content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def actor_path(data, actor_id_1, goal_test_function): """ Creates the shortest possible path from the given actor ID to any actor that satisfies the goal test function. Returns a a list containing actor IDs. If no actors satisfy the goal condition, returns None. """ agenda = {actor_id_1,} seen = {actor_id_1,} relations = {} map_of_actors = mapped_actors(data) while agenda: # Get the children of the parent next_agenda = set() for i in agenda: for j in map_of_actors[i]: if j not in seen and j not in agenda: next_agenda.add(j) # Map child to parent relations[j] = i # If actor satisfies function condition, return constructed path for id_ in agenda: if goal_test_function(id_): final_path = construct_path(relations, id_, actor_id_1) return final_path for next_ in agenda: if next_ not in seen: seen.add(next_) # Update agenda to next bacon number/layer agenda = next_agenda # No path exists return None
8e41d7075b3ade8f75481959f9aa376a096aaa1c
3,651,700
from typing import Optional from pathlib import Path from typing import List import sys def create_script_run(snapshot_root_directory: Optional[Path] = None, entry_script: Optional[PathOrString] = None, script_params: Optional[List[str]] = None) -> ScriptRunConfig: """ Creates an AzureML ScriptRunConfig object, that holds the information about the snapshot, the entry script, and its arguments. :param entry_script: The script that should be run in AzureML. :param snapshot_root_directory: The directory that contains all code that should be packaged and sent to AzureML. All Python code that the script uses must be copied over. :param script_params: A list of parameter to pass on to the script as it runs in AzureML. If empty (or None, the default) these will be copied over from sys.argv, omitting the --azureml flag. :return: """ if snapshot_root_directory is None: print("No snapshot root directory given. All files in the current working directory will be copied to AzureML.") snapshot_root_directory = Path.cwd() else: print(f"All files in this folder will be copied to AzureML: {snapshot_root_directory}") if entry_script is None: entry_script = Path(sys.argv[0]) print("No entry script given. The current main Python file will be executed in AzureML.") elif isinstance(entry_script, str): entry_script = Path(entry_script) if entry_script.is_absolute(): try: # The entry script always needs to use Linux path separators, even when submitting from Windows entry_script_relative = entry_script.relative_to(snapshot_root_directory).as_posix() except ValueError: raise ValueError("The entry script must be inside of the snapshot root directory. " f"Snapshot root: {snapshot_root_directory}, entry script: {entry_script}") else: entry_script_relative = str(entry_script) script_params = _get_script_params(script_params) print(f"This command will be run in AzureML: {entry_script_relative} {' '.join(script_params)}") return ScriptRunConfig( source_directory=str(snapshot_root_directory), script=entry_script_relative, arguments=script_params)
1c2aaaae087dfd8eb583d2c4a641c585ffda3be4
3,651,701
def M_to_E(M, ecc): """Eccentric anomaly from mean anomaly. .. versionadded:: 0.4.0 Parameters ---------- M : float Mean anomaly (rad). ecc : float Eccentricity. Returns ------- E : float Eccentric anomaly. """ with u.set_enabled_equivalencies(u.dimensionless_angles()): E = optimize.newton(_kepler_equation, M, _kepler_equation_prime, args=(M, ecc)) return E
071f33a294edf6627ad77caa256de48e94afad76
3,651,702
import os def load_beijing(): """Load and return the Beijing air quality dataset.""" module_path = os.path.dirname(__file__) data = pd.read_csv( os.path.join(module_path, 'data', 'beijing_air_quality.csv')) return data
cd33c1a7034e5b0a7f397ff644631c8d1aaa7a0c
3,651,703
def encrypt(plaintext, a, b): """ 加密函数:E(x) = (ax + b)(mod m) m为编码系统中的字母数,一般为26 :param plaintext: :param a: :param b: :return: """ cipher = "" for i in plaintext: if not i.isalpha(): cipher += i else: n = "A" if i.isupper() else "a" cipher += chr((a * (ord(i) - ord(n)) + b) % 26 + ord(n)) return cipher
0cbb57250d8d7a18740e19875f79127b8057ab06
3,651,704
import pathlib import shlex import os def construct_gn_command(output_path, gn_flags, python2_command=None, shell=False): """ Constructs and returns the GN command If shell is True, then a single string with shell-escaped arguments is returned If shell is False, then a list containing the command and arguments is returned """ gn_args_string = " ".join( [flag + "=" + value for flag, value in gn_flags.items()]) command_list = [str(pathlib.Path("tools", "gn", "bootstrap", "bootstrap.py")), "-v", "-s", "-o", str(output_path), "--gn-gen-args=" + gn_args_string] if python2_command: command_list.insert(0, python2_command) if shell: command_string = " ".join([shlex.quote(x) for x in command_list]) if python2_command: return command_string else: return os.path.join(".", command_string) else: return command_list
2177ea4436305733268a427e0c4b006785e41b2d
3,651,705
import subprocess def reads_in_file(file_path): """ Find the number of reads in a file. Count number of lines with bash wc -l and divide by 4 if fastq, otherwise by 2 (fasta) """ return round(int(subprocess.check_output(["wc", "-l", file_path]).split()[0]) / (4 if bin_classify.format == "fastq" else 2))
2a1bbee200564fb8e439b9af5910d75ee1a275ab
3,651,706
def _url_as_filename(url: str) -> str: """Return a version of the url optimized for local development. If the url is a `file://` url, it will return the remaining part of the url so it can be used as a local file path. For example, 'file:///logs/example.txt' will be converted to '/logs/example.txt'. Parameters ---------- url: str The url to check and optaimize. Returns ------- str: The url converted to a filename. """ return url.replace('file://', '')
d1aef7a08221c7788f8a7f77351ccb6e6af9416b
3,651,707
from typing import Dict def hard_max(node: NodeWrapper, params: Dict[str, np.ndarray], xmap: Dict[str, XLayer]): """ ONNX Hardmax to XLayer AnyOp conversion function Input tensor shape: N dims Output tensor shape: 2D """ logger.info("ONNX Hardmax -> XLayer AnyOp") assert len(node.get_outputs()) == 1 name = node.get_outputs()[0] bottoms = node.get_inputs() node_attrs = node.get_attributes() iX = xmap[bottoms[0]] d = len(iX.shapes) axis = int(node_attrs['axis']) if 'axis' in node_attrs else 1 if axis < 0: axis = d + axis in_shape = iX.shapes.tolist() dim_0 = int(np.prod(in_shape[:axis])) dim_1 = int(np.prod(in_shape[axis:])) X = px.ops.any_op( op_name=px.stringify(name), in_xlayers=[iX], any_shape=[dim_0, dim_1], onnx_id=name ) return [X]
5f412e98836cd377d40a759ab0487aa81cc4f3dc
3,651,708
from typing import AnyStr from typing import List def sol_files_by_directory(target_path: AnyStr) -> List: """Gathers all the .sol files inside the target path including sub-directories and returns them as a List. Non .sol files are ignored. :param target_path: The directory to look for .sol files :return: """ return files_by_directory(target_path, ".sol")
e41ad3da26ffa1d3c528f34362ac1aeeadeb2b3c
3,651,709
def _call(sig, *inputs, **kwargs): """Adds a node calling a function. This adds a `call` op to the default graph that calls the function of signature `sig`, passing the tensors in `inputs` as arguments. It returns the outputs of the call, which are one or more tensors. `sig` is OpDefArg.a `_DefinedFunction` object. You can pass an optional keyword parameter `name=string` to name the added operation. You can pass an optional keyword parameter `noinline=True|False` to instruct the runtime not to inline the function body into the call site. Args: sig: OpDefArg. The signature of the function. *inputs: arguments to the function. **kwargs: Optional keyword arguments. Can only contain 'name' or 'noinline'. Returns: A 2-element tuple. First element: a Tensor if the function returns a single value; a list of Tensors if the function returns multiple value; the Operation if the function returns no values. Second element: the Operation. Raises: ValueError: if the arguments are invalid. """ if len(inputs) != len(sig.input_arg): raise ValueError("Expected number of arguments: %d, received: %d" % (len( sig.input_arg), len(inputs))) name = kwargs.pop("name", None) g = ops.get_default_graph() func_name = sig.name if name is None: name = func_name attrs = _parse_kwargs_as_attrs(func_name, **kwargs) output_types = [dtypes.DType(x.type) for x in sig.output_arg] op = g._create_op_internal( # pylint: disable=protected-access func_name, list(inputs), output_types, name=name, attrs=attrs, op_def=sig) if op.outputs: if len(op.outputs) == 1: ret = op.outputs[0] else: ret = tuple(op.outputs) else: ret = op return ret, op
6fd65281118e33bbcd9d567a7c528d85976e75e7
3,651,710
def api_url_for(view_name, _absolute=False, _xml=False, *args, **kwargs): """Reverse URL lookup for API routes (that use the JSONRenderer or XMLRenderer). Takes the same arguments as Flask's url_for, with the addition of `_absolute`, which will make an absolute URL with the correct HTTP scheme based on whether the app is in debug mode. The _xml flag sets the renderer to use. """ renderer = 'XMLRenderer' if _xml else 'JSONRenderer' url = url_for('{0}__{1}'.format(renderer, view_name), *args, **kwargs) if _absolute: # We do NOT use the url_for's _external kwarg because app.config['SERVER_NAME'] alters # behavior in an unknown way (currently breaks tests). /sloria /jspies return urlparse.urljoin(website_settings.DOMAIN, url) return url
6efcfbe15003652fd95294e941426ece07b37e9d
3,651,711
import torch def cov(x, rowvar=False, bias=False, ddof=None, aweights=None): """Estimates covariance matrix like numpy.cov""" # ensure at least 2D if x.dim() == 1: x = x.view(-1, 1) # treat each column as a data point, each row as a variable if rowvar and x.shape[0] != 1: x = x.t() if ddof is None: if bias == 0: ddof = 1 else: ddof = 0 w = aweights if w is not None: if not torch.is_tensor(w): w = torch.tensor(w, dtype=torch.float) w_sum = torch.sum(w) avg = torch.sum(x * (w/w_sum)[:,None], 0) else: avg = torch.mean(x, 0) # Determine the normalization if w is None: fact = x.shape[0] - ddof elif ddof == 0: fact = w_sum elif aweights is None: fact = w_sum - ddof else: fact = w_sum - ddof * torch.sum(w * w) / w_sum xm = x.sub(avg.expand_as(x)) if w is None: X_T = xm.t() else: X_T = torch.mm(torch.diag(w), xm).t() c = torch.mm(X_T, xm) c = c / fact return c.squeeze()
6b5666a3e7fa6fe0c0e115286e10d2e756ba8ee9
3,651,712
def threadsafe_generator(f): """A decorator that takes a generator function and makes it thread-safe. Args: f(function): Generator function Returns: None """ def g(*args, **kwargs): """ Args: *args(list): List of non-key worded,variable length arguments. **kwargs(dict): List of key-worded,variable length arguments. Returns: function: The thread-safe function. """ return threadsafe_iter_3(f(*args, **kwargs)) return g
6a3e53984c85c951e5ffefa2ed238af86d8fc3e3
3,651,713
def load_many_problems(file, collection): """Given a ZIP file containing several ZIP files (each one a problem), insert the problems into collection""" problems = list() try: with ZipFile(file) as zfile: for filename in zfile.infolist(): with zfile.open(filename) as curr_file: problem = load_problem_from_file(curr_file) problem.collection = collection problem.author = collection.author problems.append(problem) except ZipFileParsingException as excp: raise ZipFileParsingException('{}: {}'.format(filename.filename, excp)) from excp except Exception as excp: raise ZipFileParsingException("{}: {}".format(type(excp), excp)) from excp return problems
08d60f5c7905397254715f80e74019f3496d84e5
3,651,714
