content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import sys def getVPCs(account="*", region="*", debug=False, save=False): """Retrieve all data on VPCs from an AWS account and optionally save data on each to a file""" print("Collecting VPC data...", file=sys.stderr) vpclist = {} for vpc in skew.scan("arn:aws:ec2:%s:%s:vpc/*" % (region, account)): if debug: msg = "Account: %s, VPCID: %s, Region: %s, CIDR: %s" % ( vpc._client.account_id, vpc.id, vpc._client.region_name, vpc.data['CidrBlock']) print(msg, file=sys.stderr) try: tags = vpc.data['Tags'] except KeyError: tags = [] vpclist[vpc.id] = {"CIDR": vpc.data['CidrBlock'], "Account": vpc._client.account_id, "Region": vpc._client.region_name, "Tags": tags, "Instances":[]} vpclist['none'] = {"Instances":[]} print("Collected information on %s VPCs" % len(vpclist), file=sys.stderr) return vpclist
4bf661c5dfa437930bb2deec7e93e20fcb4b9260
3,652,200
def get_cache_timeout(): """Returns timeout according to COOLOFF_TIME.""" cache_timeout = None cool_off = settings.AXES_COOLOFF_TIME if cool_off: if isinstance(cool_off, (int, float)): cache_timeout = timedelta(hours=cool_off).total_seconds() else: cache_timeout = cool_off.total_seconds() return cache_timeout
4804576c2017aa51edb862e75a99e9e193eb3f20
3,652,201
def find_records(dataset, search_string): """Retrieve records filtered on search string. Parameters: dataset (list): dataset to be searched search_string (str): query string Returns: list: filtered list of records """ records = [] # empty list (accumulator pattern) for record in dataset: if search_string.lower() in record.lower(): # case insensitive records.append(record) # add to new list return records
c6cbd5c239f410a8658e62c1bbacc877eded5105
3,652,202
from pattern.en import parse, Sentence def mood(sentence, **kwargs): """ Returns IMPERATIVE (command), CONDITIONAL (possibility), SUBJUNCTIVE (wish) or INDICATIVE (fact). """ if isinstance(sentence, basestring): try: # A Sentence is expected but a string given. # Attempt to parse the string on-the-fly. sentence = Sentence(parse(sentence)) except ImportError: pass if imperative(sentence, **kwargs): return IMPERATIVE if conditional(sentence, **kwargs): return CONDITIONAL if subjunctive(sentence, **kwargs): return SUBJUNCTIVE else: return INDICATIVE
50d495e0a07a89c912288e93bf17a3d72cb78e87
3,652,203
def create_script(*args, **kwargs): """Similar to create_file() but will set permission to 777""" mode = kwargs.pop("mode", 777) path = create_file(*args, **kwargs) path.chmod(mode) return path
24a907b8e8cdb51bd1a224283d98756985ea1030
3,652,204
import torch def unique(x, dim=None): """Unique elements of x and indices of those unique elements https://github.com/pytorch/pytorch/issues/36748#issuecomment-619514810 e.g. unique(tensor([ [1, 2, 3], [1, 2, 4], [1, 2, 3], [1, 2, 5] ]), dim=0) => tensor([0, 1, 3]) """ unique, inverse = torch.unique( x, sorted=True, return_inverse=True, dim=dim) perm = torch.arange(inverse.size(0), dtype=inverse.dtype, device=inverse.device) inverse, perm = inverse.flip([0]), perm.flip([0]) return inverse.new_empty(unique.size(0)).scatter_(0, inverse, perm)
8282e6a176b36f75baee8a9101d3cce49f41364d
3,652,205
def _convert_arg(val, name, type, errmsg=None): """ Convert a Python value in CPO and check its value Args: val: Value to convert name: Argument name type: Expected type errmsg: Optional error message """ val = build_cpo_expr(val) assert val.is_kind_of(type), errmsg if errmsg is not None else "Argument '{}' should be a {}".format(name, type.get_public_name()) return val
cf70cc4ec9247ee9941cb715f99180b34f5b378f
3,652,206
import json def into_json(struct): """ Transforms a named tuple into a json object in a nice way. """ return json.dumps(_compile(struct), indent=2)
23470d184caff5540760782c8a1eee1589a61026
3,652,207
