names and field names cannot be a keyword: {name!r}") seen = set() for name in field_names: if name.startswith('_') and not rename: raise ValueError(f"Field names cannot start with an underscore: {name!r}") if name in seen: raise ValueError(f"Encountered duplicate field name: {name!r}") seen.add(name) default_val = "None" if default is None else 'default_val' # Fill-in the class template class_definition = _struct_prop_dict_class_template.format( structdict_module=structdict_module, mixin_type=mixin_type, base_dict=base_dict, typename=typename, field_names=tuple(field_names), kwargs_map=(", ".join([f"{field_name}={default_val}" for field_name in field_names]).replace("'", "")) + ( "," if field_names else ""), kwargs_eq_map=(", ".join([f"{field_name}={field_name}" for field_name in field_names]).replace("'", "")) + ( "," if field_names else ""), sorted_repr=sorted_repr ) # Execute the template string in a temporary namespace and support # tracing utilities by setting a value for frame.f_globals['__name__'] namespace = dict(__name__=f"struct_prop_dict_{typename}") namespace.update(default_val=default) exec(class_definition, namespace) result = namespace[typename] result._source = class_definition if verbose: print(result._source) # For pickling to work, the __module__ variable needs to be set to the frame # where the named structdict is created. Bypass this step in environments where # _sys._getframe is not defined (Jython for example) or _sys._getframe is not # defined for arguments greater than 0 (IronPython), or where the user has # specified a particular module. try: frame = _sys._getframe(frame_depth) except (AttributeError, ValueError): pass else: if module is None: module = frame.f_globals.get('__name__', '__main__') if qualname_prefix is None: qualname_prefix = frame.f_locals.get('__qualname__', '') if module is not None: result.__module__ = module if qualname_prefix: result.__qualname__ = f'{qualname_prefix}.' + result.__qualname__ return result
465ac4783697b749c092d96fa8af498e67f15d51
3,651,185
from .pytorch.pytorch_onnxruntime_model import PytorchONNXRuntimeModel def PytorchONNXRuntimeModel(model, input_sample=None, onnxruntime_session_options=None): """ Create a ONNX Runtime model from pytorch. :param model: 1. Pytorch model to be converted to ONNXRuntime for inference 2. Path to ONNXRuntime saved model. :param input_sample: A set of inputs for trace, defaults to None if you have trace before or model is a LightningModule with any dataloader attached, defaults to None. :param onnxruntime_session_options: A session option for onnxruntime accelerator. :return: A PytorchONNXRuntimeModel instance """ return PytorchONNXRuntimeModel(model, input_sample, onnxruntime_session_options=onnxruntime_session_options)
d925b67c3628995d75d1ea6c687e5beb022fdbd8
3,651,186
import os def get_model_python_path(): """ Returns the python path for a model """ return os.path.dirname(__file__)
5ddd66f8b0c37b8a84eab614c4e3efd6efe9d9ef
3,651,187
def intensity_variance(mask: np.ndarray, image: np.ndarray) -> float: """Returns variance of all intensity values in region of interest.""" return np.var(image[mask])
e967b4cd3c3a896fba785d8c9e5f8bf07daa620d
3,651,188
def permute_array(arr, axis=0): """Permute array along a certain axis Args: arr: numpy array axis: axis along which to permute the array """ if axis == 0: return np.random.permutation(arr) else: return np.random.permutation(arr.swapaxes(0, axis)).swapaxes(0, axis)
ce5f6d571062f36888d22836579332034f4fe924
3,651,189