def CheckStructuralModelsValid(rootGroup, xyzGridSize=None, verbose=False): """ **CheckStricturalModelsValid** - Checks for valid structural model group data given a netCDF root node Parameters ---------- rootGroup: netCDF4.Group The root group node of a Loop Project File xyzGridSize: [int,int,int] or None The 3D grid shape to test data in this node to adhere to verbose: bool A flag to indicate a higher level of console logging (more if True) Returns ------- bool True if valid structural model data in project file, False otherwise. """ valid = True if "StructuralModels" in rootGroup.groups: if verbose: print(" Structural Models Group Present") smGroup = rootGroup.groups.get("StructuralModels") # if verbose: print(smGroup) if "easting" in smGroup.ncattrs() and "northing" in smGroup.ncattrs() and "depth" in smGroup.ncattrs(): if xyzGridSize != None: # Check gridSize from extents matches models sizes smGridSize = [smGroup.dimensions["easting"].size,smGroup.dimensions["northing"].size,smGroup.dimensions["depth"].size] if smGridSize != xyzGridSize: print("(INVALID) Extents grid size and Structural Models Grid Size do NOT match") print("(INVALID) Extents Grid Size : ", xyzGridSize) print("(INVALID) Structural Models Grid Size : ", smGridSize) valid = False else: if verbose: print(" Structural Models grid size adheres to extents") else: if verbose: print("No structural models extents in project file") else: if verbose: print("No Structural Models Group Present") return valid
d11ce42b041b8be7516f827883a37b40f6f98477
3,651,715
def get_load_balancers(): """ Return all load balancers. :return: List of load balancers. :rtype: list """ return elbv2_client.describe_load_balancers()["LoadBalancers"]
b535f47ce94106a4c7ebe3d84ccfba7c57f22ba9
3,651,716
import glob import os def get_datasets(folder): """ Returns a dictionary of dataset-ID: dataset directory paths """ paths = glob(f"{folder}/*") return {os.path.split(p)[-1]: p for p in paths if os.path.isdir(p)}
1d26bddaa82624c5edb7f0e2fe0b11d5287f6f61
3,651,717
def file_preview(request): """ Live preview of restructuredtext payload - currently not wired up """ f = File( heading=request.POST['heading'], content=request.POST['content'], ) rendered_base = render_to_string('projects/doc_file.rst.html', {'file': f}) rendered = restructuredtext(rendered_base) json_response = simplejson.dumps({'payload': rendered}) return HttpResponse(json_response, mimetype='text/javascript')
e83570b7b31b4a2d526f1699f8b65c5623d6f7ee
3,651,718
def makeMask(n): """ return a mask of n bits as a long integer """ return (long(2) << n - 1) - 1
c0fe084ec9d6be1519115563cce3c0d3649947c6
3,651,719
def link_name_to_index(model): """ Generate a dictionary for link names and their indicies in the model. """ return { link.name : index for index, link in enumerate(model.links) }
ba0e768b1160218908b6ecf3b186a73c75a69894
3,651,720
import tqdm import os def create_audio_dataset( dataset_path: str, dataset_len=100, **kwargs ) -> pd.DataFrame: """ Creates audio dataset from file structure. Args: playlist_dir: Playlist directory path. # TODO dataset_len (optional): Number of audio files to include. Returns: df: Compiled dataframe representing this dataset. """ # dir_dict = _crawl_dir(dataset_path) num_songs = 0 song_names = [] songs = [] break_outer = False for root, dirs, files in ( dir_iterator := tqdm(os.walk(dataset_path), leave=False) ): if break_outer: dir_iterator.close() break rel_root = root.replace(dataset_path, "", 1) for file in tqdm(files, leave=False): if num_songs >= dataset_len: break_outer = True continue song_name = file if rel_root != "": song_name = f"{rel_root}/{song_name}" song_names.append(song_name) try: songs.append( create_audio_datum(f"{root}/{file}", file, **kwargs) ) except NoBackendError: song_names.pop() continue num_songs += 1 data = { "index": song_names, "columns": ["sampling_rate", "time_signal", "stft"], "data": songs, "index_names": ["songs"], "column_names": ["audio components"], } return pd.DataFrame.from_dict(data, orient="tight") # make into correct df? # for file in os.listdir(dataset_path): # if os.path.isdir(file): # _create_audio_dataset( # file, dataset_len=dataset_len-file_count, **kwargs # ) # else: # create_audio_datum(file, **kwargs) # file_count += 1 # songs = os.listdir(playlist_dir)[:dataset_len] # if ".DS_Store" in songs: # songs.remove(".DS_Store") # songs = [song for song in songs if ".json" not in song] # df_structure = dict(zip(songs, [None] * len(songs))) # for song_name in df_structure.keys(): # song_path = playlist_dir / song_name # if os.path.isdir(song_path): # components = os.listdir(song_path) # else: # components = [song_name] # df_structure[song_name] = {} # df_structure[song_name]["time_signals"] = dict(zip(components, [None] * len(components))) # df_structure[song_name]["stfts"] = dict(zip(components, [None] * len(components))) # df_structure[song_name]["sampling_rate"] = None # df = pd.DataFrame(df_structure) # for song_name, song_data in tqdm(df_structure.items()): # sr = None # song_path = playlist_dir / song_name # for component in song_data["time_signals"]: # if component == song_name: # filepath = song_path # else: # filepath = song_path / component # df[song_name]["time_signals"][component], sr_tmp = librosa.load( # filepath, sr=None # ) # # assumes all songs at same sampling rate # assert(not sr or sr == sr_tmp) # sr = sr_tmp # df[song_name]["sampling_rate"] = sr # # calculate STFTs # for key in tqdm(songs): # song = df[key] # for component, data in tqdm(song["time_signals"].items(), leave=False): # X = librosa.stft(data, **kwargs) # song["stfts"][component] = X # return df
054b2ee756beeeade248ce75f9369e9224e093f4
3,651,721
import json def photos_page(): """ Example view demonstrating rendering a simple HTML page. """ context = make_context() with open('data/featured.json') as f: context['featured'] = json.load(f) return make_response(render_template('photos.html', **context))
dfb172e01f659be163c7dffdb13cc5cbaa28ab10
3,651,722
import json def get_user_by_id(current_user, uid): """ Получение одного пользователя по id в json""" try: user_schema = CmsUsersSchema(exclude=['password']) user = CmsUsers.query.get(uid) udata = user_schema.dump(user) response = Response( response=json.dumps(udata.data), status=200, mimetype='application/json' ) except Exception: response = server_error(request.args.get("dbg")) return response
9f91319020fb0b386d506b4365c2912af3ed5874
3,651,723
def update_bond_lists_mpi(bond_matrix, comm, size, rank): """ update_bond_lists(bond_matrix) Return atom indicies of angular terms """ N = bond_matrix.shape[0] "Get indicies of bonded beads" bond_index_full = np.argwhere(bond_matrix) "Create index lists for referring to in 2D arrays" indices_full = create_index(bond_index_full) angle_indices = [] angle_bond_indices = [] "Count number of unique bonds" count = np.unique(bond_index_full.T[0]).shape[0] """ "Find indicies of ends of fibrils" fib_end_check = np.argwhere(np.sum(bond_matrix, axis=1) <= 1) n_fib_end = fib_end_check.shape[0] fib_end_check_ind = np.tile(fib_end_check, n_fib_end) fib_end_check_ind = np.stack((fib_end_check_ind, fib_end_check_ind.T), axis=2) fib_end_check_ind = create_index(fib_end_check_ind[np.where(~np.eye(n_fib_end,dtype=bool))]) fib_end = np.zeros(bond_matrix.shape) fib_end[fib_end_check_ind] += 1 """ for n in range(N): slice_full = np.argwhere(bond_index_full.T[0] == n) if slice_full.shape[0] > 1: angle_indices.append(np.unique(bond_index_full[slice_full].flatten())) angle_bond_indices.append(bond_index_full[slice_full][::-1]) bond_indices = np.nonzero(np.array_split(bond_matrix, size)[rank]) angle_indices = np.array_split(angle_indices, size)[rank] angle_bond_indices = create_index(np.array_split(angle_bond_indices, size)[rank].reshape((2 * len(angle_indices), 2))) return bond_indices, angle_indices, angle_bond_indices
60fd4e5ee7418d182f0c29b0d69e0f148a5a40ee
3,651,724
from sys import flags def RepoRegion(args, cluster_location=None): """Returns the region for the Artifact Registry repo. The intended behavior is platform-specific: * managed: Same region as the service (run/region or --region) * gke: Appropriate region based on cluster zone (cluster_location arg) * kubernetes: The run/region config value will be used or an exception raised when unset. Args: args: Namespace, the args namespace. cluster_location: The zone which a Cloud Run for Anthos cluster resides. When specified, this will result in the region for this zone being returned. Returns: The appropriate region for the repository. """ if cluster_location: return _RegionFromZone(cluster_location) region = flags.GetRegion(args, prompt=False) if region: return region raise exceptions.ArgumentError( 'To deploy from source with this platform, you must set run/region via ' '"gcloud config set run/region REGION".')
8a0e16ebbdedd82490a2ca8cc358c74386c963d2
3,651,725
from ibis.omniscidb.compiler import to_sql def compile(expr: ibis.Expr, params=None): """Compile a given expression. Note you can also call expr.compile(). Parameters ---------- expr : ibis.Expr params : dict Returns ------- compiled : string """ return to_sql(expr, dialect.make_context(params=params))
01bfe1be13b9a78adba04ca37a08aadbf551c827
3,651,726
def get_border(border, size): """ Get border """ i = 1 while size - border // i <= border // i: # size > 2 * (border // i) i *= 2 return border // i
45233f53cdf6f0edb5b4a9262b61f2a70ac42661
3,651,727
def load_normalized_data(file_path, log1p=True): """load normalized data 1. Load filtered data for both FACS and droplet 2. Size factor normalization to counts per 10 thousand 3. log(x+1) transform 4. Combine the data Args: file_path (str): file path. Returns: adata_combine (AnnData): Combined data for FACS and droplet """ # Load filtered data # adata_facs = read_h5ad(f'{file_path}/facs_filtered.h5ad') adata_facs = read_h5ad(f'{file_path}/facs_filtered_reannotated-except-for-marrow-lung-kidney.h5ad') adata_droplet = read_h5ad(f'{file_path}/droplet_filtered.h5ad') # Size factor normalization sc.pp.normalize_per_cell(adata_facs, counts_per_cell_after=1e4) sc.pp.normalize_per_cell(adata_droplet, counts_per_cell_after=1e4) # log(x+1) transform if log1p: sc.pp.log1p(adata_facs) sc.pp.log1p(adata_droplet) # Combine the data ind_select = adata_facs.obs['age'].isin(['3m', '18m', '24m']) adata_facs = adata_facs[ind_select,] adata_combine = AnnData.concatenate(adata_facs, adata_droplet, batch_key='b_method', batch_categories = ['facs','droplet']) return adata_combine
3c180c1f2ba1e118678331795eb42b7132686ed6
3,651,728
def from_copy_number( model: cobra.Model, index: pd.Series, cell_copies: pd.Series, stdev: pd.Series, vol: float, dens: float, water: float, ) -> cobra.Model: """Convert `cell_copies` to mmol/gDW and apply them to `model`. Parameters ---------- model: cobra.Model cobra or geckopy Model (will be converted to geckopy.Model). It is NOT modified inplace. index: pd.Series uniprot IDs cell_copies: pd.Series cell copies/ cell per proteins stdev: pd.Series standard deviation of the cell copies vol: float cell volume dens: float cell density water: float water content fraction (0-1) Returns ------- geckopy.Model with the proteomics constraints applied """ df = pd.DataFrame({"cell_copies": cell_copies, "CV": stdev}) # from molecules/cell to mmol/gDW df["copies_upper"] = df["cell_copies"] + 0.5 * df["CV"] / 100 * df["cell_copies"] df["mmol_per_cell"] = df["copies_upper"] / 6.022e21 proteomics = df["mmol_per_cell"] / (vol * dens * water) proteomics.index = index return from_mmol_gDW(model, proteomics)
858d563ad0f4ae16e83b36db3908895671809431
3,651,729
def getstatusoutput(cmd): """Return (exitcode, output) of executing cmd in a shell. Execute the string 'cmd' in a shell with 'check_output' and return a 2-tuple (status, output). The locale encoding is used to decode the output and process newlines. A trailing newline is stripped from the output. The exit status for the command can be interpreted according to the rules for the function 'wait'. Example: >>> import subprocess >>> subprocess.getstatusoutput('ls /bin/ls') (0, '/bin/ls') >>> subprocess.getstatusoutput('cat /bin/junk') (1, 'cat: /bin/junk: No such file or directory') >>> subprocess.getstatusoutput('/bin/junk') (127, 'sh: /bin/junk: not found') >>> subprocess.getstatusoutput('/bin/kill $$') (-15, '') """ try: data = check_output(cmd, shell=True, text=True, stderr=STDOUT) exitcode = 0 except CalledProcessError as ex: data = ex.output exitcode = ex.returncode if data[-1:] == '\n': data = data[:-1] return exitcode, data
9a243e5e138731fe6d2c6525fea3c5c36a1d1119
3,651,730
import re def _get_values(attribute, text): """Match attribute in text and return all matches. :returns: List of matches. """ regex = '{}\s+=\s+"(.*)";'.format(attribute) regex = re.compile(regex) values = regex.findall(text) return values
59a0fdb7a39221e5f728f512ba0aa814506bbc37
3,651,731