import random def generate_integer_seeds(signature): """Generates a set of seeds. Each seed is supposed to be included as a file for AFL. **NOTE** that this method assumes that the signature only have int types. If a non int type is found, None is returned. Param: (str) signature: fuzzable method signature Return: (list) of seeds to include in the analysis """ primitives = {'int', 'float', 'long', 'double'} sm = SootMethod(signature) param_types = sm.get_parameter_types() #for param_type in param_types: #if param_type not in primitives: # return None # seeds = itertools.product(_generate_integer_parameter_seed(), # repeat=len(param_types)) seed = [str(random.randint(-2048, 2048)) for _ in param_types] return ["\x07".join(seed)] #return list(map(lambda x: "\x07".join(x), seeds))
c058f730a6bd41d66ca64e3bfeffc5f4f65c2f60
3,652,208
from typing import Tuple def adjust_time(hour: int, minute: int) -> Tuple[int, int]: """Adjust time from sunset using offset in config. Returns: Tuple[int, int]: (hour, minute) of the adjusted time """ today = pendulum.today().at(hour, minute) today = today.add(hours=config.OFFSET_H, minutes=config.OFFSET_M) hour = today.hour minute = today.minute message = f'Scripts will run at around {hour:02}:{minute:02}' config.LOGGER.info(message) return (today.hour, today.minute)
bbd3b170976df934a541db91d728cb68420d0a4b
3,652,209
import os import random def read_data_unet(path_images, path_masks, img_dims, norm, stretch, shuffle): """ load, crop and normalize image data option to select images form a folder :param image_path: path of the folder containing the images [string] :param mask_path: path of the folder containing the masks [string] :param scans_to_use: list of 4-zero-padded sequence numbers of the scans to be used in the current training [list of strings] :param img_dims: [dict] :param norm: is normalization to the range of [0, 1] required [bool] :param stretch: is contrast stretch to the range of [0, 255] required [bool] :return: list - array of normalized depth maps [array of numpy arrays] """ images = [] # array of normalized multidiemnsional distance maps (frequencies: 20 - 120MHz) masks = [] im_names = [fname for fname in os.listdir(path_images) if fname[-4:] == '.jpg'] # image and corresponding mask have the same filename mask_names = [fname for fname in os.listdir(path_masks) if fname[-4:] == '.jpg'] # image and corresponding mask have the same filename for ind, im_name in enumerate(im_names): # load image im = cv2.imread(os.path.join(path_images, im_name), 0) if stretch: im = cv2.normalize(im, im, 0, 255, cv2.NORM_MINMAX) images.append(im) # load mask mask = cv2.imread(os.path.join(path_masks, mask_names[ind]), 0) masks.append(mask) if len(images) == 0: print("No images were read.") exit(101) if shuffle: data = list(zip(images, masks)) random.shuffle(data) images, masks = zip(*data) # convert data to ndarrays images = np.array(images) images = np.reshape(images, (len(images), img_dims['rows'], img_dims['cols'], img_dims['depth'])) masks = np.array(masks) masks = np.reshape(masks, (len(masks), img_dims['rows'], img_dims['cols'], 1)) # binarize masks masks[masks > 0] = 1 masks[masks <= 0] = 0 if norm: images = images / 255.0 return images, masks
52cc287c3a1f11414a6393a4aaa91e979edfa7a6
3,652,210
from functools import reduce def flatten(l): """Flatten 2 list """ return reduce(lambda x, y: list(x) + list(y), l, [])
85b4fad4ef0326304c1ee44714d8132841d13b16
3,652,211
def _rep_t_s(byte4): """ 合成置换T', 由非线性变换和线性变换L'复合而成 """ # 非线性变换 b_array = _non_linear_map(_byte_unpack(byte4)) # 线性变换L' return _linear_map_s(_byte_pack(b_array))
d82db42a848cdc84ba042b61a2825113feab5078
3,652,212
def get_mapping(): """ Returns a dictionary with the mapping of Spacy dependency labels to a numeric value, spacy dependency annotations can be found here https://spacy.io/api/annotation :return: dictionary """ keys = ['acl', 'acomp', 'advcl', 'advmod', 'agent', 'amod', 'appos', 'attr', 'aux', 'auxpass', 'case', 'cc', 'ccomp', 'clf', 'compound', 'conj', 'cop', 'csubj', 'csubjpass', 'dative', 'dep', 'det', 'discourse', 'dislocated', 'dobj', 'expl', 'fixed', 'flat', 'goeswith', 'iobj', 'intj', 'list', 'mark', 'meta', 'neg', 'nn', 'nmod', 'nounmod', 'npadvmod', 'npmod', 'nsubj', 'nsubjpass', 'nummod', 'oprd', 'obj', 'obl', 'orphan', 'parataxis', 'pcomp', 'pobj', 'poss', 'preconj', 'predet', 'prep', 'prt', 'punct', 'quantmod', 'relcl', 'reparandum', 'root', 'vocative', 'xcomp', ''] values = list(range(2, len(keys) + 2)) assert len(keys) == len(values) return dict(zip(keys, values))
