content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def post_to_conf(post_grid, cell_size): """ Converts a N-dimensional grid of posterior values into a grid of confidence levels. The posterior values do not need to be normalised, i.e. their distribution need not integrate to 1. Works with likelihood values (not log-likelihood) instead of posteriors, assuming a flat prior. Args: post_grid (ND numpy array): Grid of posterior values. cell_size (float): The size of a grid cell, e.g. for 2 dimensions x and y this would be dx*dy. Returns: ND numpy array: Grid of confidence levels, where the value at each point is the minimum confidence region that \ includes that point. The least likely point would have a value of 1, indicating that it is \ only included in the 100% confidence region and excluded from anything smaller. """ # Create flattened list of posteriors and sort in descending order posteriors = post_grid.flatten() posteriors[::-1].sort() # Dictionary to contain mapping between posterior and confidence level confidence_level_unnormalised = {} # Calculate the cumulative integral of posterior values integral = 0 for posterior in posteriors: integral += posterior * cell_size confidence_level_unnormalised[posterior] = integral # Map each posterior in the grid to its confidence value confidence_grid_unnormalised = np.vectorize(confidence_level_unnormalised.get)(post_grid) # Normalise the confidence values using the final (complete) integral confidence_grid_normalised = np.divide(confidence_grid_unnormalised, integral) return confidence_grid_normalised
b4bcb8dddeceb7a4e1bb0914e503868e443ecb09
3,651,800
def get_fuzzer_display(testcase): """Return FuzzerDisplay tuple.""" if (testcase.overridden_fuzzer_name == testcase.fuzzer_name or not testcase.overridden_fuzzer_name): return FuzzerDisplay( engine=None, target=None, name=testcase.fuzzer_name, fully_qualified_name=testcase.fuzzer_name) fuzz_target = get_fuzz_target(testcase.overridden_fuzzer_name) if not fuzz_target: # Legacy testcases. return FuzzerDisplay( engine=testcase.fuzzer_name, target=testcase.get_metadata('fuzzer_binary_name'), name=testcase.fuzzer_name, fully_qualified_name=testcase.overridden_fuzzer_name) return FuzzerDisplay( engine=fuzz_target.engine, target=fuzz_target.binary, name=fuzz_target.engine, fully_qualified_name=fuzz_target.fully_qualified_name())
273e0a2f92a4e24606908586111f1bad17e50b4c
3,651,801
def process_articles_results(articles_list): """ Function that processes the articles result and transform them to a list of Objects Args: articles_list: A list of dictionaries that contain sources details Returns : articles_results: A list of source objects """ articles_results = [] for article_item in articles_list: id = article_item.get('id') author = article_item.get('author') title = article_item.get('title') description = article_item.get('description') url = article_item.get('url') urlToImage = article_item.get('urlToImage') publishedAt = article_item.get('publishedAt') content = article_item.get('content') if urlToImage: article_object = Articles(id, author, title, description, url, urlToImage, publishedAt, content) articles_results.append(article_object) return articles_results
7b4e540474757b2e0e9b93f66f5bee926992a782
3,651,802
def list_to_bytes_list(strList): """ This function turns an array of strings into a pointer array with pointers pointing to the encodings of those strings Possibly contained bytes are kept as they are. :param strList: List of strings that shall be converted :type strList: List of strings :returns: Pointer array with pointers pointing to bytes :raises: TypeError if strList is not list, set or tuple """ pList = c_char_p * len(strList) # if strList is already a pointerarray or None, there is nothing to do if isinstance(strList, (pList, type(None))): return strList if not isinstance(strList, (list, set, tuple)): raise TypeError("strList must be list, set or tuple, not " + str(type(strList))) pList = pList() for i, elem in enumerate(strList): pList[i] = str_to_bytes(elem) return pList
19bcc6751e4805adcbfde54656ff83ef52ef02b8
3,651,803
def handle_td(element, box, _get_image_from_uri): """Handle the ``colspan``, ``rowspan`` attributes.""" if isinstance(box, boxes.TableCellBox): # HTML 4.01 gives special meaning to colspan=0 # http://www.w3.org/TR/html401/struct/tables.html#adef-rowspan # but HTML 5 removed it # http://www.w3.org/TR/html5/tabular-data.html#attr-tdth-colspan # rowspan=0 is still there though. integer_attribute(element, box, 'colspan') integer_attribute(element, box, 'rowspan', minimum=0) return [box]
d3a2669ffc8ccac27d3b40c4f693751239b9c135
3,651,804
import pipes def login_flags(db, host, port, user, db_prefix=True): """ returns a list of connection argument strings each prefixed with a space and quoted where necessary to later be combined in a single shell string with `"".join(rv)` db_prefix determines if "--dbname" is prefixed to the db argument, since the argument was introduced in 9.3. """ flags = [] if db: if db_prefix: flags.append(' --dbname={0}'.format(pipes.quote(db))) else: flags.append(' {0}'.format(pipes.quote(db))) if host: flags.append(' --host={0}'.format(host)) if port: flags.append(' --port={0}'.format(port)) if user: flags.append(' --username={0}'.format(user)) return flags
2c844def8e6f1154a9962d43c858b39b9a7adf2a
3,651,805
def glplot(ncfile, times, colora, label): """ add a plot of grounding line points to current axes. makes use of the numpy.ma.MaskedArray when reading xGL,yGL """ try: ncid = Dataset(ncfile, 'r') except: print("Failed to open file: {}. Skipping.".format(ncfile)) return 350.0, 500.0 time = ncid.variables["time"][:] lxmax = 0.0 lxmin = 800.0 for i in range(0, len(times)): seq = (time == times[i]) xGL = ncid.variables["xGL"][:, seq]*1e-3 lxmax = max(np.max(xGL), lxmax) lxmin = min(np.min(xGL), lxmin) yGL = ncid.variables["yGL"][:, seq]*1e-3 plt.plot(xGL, yGL, 's', ms=3, mfc=colora[i], mec=colora[i], label=label + ', t = ' + format(times[i])) return lxmin, lxmax
149836ceb0f6b65ba792bffcbdafad6fe8702f62
3,651,806
def roi_intersect(a, b): """ Compute intersection of two ROIs. .. rubric:: Examples .. code-block:: s_[1:30], s_[20:40] => s_[20:30] s_[1:10], s_[20:40] => s_[10:10] # works for N dimensions s_[1:10, 11:21], s_[8:12, 10:30] => s_[8:10, 11:21] """ def slice_intersect(a, b): if a.stop < b.start: return slice(a.stop, a.stop) if a.start > b.stop: return slice(a.start, a.start) _in = max(a.start, b.start) _out = min(a.stop, b.stop) return slice(_in, _out) if isinstance(a, slice): if not isinstance(b, slice): b = b[0] return slice_intersect(a, b) b = (b,) if isinstance(b, slice) else b return tuple(slice_intersect(sa, sb) for sa, sb in zip(a, b))
d1070c8ec0c493296dfee6bdc54b7430e703bda8
3,651,807
def _flows_finished(pgen_grammar, stack): """ if, while, for and try might not be finished, because another part might still be parsed. """ for stack_node in stack: if stack_node.nonterminal in ('if_stmt', 'while_stmt', 'for_stmt', 'try_stmt'): return False return True
dd0fe435d1328b3ae83ba2507006b6825ca23087
3,651,808
def PositionToPercentile(position, field_size): """Converts from position in the field to percentile. position: int field_size: int """ beat = field_size - position + 1 percentile = 100.0 * beat / field_size return percentile
c75869f3d7f8437f28d3463fcf12b2b446fe930a
3,651,809
def grid(num, ndim, large=False): """Build a uniform grid with num points along each of ndim axes.""" if not large: _check_not_too_large(np.power(num, ndim) * ndim) x = np.linspace(0, 1, num, dtype='float64') w = 1 / (num - 1) points = np.stack( np.meshgrid(*[x for _ in range(ndim)], indexing='ij'), axis=-1) return points, w
51a3ef70da4581a774d76839d05a14042e7bf78c
3,651,810
def rolling_outlier_quantile(x, width, q, m): """Detect outliers by multiples of a quantile in a window. Outliers are the array elements outside `m` times the `q`'th quantile of deviations from the smoothed trend line, as calculated from the trend line residuals. (For example, take the magnitude of the 95th quantile times 5, and mark any elements greater than that value as outliers.) This is the smoothing method used in BIC-seq (doi:10.1073/pnas.1110574108) with the parameters width=200, q=.95, m=5 for WGS. Returns ------- np.array A boolean array of the same size as `x`, where outlier indices are True. """ if len(x) <= width: return np.zeros(len(x), dtype=np.bool_) dists = np.abs(x - savgol(x, width)) quants = rolling_quantile(dists, width, q) outliers = (dists > quants * m) return outliers
3c28fa245c8dfce03958dee33c47828eb38ac979
3,651,811
def compute_region_classification_len(dataset_output, dataset_type: str): """ Compute the number of points per class and return a dictionary (dataset_type specifies the keys) with the results """ stable_region_indices, marginal_stable_region_indices, marginal_region_indices, marginal_unstable_region_indices, unstable_region_indices = compute_regions_belongings( value=dataset_output) region_len_dict = {f"len_{dataset_type}_stable_region": sum(stable_region_indices), f"len_{dataset_type}_marginal_stable_region": sum(marginal_stable_region_indices), f"len_{dataset_type}_marginal_region": sum(marginal_region_indices), f"len_{dataset_type}_marginal_unstable_region": sum(marginal_unstable_region_indices), f"len_{dataset_type}_unstable_region": sum(unstable_region_indices), } return region_len_dict
ba78d7d000b97cfcefa2acac263612ebd4aff377
3,651,812
def set_world_properties(world_uid, world_name=None, owner=None, config=None): """ Set the properties of the given world """ return runtime.set_world_properties(world_uid, world_name, owner, config)
4c063554390c0fb33ec74394a5a7cc967d55211d
3,651,813
def _resize_and_pad(img, desired_size): """ Resize an image to the desired width and height :param img: :param desired_size: :return: """ old_size = img.shape[:2] # old_size is in (height, width) format ratio = float(desired_size) / max(old_size) new_size = tuple([int(x * ratio) for x in old_size]) if new_size[0] == 0: new_size = (new_size[0] + 1, new_size[1]) if new_size[1] == 0: new_size = (new_size[0], new_size[1] + 1) # New_size should be in (width, height) format im = cv2.resize(img, (new_size[1], new_size[0])) delta_w = desired_size - new_size[1] delta_h = desired_size - new_size[0] top, bottom = delta_h // 2, delta_h - (delta_h // 2) left, right = delta_w // 2, delta_w - (delta_w // 2) color = [0, 0, 0] img = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) return img
1053748c0a303e3b5b3712623a089e42ba822301
3,651,814
from typing import Tuple import os from typing import cast def _terminal_size(fallback: Tuple[int, int]) -> Tuple[int, int]: """ Try to get the size of the terminal window. If it fails, the passed fallback will be returned. """ for i in (0, 1): try: window_width = os.get_terminal_size(i) return cast(Tuple[int, int], tuple(window_width)) except OSError: continue return fallback
3254068444167bad0b87479001b0c22887b32a60
3,651,815
from cntk.ops.cntk2 import Dropout def dropout(x, name=None): """ Compute a new tensor with `dropoutRate` perecent set to zero. The values that are set to zero are randomly chosen. This is commonly used to prevent overfitting during the training process. The output tensor has the same shape as `x`, but with `dropoutRate` of the elements set to zero (droped out). Args: x: source tensor name (str): the name of the node in the network Returns: :class:`cntk.graph.ComputationNode` """ op = Dropout(x, name = name) wrap_numpy_arrays(op) op.rank = op._.rank return op
ae688aa478842ba451b92de2bc0503e42f1a9363
3,651,816
def mol2graph(crystal_batch: CrystalDataset, args: Namespace) -> BatchMolGraph: """ Converts a list of SMILES strings to a BatchMolGraph containing the batch of molecular graphs. :param crystal_batch: a list of CrystalDataset :param args: Arguments. :return: A BatchMolGraph containing the combined molecular graph for the molecules """ crystal_graphs = list() for crystal_point in crystal_batch: if crystal_point in CRYSTAL_TO_GRAPH.keys(): crystal_graph = CRYSTAL_TO_GRAPH[crystal_point] else: crystal_graph = MolGraph(crystal_point, args) if not args.no_cache and len(CRYSTAL_TO_GRAPH) <= 10000: CRYSTAL_TO_GRAPH[crystal_point] = crystal_graph crystal_graphs.append(crystal_graph) return BatchMolGraph(crystal_graphs, args)
604351ad5ae6c1ccfa6ce01a1e7b03c5e80ff2a4
3,651,817
import ast def _compile(s: str): """compiles string into AST. :param s: string to be compiled into AST. :type s: str """ return compile( source = s, filename = '<unknown>', mode = 'eval', flags = ast.PyCF_ONLY_AST, )
4709cfa84ab6e5d7210924cf3aa206a1d297b7bd
3,651,818
def temp_get_users_with_permission_form(self): """Used to test that swapping the Form method works""" # Search string: ABC return ()
72390791304d62fc5d78720aac4e2807e918587c
3,651,819