def time_axis(tpp=20e-9, length=20_000) -> np.ndarray: """Return the time axis used in experiments. """ ts = tpp * np.arange(length) ten_percent_point = np.floor(length / 10) * tpp ts -= ten_percent_point ts *= 1e6 # convert from seconds to microseconds return ts
6cd18bcbfa6949fe98e720312b07cfa20fde940a
3,651,732
from cyder.core.ctnr.models import CtnrUser def _has_perm(user, ctnr, action, obj=None, obj_class=None): """ Checks whether a user (``request.user``) has permission to act on a given object (``obj``) within the current session CTNR. Permissions will depend on whether the object is within the user's current CTNR and the user's permissions level within that CTNR. Plebs are people that don't have any permissions except for dynamic registrations. Guests of a CTNR have view access to all objects within the current CTNR. Users have full access to objects within the current CTNR, except for exceptional types of objects (domains, SOAs) and the CTNR itself. CTNR admins are like users except they can modify the CTNR itself and assign permissions to other users. Cyder admins are CTNR admins to every CTNR. Though the object has to be within the CURRENT CTNR for permissions to be granted, for purposes of encapsulation. Superusers (Uber-admins/Elders) have complete access to everything including the ability to create top-level domains, SOAs, and global DHCP objects. Plebs are not assigned to any CTNR. CTNR Guests have level 0 to a CTNR. CTNR Users have level 1 to a CTNR. CTNR Admins have level 2 to a CTNR. Cyder Admins have level 2 to the 'global' CTNR (``pk=1``). Superusers are Django superusers. :param request: A django request object. :type request: :class:`request` :param obj: The object being tested for permission. :type obj: :class:`object` :param action: ``0`` (view), ``1`` (create), ``2`` (update), ``3`` (delete) :type action: :class: `int` An example of checking whether a user has 'create' permission on a :class:`Domain` object. >>> perm = request.user.get_profile().has_perm(request, \'create\', ... obj_class=Domain) >>> perm = request.user.get_profile().has_perm(request, \'update\', ... obj=domain) """ user_level = None if user.is_superuser: return True ctnr_level = -1 assert LEVEL_ADMIN > LEVEL_USER > LEVEL_GUEST > ctnr_level if obj: ctnr = None ctnrs = None if hasattr(obj, "get_ctnrs"): try: ctnrs = obj.get_ctnrs() except TypeError: pass if ctnrs is not None: for c in ctnrs: try: level = CtnrUser.objects.get(ctnr=c, user=user).level except CtnrUser.DoesNotExist: continue if level > ctnr_level: ctnr_level = level ctnr = c if ctnr_level == LEVEL_ADMIN: break elif ctnr and user and not obj: try: ctnr_level = CtnrUser.objects.get(ctnr=ctnr, user=user).level except CtnrUser.DoesNotExist: pass if obj and ctnr and not ctnr.check_contains_obj(obj): return False # Get user level. is_ctnr_admin = ctnr_level == LEVEL_ADMIN is_ctnr_user = ctnr_level == LEVEL_USER is_ctnr_guest = ctnr_level == LEVEL_GUEST try: cyder_level = CtnrUser.objects.get(ctnr=1, user=user).level except CtnrUser.DoesNotExist: cyder_level = -1 is_cyder_admin = cyder_level == LEVEL_ADMIN is_cyder_guest = CtnrUser.objects.filter(user=user).exists() if is_cyder_admin: user_level = 'cyder_admin' elif is_ctnr_admin: user_level = 'ctnr_admin' elif is_ctnr_user: user_level = 'ctnr_user' elif is_ctnr_guest: user_level = 'ctnr_guest' elif is_cyder_guest: user_level = 'cyder_guest' else: user_level = 'pleb' # Dispatch to appropriate permissions handler. if obj: obj_type = obj.__class__.__name__ elif obj_class: if isinstance(obj_class, basestring): obj_type = str(obj_class) else: obj_type = obj_class.__name__ else: return False if (obj_type and obj_type.endswith('AV') and obj_type != 'WorkgroupAV'): obj_type = obj_type[:-len('AV')] handling_functions = { # Administrative. 'Ctnr': has_administrative_perm, 'User': has_administrative_perm, 'UserProfile': has_administrative_perm, 'CtnrUser': has_ctnr_user_perm, 'CtnrObject': has_ctnr_object_perm, 'SOA': has_soa_perm, 'Domain': has_domain_perm, # Domain records. 'AddressRecord': has_domain_record_perm, 'CNAME': has_domain_record_perm, 'MX': has_domain_record_perm, 'Nameserver': has_name_server_perm, 'SRV': has_domain_record_perm, 'SSHFP': has_domain_record_perm, 'TXT': has_domain_record_perm, 'PTR': has_reverse_domain_record_perm, # DHCP. 'Network': has_network_perm, 'Range': has_range_perm, 'Site': has_site_perm, 'System': has_system_perm, 'Vlan': has_vlan_perm, 'Vrf': has_vrf_perm, 'Workgroup': has_workgroup_perm, 'StaticInterface': has_static_registration_perm, 'DynamicInterface': has_dynamic_registration_perm, 'Supernet': has_supernet_perm, 'WorkgroupAV': has_workgroupav_perm, 'Token': has_token_perm } handling_function = handling_functions.get(obj_type, None) if not handling_function: if '_' in obj_type: obj_type = obj_type.replace('_', '') if 'Intr' in obj_type: obj_type = obj_type.replace('Intr', 'interface') for key in handling_functions.keys(): if obj_type.lower() == key.lower(): handling_function = handling_functions[key] if handling_function: return handling_function(user_level, obj, ctnr, action) else: raise Exception('No handling function for {0}'.format(obj_type))
998119c3aa9b50fcdd9fdec1f734374f04fe51c6
3,651,733
def read_chunk(file: File, size: int=400) -> bytes: """ Reads first [size] chunks from file, size defaults to 400 """ file = _path.join(file.root, file.name) # get full path of file with open(file, 'rb') as file: # read chunk size chunk = file.read(size) return chunk
dfa1fd576fe14c5551470fb76a674dccd136e200
3,651,734
def parse_input(file_path): """ Turn an input file of newline-separate bitrate samples into input and label arrays. An input file line should look like this: 4983 1008073 1591538 704983 1008073 1008073 704983 Adjacent duplicate entries will be removed and lines with less than two samples will be filtered out. @return a tuple of the x, x sequence length, and y arrays parsed from the input file """ bitrate_inputs = [] inputs_length = [] bitrate_labels = [] with open(file_path, 'r') as file: for line in file: samples = map(lambda x: [float(x) * bps_to_MBps], line.strip().split(' '))[0:MAX_SAMPLES + 1] if (len(samples) < 2): # skip lines without enough samples continue bitrate_labels.append(samples.pop()) inputs_length.append(len(samples)) samples += [[-1] for i in range(MAX_SAMPLES - len(samples))] bitrate_inputs += [samples] return bitrate_inputs, inputs_length, bitrate_labels
1e1aada5b8da01d362f7deb0b2145209bb55bcc0
3,651,735
import os def read(rel_path): """ Docstring """ here = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(here, rel_path), 'r') as fp: return fp.read()
ec84c8ccf878e7f9ad8ccfb0239e7d82c7ba7f99
3,651,736
import sys def main(argv=None): """Main command line interface.""" if argv is None: argv = sys.argv[1:] cli = CommandLineTool() try: return cli.run(argv) except KeyboardInterrupt: print('Canceled') return 3
a4a5dec5c09c6f7ee7a354aea34b98899841ed0f
3,651,737
from typing import Dict from typing import Any import torch def extract_attrs_for_lowering(mod: nn.Module) -> Dict[str, Any]: """If `mod` is in `module_fetch_book`, fetch the mod's attributes that in the `module_fetch_book` after checking module's version is compatible with the `module_fetch_book`. """ attrs_for_lowering: Dict[str, Any] = {} attrs_for_lowering["name"] = torch.typename(mod) if type(mod) in module_fetch_book: version, param_to_fetch, matching_method = module_fetch_book[type(mod)] if version < mod._version: raise RuntimeError(f"Fetcher version {version} try to fetch {torch.typename(mod)} version {mod._version}, " "please upgrade the module_fetch_book, open an issue and @842974287 " "or report a bug to AIACC team directly.") for attr in param_to_fetch: attrs_for_lowering[attr] = getattr(mod, matching_method(attr, mod._version)) else: raise RuntimeError(f"{torch.typename(mod)} is not in the module_fetch_book yet, " "please add it to the module_fetch_book, open an issue and @842974287 " "or report a bug to AIACC team directly.") return attrs_for_lowering
ec2ff68f2164eabdc0aae9acdcc7ff51b83a77dd
3,651,738
from typing import Set import requests def get_filter_fields(target: str, data_registry_url: str, token: str) -> Set[str]: """ Returns a list of filterable fields from a target end point by calling OPTIONS :param target: target end point of the data registry :param data_registry_url: the url of the data registry :param token: personal access token :return: the set of filterable fields on this target end point """ end_point = get_end_point(data_registry_url, target) result = requests.options(end_point, headers=get_headers(token)) result.raise_for_status() options = result.json() return set(options.get("filter_fields", []))
34b6cccc2f8529391357ab70b212f1fddbd9e37d
3,651,739
def azimuthalAverage(image, center=None): """ Calculate the azimuthally averaged radial profile. image - The 2D image center - The [x,y] pixel coordinates used as the center. The default is None, which then uses the center of the image (including fracitonal pixels). http://www.astrobetter.com/blog/2010/03/03/fourier-transforms-of-images-in-python/ v0.1 """ # Calculate the indices from the image y, x = np.indices(image.shape) if not center: center = np.array([(x.max()-x.min())/2.0, (y.max()-y.min())/2.0]) r = np.hypot(x - center[0], y - center[1]) # Get sorted radii ind = np.argsort(r.flat) r_sorted = r.flat[ind] i_sorted = image.flat[ind] # Get the integer part of the radii (bin size = 1) r_int = r_sorted.astype(int) # Find all pixels that fall within each radial bin. deltar = r_int[1:] - r_int[:-1] # Assumes all radii represented rind = np.where(deltar)[0] # location of changed radius nr = rind[1:] - rind[:-1] # number of radius bin # Cumulative sum to figure out sums for each radius bin csim = np.cumsum(i_sorted, dtype=float) tbin = csim[rind[1:]] - csim[rind[:-1]] radial_prof = tbin / nr return radial_prof
f086d0868bd56b01de976f346e2a66f5e0d7a10b
3,651,740
def train_transforms_fisheye(sample, image_shape, jittering): """ Training data augmentation transformations Parameters ---------- sample : dict Sample to be augmented image_shape : tuple (height, width) Image dimension to reshape jittering : tuple (brightness, contrast, saturation, hue) Color jittering parameters Returns ------- sample : dict Augmented sample """ if len(image_shape) > 0: sample = resize_sample_fisheye(sample, image_shape) sample = duplicate_sample(sample) if len(jittering) > 0: sample = colorjitter_sample(sample, jittering) sample = to_tensor_sample(sample) return sample
c815d28a5e9e62234544adc4f2ba816e9f1c366a
3,651,741
from typing import Any def build_json_output_request(**kwargs: Any) -> HttpRequest: """A Swagger with XML that has one operation that returns JSON. ID number 42. See https://aka.ms/azsdk/python/protocol/quickstart for how to incorporate this request builder into your code flow. :return: Returns an :class:`~azure.core.rest.HttpRequest` that you will pass to the client's `send_request` method. See https://aka.ms/azsdk/python/protocol/quickstart for how to incorporate this response into your code flow. :rtype: ~azure.core.rest.HttpRequest Example: .. code-block:: python # response body for status code(s): 200 response.json() == { "id": 0 # Optional. } """ accept = "application/json" # Construct URL url = kwargs.pop("template_url", "/xml/jsonoutput") # Construct headers header_parameters = kwargs.pop("headers", {}) # type: Dict[str, Any] header_parameters["Accept"] = _SERIALIZER.header("accept", accept, "str") return HttpRequest(method="GET", url=url, headers=header_parameters, **kwargs)
b920f0955378f0db1fdddadefc4037a33bedecad
3,651,742
def merge_extended(args_container: args._ArgumentContainer, hold: bool, identificator: str) -> int: """ Merge the args_container into the internal, like merge_named, but hold specifies if the internal container should not be cleared. :param args_container: The argument container with the data to merge :param hold: When True, does not clear the internal data. :param identificator: The identificator to pass to the MERGE_END event :raises TypeError: if the arguments passed are not the expected type """ if ( not isinstance(args_container, args._ArgumentContainer) or not isinstance(hold, int) # noqa W503 or not isinstance(identificator, str) # noqa W503 ): raise TypeError("The given parameters do not match the types required.") return _grm.grm_merge_extended(args_container.ptr, c_int(1 if hold else 0), _encode_str_to_char_p(identificator))