import os import errno def convertGMLToGeoJSON(config, outputDir, gmlFilepath, layerName, t_srs='EPSG:4326', flip_gml_coords=False): """ Convert a GML file to a shapefile. Will silently exit if GeoJSON already exists @param config A Python ConfigParser containing the section 'GDAL/OGR' and option 'PATH_OF_OGR2OGR' @param outputDir String representing the absolute/relative path of the directory into which GeoJSON should be written @param gmlFilepath String representing the absolute path of the GML file to convert @param layerName String representing the name of the layer contained in the GML file to write to a GeoJSON @param t_srs String representing the spatial reference system of the output GeoJSON, of the form 'EPSG:XXXX' @return String representing the name of the GeoJSON written @exception Exception if the conversion failed. """ pathToOgrCmd = config.get('GDAL/OGR', 'PATH_OF_OGR2OGR') if not os.path.isdir(outputDir): raise IOError(errno.ENOTDIR, "Output directory %s is not a directory" % (outputDir,)) if not os.access(outputDir, os.W_OK): raise IOError(errno.EACCES, "Not allowed to write to output directory %s" % (outputDir,)) outputDir = os.path.abspath(outputDir) geojsonFilename = "%s.geojson" % (layerName,) geojsonFilepath = os.path.join(outputDir, geojsonFilename) if not os.path.exists(geojsonFilepath): # Need to flip coordinates in GML as SSURGO WFS now returns coordinates in lat, lon order # rather than lon, lat order that OGR expects. For more information, see: # http://trac.osgeo.org/gdal/wiki/FAQVector#HowdoIflipcoordinateswhentheyarenotintheexpectedorder if flip_gml_coords and t_srs =='EPSG:4326': ogrCommand = "%s -f 'GeoJSON' -nln %s -s_srs '+proj=latlong +datum=WGS84 +axis=neu +wktext' -t_srs %s %s %s" % (pathToOgrCmd, layerName, t_srs, geojsonFilepath, gmlFilepath) else: ogrCommand = "%s -f 'GeoJSON' -nln %s -t_srs %s %s %s" % (pathToOgrCmd, layerName, t_srs, geojsonFilepath, gmlFilepath) returnCode = os.system(ogrCommand) if returnCode != 0: raise Exception("GML to GeoJSON command %s returned %d" % (ogrCommand, returnCode)) return geojsonFilename
70ee0676d13a647d42a39313d5be1545042f73c7
3,651,190
def dsmatch(name, dataset, fn): """ Fuzzy search best matching object for string name in dataset. Args: name (str): String to look for dataset (list): List of objects to search for fn (function): Function to obtain a string from a element of the dataset Returns: First element with the maximun fuzzy ratio. """ max_ratio = 0 matching = None for e in dataset: if fuzz and name: ratio = fuzz.token_sort_ratio(normalize(name), normalize(fn(e))) if ratio > max_ratio: max_ratio = ratio matching = e elif normalize(name) == normalize(fn(e)): matching = e break return matching
0835c0da3773eedab95c78e1b4f7f28abde0d8fd
3,651,191
import os import re def _generate_flame_clip_name(item, publish_fields): """ Generates a name which will be displayed in the dropdown in Flame. :param item: The publish item being processed. :param publish_fields: Publish fields :returns: name string """ # this implementation generates names on the following form: # # Comp, scene.nk (output background), v023 # Comp, Nuke, v023 # Lighting CBBs, final.nk, v034 # # (depending on what pieces are available in context and names, names # may vary) context = item.context name = "" # If we have template fields passed in, then we'll try to extract # some information from them. If we don't, then we fall back on # some defaults worked out below. publish_fields = publish_fields or dict() # the shot will already be implied by the clip inside Flame (the clip # file which we are updating is a per-shot file. But if the context # contains a task or a step, we