def create_resource_types(raml_data, root): """ Parse resourceTypes into ``ResourceTypeNode`` objects. :param dict raml_data: Raw RAML data :param RootNode root: Root Node :returns: list of :py:class:`.raml.ResourceTypeNode` objects """ # TODO: move this outside somewhere - config? accepted_methods = root.config.get("http_optional") ##### # Helper functions ##### def get_union(resource, method, inherited): union = {} for key, value in list(iteritems(inherited)): if resource.get(method) is not None: if key not in list(iterkeys(resource.get(method, {}))): union[key] = value else: resource_values = resource.get(method, {}).get(key) inherited_values = inherited.get(key, {}) union[key] = dict(list(iteritems(resource_values)) + list(iteritems(inherited_values))) if resource.get(method) is not None: for key, value in list(iteritems(resource.get(method, {}))): if key not in list(iterkeys(inherited)): union[key] = value return union def get_inherited_resource(res_name): for resource in resource_types: if res_name == list(iterkeys(resource))[0]: return resource def get_inherited_type(root, resource, type, raml): inherited = get_inherited_resource(type) res_type_objs = [] for key, value in list(iteritems(resource)): for i in list(iterkeys(value)): if i in accepted_methods: data_union = get_union( value, i, list(itervalues(inherited))[0].get(i, {}) ) # res = wrap(key, data_union, i) res = ResourceTypeNode( name=key, raw=data_union, root=root, headers=headers(data_union.get("headers", {})), body=body(data_union.get("body", {})), responses=responses(data_union), uri_params=uri_params(data_union), base_uri_params=base_uri_params(data_union), query_params=query_params(data_union), form_params=form_params(data_union), media_type=media_type(), desc=description(), type=type_(), method=method(i), usage=usage(), optional=optional(), is_=is_(data_union), traits=traits(data_union), secured_by=secured_by(data_union), security_schemes=security_schemes(data_union), display_name=display_name(data_union, key), protocols=protocols(data_union) ) res_type_objs.append(res) return res_type_objs def get_scheme(item): schemes = raml_data.get("securitySchemes", []) for s in schemes: if item == list(iterkeys(s))[0]: return s def get_inherited_type_params(data, attribute, params): inherited = get_inherited_resource(data.get("type")) inherited = inherited.get(data.get("type")) inherited_params = inherited.get(attribute, {}) return dict(list(iteritems(params)) + list(iteritems(inherited_params))) def get_attribute(res_data, method_data, item, default={}): method_level = _get(method_data, item, default) resource_level = _get(res_data, item, default) return method_level, resource_level def get_inherited_item(items, item_name): inherited = get_inherited_resource(v.get("type")) resource = inherited.get(v.get("type")) res_level = resource.get(meth, {}).get(item_name, {}) method = resource.get(meth, {}) method_level = method.get(item_name, {}) items = dict( list(iteritems(items)) + list(iteritems(res_level)) + list(iteritems(method_level)) ) return items def get_attribute_dict(data, item): resource_level = _get(v, item, {}) method_level = _get(data, item, {}) return dict(list(iteritems(resource_level)) + list(iteritems(method_level))) ##### # Set ResourceTypeNode attributes ##### def display_name(data, name): return data.get("displayName", name) def headers(data): _headers = _get(data, "headers", {}) if _get(v, "type"): _headers = get_inherited_item(_headers, "headers") header_objs = _create_base_param_obj(_headers, Header, root.config) if header_objs: for h in header_objs: h.method = method(meth) return header_objs def body(data): _body = _get(data, "body", default={}) if _get(v, "type"): _body = get_inherited_item(_body, "body") body_objects = [] for key, value in list(iteritems(_body)): body = Body( mime_type=key, raw=value, schema=load_schema(value.get("schema")), example=load_schema(value.get("example")), form_params=value.get("formParameters"), config=root.config ) body_objects.append(body) return body_objects or None def responses(data): response_objects = [] _responses = _get(data, "responses", {}) if _get(v, "type"): _responses = get_inherited_item(_responses, "responses") for key, value in list(iteritems(_responses)): _headers = data.get("responses", {}).get(key, {}) _headers = _get(_headers, "headers", {}) header_objs = _create_base_param_obj(_headers, Header, root.config) if header_objs: for h in header_objs: h.method = method(meth) response = Response( code=key, raw={key: value}, desc=_get(value, "description"), headers=header_objs, body=body(value), config=root.config, method=method(meth) ) response_objects.append(response) if response_objects: return sorted(response_objects, key=lambda x: x.code) return None def uri_params(data): uri_params = get_attribute_dict(data, "uriParameters") if _get(v, "type"): uri_params = get_inherited_type_params(v, "uriParameters", uri_params) return _create_base_param_obj(uri_params, URIParameter, root.config) def base_uri_params(data): uri_params = get_attribute_dict(data, "baseUriParameters") return _create_base_param_obj(uri_params, URIParameter, root.config) def query_params(data): query_params = get_attribute_dict(data, "queryParameters") if _get(v, "type"): query_params = get_inherited_type_params(v, "queryParameters", query_params) return _create_base_param_obj(query_params, QueryParameter, root.config) def form_params(data): form_params = get_attribute_dict(data, "formParameters") if _get(v, "type"): form_params = get_inherited_type_params(v, "formParameters", form_params) return _create_base_param_obj(form_params, FormParameter, root.config) def media_type(): return _get(v, "mediaType") def description(): return _get(v, "description") def type_(): return _get(v, "type") def method(meth): if not meth: return None if "?" in meth: return meth[:-1] return meth def usage(): return _get(v, "usage") def optional(): if meth: return "?" in meth def protocols(data): m, r = get_attribute(v, data, "protocols", None) if m: return m return r def is_(data): m, r = get_attribute(v, data, "is", default=[]) return m + r or None def get_trait(item): traits = raml_data.get("traits", []) for t in traits: if item == list(iterkeys(t))[0]: return t # TODO: clean up def traits(data): assigned = is_(data) if assigned: trait_objs = [] for item in assigned: assigned_trait = get_trait(item) raw_data = list(itervalues(assigned_trait))[0] trait = TraitNode( name=list(iterkeys(assigned_trait))[0], raw=raw_data, root=root, headers=headers(raw_data), body=body(raw_data), responses=responses(raw_data), uri_params=uri_params(raw_data), base_uri_params=base_uri_params(raw_data), query_params=query_params(raw_data), form_params=form_params(raw_data), media_type=media_type(), desc=description(), usage=usage(), protocols=protocols(raw_data) ) trait_objs.append(trait) return trait_objs return None def secured_by(data): m, r = get_attribute(v, data, "securedBy", []) return m + r or None def security_schemes(data): secured = secured_by(data) if secured: secured_objs = [] for item in secured: assigned_scheme = get_scheme(item) raw_data = list(itervalues(assigned_scheme))[0] scheme = SecurityScheme( name=list(iterkeys(assigned_scheme))[0], raw=raw_data, type=raw_data.get("type"), described_by=raw_data.get("describedBy"), desc=raw_data.get("description"), settings=raw_data.get("settings"), config=root.config ) secured_objs.append(scheme) return secured_objs return None def wrap(key, data, meth, v): return ResourceTypeNode( name=key, raw=data, root=root, headers=headers(data), body=body(data), responses=responses(data), uri_params=uri_params(data), base_uri_params=base_uri_params(data), query_params=query_params(data), form_params=form_params(data), media_type=media_type(), desc=description(), type=type_(), method=method(meth), usage=usage(), optional=optional(), is_=is_(data), traits=traits(data), secured_by=secured_by(data), security_schemes=security_schemes(data), display_name=display_name(data, key), protocols=protocols(data) ) resource_types = raml_data.get("resourceTypes", []) resource_type_objects = [] for res in resource_types: for k, v in list(iteritems(res)): if isinstance(v, dict): if "type" in list(iterkeys(v)): r = get_inherited_type(root, res, v.get("type"), raml_data) resource_type_objects.extend(r) else: for meth in list(iterkeys(v)): if meth in accepted_methods: method_data = v.get(meth, {}) resource = wrap(k, method_data, meth, v) resource_type_objects.append(resource) else: meth = None resource = wrap(k, {}, meth, v) resource_type_objects.append(resource) return resource_type_objects or None
e3858924b842b3d3d6a7bbd3b0a2783a0b054a06
3,651,820
def permute_images(images, permutation_index): """ Permute pixels in all images. :param images: numpy array of images :param permutation_index: index of the permutation (#permutations = #tasks - 1) :return: numpy array of permuted images (of the same size) """ # seed = np.random.randint(low=4294967295, dtype=np.uint32) # make a random seed for all images in an array # baseline and superposition have the same permutation of images for the corresponding task global seeds seed = seeds[permutation_index] # the same permutation each run for the first, second, ... task return np.array([permute_pixels(im, seed) for im in images])
5742c9c2bce5012b0c17b60eb5e66328b91e53b4
3,651,821
def new_user(request, id): """ Page for creating users after registering a person. person must be either volunteer, NGO employee or Government """ msg = '' password = '' try: person_id = int(id) # Get Name user = RegPerson.objects.get(pk=person_id) personfname = user.first_name personsname = user.surname names = user.full_name if request.method == 'POST': form = NewUser(user, data=request.POST) username = request.POST.get('username') password1 = request.POST.get('password1') password2 = request.POST.get('password2') # resolve existing account user_exists = AppUser.objects.filter(reg_person=person_id) if user_exists: msg = 'Person ({} {}) has an existing user account.'.format( personfname, personsname) messages.add_message(request, messages.INFO, msg) return HttpResponseRedirect(reverse(persons_search)) if password1 == password2: password = password1 else: msg = 'Passwords do not match!' messages.add_message(request, messages.INFO, msg) form = NewUser(user, data=request.POST) return render(request, 'registry/new_user.html', {'form': form}, ) # validate username if__exists username_exists = AppUser.objects.filter(username__iexact=username) if username_exists: msg = 'Username ({}) is taken. Pick another one.'.format( username) messages.add_message(request, messages.INFO, msg) form = NewUser(user, data=request.POST) return render(request, 'registry/new_user.html', {'form': form}, ) else: # Create User user = AppUser.objects.create_user(username=username, reg_person=person_id, password=password) if user: user.groups.add(Group.objects.get( name='Standard logged in')) # Capture msg & op status msg = 'User ({}) save success.'.format(username) messages.add_message(request, messages.INFO, msg) return HttpResponseRedirect( '%s?id=%d' % (reverse(persons_search), int(person_id))) else: form = NewUser(user) return render(request, 'registry/new_user.html', {'names': names, 'form': form}, ) except Exception as e: msg = 'Error - ({}) '.format(str(e)) messages.add_message(request, messages.ERROR, msg) return HttpResponseRedirect(reverse(persons_search))
26ff9e3fa289915218a6f60e138a3491955c0228
3,651,822
def multi_conv(func=None, options=None): """A function decorator for generating multi-convolution operations. Multi-convolutions allow for a set of data-independent convolutions to be executed in parallel. Executing convolutions in parallel can lead to an increase in the data throughput. The ``multi_conv`` function decorator is a convenient way to generate multi-convolutions - it detects all the convolution operations inside of the decorated function and executes them in parallel. For example: .. code-block:: python from tensorflow import keras from tensorflow.python import ipu @ipu.nn_ops.multi_conv def convs(x, y, z): x = keras.layers.DepthwiseConv2D(8, 2, depth_multiplier=2)(x) y = keras.layers.DepthwiseConv2D(16, 4, depth_multiplier=2)(y) z = keras.layers.Conv2D(8, 3)(z) return x, y, z Will detect and execute the three convolutions ``x``, ``y`` and ``z`` in parallel. Note that any operations which are not convolutions, such as bias add operations, will be executed in the same way as if they were not inside of a ``multi_conv`` decorated function. It is also possible to set PopLibs multi-convolution options using this decorator. For example: .. code-block:: python from tensorflow import keras from tensorflow.python import ipu @ipu.nn_ops.multi_conv(options={"perConvReservedTiles":"50"}) def convs(x, y, z): x = keras.layers.DepthwiseConv2D(8, 2, depth_multiplier=2)(x) y = keras.layers.DepthwiseConv2D(16, 4, depth_multiplier=2)(y) z = keras.layers.Conv2D(8, 3)(z) return x, y, z See the PopLibs documention for the list of all available flags. Note that these options will also be applied to the gradient operations generated during backpropagation. Args: func: A python function which takes a list of positional arguments only. All the arguments must be `tf.Tensor`-like objects, or be convertible to them. The function provided must return at least one `tf.Tensor`-like object. options: A dictionary of Poplar option flags for multi-convolution. See the multi-convolution PopLibs documentation for available flags. """ def decorated(inner_func): def multi_conv_wrapper(*args): inner_options = options if options else {} if not isinstance(inner_options, dict): raise TypeError( "Expected the multi_conv `options` to be a `dict`, but got %s " "instead." % (str(inner_options))) option_proto = option_flag_pb2.PoplarOptionFlags() for key, value in inner_options.items(): flag = option_proto.flags.add() flag.option = key flag.value = value def func_wrapper(*args): with ops.get_default_graph().as_default() as g: with g.gradient_override_map(_gradient_override_map): return inner_func(*args) args = functional_ops._convert_to_list(args) # pylint: disable=protected-access with ops.name_scope("multi_conv") as scope: func_graph, captured_args = functional_ops._compile_function( # pylint: disable=protected-access func_wrapper, args, scope, [], allow_external_captures=True) with ops.control_dependencies(list(func_graph.control_captures)): outputs = gen_functional_ops.multi_conv( captured_args, to_apply=util.create_new_tf_function(func_graph), Tout=func_graph.output_types, output_shapes=func_graph.output_shapes, option_flags=json_format.MessageToJson(option_proto)) return func_graph_module.pack_sequence_as(func_graph.structured_outputs, outputs) return multi_conv_wrapper if func is not None: return decorated(func) return decorated
d1c9a69fbcec7b374142bc7568fc89ba8dddb0b9
3,651,823
def hi_joseangel(): """ Hi Jose Angel Function """ return "hi joseangel!"