111765aa0a62a1050387670472d3718aca8a015f
3,651,743
def video_path_file_name(instance, filename): """ Callback for video node field to get path file name :param instance: the image field :param filename: the file name :return: the path file name """ return path_file_name(instance, 'video', filename)
b34b96961ad5f9275cd89809828b8dd0aed3dafb
3,651,744
def radiative_processes_mono(flux_euv, flux_fuv, average_euv_photon_wavelength=242.0, average_fuv_photon_wavelength=2348.0): """ Calculate the photoionization rate of helium at null optical depth based on the EUV spectrum arriving at the planet. Parameters ---------- flux_euv (``float``): Monochromatic extreme-ultraviolet (0 - 504 Angstrom) flux arriving at the planet in units of erg / s / cm ** 2. Attention: notice that this ``flux_euv`` is different from the one used for hydrogen, since helium ionization happens at a shorter wavelength. flux_fuv (``float``): Monochromatic far- to middle-ultraviolet (911 - 2593 Angstrom) flux arriving at the planet in units of erg / s / cm ** 2. average_euv_photon_wavelength (``float``): Average wavelength of EUV photons ionizing the He singlet state, in unit of Angstrom. Default value is 242 Angstrom. The default value is based on a flux-weighted average of the solar spectrum between 0 and 504 Angstrom. average_fuv_photon_wavelength (``float``): Average wavelength of FUV-NUV photons ionizing the He triplet state, in unit of Angstrom. Default value is 2348 Angstrom. The default value is based on a flux-weighted average of the solar spectrum between 911 and 2593 Angstrom. Returns ------- phi_1 (``float``): Ionization rate of helium singlet at null optical depth in unit of 1 / s. phi_3 (``float``): Ionization rate of helium triplet at null optical depth in unit of 1 / s. a_1 (``float``): Flux-averaged photoionization cross-section of helium singlet in unit of cm ** 2. a_3 (``float``): Flux-averaged photoionization cross-section of helium triplet in unit of cm ** 2. a_h_1 (``float``): Flux-averaged photoionization cross-section of hydrogen in the range absorbed by helium singlet in unit of cm ** 2. a_h_3 (``float``): Flux-averaged photoionization cross-section of hydrogen in the range absorbed by helium triplet in unit of cm ** 2. """ # Average cross-section to ionize helium singlet a_1 = microphysics.helium_singlet_cross_section(average_euv_photon_wavelength) # The photoionization cross-section of He triplet wavelength_3, a_lambda_3 = microphysics.helium_triplet_cross_section() # # Average cross-section to ionize helium triplet a_3 = np.interp(average_fuv_photon_wavelength, wavelength_3, a_lambda_3) # The flux-averaged photoionization cross-section of H is also going to be # needed because it adds to the optical depth that the He atoms see. # Contribution to the optical depth seen by He singlet atoms: # Hydrogen cross-section within the range important to helium singlet a_h_1 = 6.3E-18 * (average_euv_photon_wavelength / 13.6) ** (-3) # Unit 1 / cm ** 2. # Contribution to the optical depth seen by He triplet atoms: if average_fuv_photon_wavelength < 911.0: a_h_3 = microphysics.hydrogen_cross_section( wavelength=average_fuv_photon_wavelength) else: a_h_3 = 0.0 # Convert the fluxes from erg to eV and calculate the photoionization rates energy_1 = 12398.419843320025 / average_euv_photon_wavelength energy_3 = 12398.419843320025 / average_fuv_photon_wavelength phi_1 = flux_euv * 6.24150907e+11 * a_1 / energy_1 phi_3 = flux_fuv * 6.24150907e+11 * a_3 / energy_3 return phi_1, phi_3, a_1, a_3, a_h_1, a_h_3
b555fe1af2bdcdab4ac8f78ed2e64bef35a2cdab
3,651,745
import typing from datetime import datetime def date_yyyymmdd(now: typing.Union[datetime.datetime, None] = None, day_delta: int = 0, month_delta: int = 0) -> str: """ :param day_delta: :param month_delta: :return: today + day_delta + month_delta -> str YYYY-MM-DD """ return date_delta(now, day_delta, month_delta).strftime("%Y-%m-%d")
8a3ff535964aba6e3eeaa30dc6b98bfcab1b5794
3,651,746
from .geocoder import description_for_number as real_fn def description_for_number(*args, **kwargs): """Return a text description of a PhoneNumber object for the given language. The description might consist of the name of the country where the phone number is from and/or the name of the geographical area the phone number is from. This function explicitly checks the validity of the number passed in Arguments: numobj -- The PhoneNumber object for which we want to get a text description. lang -- A 2-letter lowercase ISO 639-1 language code for the language in which the description should be returned (e.g. "en") script -- A 4-letter titlecase (first letter uppercase, rest lowercase) ISO script code as defined in ISO 15924, separated by an underscore (e.g. "Hant") region -- A 2-letter uppercase ISO 3166-1 country code (e.g. "GB") Returns a text description in the given language code, for the given phone number, or an empty string if no description is available.""" return real_fn(*args, **kwargs)
c60423fb26d892a43db6017a08cce3d589481cb6
3,651,747
def get_pathway_nodes(pathway): """Return single nodes in pathway. :param pathme_viewer.models.Pathway pathway: pathway entry :return: BaseAbundance nodes :rtype: list[pybel.dsl.BaseAbundance] """ # Loads the BELGraph graph = from_bytes(pathway.blob) collapse_to_genes(graph) # Return BaseAbundace BEL nodes return { node.as_bel() for node in graph if isinstance(node, BaseAbundance) }
5ec451d9e9192b7d07230b05b2e3493df7ab3b4d
3,651,748
def check_currrent_user_privilege(): """ Check if our user has interesting tokens """ # Interesting Windows Privileges # - SeDebug # - SeRestore # - SeBackup # - SeTakeOwnership # - SeTcb # - SeCreateToken # - SeLoadDriver # - SeImpersonate # - SeAssignPrimaryToken interesting_priv = ( u'SeDebug', u'SeRestore', u'SeBackup', u'SeTakeOwnership', u'SeTcb', u'SeCreateToken', u'SeLoadDriver', u'SeImpersonate', u'SeAssignPrimaryToken' ) privs = get_currents_privs() priv = [] for (privilege, enabled) in privs: if enabled: string = privilege for p in interesting_priv: if p in privilege: string += ' => Could be used to elevate our privilege' break priv.append(string) return priv
7780717dfbf887f80ff90151ba2f00e49b810e2e
3,651,749
import copy def handle_domain_addition_commands(client: Client, demisto_args: dict) -> CommandResults: """ Adds the domains to the inbound blacklisted list. :type client: ``Client`` :param client: Client to use. :type demisto_args: ``dict`` :param demisto_args: The demisto arguments. :return: The command results which contains the added domains to the inbound blacklisted list. :rtype: ``CommandResults`` """ demisto_args = handle_args(demisto_args) domain = demisto_args.get('domain') if not domain: raise DemistoException( 'A domain must be provided in order to add it to the inbound blacklisted list.') demisto_args['domain'] = ','.join(argToList(domain)) raw_result = client.inbound_blacklisted_domain_add_command(demisto_args) domains_list = copy.deepcopy(raw_result.get('domains', [raw_result])) msg = 'Domains were successfully added to the inbound blacklisted list\n' objects_time_to_readable_time(domains_list, 'updateTime') readable_output = msg + tableToMarkdown('Added Domains', domains_list, headers=['domain', 'pgid', 'cid', 'update_time', 'annotation'], headerTransform=string_to_table_header, removeNull=True) return CommandResults( outputs_prefix='NetscoutAED.InboundBlacklistDomain', outputs_key_field='domain', outputs=domains_list, raw_response=raw_result, readable_output=readable_output, )
b5b281e3254a433c9431e77631001cb2be4e37e3
3,651,750
import torch def _tc4(dom: AbsDom): """ Validate that my AcasNet module can be optimized at the inputs. """ mse = nn.MSELoss() max_retries = 100 max_iters = 30 # at each retry, train at most 100 iterations def _loss(outputs_lb): lows = outputs_lb[..., 0] distances = 0 - lows distances = F.relu(distances) prop = torch.zeros_like(distances) return mse(distances, prop) retried = 0 while retried < max_retries: # it is possible to get inputs optimized to some local area, thus retry multiple times net = AcasNet(dom, 2, 2, [2]).to(device) inputs = torch.randn(2, 2, 2, device=device) inputs_lb, _ = torch.min(inputs, dim=-1) inputs_ub, _ = torch.max(inputs, dim=-1) inputs_lb = inputs_lb.requires_grad_() inputs_ub = inputs_ub.requires_grad_() ins = dom.Ele.by_intvl(inputs_lb, inputs_ub) with torch.no_grad(): outputs_lb, outputs_ub = net(ins).gamma() if _loss(outputs_lb) <= 0: # found something to optimize continue retried += 1 # Now the network has something to optimize print(f'\n===== TC4: ({retried}th try) =====') print('Using inputs LB:', inputs_lb) print('Using inputs UB:', inputs_ub) print('Before any optimization, the approximated output is:') print('Outputs LB:', outputs_lb) print('Outputs UB:', outputs_ub) # This sometimes work and sometimes doesn't. It may stuck on a fixed loss and never decrease anymore. orig_inputs_lb = inputs_lb.clone() orig_inputs_ub = inputs_ub.clone() opti = torch.optim.Adam([inputs_lb, inputs_ub], lr=0.1) iters = 0 while iters < max_iters: iters += 1 # after optimization, lb ≤ ub may be violated _inputs_lbub = torch.stack((inputs_lb, inputs_ub), dim=-1) _inputs_lb, _ = torch.min(_inputs_lbub, dim=-1) _inputs_ub, _ = torch.max(_inputs_lbub, dim=-1) ins = dom.Ele.by_intvl(_inputs_lb, _inputs_ub) opti.zero_grad() outputs_lb, outputs_ub = net(ins).gamma() loss = _loss(outputs_lb) if loss <= 0: # until the final output's 1st element is >= 0 break loss.backward() opti.step() print(f'Iter {iters} - loss {loss.item()}') if iters < max_iters: # successfully trained break assert retried < max_retries with torch.no_grad(): print(f'At {retried} retry, all optimized after {iters} iterations. ' + f'Now the outputs 1st element should be >= 0 given the latest input.') outputs_lb, outputs_ub = net(ins).gamma() print('Outputs LB:', outputs_lb) print('Outputs UB:', outputs_ub) print('Original inputs LB:', orig_inputs_lb) print('Optimized inputs LB:', inputs_lb) print('Original inputs UB:', orig_inputs_ub) print('Optimized inputs UB:', inputs_ub) assert (outputs_lb[:, 0] >= 0.).all() return
f008fd4bff6e1986f2354ef9338a3990e947656c
3,651,751
def skip_url(url): """ Skip naked username mentions and subreddit links. """ return REDDIT_PATTERN.match(url) and SUBREDDIT_OR_USER.search(url)
60c54b69916ad0bce971df06c5915cfbde10018c
3,651,752
def registry(): """ Return a dictionary of problems of the form: ```{ "problem name": { "params": ... }, ... }``` where `flexs.landscapes.AdditiveAAVPackaging(**problem["params"])` instantiates the additive AAV packaging landscape for the given set of parameters. Returns: dict: Problems in the registry. """ problems = { "heart": {"params": {"phenotype": "heart", "start": 450, "end": 540}}, "lung": {"params": {"phenotype": "lung", "start": 450, "end": 540}}, "kidney": {"params": {"phenotype": "kidney", "start": 450, "end": 540}}, "liver": {"params": {"phenotype": "liver", "start": 450, "end": 540}}, "blood": {"params": {"phenotype": "blood", "start": 450, "end": 540}}, "spleen": {"params": {"phenotype": "spleen", "start": 450, "end": 540}}, } return problems
5dd2e4e17640e0831daf02d0a2a9b9f90305a1c4
3,651,753