164d2292bdd573a5805f9a66f685d21aac92061e
3,652,213
def create_root_folder(path: str, name: str) -> int: """ Creates a root folder if folder not in database. Fetches id if folder already in database. Handles paths with both slash and backslash as separator. :param path: The path to the folder in the users file system. :param name: The name of the folder. :return: The id of the folder. """ path = path.replace('\\', '/') f = Folder.objects.get_or_create(path=path, name=name)[0] return f.id
54ab207501490b7f154111d6091e9a04b59603c9
3,652,214
import logging def get_document_term_matrix(all_documents): """ Counts word occurrences by document. Then transform it into a document-term matrix (dtm). Returns a Tf-idf matrix, first count word occurrences by document. This is transformed into a document-term matrix (dtm). This is also just called a term frequency matrix. :param all_documents: :return: """ tfidf_vectorizer = TfidfVectorizer(stop_words='english', ngram_range=(1, 3)) tfidf_matrix = tfidf_vectorizer.fit_transform(all_documents) terms = tfidf_vectorizer.get_feature_names() logging.info('Total terms found: %d' % len(terms)) logging.info('(TFM/DTM) Matrix size: %s' % (tfidf_matrix.shape,)) return terms, tfidf_matrix
b43cd43d68f48c0296a37668c5f48375ac7e38df
3,652,215
def f_raw2(coordinate, packedParams): """ The raw function call, performs no checks on valid parameters.. :return: """ gaussParams = packedParams['pack'] res = 0 for p in gaussParams: res += gaussian_2d.f_noravel(coordinate, *p) return res
2071e4d6c227975b308ea717658d0bf1af567fca
3,652,216
def example_serving_input_fn(): """Build the serving inputs.""" example_bytestring = tf.placeholder( shape=[None], dtype=tf.string, ) features = tf.parse_example( example_bytestring, tf.feature_column.make_parse_example_spec(INPUT_COLUMNS)) return tf.estimator.export.ServingInputReceiver( features, {'example_proto': example_bytestring})
d94f7add7ba7a549263a85ef4d21cd78bae298ca
3,652,217
def add_file_uri_to_path(filepath): """Add the file uri preix: "file://" to the beginning of a path""" if not filepath: return False, "The filepath must be specified" if filepath.lower().startswith(FILE_URI_PREFIX): # # return True, filepath updated_fpath = '%s%s' % (FILE_URI_PREFIX, filepath) return True, updated_fpath
dc0640f6101b92a8623e360ac6782b3b23b6e45d
3,652,218
def np_slope_diff_spacing(z, xspace, yspace): """ https://github.com/UP-RS-ESP/TopoMetricUncertainty/blob/master/uncertainty.py Provides slope in degrees. """ dy, dx = np.gradient(z, xspace, yspace) return np.arctan(np.sqrt(dx*dx+dy*dy))*180/np.pi
45527de535339a4cae17694dbf5313fb57a02bef
3,652,219
import torch def build_dist( cfg, feat_1, feat_2=None, dist_m=None, verbose=False, ): """Computes distance. Args: input1 (torch.Tensor): 2-D feature matrix. input2 (torch.Tensor): 2-D feature matrix. (optional) Returns: numpy.ndarray: distance matrix. """ if dist_m is None: dist_m = cfg.dist_metric if dist_m == "euclidean": if feat_2 is not None: return compute_euclidean_distance(feat_1, feat_2, cfg.dist_cuda) else: return compute_euclidean_distance(feat_1, feat_1, cfg.dist_cuda) elif dist_m == "cosine": if feat_2 is not None: return compute_cosine_distance(feat_1, feat_2, cfg.dist_cuda) else: return compute_cosine_distance(feat_1, feat_1, cfg.dist_cuda) elif dist_m == "jaccard": if feat_2 is not None: feat = torch.cat((feat_1, feat_2), dim=0) else: feat = feat_1 dist = compute_jaccard_distance( feat, k1=cfg.k1, k2=cfg.k2, search_option=cfg.search_type, verbose=verbose, ) if feat_2 is not None: return dist[: feat_1.size(0), feat_1.size(0) :] else: return dist else: assert "Unknown distance metric: {}".format(dist_m)
2022386bf74939f9eb7039af8d67f718121062a0
3,652,220
def call_inverse_cic_single_omp(img_in,yc1,yc2,yi1,yi2,dsi): """ Input: img_in: Magnification Map yc1, yc2: Lens position yi1, yi2: Source position dsi: pixel size on grid """ ny1,ny2 = np.shape(img_in) img_in = np.array(img_in,dtype=ct.c_float) yi1 = np.array(yi1,dtype=ct.c_float) yi2 = np.array(yi2,dtype=ct.c_float) nlimgs = len(yi1) img_out = np.zeros((nlimgs),dtype=ct.c_float) rtf.inverse_cic_omp_single(img_in,yi1,yi2,ct.c_float(yc1),ct.c_float(yc2),ct.c_float(dsi),ct.c_int(ny1),ct.c_int(ny2),ct.c_int(nlimgs),img_out) return img_out