5889a51977d3ec2269040a9a7e7968801209ff25
3,651,824
import time def received_date_date(soup): """ Find the received date received_date_date in human readable form """ received_date = get_history_date(soup, date_type = "received") date_string = None try: date_string = time.strftime("%B %d, %Y", received_date) except(TypeError): # Date did not convert pass return date_string
3963d846a64e06ed0d2e60b7ecba26efcd4d9e6e
3,651,825
def is_on(hass, entity_id): """ Returns if the group state is in its ON-state. """ state = hass.states.get(entity_id) if state: group_type = _get_group_type(state.state) # If we found a group_type, compare to ON-state return group_type and state.state == _GROUP_TYPES[group_type][0] return False
8e77a7a3f4a09d68d92d58105b3d5a36c830cd0c
3,651,826
def pytest_report_header(config, startdir): """return a string to be displayed as header info for terminal reporting.""" capabilities = config.getoption('capabilities') if capabilities: return 'capabilities: {0}'.format(capabilities)
4e6ada67f5f08c1db8f5b6206089db4e3ee84f46
3,651,827
def chessboard_distance(x_a, y_a, x_b, y_b): """ Compute the rectilinear distance between point (x_a,y_a) and (x_b, y_b) """ return max(abs(x_b-x_a),abs(y_b-y_a))
9b11bf328faf3b231df23585914f20c2efd02bf9
3,651,828
from pgmpy.factors import TabularCPD from pgmpy.models import BayesianModel import pandas as pd from pgmpy.inference import VariableElimination # NOQA from pgmpy.factors import TabularCPD import pgmpy import plottool as pt import networkx as netx def bayesnet(): """ References: https://class.coursera.org/pgm-003/lecture/17 http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html http://www3.cs.stonybrook.edu/~sael/teaching/cse537/Slides/chapter14d_BP.pdf http://www.cse.unsw.edu.au/~cs9417ml/Bayes/Pages/PearlPropagation.html https://github.com/pgmpy/pgmpy.git http://pgmpy.readthedocs.org/en/latest/ http://nipy.bic.berkeley.edu:5000/download/11 """ # import operator as op # # Enumerate all possible events # varcard_list = list(map(op.attrgetter('variable_card'), cpd_list)) # _esdat = list(ut.iprod(*map(range, varcard_list))) # _escol = list(map(op.attrgetter('variable'), cpd_list)) # event_space = pd.DataFrame(_esdat, columns=_escol) # # Custom compression of event space to inspect a specific graph # def compress_space_flags(event_space, var1, var2, var3, cmp12_): # """ # var1, var2, cmp_ = 'Lj', 'Lk', op.eq # """ # import vtool as vt # data = event_space # other_cols = ut.setdiff_ordered(data.columns.tolist(), [var1, var2, var3]) # case_flags12 = cmp12_(data[var1], data[var2]).values # # case_flags23 = cmp23_(data[var2], data[var3]).values # # case_flags = np.logical_and(case_flags12, case_flags23) # case_flags = case_flags12 # case_flags = case_flags.astype(np.int64) # subspace = np.hstack((case_flags[:, None], data[other_cols].values)) # sel_ = vt.unique_row_indexes(subspace) # flags = np.logical_and(mask, case_flags) # return flags # # Build special cases # case_same = event_space.loc[compress_space_flags(event_space, 'Li', 'Lj', 'Lk', op.eq)] # case_diff = event_space.loc[compress_space_flags(event_space, 'Li', 'Lj', 'Lk', op.ne)] # special_cases = [ # case_same, # case_diff, # ] name_nice = ['n1', 'n2', 'n3'] score_nice = ['low', 'high'] match_nice = ['diff', 'same'] num_names = len(name_nice) num_scores = len(score_nice) nid_basis = list(range(num_names)) score_basis = list(range(num_scores)) semtype2_nice = { 'score': score_nice, 'name': name_nice, 'match': match_nice, } var2_cpd = { } globals()['semtype2_nice'] = semtype2_nice globals()['var2_cpd'] = var2_cpd name_combo = np.array(list(ut.iprod(nid_basis, nid_basis))) combo_is_same = name_combo.T[0] == name_combo.T[1] def get_expected_scores_prob(level1, level2): part1 = combo_is_same * level1 part2 = (1 - combo_is_same) * (1 - (level2)) expected_scores_level = part1 + part2 return expected_scores_level # def make_cpd(): def name_cpd(aid): cpd = TabularCPD( variable='N' + aid, variable_card=num_names, values=[[1.0 / num_names] * num_names]) cpd.semtype = 'name' return cpd name_cpds = [name_cpd('i'), name_cpd('j'), name_cpd('k')] var2_cpd.update(dict(zip([cpd.variable for cpd in name_cpds], name_cpds))) if True: num_same_diff = 2 samediff_measure = np.array([ # get_expected_scores_prob(.12, .2), # get_expected_scores_prob(.88, .8), get_expected_scores_prob(0, 0), get_expected_scores_prob(1, 1), ]) samediff_vals = (samediff_measure / samediff_measure.sum(axis=0)).tolist() def samediff_cpd(aid1, aid2): cpd = TabularCPD( variable='A' + aid1 + aid2, variable_card=num_same_diff, values=samediff_vals, evidence=['N' + aid1, 'N' + aid2], # [::-1], evidence_card=[num_names, num_names]) # [::-1]) cpd.semtype = 'match' return cpd samediff_cpds = [samediff_cpd('i', 'j'), samediff_cpd('j', 'k'), samediff_cpd('k', 'i')] var2_cpd.update(dict(zip([cpd.variable for cpd in samediff_cpds], samediff_cpds))) if True: def score_cpd(aid1, aid2): semtype = 'score' evidence = ['A' + aid1 + aid2, 'N' + aid1, 'N' + aid2] evidence_cpds = [var2_cpd[key] for key in evidence] evidence_nice = [semtype2_nice[cpd.semtype] for cpd in evidence_cpds] evidence_card = list(map(len, evidence_nice)) evidence_states = list(ut.iprod(*evidence_nice)) variable_basis = semtype2_nice[semtype] variable_values = [] for mystate in variable_basis: row = [] for state in evidence_states: if state[0] == state[1]: if state[2] == 'same': val = .2 if mystate == 'low' else .8 else: val = 1 # val = .5 if mystate == 'low' else .5 elif state[0] != state[1]: if state[2] == 'same': val = .5 if mystate == 'low' else .5 else: val = 1 # val = .9 if mystate == 'low' else .1 row.append(val) variable_values.append(row) cpd = TabularCPD( variable='S' + aid1 + aid2, variable_card=len(variable_basis), values=variable_values, evidence=evidence, # [::-1], evidence_card=evidence_card) # [::-1]) cpd.semtype = semtype return cpd else: score_values = [ [.8, .1], [.2, .9], ] def score_cpd(aid1, aid2): cpd = TabularCPD( variable='S' + aid1 + aid2, variable_card=num_scores, values=score_values, evidence=['A' + aid1 + aid2], # [::-1], evidence_card=[num_same_diff]) # [::-1]) cpd.semtype = 'score' return cpd score_cpds = [score_cpd('i', 'j'), score_cpd('j', 'k')] cpd_list = name_cpds + score_cpds + samediff_cpds else: score_measure = np.array([get_expected_scores_prob(level1, level2) for level1, level2 in zip(np.linspace(.1, .9, num_scores), np.linspace(.2, .8, num_scores))]) score_values = (score_measure / score_measure.sum(axis=0)).tolist() def score_cpd(aid1, aid2): cpd = TabularCPD( variable='S' + aid1 + aid2, variable_card=num_scores, values=score_values, evidence=['N' + aid1, 'N' + aid2], evidence_card=[num_names, num_names]) cpd.semtype = 'score' return cpd score_cpds = [score_cpd('i', 'j'), score_cpd('j', 'k')] cpd_list = name_cpds + score_cpds pass input_graph = [] for cpd in cpd_list: if cpd.evidence is not None: for evar in cpd.evidence: input_graph.append((evar, cpd.variable)) name_model = BayesianModel(input_graph) name_model.add_cpds(*cpd_list) var2_cpd.update(dict(zip([cpd.variable for cpd in cpd_list], cpd_list))) globals()['var2_cpd'] = var2_cpd varnames = [cpd.variable for cpd in cpd_list] # --- PRINT CPDS --- cpd = score_cpds[0] def print_cpd(cpd): print('CPT: %r' % (cpd,)) index = semtype2_nice[cpd.semtype] if cpd.evidence is None: columns = ['None'] else: basis_lists = [semtype2_nice[var2_cpd[ename].semtype] for ename in cpd.evidence] columns = [','.join(x) for x in ut.iprod(*basis_lists)] data = cpd.get_cpd() print(pd.DataFrame(data, index=index, columns=columns)) for cpd in name_model.get_cpds(): print('----') print(cpd._str('phi')) print_cpd(cpd) # --- INFERENCE --- Ni = name_cpds[0] event_space_combos = {} event_space_combos[Ni.variable] = 0 # Set ni to always be Fred for cpd in cpd_list: if cpd.semtype == 'score': event_space_combos[cpd.variable] = list(range(cpd.variable_card)) evidence_dict = ut.all_dict_combinations(event_space_combos) # Query about name of annotation k given different event space params def pretty_evidence(evidence): return [key + '=' + str(semtype2_nice[var2_cpd[key].semtype][val]) for key, val in evidence.items()] def print_factor(factor): row_cards = factor.cardinality row_vars = factor.variables values = factor.values.reshape(np.prod(row_cards), 1).flatten() # col_cards = 1 # col_vars = [''] basis_lists = list(zip(*list(ut.iprod(*[range(c) for c in row_cards])))) nice_basis_lists = [] for varname, basis in zip(row_vars, basis_lists): cpd = var2_cpd[varname] _nice_basis = ut.take(semtype2_nice[cpd.semtype], basis) nice_basis = ['%s=%s' % (varname, val) for val in _nice_basis] nice_basis_lists.append(nice_basis) row_lbls = [', '.join(sorted(x)) for x in zip(*nice_basis_lists)] print(ut.repr3(dict(zip(row_lbls, values)), precision=3, align=True, key_order_metric='-val')) # name_belief = BeliefPropagation(name_model) name_belief = VariableElimination(name_model) def try_query(evidence): print('--------') query_vars = ut.setdiff_ordered(varnames, list(evidence.keys())) evidence_str = ', '.join(pretty_evidence(evidence)) probs = name_belief.query(query_vars, evidence) factor_list = probs.values() joint_factor = pgmpy.factors.factor_product(*factor_list) print('P(' + ', '.join(query_vars) + ' | ' + evidence_str + ')') # print(six.text_type(joint_factor)) factor = joint_factor # NOQA # print_factor(factor) # import utool as ut print(ut.hz_str([(f._str(phi_or_p='phi')) for f in factor_list])) for evidence in evidence_dict: try_query(evidence) evidence = {'Aij': 1, 'Ajk': 1, 'Aki': 1, 'Ni': 0} try_query(evidence) evidence = {'Aij': 0, 'Ajk': 0, 'Aki': 0, 'Ni': 0} try_query(evidence) globals()['score_nice'] = score_nice globals()['name_nice'] = name_nice globals()['score_basis'] = score_basis globals()['nid_basis'] = nid_basis print('Independencies') print(name_model.get_independencies()) print(name_model.local_independencies([Ni.variable])) # name_belief = BeliefPropagation(name_model) # # name_belief = VariableElimination(name_model) # for case in special_cases: # test_data = case.drop('Lk', axis=1) # test_data = test_data.reset_index(drop=True) # print('----') # for i in range(test_data.shape[0]): # evidence = test_data.loc[i].to_dict() # probs = name_belief.query(['Lk'], evidence) # factor = probs['Lk'] # probs = factor.values # evidence_ = evidence.copy() # evidence_['Li'] = name_nice[evidence['Li']] # evidence_['Lj'] = name_nice[evidence['Lj']] # evidence_['Sij'] = score_nice[evidence['Sij']] # evidence_['Sjk'] = score_nice[evidence['Sjk']] # nice2_prob = ut.odict(zip(name_nice, probs.tolist())) # ut.print_python_code('P(Lk | {evidence}) = {cpt}'.format( # evidence=(ut.repr2(evidence_, explicit=True, nobraces=True, strvals=True)), # cpt=ut.repr3(nice2_prob, precision=3, align=True, key_order_metric='-val') # )) # for case in special_cases: # test_data = case.drop('Lk', axis=1) # test_data = test_data.drop('Lj', axis=1) # test_data = test_data.reset_index(drop=True) # print('----') # for i in range(test_data.shape[0]): # evidence = test_data.loc[i].to_dict() # query_vars = ['Lk', 'Lj'] # probs = name_belief.query(query_vars, evidence) # for queryvar in query_vars: # factor = probs[queryvar] # print(factor._str('phi')) # probs = factor.values # evidence_ = evidence.copy() # evidence_['Li'] = name_nice[evidence['Li']] # evidence_['Sij'] = score_nice[evidence['Sij']] # evidence_['Sjk'] = score_nice[evidence['Sjk']] # nice2_prob = ut.odict(zip([queryvar + '=' + x for x in name_nice], probs.tolist())) # ut.print_python_code('P({queryvar} | {evidence}) = {cpt}'.format( # query_var=query_var, # evidence=(ut.repr2(evidence_, explicit=True, nobraces=True, strvals=True)), # cpt=ut.repr3(nice2_prob, precision=3, align=True, key_order_metric='-val') # )) # _ draw model fig = pt.figure() # NOQA fig.clf() ax = pt.gca() netx_nodes = [(node, {}) for node in name_model.nodes()] netx_edges = [(etup[0], etup[1], {}) for etup in name_model.edges()] netx_graph = netx.DiGraph() netx_graph.add_nodes_from(netx_nodes) netx_graph.add_edges_from(netx_edges) # pos = netx.graphviz_layout(netx_graph) pos = netx.pydot_layout(netx_graph, prog='dot') netx.draw(netx_graph, pos=pos, ax=ax, with_labels=True) pt.plt.savefig('foo.png') ut.startfile('foo.png')
05853fb3a7e84a1864399588af4b27390a1c8d31
3,651,829