import time import random def ecm(n, rounds, b1, b2, wheel=2310, output=True): """Elliptic Curve Factorization Method. In each round, the following steps are performed: 0. Generate random point and curve. 1. Repeatedly multiply the current point by small primes raised to some power, determined by b1. 2. Standard continuation from b1 to b2 with Brent-Suyama's Extension and Polyeval. Returns when a non-trivial factor is found. Args: n (int): Number to be factorized. n >= 12. rounds (int): Number of random curves to try. b1 (int): Bound for primes used in step 1. b2 (int): Bound for primes searched for in step 2. b1 < b2. wheel (int, optional): Wheel, where only numbers coprime to wheel will be considered in step 2. Defaults to 2310. output (bool, optional): Whether to print progress to stdout. Defaults to True. Raises: ValueError: Thrown when n < 12. Returns: int: Non-trivial factor if found, otherwise returns None. """ if n < 12: raise ValueError j_list = [j for j in range(1, wheel // 2) if gcd(j, wheel) == 1] block_size = 1 << (len(j_list) - 1).bit_length() - 1 for round_i in range(rounds): if output: st = time.time() print("Round {}...".format(round_i)) count = 0 success = False while not success and count < 20: try: count += 1 sigma = random.randint(6, n - 6) mnt_pt, mnt_curve = mnt.get_curve_suyama(sigma, n) success = True except InverseNotFound as e: res = gcd(e.x, n) if 1 < res < n: return res except CurveInitFail: pass if not success: print(" - Curve Init Failed.") break try: # Step 1 if output: print("{:>5.2f}: Step 1".format(time.time() - st)) for p in PRIME_GEN(b1): for _ in range(int(np.log(b1) / np.log(p))): mnt_pt = mnt.mul_pt_exn(mnt_pt, mnt_curve, p) # Step 2 if output: print("{:>5.2f}: Step 2".format(time.time() - st)) polynomial = (2, 0, 9, 0, 6, 0, 1) # f(x) = x^6 + 6x^4 + 9x^2 + 2 q, wst_curve = mnt.to_weierstrass(mnt_pt, mnt_curve) c1 = b1 // wheel c2 = b2 // wheel + 2 c = 0 k_ls = [ apply_polynomial(polynomial, j) for j in j_list ] + get_difference_seq(polynomial, c1 * wheel, wheel) mul_res = wst.mul_pt_multi(q, wst_curve, k_ls) xj_list = [] for i in range(len(j_list)): xj_list.append(mul_res[i][0]) cq_list = mul_res[len(j_list) :] f_tree = product_tree([Polynomial([n - xj, 1], n) for xj in xj_list], n) f_recip_tree = recip_tree(f_tree) H = Polynomial([1], n) g_poly_list = [] while c < c2 - c1: for _ in range(min(block_size, c2 - c1 - c)): g_poly_list.append(Polynomial([n - cq_list[0][0], 1], n)) step_difference_seq_exn(cq_list, wst_curve) c += 1 G = product_tree(g_poly_list, n)[0] H = (H * G).mod_with_recip(f_tree[0], f_recip_tree[0]) g_poly_list.clear() rem_tree = remainder_tree(H, f_tree, f_recip_tree, n) res = gcd(rem_tree[0], n) if 1 < res < n: return res elif res == n: for rem in rem_tree[len(rem_tree) // 2 :]: res = gcd(rem, n) if 1 < res < n: return res assert False if output: print("{:>5.2f}: End".format(time.time() - st)) except InverseNotFound as e: res = gcd(e.x, n) if 1 < res < n: return res return None
9490e6ac4308aed9835e85b3093a1c2b18877fd1
3,651,754
from typing import Optional import re from datetime import datetime import logging def dc_mode_option(update: Update, contex: CallbackContext) -> Optional[int]: """Get don't care response mode option""" ndc = contex.user_data[0] if ndc.response_mode == DoesntCare.ResponseMode.TIME: if not re.match(r"[0-9]+:[0-9]+:[0-9]+", update.effective_message.text): update.effective_message.reply_text( 'Invalid time format, please send in this format: Hours:Minutes:Seconds') return None hms = update.effective_message.text.split(':') ndc.response_mode_option = \ datetime.timedelta(hours=int(hms[0]), minutes=int(hms[1]), seconds=int(hms[2])).total_seconds() else: if ((not update.effective_message.text.isdigit()) or (not (int(update.effective_message.text) > 1))): update.effective_message.reply_text('Invalid number. Please send a positive integer more than 1.') return None ndc.response_mode_option = float(update.effective_message.text) if ndc.add(): update.effective_message.reply_text("Added user to your don't care list!") logging.info( "Add: DCU: \"{}\", NIU: \"{}\", Chat: \"{}\", RM: \"{}\", RMO: \"{}\"" .format(ndc.doesnt_care_id, ndc.not_important_id, ndc.chat_id, ndc.response_mode, ndc.response_mode_option) ) else: update.effective_message.reply_text("Sorry, an error occurred! Please try again later.") logging.error( "Add, DCU: \"{}\", NIU: \"{}\", Chat: \"{}\"" .format(ndc.doesnt_care_id, ndc.not_important_id, ndc.chat_id) ) return ConversationHandler.END
accf998e660898d9de2d17d45e18b6d49ba90f4c
3,651,755
def is_in_period(datetime_, start, end): """指定した日時がstartからendまでの期間に含まれるか判定する""" return start <= datetime_ < end
3b830cb8d9e74934a09430c9cd6c0940cf36cf2e
3,651,756
def create_experiment_summary(): """Returns a summary proto buffer holding this experiment""" # Convert TEMPERATURE_LIST to google.protobuf.ListValue temperature_list = struct_pb2.ListValue().extend(TEMPERATURE_LIST) return summary.experiment_pb( hparam_infos=[ api_pb2.HParamInfo(name="initial_temperature", display_name="initial temperature", type=api_pb2.DATA_TYPE_FLOAT64, domain_discrete=temperature_list), api_pb2.HParamInfo(name="ambient_temperature", display_name="ambient temperature", type=api_pb2.DATA_TYPE_FLOAT64, domain_discrete=temperature_list), api_pb2.HParamInfo(name="heat_coefficient", display_name="heat coefficient", type=api_pb2.DATA_TYPE_FLOAT64, domain_discrete=temperature_list) ], metric_infos=[ api_pb2.MetricInfo( name=api_pb2.MetricName( tag="temparature/current/scalar_summary"), display_name="Current Temp."), api_pb2.MetricInfo( name=api_pb2.MetricName( tag="temparature/difference_to_ambient/scalar_summary"), display_name="Difference To Ambient Temp."), api_pb2.MetricInfo( name=api_pb2.MetricName( tag="delta/scalar_summary"), display_name="Delta T") ] )
678a9f1b004f4c5a60784ccf814082731eace826
3,651,757
import requests def get_session(token, custom_session=None): """Get requests session with authorization headers Args: token (str): Top secret GitHub access token custom_session: e.g. betamax's session Returns: :class:`requests.sessions.Session`: Session """ session = custom_session or requests.Session() session.headers = { "Authorization": "token " + token, "User-Agent": "testapp" } return session
88bf566144a55cf36daa46d3f9a9886d3257d767
3,651,758
def mass_to_tbint_to_energy_map(dpath, filterfn=lambda x: True, fpath_list=None): """Given a directory, creates a mapping mass number -> ( a, b, c, d, j -> energy ) using the files in the directory :param fpath_list: :param dpath: the directory which is a direct parent to the files from which to generate the map :param filterfn: the filter function to apply to the files before constructing the map """ mida_map = _mass_tbme_data_map( dpath, filterfn, fpath_list) for k in mida_map.keys(): v = mida_map[k] nextv = dict() for row in v: tup = tuple(row[0:6]) energy = float(row[6]) nextv[tup] = energy mida_map[k] = nextv return mida_map
a13caba5ff41e2958d7f4e6104eb809de1cda1c1
3,651,759
import unicodedata def strip_accents(text): """ Strip accents from input String. :param text: The input string. :type text: String. :returns: The processed String. :rtype: String. """ text = unicodedata.normalize('NFD', text) text = text.encode('ascii', 'ignore') text = text.decode("utf-8") return str(text)
4a6e11e0a72438a7e604e90e44a7220b1426df69
3,651,760
import json def json_formatter(result, _verbose): """Format result as json.""" if isinstance(result, list) and "data" in result[0]: res = [json.dumps(record) for record in result[0]["data"]] output = "\n".join(res) else: output = json.dumps(result, indent=4, sort_keys=True) return output
68aae87577370d3acf584014651af21c7cbfa309
3,651,761
def show_all_companies(): """Show all companies a user has interest in.""" # redirect if user is not logged in if not session: return redirect('/') else: # get user_id from session user_id = session['user_id'] user = User.query.filter(User.user_id == user_id).one() user_companies = user.companies companies = {} for company in user_companies: count = Job.query.filter(Job.company_id == company.company_id).count() companies[company] = count return render_template('companies.html', companies=companies)
7f2d7215627747ff44caff4f58324dce2e3aa749
3,651,762
def ll_combined_grad(x, item_ids, judge_ids, pairwise=[], individual=[]): """ This function computes the _negative_ gradient of the loglikelihood for each parameter in x, for both the individual and pairwise data. Keyword arguments: x -- the current parameter estimates. item_ids -- the ids of the items being evaluated judge_ids -- the ids of the judges being evaluted pairwise -- an iterator for the pairwise ratings individual -- an iterator for the individual ratings >>> ll_combined_grad([0,0,1,1,3,1], [0,1], [0], [], []) array([-0. , -0. , -0. , -1.33333333, 2. , -0. ]) """ item_val = {i:idx for idx, i in enumerate(item_ids)} discrim = {i:idx + len(item_val) for idx, i in enumerate(judge_ids)} bias = {i:idx + len(item_val) + len(judge_ids) for idx, i in enumerate(judge_ids)} precision = {i:idx + len(item_val) + 2*len(judge_ids) for idx, i in enumerate(judge_ids)} likert_mean = x[-1] likert_prec = x[-2] grad = np.zeros(len(x)) #grad = np.array([0.0 for v in x]) for r in pairwise: left = x[item_val[r.left.id]] right = x[item_val[r.right.id]] d = x[discrim[r.judge.id]] y = r.value z = d * (left - right) #z = (left - right) p = invlogit(z) g = y - p #grad[item_val[r.left.id]] += g #grad[item_val[r.right.id]] += -1 * g grad[item_val[r.left.id]] += d * g grad[item_val[r.right.id]] += -1 * d * g grad[discrim[r.judge.id]] += (left - right) * g for l in individual: u = x[item_val[l.item.id]] b = x[bias[l.judge.id]] prec = x[precision[l.judge.id]] #n = sqrt(1/prec) p0 = likert_prec s = 1 / sqrt(p0) error = (l.value - likert_mean - s * (b + u)) grad[item_val[l.item.id]] += prec * p0 * error * s grad[bias[l.judge.id]] += prec * p0 * error * s grad[-1] += prec * p0 * error grad[precision[l.judge.id]] += (1 / (2 * prec)) - (p0 / 2) * (error * error) grad[-2] += (1 / (2 * p0)) - (prec / 2) * ((b + u) * s * error + error * error) #error = (l.value - likert_mean - b - u) #grad[item_val[l.item.id]] += prec * error #grad[bias[l.judge.id]] += prec * error #grad[-1] += prec * error # likert mean #grad[precision[l.judge.id]] += (1 / (2 * prec)) - (error * error)/2 # Regularization # Normal prior on means item_reg = np.array([0.0 for v in x]) for i in item_val: item_reg[item_val[i]] += (x[item_val[i]] - item_mean) item_reg = -1 * item_prec * item_reg #item_reg = (-1.0 / (item_std * item_std)) * item_reg # Normal prior on discriminations judge_reg = np.array([0.0 for v in x]) for i in discrim: judge_reg[discrim[i]] += (x[discrim[i]] - discrim_mean) judge_reg = -1 * discrim_prec * judge_reg #judge_reg = (-1.0 / (discrim_std * discrim_std)) * judge_reg # Normal prior on bias bias_reg = np.array([0.0 for v in x]) for i in bias: bias_reg[bias[i]] += (x[bias[i]] - bias_mean) bias_reg = (-1.0 / (bias_std * bias_std)) * bias_reg # Normal prior on noise prec_reg = np.array([0.0 for v in x]) for i in precision: prec_reg[precision[i]] += (x[precision[i]] - prec_mean) prec_reg = (-1.0 / (prec_std * prec_std)) * prec_reg return -1 * (grad + item_reg + judge_reg + bias_reg + prec_reg)
54936fe9b0e9b7a17acb7455c606bf754532a8b8
3,651,763
def relu(inp): # ReLu function as activation function """ ReLu neural network activation function :param inp: Node value before activation :return: Node value after activation """ return np.max(inp, 0)
fbe6caf2246684a62d00956e38579fab3dff3418
3,651,764
from typing import List from typing import Tuple import logging def augment_sentence(tokens: List[str], augmentations: List[Tuple[List[tuple], int, int]], begin_entity_token: str, sep_token: str, relation_sep_token: str, end_entity_token: str) -> str: """ Augment a sentence by adding tags in the specified positions. Args: tokens: Tokens of the sentence to augment. augmentations: List of tuples (tags, start, end). begin_entity_token: Beginning token for an entity, e.g. '[' sep_token: Separator token, e.g. '|' relation_sep_token: Separator token for relations, e.g. '=' end_entity_token: End token for an entity e.g. ']' An example follows. tokens: ['Tolkien', 'was', 'born', 'here'] augmentations: [ ([('person',), ('born in', 'here')], 0, 1), ([('location',)], 3, 4), ] output augmented sentence: [ Tolkien | person | born in = here ] was born [ here | location ] """ # sort entities by start position, longer entities first augmentations = list(sorted(augmentations, key=lambda z: (z[1], -z[2]))) # check that the entities have a tree structure (if two entities overlap, then one is contained in # the other), and build the entity tree root = -1 # each node is represented by its position in the list of augmentations, except that the root is -1 entity_tree = {root: []} # list of children of each node current_stack = [root] # where we are in the tree for j, x in enumerate(augmentations): tags, start, end = x if any(augmentations[k][1] < start < augmentations[k][2] < end for k in current_stack): # tree structure is not satisfied! logging.warning(f'Tree structure is not satisfied! Dropping annotation {x}') continue while current_stack[-1] >= 0 and \ not (augmentations[current_stack[-1]][1] <= start <= end <= augmentations[current_stack[-1]][2]): current_stack.pop() # add as a child of its father entity_tree[current_stack[-1]].append(j) # update stack current_stack.append(j) # create empty list of children for this new node entity_tree[j] = [] return ' '.join(expand_tokens( tokens, augmentations, entity_tree, root, begin_entity_token, sep_token, relation_sep_token, end_entity_token ))