286c650117e9c3df17bc081e3d9ddbe47755e010
3,652,221
def filter_spans(spans): """Filter a sequence of spans and remove duplicates or overlaps. Useful for creating named entities (where one token can only be part of one entity) or when merging spans with `Retokenizer.merge`. When spans overlap, the (first) longest span is preferred over shorter spans. spans (iterable): The spans to filter. RETURNS (list): The filtered spans. """ get_sort_key = lambda span: (span.end - span.start, -span.start) sorted_spans = sorted(spans, key=get_sort_key, reverse=True) result = [] seen_tokens = set() for span in sorted_spans: # Check for end - 1 here because boundaries are inclusive if span.start not in seen_tokens and span.end - 1 not in seen_tokens: result.append(span) seen_tokens.update(range(span.start, span.end)) result = sorted(result, key=lambda span: span.start) return result
3b15a79b14f02ffa870b94eb9b61261c4befc0eb
3,652,222
def get_col_names_for_tick(tick='BCHARTS/BITSTAMPUSD'): """ Return the columns available for the tick. Startdate is late by default to avoid getting much data """ return quandl.get(tick, start_date=None).columns
d80ae9b93b4bb817306f8ade404a083126507802
3,652,223
import os def check_if_needs_inversion(tomodir): """check of we need to run CRTomo in a given tomodir Parameters ---------- tomodir : str Tomodir to check Returns ------- needs_inversion : bool True if not finished yet """ required_files = ( 'grid' + os.sep + 'elem.dat', 'grid' + os.sep + 'elec.dat', 'exe' + os.sep + 'crtomo.cfg', ) needs_inversion = True for filename in required_files: if not os.path.isfile(tomodir + os.sep + filename): needs_inversion = False # check for crmod OR modeling capabilities if not os.path.isfile(tomodir + os.sep + 'mod' + os.sep + 'volt.dat'): if not check_if_needs_modeling(tomodir): print('no volt.dat and no modeling possible') needs_inversion = False # check if finished inv_ctr_file = tomodir + os.sep + 'inv' + os.sep + 'inv.ctr' if os.path.isfile(inv_ctr_file): inv_lines = open(inv_ctr_file, 'r').readlines() print('inv_lines', inv_lines[-1]) if inv_lines[-1].startswith('***finished***'): needs_inversion = False return needs_inversion
8ba837eb2295f7cc3a5698e2877a310f17b805c5
3,652,224
def check_result(request): """ 通过任务id查询任务结果 :param request: :param task_id: :return: """ task_id = request.data.get('task_id') if task_id is None: return Response({'message': '缺少task_id'}, status=status.HTTP_400_BAD_REQUEST) res = AsyncResult(task_id) if res.ready(): # 检查指定任务是否已经完成 if res.successful(): return Response(res.result) # res.result为任务函数的返回值,即任务结果 return Response({'message': '任务运行错误:{}'.format(res.result)}) return Response({'message': '任务运行中,稍后查看...'})
b43001fb598188f030a58166ab445a919b9b1d4e
3,652,225
def get_debug_device(): """Get the profile to debug from the RIVALCFG_DEVICE environment variable, if any. This device should be selected as the one where the commands will be written, regardless of the selected profile. This is usefull to debug a mouse that have the same command set than an other one but with a different product_id. If the RIVALCFG_PROFILE is defined but the RIVALCFG_DEVICE is not, this function returns the same output that get_debug_profile().""" mouse_id = _get_mouse_id_from_env("RIVALCFG_DEVICE") if mouse_id: return mouse_id return _get_mouse_id_from_env("RIVALCFG_PROFILE")
82e4fce316568df89537d41691f475ef58b5a8a1
3,652,226