def sigma_R(sim, Pk=None, z=None, non_lin=False): """ return amplitude of density fluctuations if given Pk -- C++ class Extrap_Pk or Extrap_Pk_Nl -- computes its sigma_R. if given redshift, computes linear or non-linear (emulator) amplitude of density fluctuations """ sigma = fs.Data_Vec_2() if Pk: # compute amplitude of density fluctuations from given continuous power spectrum fs.gen_sigma_binned_gsl_qawf(sim, Pk, sigma) elif z is not None: # compute (non-)linear amplitude of density fluctuations a = 1./(1.+z) if z != 'init' else 1.0 if non_lin: fs.gen_sigma_func_binned_gsl_qawf_lin(sim, a, sigma) else: fs.gen_sigma_func_binned_gsl_qawf_nl(sim, a, sigma) else: raise KeyError("Function 'sigma_R' called without arguments.") return get_ndarray(sigma)
956a4ca092ce56c1d8120c3b9047280306005326
3,651,830
def session_ended_request_handler(handler_input): """Handler for Session End.""" # type: (HandlerInput) -> Response logger.info("Entering AMAZON.SessionEndedRequest") save_data(handler_input) return handler_input.response_builder.response
a3bd1c38699a69da0cdce0203ee0549e9132b1c1
3,651,831
import unittest def _getTestSuite(testFiles): """ Loads unit tests recursively from beneath the current directory. Inputs: testFiles - If non-empty, a list of unit tests to selectively run. Outputs: A unittest.TestSuite object containing the unit tests to run. """ loader = unittest.TestLoader() if testFiles: return loader.loadTestsFromNames([".".join(TEST_DIR, testFile) for testFile in testFiles]) return loader.discover(TEST_DIR)
786baa4d70161e1ae6c60160460f379c66ea465c
3,651,832
def stratifiedsmooth2stratifiedwavy_c(rho_gas, rho_liq, vel_gas, d_m, beta, mu_liq, mu_gas): """ function for construction of boundary transition from stratified-smooth to stratified-wavy structure resulting from the "wind" effect :param rho_gas: gas density :param rho_liq: liquid density :param vel_gas: superficial gas velocity :param d_m: pipe diameter :param beta: angle of inclination from the horizontal :param mu_liq: liquid viscosity :param mu_gas: gas viscosity :return: superficial liquid velocity """ froude_number = (rho_gas / (rho_liq - rho_gas)) ** 0.5 * vel_gas / (d_m * uc.g * np.cos(beta * uc.pi / 180)) ** 0.5 vel_liq_0 = 0.0000001 def equation2solve(vel_liq): re_sl = reynolds_number(rho_liq, vel_liq, d_m, mu_liq) k = froude_number * re_sl ** 0.5 # k = froude_number ** 2 * re_sl x = parameter_x(d_m, rho_liq, rho_gas, mu_liq, mu_gas, vel_gas, vel_liq) y = parameter_y(d_m, rho_liq, rho_gas, mu_gas, vel_gas, beta) h_l = combined_momentum_equation(x, y, d_m, rho_liq, rho_gas, mu_liq, mu_gas, vel_gas, vel_liq) variables = dimensionless_variables(h_l) v_g = variables[6] s = 0.01 v_l = variables[5] equation = k - 2 / (v_l ** 0.5 * v_g * s ** 0.5) return equation vel_liq = opt.fsolve(equation2solve, np.array(vel_liq_0)) return vel_liq
a80c1b5f400d4db36979960a26f5b914047abe8d
3,651,833
def box( data_frame=None, x=None, y=None, color=None, facet_row=None, facet_row_weights=None, facet_col=None, facet_col_weights=None, facet_col_wrap=0, facet_row_spacing=None, facet_col_spacing=None, hover_name=None, hover_data=None, custom_data=None, animation_frame=None, animation_group=None, category_orders=None, labels=None, color_discrete_sequence=None, color_discrete_map=None, orientation=None, boxmode=None, log_x=False, log_y=False, range_x=None, range_y=None, points=None, notched=False, title=None, template=None, width=None, height=None, ): """ In a box plot, rows of `data_frame` are grouped together into a box-and-whisker mark to visualize their distribution. Each box spans from quartile 1 (Q1) to quartile 3 (Q3). The second quartile (Q2) is marked by a line inside the box. By default, the whiskers correspond to the box' edges +/- 1.5 times the interquartile range (IQR: Q3-Q1), see "points" for other options. """ return make_figure( args=locals(), constructor=go.Box, trace_patch=dict(boxpoints=points, notched=notched, x0=" ", y0=" "), layout_patch=dict(boxmode=boxmode), )
2e5a22fd4fa875b4cb506c7d21ff91e56908ed65
3,651,834
def _infer_main_columns(df, index_level='Column Name', numeric_dtypes=_numeric_dtypes): """ All numeric columns up-until the first non-numeric column are considered main columns. :param df: The pd.DataFrame :param index_level: Name of the index level of the column names. Default 'Column Name' :param numeric_dtypes: Set of numpy.dtype containing all numeric types. Default int/float. :returns: The names of the infered main columns """ columns = df.columns.get_level_values(index_level) main_columns = [] for i,dtype in enumerate(df.dtypes): if dtype in numeric_dtypes: main_columns.append(columns[i]) else: break return main_columns
3eae67b765ca7a1a048047e12511c1a9721f9fea
3,651,835
def index(): """ 显示首页 :return: """ return render_template('index.html')
8965ff54f131a0250f1a05183ceb79d6d677883c
3,651,836
def two_phase(model, config): """Two-phase simulation workflow.""" wea_path, datetime_stamps = get_wea(config) smx = gen_smx(wea_path, config.smx_basis, config.mtxdir) pdsmx = prep_2phase_pt(model, config) vdsmx = prep_2phase_vu(model, config) if not config.no_multiply: calc_2phase_pt(model, datetime_stamps, pdsmx, smx, config) calc_2phase_vu(datetime_stamps, vdsmx, smx, config) return pdsmx, vdsmx
0f2eb619dcfea233446e90565bc1310ee1a3bc3f
3,651,837
def str_with_tab(indent: int, text: str, uppercase: bool = True) -> str: """Create a string with ``indent`` spaces followed by ``text``.""" if uppercase: text = text.upper() return " " * indent + text
3306ba86781d272a19b0e02ff8d06da0976d7282
3,651,838
def delete(card, files=None): """Delete individual notefiles and their contents. Args: card (Notecard): The current Notecard object. files (array): A list of Notefiles to delete. Returns: string: The result of the Notecard request. """ req = {"req": "file.delete"} if files: req["files"] = files return card.Transaction(req)
2acfa67b7531244e44a183286a9d87b9ac849c83
3,651,839
def test_timed_info(): """Test timed_info decorator""" @timed_info def target(): return "hello world" result = target() assert result == "hello world"
4deb25b542bcc1a3ad2fc5859c2c3f243060b6d9
3,651,840
from typing import Set def get_doc_word_token_set(doc: Doc, use_lemma=False) -> Set[Token]: """Return the set of tokens in a document (no repetition).""" return set([token.lemma_ if use_lemma else token.text for token in get_word_tokens(doc)])
56e1d8bfcad363049b4dd455e728d5c4dd3754f5
3,651,841
from typing import List def finding_the_percentage(n: int, arr: List[str], query_name: str) -> str: """ >>> finding_the_percentage(3, ['Krishna 67 68 69', 'Arjun 70 98 63', ... 'Malika 52 56 60'], 'Malika') '56.00' >>> finding_the_percentage(2, ['Harsh 25 26.5 28', 'Anurag 26 28 30'], ... 'Harsh') '26.50' """ student_marks = {} for i in range(n): name, *line = arr[i].split() scores = list(map(float, line)) student_marks[name] = sum(scores)/len(scores) return '{:.2f}'.format(student_marks[query_name])
86c2ad777c667f9ba424bc2b707f46465a10accc
3,651,842
def mvg_logpdf_fixedcov(x, mean, inv_cov): """ Log-pdf of the multivariate Gaussian distribution where the determinant and inverse of the covariance matrix are precomputed and fixed. Note that this neglects the additive constant: -0.5 * (len(x) * log(2 * pi) + log_det_cov), because it is irrelevant when comparing pdf values with a fixed covariance, but it means that this is not the normalised pdf. Args: x (1D numpy array): Vector value at which to evaluate the pdf. mean (1D numpy array): Mean vector of the multivariate Gaussian distribution. inv_cov (2D numpy array): Inverted covariance matrix. Returns: float: Log-pdf value. """ dev = x - mean return -0.5 * (dev @ inv_cov @ dev)
648d1925ed4b4793e8e1ce1cec8c7ccd0efb9f6b
3,651,843
from pathlib import Path import sys def app_dir(app_name: str = APP_NAME) -> Path: """Finds the application data directory for the current platform. If it does not exists, it creates the required directory tree. Returns: The path to the root app directory. """ if sys.platform == "win32": path = Path.home() / "AppData" / "Local" / app_name elif sys.platform == "darwin": path = Path.home() / "Library" / "Application Support" / app_name else: path = Path.home() / f".{app_name}" _create_tree(path) return path
9ed4ae1ec1113a806ac2fc9c2488a12ace338c2a
3,651,844
def make_frac_grid(frac_spacing, numrows=50, numcols=50, model_grid=None, seed=0): """Create a grid that contains a network of random fractures. Creates and returns a grid containing a network of random fractures, which are represented as 1's embedded in a grid of 0's. Parameters ---------- frac_spacing : int Average spacing of fractures (in grid cells) numrows : int, optional Number of rows in grid (if model_grid parameter is given, uses values from the model grid instead) numcols : int, optional Number of columns in grid (if model_grid parameter is given, uses values from the model grid instead) model_grid : Landlab RasterModelGrid object, optiona RasterModelGrid to use for grid size seed : int, optional Seed used for random number generator Returns ------- m : Numpy array Array containing fracture grid, represented as 0's (matrix) and 1's (fractures). If model_grid parameter is given, returns a 1D array corresponding to a node-based array in the model grid. Otherwise, returns a 2D array with dimensions given by numrows, numcols. """ # Make an initial grid of all zeros. If user specified a model grid, # use that. Otherwise, use the given dimensions. if model_grid is not None: numrows = model_grid.shape[0] numcols = model_grid.shape[1] m = zeros((numrows,numcols), dtype=int) # Add fractures to grid nfracs = (numrows + numcols) // frac_spacing for i in range(nfracs): (y, x) = calculate_fracture_starting_position((numrows, numcols), seed+i) ang = calculate_fracture_orientation((y, x), seed+i) (dy, dx) = calculate_fracture_step_sizes((y, x), ang) trace_fracture_through_grid(m, (y, x), (dy, dx)) # If we have a model_grid, flatten the frac grid so it's equivalent to # a node array. if model_grid is not None: m.shape = (m.shape[0]*m.shape[1]) return m
2e1ffc1bab30726dcbbe1b022c6cf92920c2dcc2
3,651,845
import colorsys def generate_colors(): """ Generate random colors. To get visually distinct colors, generate them in HSV space then convert to RGB. """ N = 30 brightness = 0.7 hsv = [(i / N, 1, brightness) for i in range(N)] colors = list(map(lambda c: colorsys.hsv_to_rgb(*c), hsv)) perm = [15, 13, 25, 12, 19, 8, 22, 24, 29, 17, 28, 20, 2, 27, 11, 26, 21, 4, 3, 18, 9, 5, 14, 1, 16, 0, 23, 7, 6, 10] colors = [colors[idx] for idx in perm] return colors
ee8951d66972190e6d1dcd5dc5c211d5631f6841
3,651,846
def secant_method(f, x0, x1, iterations): """Return the root calculated using the secant method.""" for i in range(iterations): f_x1 = f(x1) x2 = x1 - f_x1 * (x1 - x0) / (f_x1 - f(x0) + 1e-9).float() x0, x1 = x1, x2 return x2
081522ae8e68ad14cb67f8afc03989c46f3999d5
3,651,847
def to_skopt_space(x): """converts the space x into skopt compatible space""" if isinstance(x, list): if all([isinstance(s, Dimension) for s in x]): _space = Space(x) elif len(x) == 1 and isinstance(x[0], tuple): if len(x[0]) == 2: if 'int' in x[0][0].__class__.__name__: _space = Integer(low=x[0][0], high=x[0][1]) elif 'float' in x[0][0].__class__.__name__: _space = Integer(low=x[0][0], high=x[0][1]) else: raise NotImplementedError else: raise NotImplementedError elif all([s.__class__.__name__== "Apply" for s in x]): _space = Space([skopt_space_from_hp_space(v) for v in x]) else: raise NotImplementedError elif isinstance(x, dict): # todo, in random, should we build Only Categorical space? space_ = [] for k, v in x.items(): if isinstance(v, list): s = space_from_list(v, k) elif isinstance(v, Dimension): # it is possible that the user has not specified the name so assign the names # because we have keys. if v.name is None or v.name.startswith('real_') or v.name.startswith('integer_'): v.name = k s = v elif v.__class__.__name__== "Apply" or 'rv_frozen' in v.__class__.__name__: s = skopt_space_from_hp_space(v, k) elif isinstance(v, tuple): s = Categorical(v, name=k) elif isinstance(v, np.ndarray): s = Categorical(v.tolist(), name=k) else: raise NotImplementedError(f"unknown type {v}, {type(v)}") space_.append(s) # todo, why converting to Space _space = Space(space_) if len(space_) > 0 else None elif 'rv_frozen' in x.__class__.__name__ or x.__class__.__name__== "Apply": _space = Space([skopt_space_from_hp_space(x)]) else: raise NotImplementedError(f"unknown type {x}, {type(x)}") return _space