916745727dd6ce19e67a28bdadb2bd74b54075a3
3,651,765
import multiprocessing def evaluate_model_recall_precision(mat, num_items, testRatings, K_recall, K_precision, num_thread): """ Evaluate the performance (Hit_Ratio, NDCG) of top-K recommendation Return: score of each test rating. """ global _mat global _testRatings global _K_recall global _K_precision global _K_max global _num_items _mat = mat _testRatings = testRatings _K_recall = K_recall _K_precision = K_precision _K_max = max(_K_precision,_K_recall) _num_items = num_items recalls, precisions = [], [] if (num_thread > 1): # Multi-thread pool = multiprocessing.Pool(processes=num_thread) res = pool.map(eval_recall_precision, range(len(_testRatings))) pool.close() pool.join() recalls = [r[0] for r in res] precisions = [r[1] for r in res] return (recalls, precisions) # Single thread for idx in range(len(_testRatings)): (recall, precision) = eval_recall_precision(idx) recalls.append(recall) precisions.append(precision) return (recalls, precisions)
bb504053937faf6e3017f8d79fee6a4a4e864b15
3,651,766
def pipe_hoop_stress(P, D, t): """Calculate the hoop (circumferential) stress in a pipe using Barlow's formula. Refs: https://en.wikipedia.org/wiki/Barlow%27s_formula https://en.wikipedia.org/wiki/Cylinder_stress :param P: the internal pressure in the pipe. :type P: float :param D: the outer diameter of the pipe. :type D: float :param t: the pipe wall thickness. :type t: float :returns: the hoop stress in the pipe. :rtype: float """ return P * D / 2 / t
9985d35c2c55e697ce21a880bb2234c160178f33
3,651,767
def node_constraints(node): """ Returns all constraints a node is linked to :param node: str :return: list(str) """ return maya.cmds.listRelatives(node, type='constraint')
85c619f4c1b6ec24feb8c3dac3e73b92f8fdf7fc
3,651,768
import os def save_data_file(sourceFile, destination = None, subdirectory = None, user = None, verbose = True): """ Function used to save (i.e copy) a data file into a directory of choice after an experimental session Parameters: sourceFile - the path of the file that was generated by the experimental session and that resides in the local file system. destination - An optional destination path where to save the file. File name may be included or not at the end of the path. subdirectory - An optional subdirectory, i.e folder, to add to the destination path. For example, if the destination path is a folder called "experiments", the subdirectory can be a child folder of "experiments", named after the experiment type ("behaviour" for instance). user - An optional parameter to indicate which user is conducting the experiments. If supplied, and if no destination is passed, a configuration file is looked up to retrieve the folder into which the user is usually copying data files. If no destination and no user is provided, a default directory is looked up in the configuration file as the default destination of the file to be copied. Either way, a save as dialog box will appear and the user will have final say. """ # Validate file parameter passed. Also check to see if the path provided is lacking the default .h5 extension if not os.path.exists(sourceFile): if not os.path.exists(sourceFile+".h5"): # Error message if the source file path could not be found in the system error(None,"Woah there!\n\n1. Couldn't find the file that you want to copy.\ \n2. Check to see if it exists in the file system and the path provided is correct"\ , "File Finding Police report") return else: # File exists but has an extension and one was not provided in the path given. # Add it to file path descriptor sourceFile += ".h5" # information(None, "the filename of source provided lacked the \".h5\" extension.\ # \n\nA file with the extension was found and presumed to be the source meant"\ # ,"Path Police report") # Get file extension fileExtension = os.path.splitext(sourceFile)[-1] # Get the destination file name from the path provided destinationFile = os.path.split(sourceFile)[-1] destinationFolder = "" # If file has no extension, add the default .h5 extension to destination file name if fileExtension == "": warning(None, "The file you are trying to save has no extension\n\nAdding \".h5\" to the name of destination file"\ , ".h5 Extension Police") destinationFile = file + ".h5" # The file provided has different extension. Display a warning but do nothing. elif fileExtension != ".h5": warning(None, "Your file to be copied does not have an \".h5\" extension\n\nNo action taken."\ , "h5 Extension Police") # Display confirmation dialog for copying the file dlg = ConfirmationDialog(title = "You there!", yes_label = "Yes Please!", no_label = "Nah...", message = "Would you like to copy the data file generated after the session?\ \n\nIf you say Nah... and change your mind, you'll have to copy it manually later") # Open the dialog GUI dlg.open() # User provided a destination path if destination: # Check to see if destination is a file name with an extension. destinationExtension = os.path.splitext(destination)[-1] if destinationExtension: # Is it .h5? If not, warn but don't override. if destinationExtension != ".h5": warning(None, "Your destination filename does not have an \".h5\" extension\n\nNo action taken."\ , "h5 Extension Police") destinationFolder, destinationFile = os.path.split(destination) # Assume destination is directory since there is no extension. else: destinationFolder = destination # Look up a default destination from the config file since no <destination> parameter was provided. else: configFile = os.environ.get("Voyeur_config") config = ConfigObj(configFile) # A user specific folder was provided. if user: destinationFolder = config['server']['folder']['data']['user'] # Use default data folder as read from the config file. else: destinationFolder = config['server']['folder']['data']['default'] # User provided a subdirectory, i.e subfolder, into which to place the file. if subdirectory: # The subdirectory provided has common path with the directory provided. Display warning but do nothing. if os.path.commonprefix((destination,subdirectory)): warning(None, "Friendly warning!\n<subdirectory> parameter provided has a common path with the <destination>\ path parameter\n\n1. No action taken.\n2. Check your final destination path to make sure it is what you want"\ , "Path Police report") destinationFolder = os.path.join(destinationFolder,subdirectory) # Path of the destination of file to be copied. destinationPath = os.path.join(destinationFolder,destinationFile) if dlg.return_code == YES: # A file with same name exists. if os.path.isfile(destinationPath): warning(None, "A file with given path already exists!\n\n1. No action taken\ \n2. Make sure to either rename file or choose different folder", "Path Police report") # Provided folder does not exist. Make one and inform the user. elif not os.path.isdir(destinationFolder): information(None, "Making a new folder to put the file into...", "Information Transparency report") # TODO: What if this results in an exception? Catch and do something? # TODO: Keep track of made directories so we may delete them later os.makedirs(os.path.abspath(destinationFolder)) # The save as dialog box. # TODO: change wildcard to current extension wildcard dialog = FileDialog(action="save as", title = "Select directory into which the data file will be copied",\ wildcard = "*.*", default_directory = destinationFolder, default_filename = destinationFile) #*.h5||| elif dlg.return_code == NO and verbose: information(None, "No file was copied.\n\nIf you change your mind, you will have to transfer the data file manually."\ , "Information Transparency report") return dialog.open() # User clicked Save and successful input received. if dialog.return_code == OK: # The actual copying of the file. TODO: See if the copy2 function throws an exception copy2(sourceFile, dialog.path) # The user clicked Cancel. elif dialog.return_code == CANCEL: information(None, "No file was copied.\n\nIf you change your mind, you will have to transfer the data file manually."\ , "Information Transparency report") #TODO: update the Voyeur config file after asking user return dialog.path
1950fd776ccee91d0b2500297b2b3f94cb734415
3,651,769
import os def parse_file_name(filename): """ Parse the file name of a DUD mol2 file to get the target name and the y label :param filename: the filename string :return: protein target name, y_label string (ligand or decoy) """ bname = os.path.basename(filename) splitted_bname = bname.split('_') if len(splitted_bname) == 3: target_name = splitted_bname[0] y_label_str = splitted_bname[1] elif len(splitted_bname) == 4: target_name = '_'.join([splitted_bname[0], splitted_bname[1]]) y_label_str = splitted_bname[2] else: raise ValueError('File name has not expected format. Can not parse file name.') if y_label_str == 'decoys': y_label = 0 elif y_label_str == 'ligands': y_label = 1 else: raise ValueError('File name has not expected format. Can not parse file name.') return target_name, y_label
8f9de132e622feffc513453be36b80f386b36c9c
3,651,770
def load_opencv_stereo_calibration(path): """ Load stereo calibration information from xml file @type path: str @param path: video_path to xml file @return stereo calibration: loaded from the given xml file @rtype calib.data.StereoRig """ tree = etree.parse(path) stereo_calib_elem = tree.find("Rig") return rig.Rig.from_xml(stereo_calib_elem)
07ace05e8d377ba1fdcef632e5afa1d9ea309185
3,651,771
def _IsSingleElementTuple(token): """Check if it's a single-element tuple.""" close = token.matching_bracket token = token.next_token num_commas = 0 while token != close: if token.value == ',': num_commas += 1 if token.OpensScope(): token = token.matching_bracket else: token = token.next_token return num_commas == 1
8d675bcee737ddb106817db79e2b989509d2efaa
3,651,772
def exportBufferView(gltf: GLTF2, primaryBufferIndex: int, byteOffset: int, byteLength: int) -> GLTFIndex: """Creates a glTF bufferView with the specified offset and length, referencing the default glB buffer. Args: gltf: Gltf object to append new buffer onto. primaryBufferIndex: Index of the primary glb buffer. byteOffset: Index of the starting byte in the referenced buffer. byteLength: Length in bytes of the bufferView. Returns: The index of the exported bufferView in the glTF bufferViews list. """ bufferView = BufferView() bufferView.buffer = primaryBufferIndex # index of the default glB buffer. bufferView.byteOffset = byteOffset bufferView.byteLength = byteLength return appendGetIndex(gltf.bufferViews, bufferView)
6905f3544470860a125b0d28f5f422a39bc7b91f
3,651,773
import numpy def ReadCan(filename): """Reads the candump in filename and returns the 4 fields.""" trigger = [] trigger_velocity = [] trigger_torque = [] trigger_current = [] wheel = [] wheel_velocity = [] wheel_torque = [] wheel_current = [] trigger_request_time = [0.0] trigger_request_current = [0.0] wheel_request_time = [0.0] wheel_request_current = [0.0] with open(filename, 'r') as fd: for line in fd: data = line.split() can_id = int(data[1], 16) if can_id == 0: data = [int(d, 16) for d in data[3:]] trigger.append(((data[0] + (data[1] << 8)) - 32768) / 32768.0) trigger_velocity.append( ((data[2] + (data[3] << 8)) - 32768) / 32768.0) trigger_torque.append( ((data[4] + (data[5] << 8)) - 32768) / 32768.0) trigger_current.append( ((data[6] + ((data[7] & 0x3f) << 8)) - 8192) / 8192.0) elif can_id == 1: data = [int(d, 16) for d in data[3:]] wheel.append(((data[0] + (data[1] << 8)) - 32768) / 32768.0) wheel_velocity.append( ((data[2] + (data[3] << 8)) - 32768) / 32768.0) wheel_torque.append( ((data[4] + (data[5] << 8)) - 32768) / 32768.0) wheel_current.append( ((data[6] + ((data[7] & 0x3f) << 8)) - 8192) / 8192.0) elif can_id == 2: data = [int(d, 16) for d in data[3:]] trigger_request_current.append( ((data[4] + (data[5] << 8)) - 32768) / 32768.0) trigger_request_time.append(len(trigger) * 0.001) elif can_id == 3: data = [int(d, 16) for d in data[3:]] wheel_request_current.append( ((data[4] + (data[5] << 8)) - 32768) / 32768.0) wheel_request_time.append(len(wheel) * 0.001) trigger_data_time = numpy.arange(0, len(trigger)) * 0.001 wheel_data_time = numpy.arange(0, len(wheel)) * 0.001 # Extend out the data in the interpolation table. trigger_request_time.append(trigger_data_time[-1]) trigger_request_current.append(trigger_request_current[-1]) wheel_request_time.append(wheel_data_time[-1]) wheel_request_current.append(wheel_request_current[-1]) return (trigger_data_time, wheel_data_time, trigger, wheel, trigger_velocity, wheel_velocity, trigger_torque, wheel_torque, trigger_current, wheel_current, trigger_request_time, trigger_request_current, wheel_request_time, wheel_request_current)