from typing import Tuple def _remove_node(node: int, meta: IntArray, orig_dest: IntArray) -> Tuple[int, int]: """ Parameters ---------- node : int ID of the node to remove meta : ndarray Array with rows containing node, count, and address where address is used to find the first occurrence in orig_desk orig_dest : ndarray Array with rows containing origin and destination nodes Returns ------- next_node : int ID of the next node in the branch next_count : int Count of the next node in the branch Notes ----- Node has 1 link, so: 1. Remove the forward link 2. Remove the backward link 3. Decrement node's count 4. Decrement next_node's count """ # 3. Decrement meta[node, 1] -= 1 # 1. Remove forewrd link next_offset = meta[node, 2] orig, next_node = orig_dest[next_offset] while next_node == -1: # Increment since this could have been previously deleted next_offset += 1 next_orig, next_node = orig_dest[next_offset] assert orig == next_orig # 4. Remove next_node's link orig_dest[next_offset, 1] = -1 # 2. Remove the backward link # Set reverse to -1 reverse_offset = meta[next_node, 2] reverse_node = orig_dest[reverse_offset, 1] while reverse_node != orig: reverse_offset += 1 reverse_node = orig_dest[reverse_offset, 1] orig_dest[reverse_offset, 1] = -1 # Step forward meta[next_node, 1] -= 1 next_count = meta[next_node, 1] return next_node, next_count
1112fc1907e3668f5c2d559d78ee1deba8583754
3,652,227
def forward_many_to_many_without_pr(request): """ Return all the stores with associated books, without using prefetch_related. 100ms overall 8ms on queries 11 queries 1 query to fetch all stores: SELECT "bookstore_store"."id", "bookstore_store"."name" FROM "bookstore_store" 10 separate query to fetch books of each store: SELECT "bookstore_book"."id", "bookstore_book"."name", "bookstore_book"."price", "bookstore_book"."publisher_id" FROM "bookstore_book" INNER JOIN "bookstore_bookinstore" ON ("bookstore_book"."id" = "bookstore_bookinstore"."book_id") WHERE "bookstore_bookinstore"."store_id" = 1 """ qs = Store.objects.all() stores = [] for store in qs: books = [{'id': book.id, 'name': book.name} for book in store.books.all()] stores.append({'id': store.id, 'name': store.name, 'books': books}) return Response(stores)
c67e3af971c67e37f4221147518a054ee49f19a2
3,652,228
import itertools def generate_combinations (n, rlist): """ from n choose r elements """ combs = [list(itertools.combinations(n, r)) for r in rlist] combs = [item for sublist in combs for item in sublist] return combs
7339b61a7ea76813c8356cf4a87b1e81b67ce10e
3,652,229
import six import traceback def conv_datetime(dt, version=2): """Converts dt to string like version 1 = 2014:12:15-00:00:00 version 2 = 2014/12/15 00:00:00 version 3 = 2014/12/15 00:00:00 """ try: if isinstance(dt, six.string_types): if _HAS_PANDAS: dt = pd.to_datetime(dt) fmt = DATE_FORMATS[int(version)] return dt.strftime(fmt) except (ValueError, TypeError): logger.error(traceback.format_exc()) logger.warning("conv_datetime returns %s" % dt) return dt
19999cd2517832e06949fbb0939d3b622605d047
3,652,230
def get_description_value(name_of_file): """ :param name_of_file: Source file for function. :return: Description value for particular CVE. """ line = name_of_file.readline() while 'value" :' not in line: line = name_of_file.readline() tmp_list = line.split(':') if len(tmp_list) == 2: value = tmp_list[1][:] return value else: # When description value contains ":" too. concatenation = "" for i in range(1, len(tmp_list)-1): concatenation = concatenation + tmp_list[i] + ":" concatenation = concatenation + tmp_list[-1] return concatenation
a7b0915feff7fcd2a175bdb8fe9af48d0d9f14d7
3,652,231
def octaves(p, fs, density=False, frequencies=NOMINAL_OCTAVE_CENTER_FREQUENCIES, ref=REFERENCE_PRESSURE): """Calculate level per 1/1-octave in frequency domain using the FFT. :param x: Instantaneous signal :math:`x(t)`. :param fs: Sample frequency. :param density: Power density instead of power. :param frequencies: Frequencies. :param ref: Reference value. :returns: Tuple. First element is an instance of :class:`OctaveBand`. The second element an array. .. note:: Based on power spectrum (FFT) .. seealso:: :attr:`acoustics.bands.OCTAVE_CENTER_FREQUENCIES` .. note:: Exact center frequencies are always calculated. """ fob = OctaveBand(center=frequencies, fraction=1) f, p = power_spectrum(p, fs) fnb = EqualBand(f) power = integrate_bands(p, fnb, fob) if density: power /= (fob.bandwidth/fnb.bandwidth) level = 10.0*np.log10(power / ref**2.0) return fob, level
98e1604e95bdcb72fa6d401fee020b973f1f19d4
3,652,232
def build_embed(**kwargs): """Creates a discord embed object.""" return create_embed(**kwargs)