c5f4afdf2f3f3e36abe6cf8a8e12e20992aa13f7
3,651,848
import requests def build_response(status=OK, etag='etag', modified='modified', max_age=None): """Make a requests.Response object suitable for testing. Args: status: HTTP status exp-time: cache expire time (set to future for fresh cache, past for stale cache (defaults to stale)) etag: etag cache-control header modified: last-modified cache-control header Returns: A Response instance populated according to the arguments. """ headers = {'last-modified': modified, 'etag': etag, 'Cache-Control': 'max-age={}'.format(max_age)} test_response = requests.Response() test_response.status_code = status test_response.headers = headers return test_response
f9a97da74b7802511180f30dc45e9df5d5e87f51
3,651,849
from typing import List from re import T def split_list(big_list: List[T], delimiter: T) -> List[List[T]]: """Like string.split(foo), except for lists.""" cur_list: List[T] = [] parts: List[List[T]] = [] for item in big_list: if item == delimiter: if cur_list: parts.append(cur_list) cur_list = [] else: cur_list.append(item) if cur_list: parts.append(cur_list) return parts
c56dd88a7376f002ae6b91c3b227c8a16991ca31
3,651,850
def generate_partitions(data): """ Generates a random nested partition for an array of integers :param data: :return: """ if len(data) == 1: return data else: mask1 = np.random.choice(len(data), np.floor(len(data)/2), replace=False) par1 = [data[i] for i in range(len(data)) if i in mask1] par2 = [data[i] for i in range(len(data)) if i not in mask1] return [generate_partitions(par1), generate_partitions(par2)]
164749c135de1cf690bb209a18270a5550cdefc8
3,651,851
import os import shutil def adjust_shapefile_to_aoi(data_uri, aoi_uri, output_uri, \ empty_raster_allowed = False): """Adjust the shapefile's data to the aoi, i.e.reproject & clip data points. Inputs: - data_uri: uri to the shapefile to adjust - aoi_uri: uir to a single polygon shapefile - base_path: directory where the intermediate files will be saved - output_uri: dataset that is clipped and/or reprojected to the aoi if necessary. - empty_raster_allowed: boolean flag that, if False (default), causes the function to break if output_uri is empty, or return an empty raster otherwise. Returns: output_uri """ # Data and aoi are the same URIs, data is good as it is, return it. if data_uri == aoi_uri: return data_uri # Split the path apart from the filename head, tail = os.path.split(output_uri) # Split the file basename from the file extension base, _ = os.path.splitext(tail) # Open URIs and get the projections data = ogr.Open(data_uri) message = "OGR Can't open " + data_uri assert data is not None, message aoi = ogr.Open(aoi_uri) data_wkt = shapefile_wkt(data) aoi_wkt = shapefile_wkt(aoi) if projections_match([data_wkt, aoi_wkt]): # Same projections, just clip clip_datasource(aoi, data, output_uri) else: # Reproject the aoi to be in data's projection projected_aoi_uri = os.path.join(head, base + '_projected_aoi') # TODO: include this in raster utils # Removing output_uri if it already exists if os.path.isdir(projected_aoi_uri): shutil.rmtree(projected_aoi_uri) pygeoprocessing.geoprocessing.reproject_datasource(aoi, data_wkt, projected_aoi_uri) # Clip all the shapes outside the aoi out_uri = os.path.join(head, base + '_clipped') clip_datasource(ogr.Open(projected_aoi_uri), data, out_uri) # Convert the datasource back to the original projection (aoi's) # Removing output_uri if it already exists if os.path.isdir(output_uri): shutil.rmtree(output_uri) pygeoprocessing.geoprocessing.reproject_datasource(ogr.Open(out_uri), aoi_wkt, \ output_uri) # Ensure the resulting file's 1st layer is not empty out_shapefile = ogr.Open(output_uri) out_layer = out_shapefile.GetLayer(0) out_feature_count = out_layer.GetFeatureCount() out_layer = None out_shapefile = None # Break if returning an empty raster is not allowed if not empty_raster_allowed: message = 'Error: first layer of ' + output_uri + ' is empty. Are ' + \ data_uri + ' and ' + aoi_uri + ' mis-aligned?' assert out_feature_count > 0, message return output_uri
83fcefaebf2adff02a360a5186fbf219de5579a2
3,651,852
def randomRectangularCluster(nRow, nCol, minL, maxL, mask=None): """ Create a random rectangular cluster neutral landscape model with values ranging 0-1. Parameters ---------- nRow : int The number of rows in the array. nCol : int The number of columns in the array. minL: int The minimum possible length of width and height for each random rectangular cluster. maxL: int The maximum possible length of width and height for each random rectangular cluster. mask : array, optional 2D array used as a binary mask to limit the elements with values. Returns ------- out : array 2D array. """ if mask is None: mask = np.ones((nRow, nCol)) # Create an empty array of correct dimensions array = np.zeros((nRow, nCol)) - 1 # Keep applying random clusters until all elements have a value while np.min(array) == -1: width = np.random.choice(range(minL, maxL)) height = np.random.choice(range(minL, maxL)) row = np.random.choice(range(-maxL, nRow)) col = np.random.choice(range(-maxL, nCol)) array[row:row + width, col:col + height] = np.random.random() # Apply mask and rescale 0-1 maskedArray = maskArray(array, mask) rescaledArray = linearRescale01(maskedArray) return(rescaledArray)
b53db06114ac3a465c1e0444bed59aa7403bba83
3,651,853
import os import pickle def auth(credentials_file_path): """Shows basic usage of the Sheets API. Prints values from a sample spreadsheet. """ creds = None # The file token.pickle stores the user's access and refresh tokens, and is # created automatically when the authorization flow completes for the first # time. if os.path.exists(credentials_file_path+'token.pickle'): with open(credentials_file_path+'token.pickle', 'rb') as token: creds = pickle.load(token) # If there are no (valid) credentials available, let the user log in. if not creds or not creds.valid: if creds and creds.expired and creds.refresh_token: creds.refresh(Request()) else: flow = InstalledAppFlow.from_client_secrets_file( credentials_file_path+'credentials.json', SCOPES) creds = flow.run_local_server(port=0) # Save the credentials for the next run with open(credentials_file_path+'token.pickle', 'wb') as token: pickle.dump(creds, token) service = build('sheets', 'v4', credentials=creds) return service
b9b65c1976ec5574f9ec2bc56b3c5d0e827cd4a6
3,651,854
def add_arc(): """ :return: arc object """ l_hand = GArc(200, 200, 60, 150, x=480, y=270) l_hand.filled = True l_hand.fill_color = "#8eded9" r_hand = GArc(200, 200, -30, 120, x=650, y=300) r_hand.filled = True r_hand.fill_color = "#8eded9" return l_hand, r_hand
667004d534d58ab11e9b41ca42572dc445ffcf7d
3,651,855
def get_data_item_or_add(results_dic, name, n_hid, epochs, horizon, timesteps): """ Return or create a new DataItem in `results_dic` with the corresponding metadata. """ if name not in results_dic: results_dic[name] = [] found = False for item in results_dic[name]: if item.is_metadata(n_hid, epochs, horizon, timesteps): found = True return item if not found: results_dic[name].append( DataItem(n_hid, epochs, horizon, timesteps)) return results_dic[name][-1]
e6c713cd89b7a9816f52be11a4730f1cef60355c
3,651,856
def midcurve_atm_fwd_rate(asset: Asset, expiration_tenor: str, forward_tenor: str, termination_tenor: str, benchmark_type: str = None, floating_rate_tenor: str = None, clearing_house: str = None, location: PricingLocation = None, *, source: str = None, real_time: bool = False) -> Series: """ GS end-of-day atm forward rate for swaption vol matrices. :param asset: asset object loaded from security master :param expiration_tenor: relative date representation of expiration date on the option e.g. 3m :param forward_tenor: relative date representation of swap's start date after option expiry e.g. 2y :param termination_tenor: relative date representation of the instrument's expiration date e.g. 1y :param benchmark_type: benchmark type e.g. LIBOR :param floating_rate_tenor: floating index rate :param clearing_house: Example - "LCH", "EUREX", "JSCC", "CME" :param location: Example - "TKO", "LDN", "NYC" :param source: name of function caller :param real_time: whether to retrieve intraday data instead of EOD :return: swaption implied normal volatility curve """ df = _get_swaption_measure(asset, benchmark_type=benchmark_type, floating_rate_tenor=floating_rate_tenor, effective_date=forward_tenor, expiration_tenor=expiration_tenor, termination_tenor=termination_tenor, clearing_house=clearing_house, source=source, real_time=real_time, start=DataContext.current.start_date, end=DataContext.current.end_date, query_type=QueryType.MIDCURVE_ATM_FWD_RATE, location=location) return _extract_series_from_df(df, QueryType.MIDCURVE_ATM_FWD_RATE)
e77ba9ef705c2eefe0f46431862697b6a840d6fd
3,651,857
def extrode_multiple_urls(urls): """ Return the last (right) url value """ if urls: return urls.split(',')[-1] return urls
34ec560183e73100a62bf40b34108bb39f2b04b4
3,651,858
def build_header(cp: Config) -> str: """Build the email header for a SMTP email message""" header = '\n'.join([ 'From: {}'.format(cp.sender), 'To: {}'.format(''.join(cp.receiver)), 'Subject: {}\n\n'.format(cp.subject) ]) return header
a0c9fdc820d4a454c0384c46775d3e1359710fad
3,651,859
def apex_distance(r0, rc, Rc, uvec): """ Implements equation (E4) of TYH18 """ R0 = rc + Rc * uvec - r0 return np.hypot(*R0)
f88d59727fce25306ae6ef0856941efdbb80a712
3,651,860
def pixel2phase(data): """ converts each channel of images in the data to phase component of its 2-dimensional discrete Fourier transform. :param data: numpy array with shape (nb_images, img_rows, img_cols, nb_channels) :return: numpy array with same shape as data """ channels = data.shape[-1] return fourier(data)[:, :, :, channels:]
1b6b2c513cc20fe9642dd375dd17ee2205692912
3,651,861
def take_last_while(predicate, list): """Returns a new list containing the last n elements of a given list, passing each value to the supplied predicate function, and terminating when the predicate function returns false. Excludes the element that caused the predicate function to fail. The predicate function is passed one argument: (value)""" for i, e in enumerate(reversed(list)): if not predicate(e): return list[-i:] return list
19468c9130e9ab563eebd97c30c0e2c74211e44b
3,651,862
import re from bs4 import BeautifulSoup def get_notes() -> str: """Scrape notes and disclaimers from dashboard.""" # As of 6/5/20, the only disclaimer is "Data update weekdays at 4:30pm" with get_firefox() as driver: notes = [] match = re.compile('disclaimers?', re.IGNORECASE) driver.implicitly_wait(30) driver.get(dashboard_url) soup = BeautifulSoup(driver.page_source, 'html5lib') has_notes = False text = soup.get_text().splitlines() for text_item in text: if match.search(text_item): notes.append(text_item.strip()) has_notes = True if not has_notes: raise FormatError( "This dashboard url has changed. None of the <div> elements contains'Disclaimers' " + dashboard_url) return '\n\n'.join(notes)
7ec0efab1c5ed17c1878ece751bffe82d77f0105
3,651,863
def signup_logout(request): """ Just wrapping the built in """ return logout_view(request, template_name='logged_out.html')
14c403720c396aa8bbb37752ce304bb2804dd46b
3,651,864
def stress_rotation(stress, angle): """ Rotates a stress vector against a given angle. This rotates the stress from local to the global axis sytem. Use a negative angle to rotate from global to local system. The stress vector must be in Voigt notation and engineering stress is used. Parameters ---------- stress : vector The matrix that must be rotated. angle : float The rotation angle in degrees. Returns ------- stress_rot : vector A rotated version of the matrix. """ angle = angle * np.pi/180 # convert to radians m = np.cos(-angle) n = np.sin(-angle) T1_inv = np.matrix([[m**2, n**2, 2*m*n], [n**2, m**2, -2*m*n], [-m*n, m*n, m**2-n**2]]) stress_rot = T1_inv * stress return stress_rot
96ae75ae61fdbee0cf120e6d705cadc265452e7d
3,651,865