773657474462aa3a129ea7459c72ea0b0dc0cefa
3,651,774
def retrieve(func): """ Decorator for Zotero read API methods; calls _retrieve_data() and passes the result to the correct processor, based on a lookup """ def wrapped_f(self, *args, **kwargs): """ Returns result of _retrieve_data() func's return value is part of a URI, and it's this which is intercepted and passed to _retrieve_data: '/users/123/items?key=abc123' the atom doc returned by _retrieve_data is then passed to _etags in order to extract the etag attributes from each entry, then to feedparser, then to the correct processor """ if kwargs: self.add_parameters(**kwargs) retrieved = self._retrieve_data(func(self, *args)) # determine content and format, based on url params content = self.content.search( self.request.get_full_url()) and \ self.content.search( self.request.get_full_url()).group(0) or 'bib' fmt = self.fmt.search( self.request.get_full_url()) and \ self.fmt.search( self.request.get_full_url()).group(0) or 'atom' # step 1: process atom if it's atom-formatted if fmt == 'atom': parsed = feedparser.parse(retrieved) processor = self.processors.get(content) # step 2: if the content is JSON, extract its etags if processor == self._json_processor: self.etags = etags(retrieved) # extract next, previous, first, last links self.links = self._extract_links(parsed) return processor(parsed) # otherwise, just return the unparsed content as is else: return retrieved return wrapped_f
442f18f4c00a13b5eb68285202088b009f9f351b
3,651,775
from typing import Dict async def health() -> Dict[str, str]: """Health check function :return: Health check dict :rtype: Dict[str, str] """ health_response = schemas.Health(name=settings.PROJECT_NAME, api_version=__version__) return health_response.dict()
8c2841cea1fb9118cbc063d9352d375188025614
3,651,776
def detail(video_id): """ return value is [ { 'video_path' : s }, { 'person_id': n, 'person_info_list' : [ { 'frame' : n 'millisec' : n 'age' : n 'gender' : s 'img_person' : s 'top_color' : n 'bottom_color' : n }, { ... } ] }, { 'person_id' : n, ... }, ... ] """ video = VideoList.query.get_or_404(video_id) tableName = videoNameToTable(video.video_name) VideoTable = getVideoTable(tableName) returnJson = list() returnJson.append({'video_name' : tableName + '.mp4' }) people = db.session.query(VideoTable.person_id.distinct()).all() for person in people: personDict = dict() person_id = person[0] personDict['person_id'] = person_id personDict['person_info_list'] = list() personInfoList = VideoTable.query.filter(VideoTable.person_id == person_id).all() for personInfo in personInfoList: # change 'personInfo.img_person' from abs path to relative path index = personInfo.img_person.find('images') img_person = personInfo.img_person[index + 7:] personDict['person_info_list'].append( { 'frame' : personInfo.frame, 'millisec' : personInfo.millisec, 'age' : personInfo.age, 'gender' : personInfo.gender, 'img_person' : img_person, 'top_color' : personInfo.top_color, 'bottom_color' : personInfo.bottom_color } ) returnJson.append(personDict) return jsonify(returnJson), 200
7447f5ea45ab6fa1c6d10f97ac7d57add68fdf40
3,651,777
import os def list_terminologies(): """ Get the list of available Amazon Translate Terminologies for this region Returns: This is a proxy for boto3 get_terminology and returns the output from that SDK method. See `the boto3 documentation for details <https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/translate.html#Translate.Client.list_terminologies>`_ Raises: See the boto3 documentation for details 500: Internal server error """ # This function returns a list of saved terminologies print('list_terminologies request: '+app.current_request.raw_body.decode()) translate_client = boto3.client('translate', region_name=os.environ['AWS_REGION']) response = translate_client.list_terminologies(MaxResults=100) terminologies = response['TerminologyPropertiesList'] while ('NextToken' in response): response = translate_client.list_terminologies(MaxResults=100, NextToken=response['NextToken']) terminologies = terminologies + response['TerminologyPropertiesList'] # Convert time field to a format that is JSON serializable for item in terminologies: item['CreatedAt'] = item['CreatedAt'].isoformat() item['LastUpdatedAt'] = item['LastUpdatedAt'].isoformat() return response
7eeaa65fa5d20d508d12d010fcf0d4410cc8b45d
3,651,778
import logging def RunLinters(prefix, name, data, settings=None): """Run linters starting with |prefix| against |data|.""" ret = [] if settings is None: settings = ParseOptions([]) ret += settings.errors linters = [x for x in FindLinters(prefix) if x not in settings.skip] for linter in linters: functor = globals().get(linter) for result in functor(data): ret.append(LintResult(linter, name, result, logging.ERROR)) return ret
9b8c780fe3684405d17e59897bee11118dff5590
3,651,779
def element_norm_spatial_exoao(processes, comp_sol, test_time, test_var_list, exact_solution, subel_ints = 1, zfill=None, exact_time=None, block_ids=[]): """ This is element_norm_spatial but input solution types are limited. An exodus.ExodusFile object is expected for the computed solution, and an analytic solution object is expected for the exact solution. if exact_time is not given, the exact_solution is evaluated at test_time """ # Accept an exodus object as the computed solution. if not isinstance(comp_sol, exodus.ExodusFile): # Unrecognized type print "Computed solution is not a recognized type." print "It should be either an exodus.ExodusFile object." sys.exit(1) # Get the (1-based) index of the time for the computed solution comp_t_idx1 = find_time_index(comp_sol, test_time) # The (0-based) index of the variable in the computed solution comp_var_idx0 = comp_sol.findVar(exodus.EX_ELEM_BLOCK, test_var_list[0]) # Add error checking for test_var_list? # If no list of block ids is given, generate a list including all blocks if block_ids == []: for block_idx0 in range(comp_sol.getNumber(exodus.EX_ELEM_BLOCK)): block_ids.append(comp_sol.getId(exodus.EX_ELEM_BLOCK, block_idx0) ) # Accept a solution object as the exact solution if hasattr(exact_solution, test_var_list[1]): exact_sol = exact_solution # If not overridden by exact_time argument, ensure the # analytic solution time matches the simulation data time if exact_time == None: exact_time = comp_sol.getTimes()[comp_t_idx1 - 1] # Refer directly to the attribute (method) we want func_direct = getattr(exact_sol, test_var_list[1]) # Get nodal coords here rather than over and over for each element block # for subel_ints == 1 restructure after computing center coordinates, # which happens in the block loop current_coordinates = get_current_coordinates(comp_sol, comp_t_idx1) if subel_ints > 1: restructured_coords = restructure_coordinates(current_coordinates) else: # Unrecognized type print "Exact solution is not a recognized type." print "It should be an analytic solution object." sys.exit(1) # Initialize varET = WeightedErrorTally() ######## The work proper ######## for block_id in block_ids: element_volumes = get_element_volumes(comp_sol, block_id, comp_t_idx1) comp_var = comp_sol.readVar(comp_t_idx1, exodus.EX_ELEM_BLOCK, block_id, comp_var_idx0) exact_var = array.array('d') # exact solution will be calculated from a function if subel_ints == 1: # Evaluate the exact solution at the center of the element ctr_coords = comp_sol.computeCenters(exodus.EX_ELEM_BLOCK, block_id, current_coordinates) # Have to add the fill here because computeCenters knows # the true number of dimensions if comp_sol.getDimension()==2 and not zfill==None: x2_fill = array.array(comp_sol.storageType()) for i in range(len(ctr_coords[0])): x2_fill.append(zfill) ctr_coords.append(x2_fill) r_coords = restructure_coordinates(ctr_coords) len_r_coords = len(r_coords) if processes <= 2: # No point in parallelizing for 2 processes, since only 1 child process would be created. exact_var = map_func(func_direct, 0, len_r_coords, r_coords, exact_time) else: child_processes = processes - 1 exact_var = [None for i in range(len_r_coords)] pipes = [(None, None) for i in range(child_processes)] process_list = [None for i in range(child_processes)] for process_number in range(child_processes): idx_start = (process_number * len_r_coords) / child_processes idx_end = ((process_number+1) * len_r_coords) / child_processes pipes[process_number] = multiprocessing.Pipe(False) p = multiprocessing.Process(target=map_func_parallel, args=(pipes[process_number][1], func_direct, idx_start, idx_end, r_coords, exact_time,)) process_list[process_number] = p p.start() for process_number in range(child_processes): p = process_list[process_number] idx_start = (process_number * len_r_coords) / child_processes idx_end = ((process_number+1) * len_r_coords) / child_processes conn_obj = pipes[process_number][0] exact_var_local = conn_obj.recv() for idx in range(idx_start, idx_end): exact_var[idx] = exact_var_local[idx - idx_start] conn_obj.close() p.join() else: avg_evar_on_block(processes, comp_sol, block_id, comp_t_idx1, restructured_coords, func_direct, subel_ints, zfill, evar_array = exact_var) varET.w_accumulate(exact_var, comp_var, element_volumes) return varET
323fe13213a5ae8ad980d760943bc5cf1fc46074
3,651,780
from typing import Iterator def generate_close_coordinates( draw: st.DrawFn, prev_coord: Coordinates[str, np.float64] ) -> Coordinates[str, np.float64]: """Create coordinates using Hypothesis.""" diff = [ draw(hynp.from_dtype(np.dtype(np.float64), min_value=0.1, max_value=1.0)), draw(hynp.from_dtype(np.dtype(np.float64), min_value=0.1, max_value=1.0)), draw(hynp.from_dtype(np.dtype(np.float64), min_value=0.1, max_value=1.0)), draw(hynp.from_dtype(np.dtype(np.float64), min_value=0.1, max_value=1.0)), draw(hynp.from_dtype(np.dtype(np.float64), min_value=0.1, max_value=1.0)), draw(hynp.from_dtype(np.dtype(np.float64), min_value=0.1, max_value=1.0)), ] coord = vectorize(prev_coord) + diff formatted: Iterator[np.float64] = (np.float64(i) for i in coord) return dict(zip(SIXAXES, formatted))
8b207d5989f59a30e0c99eebd4654b609a03be93
3,651,781
from typing import Union def redistribute_vertices( geom: Union[LineString, MultiLineString], distance: float ) -> Union[LineString, MultiLineString]: """Redistribute the vertices of input line strings Parameters ---------- geom : LineString or MultiLineString Input line strings whose vertices is to be redistributed. distance : float The distance to be used for redistribution. Returns ------- LineString or MultiLineString The resulting line strings with redistributed vertices. Raises ------ ValueError If input geometry is not LineString or MultiLineString. """ if geom.geom_type == 'LineString': # pylint: disable=R1705 num_vert = int(round(geom.length / distance)) if num_vert == 0: num_vert = 1 return LineString( [geom.interpolate(float(n) / num_vert, normalized=True) for n in range(num_vert + 1)]) elif geom.geom_type == 'MultiLineString': parts = [redistribute_vertices(part, distance) for part in geom] return type(geom)([p for p in parts if not p.is_empty]) raise ValueError(f'unhandled geometry {geom.geom_type}')
1a5f0c3f409d5f3de46831bfa8456a734985d2b8
3,651,782
def get_boolean_value(value): """Get the boolean value of the ParameterValue.""" if value.type == ParameterType.PARAMETER_BOOL: return value.bool_value else: raise ValueError('Expected boolean value.')