b1a181de866cd78959c5b4bec8e14b30e8cd99d7
3,652,233
def VAMA(data, period=8, column='close'): """ Volume Adjusted Moving Average :param pd.DataFrame data: pandas DataFrame with open, high, low, close data :param int period: period used for indicator calculation :param str column: column used for indicator calculation (default = "close") :param pd.DataFrame data: pandas DataFrame with open, high, low, close data """ return TA.VAMA(data, period, column)
5133aae3b33e0f8ef3298790a840dd3dcb6053ce
3,652,234
def link_syscall(oldpath, newpath): """ http://linux.die.net/man/2/link """ # lock to prevent things from changing while we look this up... filesystemmetadatalock.acquire(True) # ... but always release it... try: trueoldpath = _get_absolute_path(oldpath) # is the old path there? if trueoldpath not in fastinodelookuptable: raise SyscallError("link_syscall","ENOENT","Old path does not exist.") oldinode = fastinodelookuptable[trueoldpath] # is oldpath a directory? if IS_DIR(filesystemmetadata['inodetable'][oldinode]['mode']): raise SyscallError("link_syscall","EPERM","Old path is a directory.") # TODO: I should check permissions... # okay, the old path info seems fine... truenewpath = _get_absolute_path(newpath) # does the newpath exist? It shouldn't if truenewpath in fastinodelookuptable: raise SyscallError("link_syscall","EEXIST","newpath already exists.") # okay, it doesn't exist (great!). Does it's parent exist and is it a # dir? truenewparentpath = _get_absolute_parent_path(newpath) if truenewparentpath not in fastinodelookuptable: raise SyscallError("link_syscall","ENOENT","New path does not exist.") newparentinode = fastinodelookuptable[truenewparentpath] if not IS_DIR(filesystemmetadata['inodetable'][newparentinode]['mode']): raise SyscallError("link_syscall","ENOTDIR","New path's parent is not a directory.") # TODO: I should check permissions... # okay, great!!! We're ready to go! Let's make the file... newfilename = truenewpath.split('/')[-1] # first, make the directory entry... filesystemmetadata['inodetable'][newparentinode]['filename_to_inode_dict'][newfilename] = oldinode # increment the link count on the dir... filesystemmetadata['inodetable'][newparentinode]['linkcount'] += 1 # ... and the file itself filesystemmetadata['inodetable'][oldinode]['linkcount'] += 1 # finally, update the fastinodelookuptable and return success!!! fastinodelookuptable[truenewpath] = oldinode return 0 finally: persist_metadata(METADATAFILENAME) filesystemmetadatalock.release()
ee2964262288f518aab830ae84f777a18044af0a
3,652,235
def doc_vector(text, stop_words, model): """ 计算文档向量,句子向量求平均 :param text: 需要计算的文档 :param stop_words: 停用词表 :param model: 词向量模型 :return: 文档向量 """ sen_list = get_sentences(text) sen_list = [x[1] for x in sen_list] vector = np.zeros(100, ) length = len(sen_list) for sentence in sen_list: sen_vec = sentence_vector(sentence, stop_words, model) vector += sen_vec return vector / length
73652ced2cd8a5fdf264d68be9b78969dfe2c78d
3,652,236
def get_ether_pkt(src, dst, ethertype=ether.ETH_TYPE_IP): """Creates a Ether packet""" return ethernet.ethernet(src=src, dst=dst, ethertype=ethertype)
94c778e16f680e73a04591e3808fa5d07c8c5afa
3,652,237
import inspect def _resolve_dependency(param: inspect.Parameter, class_obj: Instantiable , app: App): """ Try to get the instance of a parameter from a bound custom resolver for the class which needs it. if not able to do the above, try to get a registered binding for the parameter's Annotation. if no binding is registered for the Annotation, get the default value of the parameter if the default value is empty, try to instantiate the param's Annnotation class """ class_context = app.get_custom_resolver(class_obj) custom_resolver = (class_context.get(param.name) or class_context.get(param.annotation)) if class_context else None resolved = custom_resolver() if callable(custom_resolver) else custom_resolver if resolved: return resolved default = param.default binding = _get_binding(param.annotation, app) or default if binding == inspect._empty: if param.annotation != inspect._empty and _is_not_primitive(param.annotation): annotation_params = _get_init_params(param.annotation) binding = init_class(param.annotation, app, annotation_params) else: raise BindingResolutionException( f'Cannot resolve param {param.name} of class {class_obj}' ) return binding() if callable(binding) else binding