def blue_noise(x=None, hue=None, data=None, dodge=False, orient='v', plot_width=None, color='black', palette='tab10', size=3, centralized=False, filename='', scaling=10): """ Renders a *Blue Noise Plot* from the given data. Args: x (str in data): Variables that specify positions on the data-encoding axes. hue (str in data): Optional. Grouping variable that will produce points with different colors. data (pandas.DataFrame): Input data structure. Long-form collection of vectors that can be assigned to named variables. dodge (boolean): Optional. Wether to dodge the categorical classes of the plot. Defaults to False. orient ("v" | "h"): Optional. Orientation of the plot (vertical or horizontal). Defaults to 'v'. color (str): Color to use for markers, in case there is only one class (hue not given). Defaults to 'black'. palette (str): Method for choosing the colors to use when mapping the hue semantic. String values are passed to color_palette(). List or dict values imply categorical mapping, while a colormap object implies numeric mapping. Defaults to 'tab10'. size (float): The marker size in points**2. centralized (boolean): Optional. Where the plot should be centralized or not. Defaults to False. plot_width (float): Optional. Width of the plot. This is a ratio, assuming the encoding axis is between 0 and 1. So, 0.2 for plot_width would give you a plot with is 5 times as wide in the encoding axis as in the non-encoding axis. filename (str): Optional. Filename of the plot to render. scaling (int): Optional. Scaling for the size of plot. Defaults to 10 for a 740 pixel lot (long side). Returns: List[List[[float, float]]] 2D-Array, relaxed points. Here the first dimension of the array encodes the clases in the data. So for a single-class blue noise plot, len(blue_noise_plot) would be 1. Each of these arrays contains arrays with points within this class. """ return __plot(x=x, hue=hue, data=data, dodge=dodge, orient=orient, plot_width=plot_width, color=color, palette=palette, size=size, centralized=centralized, filename=filename, scaling=scaling, method='blue_noise')
8743dacba9ddac1b1e73e676962d850876c5b2f3
3,651,866
def get_repository(auth_user: check_auth, repository_id: hug.types.text): """ GET: /repository/{repository_id} Returns the CLA repository requested by UUID. """ return cla.controllers.repository.get_repository(repository_id)
ad9bb45a4d4526b790abb7f89d72a3deafb2d10f
3,651,867
def _isDebug(): """*bool* = "--debug" or "--debugger" """ return options is not None and (options.debug or options.debugger)
f6670a5c5711e2f5e4c29b6b4d5356813b302ee9
3,651,868
def _and(mat,other,obj,m): """ Can only be used with '&' operator not with 'and' Multi-column boolean matrices' values are compared with 'and' operator, meaning that 1 false value causes whole row to be reduced to a false value """ if mat.BOOL_MAT: if isinstance(other,obj): if mat.dim!=other.dim: raise ValueError("Dimensions of the matrices don't match") if not other.BOOL_MAT: raise TypeError("Can't compare bool matrix to non-bool matrix") d0,d1 = mat.dim o = other.matrix true,false = mat.DEFAULT_BOOL[True],mat.DEFAULT_BOOL[False] data = [] #Reduce multiple columns into one #Remove rows with false boolean values for i in range(d0): mrow,orow = m[i],o[i] if (false in mrow) or (false in orow): data.append([false]) continue data.append([true]) return obj(dim=[d0,1], data=data, features=mat.features[:1], index=mat.index[:], implicit=True,BOOL_MAT=True,DEFAULT_BOOL={True:true,False:false}) else: d0,d1 = mat.dim true,false = mat.DEFAULT_BOOL[True],mat.DEFAULT_BOOL[False] data = [] if isinstance(other,obj): if mat.dim!=other.dim: raise ValueError("Dimensions of the matrices don't match") if other.BOOL_MAT: raise TypeError("Can't compare non-bool matrix to bool matrix") o = other.matrix for i in range(d0): mrow,orow = m[i],o[i] data.append([true if (bool(mrow[j]) and bool(orow[j])) else false for j in range(d1)]) elif isinstance(other,list): if mat.d1!=len(other): raise ValueError("Length of the list doesn't match matrix's column amount") for i in range(d0): mrow = m[i] data.append([true if (bool(mrow[j]) and bool(other[j])) else false for j in range(d1)]) else: for i in range(d0): mrow = m[i] data.append([true if (bool(mrow[j]) and bool(other)) else false for j in range(d1)]) return obj(dim=[d0,d1], data=data, features=mat.features[:], index=mat.index[:], implicit=True,BOOL_MAT=True,DEFAULT_BOOL={True:true,False:false})
ac4e4d5f205c6aeb068d9fb427839e4e8f85f0ea
3,651,869
import copy def MAP (request, resource, optimize_already_mapped_nfs=True, migration_handler_name=None, migration_coeff=None, load_balance_coeff=None, edge_cost_coeff=None, time_limit=None, mip_gap_limit=None, node_limit=None, logger=None, **migration_handler_kwargs): """ Starts an offline optimization of the 'resource', which may contain NFs for considering migration if optimize_already_mapped_nfs is set. 'request' should be new NF-s to be mapped during the reoptimization of 'resource'. If 'optimize_already_mapped_nfs' is set to false, 'request' should contain only NF-s which are net yet mapped to resource. :param mip_gap_limit: termination optimality condition for the MILP :param time_limit: termination execution time condition for the MILP :param node_limit: :param optimize_already_mapped_nfs: :param request: :param resource: :param migration_handler_name: :param migration_handler_kwargs: :return: """ # Make heuristic and MILP even in number of large object deepcopies # This would also be required for correct behaviour (Maybe the mapping # shouldn't change the input NFFG) request = copy.deepcopy(request) resource = copy.deepcopy(resource) # overwrite logger object if we got one from the caller! if logger is not None: global log log = logger migration_handler = None req_nf_ids = [nf.id for nf in request.nfs] if optimize_already_mapped_nfs: # This is a full reoptimization, add VNFs and everything from resource to # request for reoptimization! for vnf in resource.nfs: if vnf.id not in req_nf_ids: # log.debug("Adding NF %s to request for reoptimization."%vnf.id) request.add_nf(vnf) NFFGToolBox.recreate_all_sghops(resource) for sg in resource.sg_hops: if not request.network.has_edge(sg.src.node.id, sg.dst.node.id, key=sg.id): # log.debug("Adding SGHop %s to request from resource."%sg.id) add_saps_if_needed_for_link(sg, request) request.add_sglink(sg.src, sg.dst, hop=sg) # reqs in the substrate (requirements satisfied by earlier mapping) needs # to be respected by the reoptimization, and mogration can only be done # if it is not violated! log.debug("e2e reqs in request:%s, e2e reqs in resource, e.g: %s"% ([r.sg_path for r in request.reqs], [r.sg_path for r in resource.reqs][:20])) # log.debug("SAPs in resource: %s" % [s for s in resource.saps]) for req in resource.reqs: # all possible SAPs should be added already! if not request.network.has_edge(req.src.node.id, req.dst.node.id, key=req.id): # log.debug("Adding requirement link on path %s between %s and %s to request to preserve it " # "during reoptimization"%(req.sg_path, req.src, req.dst)) add_saps_if_needed_for_link(req, request) # bandwidth requirement of the already mapped SGHops are stored by # the resource graph! req.bandwidth = 0.0 request.add_req(req.src, req.dst, req=req) # We have to deal with migration in this case only. if migration_handler_name is not None and type( migration_handler_name) is str: migration_cls = eval("migration_costs." + migration_handler_name) # This resource NFFG needs to include all VNFs, which may play any role in # migration or mapping. Migration need to know about all of them for # setting zero cost for not yet mapped VNFs migration_handler = migration_cls(request, resource, **migration_handler_kwargs) else: # No migration can happen! We just map the given request and resource # with MILP. # Fail if there is VNF which is mapped already! for vnf in resource.nfs: if vnf.id in req_nf_ids: raise uet.BadInputException("If 'optimize_already_mapped_nfs' is set to " "False, request shouldn't contain VNFs " "from resource", "VNF %s is both in request " "and resource!"%vnf.id) mappedNFFG = convert_mip_solution_to_nffg([request], resource, migration_handler=migration_handler, migration_coeff=migration_coeff, load_balance_coeff=load_balance_coeff, edge_cost_coeff=edge_cost_coeff, reopt=optimize_already_mapped_nfs, time_limit=time_limit, mip_gap_limit=mip_gap_limit, node_limit=node_limit) if mappedNFFG is not None: try: mappedNFFG.calculate_available_node_res() mappedNFFG.calculate_available_link_res([]) except RuntimeError as re: log.error("MILP's resulting NFFG is invalid: %s"%re.message) raise uet.InternalAlgorithmException("MILP's mapping is invalid!!") return mappedNFFG else: raise uet.MappingException("MILP couldn't map the given service request.", False)
28d74396d14e75fc3c2865461de40aa9cf2586e7
3,651,870
def _parcel_profile_helper(pressure, temperature, dewpt): """Help calculate parcel profiles. Returns the temperature and pressure, above, below, and including the LCL. The other calculation functions decide what to do with the pieces. """ # Find the LCL press_lcl, temp_lcl = lcl(pressure[0], temperature, dewpt) press_lcl = press_lcl.to(pressure.units) # Find the dry adiabatic profile, *including* the LCL. We need >= the LCL in case the # LCL is included in the levels. It's slightly redundant in that case, but simplifies # the logic for removing it later. press_lower = concatenate((pressure[pressure >= press_lcl], press_lcl)) temp_lower = dry_lapse(press_lower, temperature) # If the pressure profile doesn't make it to the lcl, we can stop here if _greater_or_close(np.nanmin(pressure.m), press_lcl.m): return (press_lower[:-1], press_lcl, np.array([]) * press_lower.units, temp_lower[:-1], temp_lcl, np.array([]) * temp_lower.units) # Find moist pseudo-adiabatic profile starting at the LCL press_upper = concatenate((press_lcl, pressure[pressure < press_lcl])) temp_upper = moist_lapse(press_upper, temp_lower[-1]).to(temp_lower.units) # Return profile pieces return (press_lower[:-1], press_lcl, press_upper[1:], temp_lower[:-1], temp_lcl, temp_upper[1:])
2e9abd03dbf4617e53ea19ac7a415025567195e8
3,651,871
import os import glob import hashlib def extract_subject(subj, mask_name, summary_func=np.mean, residual=False, exp_name=None): """Extract timeseries from within a mask, summarizing flexibly. Parameters ---------- subj : string subject name mask_name : string name of mask in data hierarchy summary_func : callable or None callable to reduce data over voxel dimensions. can take an ``axis`` argument to operate over each frame, if this argument does not exist the function will be called on the n_tr x n_voxel array. if None, simply returns all voxels. residual : boolean If True, extract from the registered residual timecourse. exp_name : string experiment name, if not using the default experiment Returns ------- data : dict with ndarray datta array is n_runs x n_timepoint x n_dimension, data are not otherwise altered """ project = gather_project_info() if exp_name is None: exp_name = project["default_exp"] # Get a path to the file where cache_dir = op.join(project["analysis_dir"], exp_name, subj, "evoked") try: os.makedirs(cache_dir) except OSError: pass if summary_func is None: func_name = "" else: func_name = summary_func.__name__ cache_fname = mask_name + "_" + func_name cache_fname = cache_fname.strip("_") + ".npz" cache_file = op.join(cache_dir, cache_fname) # Get paths to the relevant files mask_file = op.join(project["data_dir"], subj, "masks", "%s.nii.gz" % mask_name) ts_dir = op.join(project["analysis_dir"], exp_name, subj, "reg", "epi", "unsmoothed") n_runs = len(glob(op.join(ts_dir, "run_*"))) ftemp = op.join(ts_dir, "run_{:d}/{}_xfm.nii.gz") fstem = "res4d" if residual else "timeseries" ts_files = [ftemp.format(r_i, fstem) for r_i in range(1, n_runs+1)] # Get the hash value for this extraction cache_hash = hashlib.sha1() cache_hash.update(mask_name) cache_hash.update(str(op.getmtime(mask_file))) for ts_file in ts_files: cache_hash.update(str(op.getmtime(ts_file))) cache_hash = cache_hash.hexdigest() # If the file exists and the hash matches, return the data if op.exists(cache_file): with np.load(cache_file) as cache_obj: if cache_hash == str(cache_obj["hash"]): return dict(cache_obj.items()) # Otherwise, do the extraction data = [] mask = nib.load(mask_file).get_data().astype(bool) for run, ts_file in enumerate(ts_files): ts_data = nib.load(ts_file).get_data() roi_data = ts_data[mask].T if summary_func is None: data.append(roi_data) continue # Try to use the axis argument to summarize over voxels try: roi_data = summary_func(roi_data, axis=1) # Catch a TypeError and just call the function # This lets us do e.g. a PCA except TypeError: roi_data = summary_func(roi_data) data.append(roi_data) data = np.array(list(map(np.squeeze, data))) # Save the results and return them data_dict = dict(data=data, subj=subj, hash=cache_hash) np.savez(cache_file, **data_dict) return data_dict