fc5452a45983d16f30433ffe54b8883c24c1eb94
3,651,783
import torch def eval_bayesian_optimization(net: torch.nn.Module, input_picture: DATA,\ label_picture: DATA, ) -> float: """ Compute classification accuracy on provided dataset to find the optimzed hyperparamter settings. Args: net: trained neural network Input: The image Label: Th label to the respective image Returns: float: classification accuracy """ # Define the data x_valid = input_picture y_valid = label_picture # Pre-locating memory correct = 0 # Get the number of samples and batches before testing the network num_samples = x_valid.shape[0] num_batches = int(np.ceil(num_samples / float(BATCH_SIZE))) net.eval() with torch.no_grad(): for i in range(num_batches): idx = range(i*BATCH_SIZE, np.minimum((i+1) * BATCH_SIZE, num_samples)) x_batch_val = get_variable(Variable(torch.from_numpy(x_valid[idx]))) y_batch_val = get_variable(Variable(torch.from_numpy(y_valid[idx]).long())) output, _ = net(x_batch_val) _, predicted = torch.max(output.data, 1) correct += (predicted == y_batch_val).float().mean() # Calculating the accuracy return float(correct/num_batches)
4833627f5239f7c713f11a1ab9f97e6898a303b1
3,651,784
import urllib def parse(url): """ URL-parsing function that checks that - port is an integer 0-65535 - host is a valid IDNA-encoded hostname with no null-bytes - path is valid ASCII Args: A URL (as bytes or as unicode) Returns: A (scheme, host, port, path) tuple Raises: ValueError, if the URL is not properly formatted. """ parsed = urllib.parse.urlparse(url) if not parsed.hostname: raise ValueError("No hostname given") if isinstance(url, bytes): host = parsed.hostname # this should not raise a ValueError, # but we try to be very forgiving here and accept just everything. # decode_parse_result(parsed, "ascii") else: host = parsed.hostname.encode("idna") parsed = encode_parse_result(parsed, "ascii") port = parsed.port if not port: port = 443 if parsed.scheme == b"https" else 80 full_path = urllib.parse.urlunparse( (b"", b"", parsed.path, parsed.params, parsed.query, parsed.fragment) ) if not full_path.startswith(b"/"): full_path = b"/" + full_path if not check.is_valid_host(host): raise ValueError("Invalid Host") if not check.is_valid_port(port): raise ValueError("Invalid Port") return parsed.scheme, host, port, full_path
d1af42d9ee5b9c786cae9a6a16da89a545d27e33
3,651,785
def is_amicable(num: int) -> bool: """ Returns whether the number is part of an amicable number pair """ friend = sum(divisors(num)) - num # Only those in pairs are amicable numbers. If the sum is the number itself, it's a perfect number return friend != num and sum(divisors(friend)) - friend == num
e5fc62d4f390a95f6d54d57979c4e39b9d4e4316
3,651,786
import html def no_data_info(): """Returns information about not having enough information yet to display""" return html.Div(children=[dcc.Markdown(''' # Please wait a little bit... The MongoDB database was probably just initialized and is currently empty. You will need to wait a bit (~30 min) for it to populate with initial data before using the application. ''', className='eleven columns', style={'paddingLeft': '5%'})], className="row")
59ce4a2a0e2b18298006746be31f30b8c2cb4a6a
3,651,787
def delta_t(soil_type): """ Displacement at Tu """ delta_ts = { "dense sand": 0.003, "loose sand": 0.005, "stiff clay": 0.008, "soft clay": 0.01, } return delta_ts.get(soil_type, ValueError("Unknown soil type."))
c542adb7c302bc1f50eb4c49bf9da70932758814
3,651,788
def extractPlate(imgOriginal, listOfMatchingChars, PlateWidthPaddingFactor, PlateHeightPaddingFactor): """ Extract license-plate in the provided image, based on given contours group that corresponds for matching characters """ # Sort characters from left to right based on x position: listOfMatchingChars.sort(key=lambda matchingChar_: matchingChar_.intCenterX) # Calculate the plate centroid (average of leftmost and righhtmost characters): fltPlateCenterX = (listOfMatchingChars[0].intCenterX + listOfMatchingChars[len(listOfMatchingChars) - 1].intCenterX) / 2.0 fltPlateCenterY = (listOfMatchingChars[0].intCenterY + listOfMatchingChars[len(listOfMatchingChars) - 1].intCenterY) / 2.0 ptPlateCenter = fltPlateCenterX, fltPlateCenterY # Calculate plate width (rightmost - leftmost characters): intPlateWidth = int(PlateWidthPaddingFactor * (listOfMatchingChars[len(listOfMatchingChars) - 1].intBoundingRectX + listOfMatchingChars[len(listOfMatchingChars) - 1].intBoundingRectWidth - listOfMatchingChars[0].intBoundingRectX)) # Calculate plate height (average over all characters): intTotalOfCharHeights = 0 for matchingChar in listOfMatchingChars: intTotalOfCharHeights = intTotalOfCharHeights + matchingChar.intBoundingRectHeight fltAverageCharHeight = intTotalOfCharHeights / len(listOfMatchingChars) intPlateHeight = int(fltAverageCharHeight * PlateHeightPaddingFactor) # Calculate correction angle of plate region (simple geometry calculation): fltOpposite = listOfMatchingChars[len(listOfMatchingChars) - 1].intCenterY - listOfMatchingChars[0].intCenterY fltHypotenuse = (listOfMatchingChars[0] - listOfMatchingChars[len(listOfMatchingChars) - 1]) fltCorrectionAngleInRad = asin(fltOpposite / fltHypotenuse) fltCorrectionAngleInDeg = fltCorrectionAngleInRad * (180.0 / pi) # Rotate the entire image (affine warp), for compensating the angle of the plate region: rotationMatrix = getRotationMatrix2D(tuple(ptPlateCenter), fltCorrectionAngleInDeg, 1.0) height, width, _ = imgOriginal.shape imgRotated = warpAffine(imgOriginal, rotationMatrix, (width, height)) # Crop the plate from the image: imgCropped = getRectSubPix(imgRotated, (intPlateWidth, intPlateHeight), tuple(ptPlateCenter)) # Create and return possiblePlate object, which packs most the above information: possiblePlate = PossiblePlate() possiblePlate.rrLocationOfPlateInScene = (tuple(ptPlateCenter), (intPlateWidth, intPlateHeight), fltCorrectionAngleInDeg) possiblePlate.imgPlate = imgCropped return possiblePlate
f6d726727762b752003ae16c3cf9d286a0ebe990
3,651,789
def create_stratified_name(stem, stratification_name, stratum_name): """ generate a standardised stratified compartment name :param stem: str the previous stem to the compartment or parameter name that needs to be extended :param stratification_name: str the "stratification" or rationale for implementing the current stratification process :param stratum_name: str name of the stratum within the stratification :return: str the composite name with the standardised stratification name added on to the old stem """ return stem + create_stratum_name(stratification_name, stratum_name)
2677dec386dfd235e7fb5d088c5481987acf4beb
3,651,790
import inspect import typing def bind_args_kwargs(sig: inspect.Signature, *args: typing.Any, **kwargs: typing.Any) -> typing.List[BoundParameter]: """Bind *args and **kwargs to signature and get Bound Parameters. :param sig: source signature :type sig: inspect.Signature :param args: not keyworded arguments :type args: typing.Any :param kwargs: keyworded arguments :type kwargs: typing.Any :return: Iterator for bound parameters with all information about it :rtype: typing.List[BoundParameter] .. versionadded:: 3.3.0 .. versionchanged:: 5.3.1 return list """ result: typing.List[BoundParameter] = [] bound: typing.MutableMapping[str, inspect.Parameter] = sig.bind(*args, **kwargs).arguments for param in sig.parameters.values(): result.append(BoundParameter(parameter=param, value=bound.get(param.name, param.default))) return result
3fc8b16449981e920998ff84839a71cbbfc26d28
3,651,791
def user(user_type): """ :return: instance of a User """ return user_type()
a8c8cd4ef57915c555864f6fc09dce63c2a1c6fb
3,651,792
def true_or_false(item): """This function is used to assist in getting appropriate values set with the PythonOption directive """ try: item = item.lower() except: pass if item in ['yes','true', '1', 1, True]: return True elif item in ['no', 'false', '0', 0, None, False]: return False else: raise Exception
3e7c0cee07f6796c6134b182572a7d5ff95cf42d
3,651,793
import copy def validate_task(task, variables, config=None): """ Validate that a simulation can be executed with OpenCOR Args: task (:obj:`Task`): request simulation task variables (:obj:`list` of :obj:`Variable`): variables that should be recorded config (:obj:`Config`, optional): BioSimulators common configuration Returns: :obj:`tuple:`: * :obj:`Task`: possibly alternate task that OpenCOR should execute * :obj:`lxml.etree._ElementTree`: element tree for model * :obj:`dict`: dictionary that maps the id of each SED variable to the name that OpenCOR uses to reference it """ config = config or get_config() model = task.model sim = task.simulation if config.VALIDATE_SEDML: raise_errors_warnings(validation.validate_task(task), error_summary='Task `{}` is invalid.'.format(task.id)) raise_errors_warnings(validation.validate_model_language(model.language, ModelLanguage.CellML), error_summary='Language for model `{}` is not supported.'.format(model.id)) raise_errors_warnings(validation.validate_model_change_types(model.changes, (ModelAttributeChange,)), error_summary='Changes for model `{}` are not supported.'.format(model.id)) raise_errors_warnings(*validation.validate_model_changes(model), error_summary='Changes for model `{}` are invalid.'.format(model.id)) raise_errors_warnings(validation.validate_simulation_type(sim, (UniformTimeCourseSimulation, )), error_summary='{} `{}` is not supported.'.format(sim.__class__.__name__, sim.id)) raise_errors_warnings(*validation.validate_simulation(sim), error_summary='Simulation `{}` is invalid.'.format(sim.id)) raise_errors_warnings(*validation.validate_data_generator_variables(variables), error_summary='Data generator variables for task `{}` are invalid.'.format(task.id)) # read model; TODO: support imports model_etree = lxml.etree.parse(model.source) # validate variables opencor_variable_names = validate_variable_xpaths(variables, model_etree) # validate simulation opencor_simulation = validate_simulation(task.simulation) # check that OpenCOR can execute the request algorithm (or a similar one) opencor_algorithm = get_opencor_algorithm(task.simulation.algorithm, config=config) # create new task to manage configuration for OpenCOR opencor_task = copy.deepcopy(task) opencor_task.simulation = opencor_simulation opencor_task.simulation.algorithm = opencor_algorithm return opencor_task, model_etree, opencor_variable_names
d1b65ead34f3fa1c83bc451ac297411d02c33978
3,651,794
import time def time_ms(): """currently pypy only has Python 3.5.3, so we are missing Python 3.7's time.time_ns() with better precision see https://www.python.org/dev/peps/pep-0564/ the function here is a convenience; you shall use `time.time_ns() // 1e6` if using >=Python 3.7 """ return int(time.time() * 1e3)
1bff241db79007314d7a876ddd007af137ba7306
3,651,795
def _calculate_mk(tp, fp, tn, fn): """Calculate mk.""" ppv = np.where((tp + fp) > 0, tp / (tp + fp), np.array(float("nan"))) npv = np.where((tn + fn) > 0, tn / (tn + fn), np.array(float("nan"))) npv = tn / (tn + fn) numerator = ppv + npv - 1.0 denominator = 1.0 return numerator, denominator
d777db3abd9296b2a67e038396d29e8ef8529a74
3,651,796
def geometric_progression_for_stepsize( x, update, dist, decision_function, current_iteration ): """Geometric progression to search for stepsize. Keep decreasing stepsize by half until reaching the desired side of the boundary. """ epsilon = dist / np.sqrt(current_iteration) while True: updated = x + epsilon * update success = decision_function(updated)[0] if success: break else: epsilon = epsilon / 2.0 return epsilon
d5a043f434efa68e827ff89f6f469eab37a79383
3,651,797
def absorption_two_linear_known(freq_list, interaction_strength, decay_rate): """ The absorption is half the imaginary part of the susecptibility. """ return susceptibility_two_linear_known(freq_list, interaction_strength, decay_rate).imag/2.0
9d4819715150ce63753f4e356c406685852fc761
3,651,798
def mad(x, mask, base_size=(11, 3), mad_size=(21, 21), debug=False, sigma=True): """Calculate the MAD of freq-time data. Parameters ---------- x : np.ndarray Data to filter. mask : np.ndarray Initial mask. base_size : tuple Size of the window to use in (freq, time) when estimating the baseline. mad_size : tuple Size of the window to use in (freq, time) when estimating the MAD. sigma : bool, optional Rescale the output into units of Gaussian sigmas. Returns ------- mad : np.ndarray Size of deviation at each point in MAD units. """ xs = medfilt(x, mask, size=base_size) dev = np.abs(x - xs) mad = medfilt(dev, mask, size=mad_size) if sigma: mad *= 1.4826 # apply the conversion from MAD->sigma if debug: return dev / mad, dev, mad return dev / mad
7c62ed0af54bcab2e32a12d98580c989cdfd42ef
3,651,799