can display that: if context.task: name += "%s, " % context.task["name"].capitalize() elif context.step: name += "%s, " % context.step["name"].capitalize() # If we have a channel set for the write node or a name for the scene, # add those. If we don't have a name from the template fields, then we # fall back on the file sequence's basename without the extension or # frame number on the end (if possible). default_name, _ = os.path.splitext( os.path.basename(item.properties["sequence_paths"][0]) ) # Strips numbers off the end of the file name, plus any underscore or # . characters right before it. # # foo.1234 -> foo # foo1234 -> foo # foo_1234 -> foo default_name = re.sub(r"[._]*\d+$", "", default_name) rp_name = publish_fields.get("name", default_name,) rp_channel = publish_fields.get("channel") if rp_name and rp_channel: name += "%s.nk (output %s), " % (rp_name, rp_channel) elif not rp_name: name += "Nuke output %s, " % rp_channel elif not rp_channel: name += "%s.nk, " % rp_name else: name += "Nuke, " # Do our best to get a usable version number. If we have data extracted # using a template, we use that. If we don't, then we can look to see # if this publish item came with a clip PublishedFile, in which case # we use the version_number field from that entity +1, as a new version # of that published clip will be created as part of this update process, # and that is what we want to associate ourselves with here. version = publish_fields.get("version") if version is None and "flame_clip_publish" in item.properties: version = item.properties["flame_clip_publish"]["version_number"] + 1 version = version or 0 name += "v%03d" % version return name
847956c6897a873145c78adbcf6530f0a47a9259
3,651,192
def f(q): """Constraint map for the origami.""" return 0.5 * (np.array([ q[0] ** 2, (q[1] - q[0]) ** 2 + q[2] ** 2 + q[3] ** 2, (q[4] - q[1]) ** 2 + (q[5] - q[2]) ** 2 + (q[6] - q[3]) ** 2, q[4] ** 2 + q[5] ** 2 + q[6] ** 2, q[7] ** 2 + q[8] ** 2 + q[9] ** 2, (q[7] - q[1]) ** 2 + (q[8] - q[2]) ** 2 + (q[9] - q[3]) ** 2, (q[7] - q[4]) ** 2 + (q[8] - q[5]) ** 2 + (q[9] - q[6]) ** 2, q[10] ** 2 + q[11] ** 2, (q[10] - q[0]) ** 2 + q[11] ** 2, (q[10] - q[1]) ** 2 + (q[11] - q[2]) ** 2 + q[3] ** 2, (q[10] - q[7]) ** 2 + (q[11] - q[8]) ** 2 + q[9] ** 2, ]) - lengths2) / (lengths)
77c3617a76cb2e184b1f22404f1db8be8212a4c9
3,651,193
def resize(clip, newsize=None, height=None, width=None): """ Returns a video clip that is a resized version of the clip. Parameters ------------ newsize: Can be either - ``(height,width)`` in pixels or a float representing - A scaling factor, like 0.5 - A function of time returning one of these. width: width of the new clip in pixel. The height is then computed so that the width/height ratio is conserved. height: height of the new clip in pixel. The width is then computed so that the width/height ratio is conserved. Examples ---------- >>> myClip.resize( (460,720) ) # New resolution: (460,720) >>> myClip.resize(0.6) # width and heigth multiplied by 0.6 >>> myClip.resize(width=800) # height computed automatically. >>> myClip.resize(lambda t : 1+0.02*t) # slow swelling of the clip """ w, h = clip.size if newsize != None: def trans_newsize(ns): if isinstance(ns, (int, float)): return [ns * w, ns * h] else: return ns if hasattr(newsize, "__call__"): newsize2 = lambda t : trans_newsize(newsize(t)) if clip.ismask: fun = lambda gf,t: (1.0*resizer((255 * gf(t)) .astype('uint8'), newsize2(t))/255) else: fun = lambda gf,t: resizer(gf(t).astype('uint8'), newsize2(t)) return clip.fl(fun, keep_duration=True, apply_to='mask') else: newsize = trans_newsize(newsize) elif height != None: newsize = [w * height / h, height] elif width != None: newsize = [width, h * width / w] if clip.ismask: fl = lambda pic: 1.0*resizer((255 * pic).astype('uint8'), newsize)/255 else: fl = lambda pic: resizer(pic.astype('uint8'), newsize) return clip.fl_image(fl, apply_to='mask')