be9759e6cde757fc55bd70d10cb8b784e312b0d2
3,651,872
def best_param_search(low=1, margin=1, func=None): """ Perform a binary search to determine the best parameter value. In this specific context, the best parameter is (the highest) value of the parameter (e.g. batch size) that can be used to run a func(tion) (e.g., training) successfully. Beyond a certain value, the function fails to run for reasons such as out-of-memory. param low: a starting low value to start searching from (defaults to 1). param margin: denotes the margin allowed when choosing the configuration parameter (and the optimal parameter). param func: the function that is required to be run with the configuration parameter. """ assert low > 0 assert margin > 0 assert func is not None # Determine if the function succeeds to run at the starting (low) value. # If not, keep lowering the value of low until the run succeeds. try: print(f"Trying with a parameter value of {low}.") func(low) success = True except Exception: success = False print("Run failed! The starting value of the parameter is itself too high!\n") while not success and low > 0: try: low = low // 2 print(f"Trying with a parameter value of {low}.") func(low) success = True except Exception: print("Run failed! Lowering the parameter value.\n") if not success: print("The function failed to run even at the lowest parameter value !") return # Set coarse limits on low (function succeeds to run) and # high (function does not succeed running). while success: high = 2 * low try: print(f"Trying with a parameter value of {high}.") func(high) low = high except Exception: success = False print("Run failed!\n") print( f"Low and high parameter values set to {low} and {high} respectively." ) # Binary search to find the optimal value of low (within the margin). current_margin = high - low while current_margin > margin: mid = (low + high) // 2 try: print(f"Trying with a parameter value of {mid}.") func(mid) low = mid except Exception: high = mid print("Run failed!\n") print(f"Low and high parameter values set to {low} and {high} respectively.") current_margin = high - low print(f"Setting the parameter value to {low}\n") return low
6392d8c019ebb50a49c46e724e62fd63671a00df
3,651,873
def configure_plugins_plugin_uninstall(request, pk): """ Disables a plugin from the system :param request: :param pk: The primary key of the plugin to be disabled :return: """ # TODO: See about pulling this out into a common methods plugin = get_object_or_404(Plugin, pk=pk) action = reverse( "api_dispatch_uninstall", kwargs={"api_name": "v1", "resource_name": "plugin", "pk": pk}, ) ctx = RequestContext( request, { "method": "DELETE", "action": action, "i18n": { "title": ugettext_lazy( "configure_plugins_plugin_uninstall.title" ), # 'Confirm Uninstall Plugin' "confirmmsg": ugettext_lazy( "configure_plugins_plugin_uninstall.messages.confirmmsg.singular" ) % { # 'Are you sure you want to uninstall %(versionedName)s Plugin (%(id)s)?' "id": str(pk), "versionedName": plugin.versionedName(), }, "submit": ugettext_lazy( "configure_plugins_plugin_uninstall.action.submit" ), # 'Yes, Uninstall!' "cancel": ugettext_lazy("global.action.modal.cancel"), "submitmsg": ugettext_lazy( "configure_plugins_plugin_uninstall.messages.submitmsg" ), # 'Now uninstalling, please wait.' }, }, ) return render_to_response( "rundb/configure/modal_confirm_plugin_uninstall.html", context_instance=ctx )
f6c849a2dc4fe63ec43119e9e135c4c6385accd0
3,651,874
def get_supervised_timeseries_data_set(data, input_steps): """This function transforms a univariate timeseries into a supervised learning problem where the input consists of sequences of length input_steps and the output is the prediction of the next step """ series = pd.Series(data) data_set = pd.DataFrame({'t' : series, 't+1' : series.shift(-1)}) if input_steps > 1: x_values = np.concatenate([data[i:i+input_steps] .reshape(1, input_steps) for i in range(len(series) - input_steps)]) timesteps_df = pd.DataFrame(x_values[:,:-1], index=np.arange(input_steps - 1, input_steps - 1 + len(x_values)), columns = ['t-' + str(input_steps - i) for i in range(1, input_steps)]) data_set = pd.concat([timesteps_df, data_set], axis=1, join='inner') data_set = data_set.dropna() X = data_set.drop('t+1', axis=1) y = data_set.loc[:,'t+1'] return (X, y)
0fce866ea266c15e83e57795f86fcfe4fee4a54e
3,651,875
import os def load_df(name): """Load a pandas dataframe from csv file at results/name.""" load_name = os.path.join(here, "..", "results", name) df = pd.read_csv(load_name) return df
6b96b8368c2afcfa552b98ee65d0ee9d889ee0bc
3,651,876
def load_template_spectra_from_folder(parent_folder, spectrum_identifier, normalization=None): """ Load template spectrum data into a dictionary. This allows templates from different folders to be loaded into different dictionaries. Parameters: ----------- parent_folder : string Name of folder or path spectrum_identifier : string Radioactive source identifier. Ex: '235U' normalization : string or boolean Default = None Accepts: 'normalheight', 'normalarea', None How the dataset should be normalized. Returns: -------- temp_dict : Dictionary containing all template spectra from a folder. """ temp_dict = {} def normalize_spectrum(ID): """ Normalizes the spectrum data. Parameters: ----------- ID : string The ID key for the radioactive source in your spectrum. Returns: -------- temp_dict : Dictionary Contains all normalized datasets. """ temp_spectrum = an.read_spectrum( parent_folder + ID + spectrum_identifier) if np.max(temp_spectrum) == 0: print(ID + ' Contains no values') if normalization is None: return temp_spectrum elif normalization == 'normalheight': return temp_spectrum / np.max(temp_spectrum) elif normalization == 'normalarea': return temp_spectrum / np.sum(temp_spectrum) for i in range(len(an.isotopes) - 3): temp_dict[an.isotopes[i]] = normalize_spectrum( an.isotopes_sources_GADRAS_ID[i]) return temp_dict
466d0eb74de197ddb18e289f072d9451bc7ea2d8
3,651,877
import json def remove_screenshot_from_object(request): """ Removes the screenshot from being associated with a top-level object. :param request: The Django request. :type request: :class:`django.http.HttpRequest` :returns: :class:`django.http.HttpResponse` """ analyst = request.user.username obj = request.POST.get('obj', None) oid = request.POST.get('oid', None) sid = request.POST.get('sid', None) result = delete_screenshot_from_object(obj, oid, sid, analyst) return HttpResponse(json.dumps(result), mimetype="application/json")
36836120c79dc8d825c91370074da09fd2255c6d
3,651,878
import csv import json def read_csv_as_dicts( filename, newline="", delimiter=",", quotechar='"', encoding="utf-8", remove_prefix=True, prefix="dv.", json_cols=CSV_JSON_COLS, false_values=["FALSE"], true_values=["TRUE"], ): """Read in CSV file into a list of :class:`dict`. This offers an easy import functionality of your data from CSV files. See more at `csv <https://docs.python.org/3/library/csv.html>`_. CSV file structure: 1) The header row contains the column names. 2) A row contains one dataset 3) A column contains one specific attribute. Recommendation: Name the column name the way you want the attribute to be named later in your Dataverse object. See the `pyDataverse templates <https://github.com/GDCC/pyDataverse_templates>`_ for this. The created :class:`dict` can later be used for the `set()` function to create Dataverse objects. Parameters ---------- filename : str Filename with full path. newline : str Newline character. delimiter : str Cell delimiter of CSV file. Defaults to ';'. quotechar : str Quote-character of CSV file. Defaults to '"'. encoding : str Character encoding of file. Defaults to 'utf-8'. Returns ------- list List with one :class:`dict` each row. The keys of a :class:`dict` are named after the columen names. """ assert isinstance(filename, str) assert isinstance(newline, str) assert isinstance(delimiter, str) assert isinstance(quotechar, str) assert isinstance(encoding, str) with open(filename, "r", newline=newline, encoding=encoding) as csvfile: reader = csv.DictReader(csvfile, delimiter=delimiter, quotechar=quotechar) data = [] for row in reader: data.append(dict(row)) data_tmp = [] for ds in data: ds_tmp = {} for key, val in ds.items(): if val in false_values: ds_tmp[key] = False ds_tmp[key] = True elif val in true_values: ds_tmp[key] = True else: ds_tmp[key] = val data_tmp.append(ds_tmp) data = data_tmp if remove_prefix: data_tmp = [] for ds in data: ds_tmp = {} for key, val in ds.items(): if key.startswith(prefix): ds_tmp[key[len(prefix) :]] = val else: ds_tmp[key] = val data_tmp.append(ds_tmp) data = data_tmp if len(json_cols) > 0: data_tmp = [] for ds in data: ds_tmp = {} for key, val in ds.items(): if key in json_cols: ds_tmp[key] = json.loads(val) else: ds_tmp[key] = val data_tmp.append(ds_tmp) data = data_tmp return data
bf15b684120445adf7e6ba8ae18befd64ad6a99f
3,651,879
from typing import Dict from typing import Union from typing import Tuple from typing import List import torch from typing import Any def get_rewrite_outputs(wrapped_model: nn.Module, model_inputs: Dict[str, Union[Tuple, List, torch.Tensor]], deploy_cfg: mmcv.Config, run_with_backend: bool = True) -> Tuple[Any, bool]: """To get outputs of generated onnx model after rewrite. Args: wrapped_model (nn.Module): The input model. model_inputs (dict): Inputs for model. deploy_cfg (mmcv.Config): Deployment config. run_with_backend (bool): Whether to run inference with backend. Default is True. Returns: List[torch.Tensor]: The outputs of model. bool: A flag indicate the type of outputs. If the flag is True, then the outputs are backend output, otherwise they are outputs of wrapped pytorch model. """ backend = get_backend(deploy_cfg) with RewriterContext( cfg=deploy_cfg, backend=backend.value, opset=11), torch.no_grad(): ctx_outputs = wrapped_model(**model_inputs) ir_type = get_ir_config(deploy_cfg).get('type', None) if ir_type == IR.TORCHSCRIPT.value: ir_file_path = get_ts_model(wrapped_model, model_inputs, deploy_cfg) else: # TODO onnx as default, make it strict when more IR types involved ir_file_path = get_onnx_model(wrapped_model, model_inputs, deploy_cfg) backend_outputs = None if run_with_backend: backend_outputs = get_backend_outputs(ir_file_path, model_inputs, deploy_cfg) if backend_outputs is None: return ctx_outputs, False else: return backend_outputs, True
147276df37fcb7df604ec14454638605266fbdc1
3,651,880
import tempfile import os def _get_implied_dependencies(path: str) -> list: """ Attempt to replace _get_requirements_from_file Extracts import statements via regex. Does not catch all import statements and its use was rolled back. Might still be overhauled and integrated again. """ _python_files = search_filename( base_folder=path, file_name="**/*.py", recursive_flag=True ) _tmp_project_path = tempfile.mkdtemp() _tmp_file_path = _tmp_project_path + "/dependencies.py" _tmp_file = open(_tmp_file_path, 'w') for file in _python_files: for _import in _get_imports(file): _tmp_file.write(_import.strip()+'\n') _tmp_file.close() try: _all_imports = pipreqs.get_all_imports( path=_tmp_project_path, encoding='utf-8' ) except (IndentationError, SyntaxError): return None # Clean up tmp folder if os.path.isfile(_tmp_file_path): os.remove(_tmp_file_path) if os.path.isdir(_tmp_project_path): os.rmdir(_tmp_project_path) _imports = _remove_local_dependencies(path, _all_imports) return pipreqs.get_pkg_names(_imports)
5ddd0b00e769f5d529053f00114ef3e5fb33e6da
3,651,881