6bbe3f6fd74d037584ab96c761503a2b47cc901a
3,652,238
import re def parse_compute_hosts(compute_hosts): """ Transform a coma-separated list of host names into a list. :param compute_hosts: A coma-separated list of host names. :type compute_hosts: str :return: A list of host names. :rtype: list(str) """ return filter(None, re.split('[^a-zA-Z0-9\-_]+', compute_hosts))
efbfe7b06290b90d044e89343bfd4ecf94733d9c
3,652,239
def get_bbox(mask_frame): """ get rectangular bounding box for irregular roi Args: mask_frame (np.ndarray): the frame containing the mask Returns: bbox (np.ndarray): numpy array containing the indexes of the bounding box """ bbox = np.zeros(4) bbox[0] = np.min(np.where(np.max(mask_frame, axis=0))) # x top left bbox[1] = np.min(np.where(np.max(mask_frame, axis=1))) # y top left bbox[2] = np.max(np.where(np.max(mask_frame, axis=0))) - bbox[0] # x size bbox[3] = np.max(np.where(np.max(mask_frame, axis=1))) - bbox[1] # y size bbox = np.int64(bbox) return bbox
e7cc63cc8b5dfa1e4d59b0696f6e9747e33f69bc
3,652,240
def view_create_log_entry_verbose(request): """Create a new BehavioralLogEntry. Return the JSON version of the entry""" return view_create_log_entry(request, is_verbose=True)
d461f9f9893756f8e45aa6578e6fb9625957b415
3,652,241
import json import queue import time def webhook_server_factory(free_port): """For making a server that can accept Onshape webhooks.""" servers = [] threads = [] def _webhook_server_factory(): """ Create a factory to handle webhook notifications coming in. :param on_recieved: function callback to handle the json response from the webhook. :return: HTTPServer: server """ class myHandler(BaseHTTPRequestHandler): def __init__(self, request, client_address, server): super().__init__(request, client_address, server) # Holds function that deals with the request. self.on_recieved = None def do_POST(self): content_length = int(self.headers["Content-Length"]) body = self.rfile.read(content_length) unquoted_s = body.decode("utf-8") data = json.loads(unquoted_s) server._message_q.put(data) # Always return a 200 response to indicate it was gotten self.send_response(200) self.end_headers() def do_GET(self): raise NotImplementedError() class WebhookServer(HTTPServer): def __init__( self, server_address, RequestHandlerClass, bind_and_activate=True ): super().__init__(server_address, RequestHandlerClass, bind_and_activate) self._tunneled_url = None # Used to communicate to the main thread that a message has been recieved and needs to be processed. # The main thread is responsible for popping messages off as they are processed. self._message_q = queue.Queue() @property def url(self): return f"http://localhost:{self.server_port}" @property def tunneled_url(self): if not self._tunneled_url: self._tunneled_url = tunnel(self.server_port) return self._tunneled_url def wait_for_message( self, message_predicate=lambda m: True, seconds_to_wait=5 ): """ Block progress until a certain message is received that satisfies the passed message_predicate :param message_predicate: blocking function that takes the message and returns True if it is the 'right one'. :param seconds_to_wait: seconds to wait for the message. This will throw a StopIteration if the time runs out without a valid message. """ start_time = time.time() poll_time = seconds_to_wait / 100 while True: try: message = self._message_q.get(timeout=poll_time) if message_predicate(message): return self._message_q.task_done() except queue.Empty: pass if time.time() - start_time > seconds_to_wait: raise TimeoutError() server = WebhookServer(("localhost", free_port), myHandler) servers.append(server) thread = Thread(target=server.serve_forever) thread.start() threads.append(thread) return server yield _webhook_server_factory for server, thread in zip(servers, threads): server.shutdown() thread.join()