5a8541e1320d37bd47aa35978794d849af358cb6
3,651,194
def calc_rt_pytmm(pol, omega, kx, n, d): """API-compatible wrapper around pytmm """ vec_omega = omega.numpy() vec_lambda = C0/vec_omega*2*np.pi vec_n = n.numpy() vec_d = d.numpy() vec_d = np.append(np.inf, vec_d) vec_d = np.append(vec_d, np.inf) vec_kx = kx.numpy().reshape([-1,1]) vec_k0 = 2 * np.pi / vec_lambda.reshape([1,-1]) vec_theta = np.arcsin(vec_kx / vec_k0) r = np.zeros((len(kx), len(omega)), dtype=np.complex64) t = np.zeros((len(kx), len(omega)), dtype=np.complex64) for i, theta in enumerate(vec_theta): for j, lam in enumerate(vec_lambda): out = coh_tmm(pol, vec_n, vec_d, theta[j], lam) r[i, j] = out['r'] t[i, j] = out['t'] t = tf.constant(t) r = tf.constant(r) return tf.constant(t), tf.constant(r)
def2fb22d2e72a873794838601bc74a7c65cb9c3
3,651,195
def statistic_bbox(dic, dic_im): """ Statistic number of bbox of seed and image-level data for each class Parameters ---------- dic: seed roidb dictionary dic_im: image-level roidb dictionary Returns ------- num_bbox: list for number of 20 class's bbox num_bbox_im: list for number of 20 class's bbox """ num_bbox = [0] * 20 num_bbox_im = [0] * 20 for d in dic: for c in d['gt_classes']: num_bbox[c-1] += 1 for d in dic_im: for c in d['gt_classes']: num_bbox_im[c-1] += 1 print("Statistic for seed data bbox: ", num_bbox) print("Statistic for image-level data bbox: ", num_bbox_im) return num_bbox, num_bbox_im
782314baeab7fbec36c9ea56bcec57d5a508a918
3,651,196
def github_youtube_config_files(): """ Function that returns a list of pyGithub files with youtube config channel data Returns: A list of pyGithub contentFile objects """ if settings.GITHUB_ACCESS_TOKEN: github_client = github.Github(settings.GITHUB_ACCESS_TOKEN) else: github_client = github.Github() repo = github_client.get_repo(CONFIG_FILE_REPO) return repo.get_contents(CONFIG_FILE_FOLDER, ref=settings.OPEN_VIDEO_DATA_BRANCH)
166ca3653173feee7513097c9313ebb5ab3b4d17
3,651,197
def reverse_uint(uint,num_bits=None): """ This function takes an unsigned integer and reverses all of its bits. num_bits is number of bits to assume are present in the unsigned integer. If num_bits is not specified, the minimum number of bits needed to represent the unsigned integer is assumed. If num_bits is specified, it must be greater than the minimum number of bits needed to represent the unsigned integer. >>> reverse_uint(3,8) 192 >>> bin(192) '0b11000000' """ if not isinstance(uint,int): raise Exception('input must be an integer, not %s' % repr(type(uint))) if uint < 0: raise Exception('input must be non-negative: %s' % repr(uint)) if min_bits_uint(uint) > num_bits: raise Exception('Input uint must be storable in at most num_bits (%d) number of bits, but requires %d bits' % (num_bits,min_bits_uint(uint))) result = 0 extracted_bits = 0 while (num_bits is not None and extracted_bits < num_bits) or uint != 0: uint,rem = divmod(uint,2) result = (result<<1) | rem extracted_bits += 1 return result
a3197aa3f199a5677a15e053c0455c0216d07827
3,651,198
def min_by_tail(lhs, ctx): """Element ↓ (any) -> min(a, key=lambda x: x[-1]) """ lhs = iterable(lhs, ctx=ctx) if len(lhs) == 0: return [] else: return min_by(lhs, key=tail, cmp=less_than, ctx=ctx)
88fce303e6ff95f89e57ebd05c575810238497ea
3,651,199