def get_interface_breakout_param(dut,**kwargs): """ Author: Naveen Nag email : [email protected] :param dut: :param interface: :param fields: :return: interface breakout speed Usage: port.get_interface_breakout_param(dut1, 'Ethernet4') :return - ['4x10G', 'Completed'] """ param_breakout = [] if 'interface' not in kwargs : st.error("Mandatory argument \'interface\' is missing") return False if 'Eth' in kwargs['interface']: st.log('Physical interface name is provided, mapping it to a port group') res1 = get_interface_breakout_mode(dut, kwargs['interface'], 'port') if res1: kwargs['interface'] = 'port ' + res1[0]['port'] else: st.error('Invalid interface, cannot get the status') return False output = st.show(dut, "show interface breakout {}".format(kwargs['interface']), type='klish') if len(output) == 0: st.error("Provided interface is not a breakout port") return False else: param_breakout.append(str(output[0]['breakout_mode'].strip('G'))) param_breakout.append(output[0]['status']) return param_breakout
43286c8dbc29fef096d34c567f3f7c4ff2a06691
3,651,882
def get_process_basic_window_enriched(cb, print_detail, window): """ Text Args: cb (CBCloudAPI): API object print_detail (bool): whether to print full info to the console, useful for debugging window (str): period to search Returns: process_guid of the first process in the returned list """ print("\n----------------------------------------------------------") print("API Calls:") print("Start a Process Search (v2)") print("Get the Status of a Process Search (v1)") print("Retrieve Results for a Process Search (v2)\n") process_query = cb.select(Process).where("enriched:true") process_query.set_time_range(window=window) matching_processes = [process for process in process_query] print(f"There are {len(matching_processes)} found in {window} of processes") if print_detail: for process in matching_processes: print("{0:16} {1:5} {2:20}".format(process.device_name, process.process_pids[0], process.process_guid)) try: print(f"process guid being used is {matching_processes[6].process_guid}") print("Test PASSED") except IndexError: print("Test FAILED") print("----------------------------------------------------------") return matching_processes[6].process_guid
97a9a3df0570ee4f1777faa6385c7ddd8a013594
3,651,883
def home(): """Home view""" if flask.session.get('userid'): leaderboard_players = rankedlist( member=db.web.session.query( models.Member).get( flask.session['userid'])) member = db.web.session.query( models.Member).get( flask.session.get('userid')) else: leaderboard_players = rankedlist( member=db.web.session.query( models.Member).filter_by( rank=3).first()) member = None news = db.web.session.query(models.NewsArticle).order_by( desc("date")) return render_template('content_home.html', news=news, member=member, leaderboard_players=leaderboard_players)
89211f6b79eae71b757201a2d8b234000a3e42bf
3,651,884
def is_number(string): """ Tests if a string is valid float. """ try: float(string) return True except ValueError: return False
1c46820de59b932ec565af55c565d175eef58c3c
3,651,885
import os def recursive_load_gfx(path, accept=(".png", ".bmp", ".svg")): """ Load graphics files. This operates on a one folder at a time basis. Note: An empty string doesn't count as invalid, since that represents a folder name. """ colorkey = c.UGLY_PURPLE graphics = {} for pic in os.listdir(path): pic_path = os.path.join(path, pic) name, ext = os.path.splitext(pic) if ext.lower() in accept: img = pygame.image.load(pic_path) if img.get_alpha(): #img = img.convert_alpha() img.convert_alpha() else: img = img.convert() img.set_colorkey(colorkey) graphics[name] = img elif not ext: pass else: print("Got unexpected gfx format\n" \ "Path: {}\n" \ "Name: {}\n" \ "Ext: {}\n".format(pic_path, name, ext)) return graphics
5daff8707aeeb2837e0a00be7a54b3d70ec3f917
3,651,886
def inputs(filename, batch_size, n_read_threads = 3, num_epochs = None, image_width = 200, image_height=290): """ reads the paired images for comparison input: name of the file to load from, parameters of the loading process output: the two images and the label (a logit classifier for 2 class - yes or no) """ with tf.device('/cpu:0'): #we need to load using the CPU or it allocated a stupid amount of memory x1, x2, y_ = pc.input_pipeline([filename], batch_size, n_read_threads, num_epochs=num_epochs, imgwidth = image_width, imgheight = image_height) return x1, x2, y_
1b22a3f5b28513a2f65312981205b2df40acd2b3
3,651,887
import logging import os def combinedlogger( log_name, log_level=logging.WARN, syslogger_format="%(levelname)s %(message)s", consolelogger_format="%(asctime)s %(levelname)s %(message)s", ): """ Returns a combined SysLogHandler/StreamHandler logging instance with formatters """ if "LOGLEVEL" in os.environ: log_level = os.environ["LOGLEVEL"] try: log_level = int(log_level) except ValueError: pass # for writing to syslog newlogger = logging.getLogger(log_name) if syslogger_format and os.path.exists("/dev/log"): my_syslog_formatter = logging.Formatter( fmt=" ".join((log_name, syslogger_format)) ) my_syslog_handler = logging.handlers.SysLogHandler( address="/dev/log", facility=SysLogHandler.LOG_DAEMON, ) my_syslog_handler.setFormatter(my_syslog_formatter) newlogger.addHandler(my_syslog_handler) if consolelogger_format: my_stream_formatter = logging.Formatter(fmt=consolelogger_format) my_stream_handler = logging.StreamHandler() my_stream_handler.setFormatter(my_stream_formatter) newlogger.addHandler(my_stream_handler) newlogger.setLevel(log_level) return newlogger
45b6b63c1912f115a57afbf7ad2ba5478f12d548
3,651,888
def abs_p_diff(predict_table, categA='sandwich', categB='sushi'): """Calculates the absolute distance between two category predictions :param predict_table: as returned by `predict_table` :param categA: the first of two categories to compare :param categB: the second of two categoreis to compare :returns: series with the absolute difference between the predictions :rtype: pandas Series """ return abs(predict_table['p_%s' % categA] - predict_table['p_%s' % categB])
235bfc7df29ac4a2b67baff9dfa3ee62204a9aed
3,651,889
def _is_target_feature(column_names, column_mapping): """Assert that a feature only contains target columns if it contains any.""" column_names_set = set(column_names) column_types = set(column['type'] for column_name, column in column_mapping.iteritems() if column_name in column_names_set) if 'target' in column_types: assert len(column_types) == 1, ( 'Features with target columns can only contain target columns.' 'Found column_types: %s for columns %s' % (column_types, column_names)) return True else: return False
098af45938c616dd0ff2483a27131f15ba50797b
3,651,890
import typing import json import requests def server_upload_document(path: str, title: str, peer: int, document_type: str = "doc") -> \ typing.Tuple[bool, typing.Union[str, typing.Any]]: """ Uploads document to the server and returns it (as document string). """ try: # Trying to upload document. # Getting api for the uploader. server_docs_api = SERVER_API.get_api().docs # noqa # Getting upload url. if "upload_url" in (upload_server := server_docs_api.getMessagesUploadServer(type=document_type, peer_id=peer)): # If there is our URL. # Get URL. upload_url = upload_server["upload_url"] else: # If no. # Error. return False, "Upload Server Error" + str(upload_server) # Posting file on the server. request = json.loads(requests.post(upload_url, files={ "file": open(path, "rb") }).text) if "file" in request: # If there is all fields in response. # Saving file to the docs. request = server_docs_api.save(file=request["file"], title=title, tags=[]) # Get fields. document_id = request[document_type]["id"] document_owner_id = request[document_type]["owner_id"] # Returning document. return True, f"doc{document_owner_id}_{document_id}" # If there is not all fields. # Debug message. debug_message(f"[Server] Error when uploading document (Request)! Request - {request}") # Returning request as error. return False, "Request Error" + str(request) except Exception as exception: # noqa, pylint: disable=broad-except, redefined-outer-name # If there is error. # Debug message. debug_message(f"Error when uploading document (Exception)! Exception: {exception}") # Returning exception. return False, "Exception Error" + str(exception)
2387dabd84c590a0eb3f6406d0b6742ccad4cb14
3,651,891
def _default_mono_text_dataset_hparams(): """Returns hyperparameters of a mono text dataset with default values. See :meth:`texar.MonoTextData.default_hparams` for details. """ return { "files": [], "compression_type": None, "vocab_file": "", "embedding_init": Embedding.default_hparams(), "delimiter": " ", "max_seq_length": None, "length_filter_mode": "truncate", "pad_to_max_seq_length": False, "bos_token": SpecialTokens.BOS, "eos_token": SpecialTokens.EOS, "other_transformations": [], "variable_utterance": False, "utterance_delimiter": "|||", "max_utterance_cnt": 5, "data_name": None, "@no_typecheck": ["files"] }
bfd015cc93bd974b6486cf07cf72f1dfb7443b61
3,651,892
def validate_engine_mode(engine_mode): """ Validate database EngineMode for DBCluster Property: DBCluster.EngineMode """ VALID_DB_ENGINE_MODES = ( "provisioned", "serverless", "parallelquery", "global", "multimaster", ) if engine_mode not in VALID_DB_ENGINE_MODES: raise ValueError( "DBCluster EngineMode must be one of: %s" % ", ".join(VALID_DB_ENGINE_MODES) ) return engine_mode
69f7952a998b6ca593106c92710909104e21f55f
3,651,893
import logging def GetBlameListForV2Build(build): """ Uses gitiles_commit from the previous build and current build to get blame_list. Args: build (build_pb2.Build): All info about the build. Returns: (list of str): Blame_list of the build. """ search_builds_response = buildbucket_client.SearchV2BuildsOnBuilder( build.builder, build_range=(None, build.id), page_size=2) previous_build = None for search_build in search_builds_response.builds: # TODO(crbug.com/969124): remove the loop when SearchBuilds RPC works as # expected. if search_build.id != build.id: previous_build = search_build break if not previous_build: logging.error( 'No previous build found for build %d, cannot get blame list.', build.id) return [] repo_url = git.GetRepoUrlFromV2Build(build) return git.GetCommitsBetweenRevisionsInOrder( previous_build.input.gitiles_commit.id, build.input.gitiles_commit.id, repo_url)
622fb540d4cce2dc2f57c7a7276ebef546ebc766
3,651,894
from datetime import datetime def run_command(cmd, log_method=log.info): """Subprocess wrapper for capturing output of processes to logs """ if isinstance(cmd, str): cmd = cmd.split(" ") start = datetime.utcnow() log_method("Starting run_command for: {}".format(" ".join([str(x) for x in cmd]))) p = sp.Popen(cmd, bufsize=0, stdout=sp.PIPE, stderr=sp.STDOUT) ret_val = None while True: line = p.stdout.readline() ret_val = p.poll() if not line and ret_val != None: break log_method(line.decode()) log_method("Completed run_command in {} for: {}".format((datetime.utcnow() - start).total_seconds(), " ".join(cmd))) return ret_val
8366c9306810d927daf82b473db86dc67b0d84c6
3,651,895
def jar(state: State, fail: Fail): """ Store a function by a name """ (identifier, (code, rest)) = state.infinite_stack() if identifier.tag != "atom": fail(f"{identifier} is not an atom") if code.tag not in ["code", "native"]: fail(f"{code} is not code") if code.tag == "code": code = code.with_name(identifier.value) return state.with_stack(rest).set_name(identifier.value, code)
5f60a30ff7bed1a453bfe6ff354dc34a6fabee4f
3,651,896
import os import argparse def existant_file(filepath:str): """Argparse type, raising an error if given file does not exists""" if not os.path.exists(filepath): raise argparse.ArgumentTypeError( " file {} doesn't exists".format(C_FILE + filepath + C_ENDC) ) return filepath
dacf94aaeccb6b70974eafc87dff96609408ccb6
3,651,897
import requests import json def get_daily_activity(p_sap_date: str) -> dict: """ Returns activities on the given date """ fiori_url = config.CONSTANTS["ECZ_DAHA_DAILY_URL"] + "?date=" + p_sap_date resp = requests.get( fiori_url, auth=HTTPBasicAuth( config.CONSTANTS["ECZ_DAHA_USER"], config.CONSTANTS["ECZ_DAHA_PASS"])) resp_as_dict = json.loads(resp.text) return resp_as_dict
68da0af50b0fc828d6eae3d1685911f039bd9732
3,651,898
import random from typing import Optional def load_example_abc(title: Optional[str] = None) -> str: """Load a random example ABC if `title` not provided. Case ignored in the title. """ if title is None: k = random.choice(list(examples)) else: k = title.lower() abc = examples.get(k) if abc is None: example_list = "\n".join(f" {t!r}" for t in examples) raise ValueError("invalid tune title. Valid options are:\n" f"{example_list}") return abc
d1deba6a03814da68c5d47a7018a6768059fef62
3,651,899