66a96cdf0226a2e164492d229bd50e675c7ac667
3,652,242
def generator_validator(file_path: Text): """ Validates that the generator module exists and has all the required methods """ if not exists(file_path): raise ArgumentTypeError(f"File {file_path} could not be found") try: module = import_file("generator", file_path) except SyntaxError: doing.logger.exception("Syntax error in generator") raise ArgumentTypeError(f"File {file_path} has a syntax error") except ImportError: raise ArgumentTypeError(f"File {file_path} cannot be imported") except Exception: doing.logger.exception("Unknown error while importing generator") raise ArgumentTypeError(f"Unknown error") if not hasattr(module, "get_source") or not callable(module.get_source): raise ArgumentTypeError( f"Generator does not expose a get_source(environment_name) method" ) if not hasattr(module, "allow_transfer") or not callable(module.allow_transfer): raise ArgumentTypeError( f"Generator does not expose a allow_transfer(origin, target) method" ) if not hasattr(module, "get_backup_dir") or not callable(module.get_backup_dir): raise ArgumentTypeError( f"Generator does not expose a get_backup_dir(environment) method" ) if not hasattr(module, "get_patch") or not callable(module.get_backup_dir): raise ArgumentTypeError( f"Generator does not expose a get_patch(origin, target) method" ) if not hasattr(module, "get_wp_config") or not callable(module.get_backup_dir): raise ArgumentTypeError( f"Generator does not expose a get_wp_config(environment) method" ) return module
4a1f42198ad8421bcbb333d1bc5cfd1fc6ef0b3e
3,652,243
from typing import Optional from typing import List import gzip import google def from_bytes( data: bytes, idx_list: Optional[List[int]] = None, compression: Optional[str] = "gz" ) -> List[ProgramGraph]: """Deserialize Program Graphs from a byte array. :param data: The serialized Program Graphs. :param idx_list: A zero-based list of graph indices to return. If not provided, all graphs are returned. :param compression: Either :code:`gz` for GZip compression (the default), or :code:`None` for no compression. Compression increases the cost of serializing and deserializing but can greatly reduce the size of the serialized graphs. :return: A list of Program Graphs. :raise GraphCreationError: If deserialization fails. """ decompressors = { "gz": gzip.decompress, None: lambda d: d, } if compression not in decompressors: decompressors = ", ".join(sorted(str(x) for x in decompressors)) raise TypeError( f"Invalid compression argument: {compression}. " f"Supported compressions: {decompressors}" ) decompress = decompressors[compression] graph_list = ProgramGraphList() try: graph_list.ParseFromString(decompress(data)) except (gzip.BadGzipFile, google.protobuf.message.DecodeError) as e: raise GraphCreationError(str(e)) from e if idx_list: return [graph_list.graph[i] for i in idx_list] return list(graph_list.graph)
3d8e0291af3b283616eef06ac1e8161b248bb4e6
3,652,244
def runTimer(t): """t is timer time in milliseconds""" blinkrow = 500 #in milliseconds eachrow = t // 5 for i in range(5): for _ in range(eachrow//(2*blinkrow)): display.show(Image(hourglassImages[i+1])) sleep(blinkrow) display.show(Image(hourglassImages[i])) sleep(blinkrow) if button_b.was_pressed(): return() display.show(Image.HAPPY) return()
b3d0fa8c5ac2c179b206a1679e9951e91d9c8b44
3,652,245
import math def ascMoveFormula(note_distance, finger_distance, n1, n2, f1, f2): """This is for situations where direction of notes and fingers are opposite, because either way, you want to add the distance between the fingers. """ # The math.ceil part is so it really hits a value in our moveHash. # This could be fixed if I put more resolution into the moveHash total_distance = math.ceil(note_distance + finger_distance); # This adds a small amount for every additional halfstep over 24. Fairly # representative of what it should be. if total_distance > 24: return MOVE_HASH[24] + (total_distance - 24) / 5; else: cost = MOVE_HASH[total_distance]; cost += colorRules(n1, n2, f1, f2, finger_distance) return cost
a9f4ef27f1a922eea1f9ec4a400d120e6b0c892b
3,652,246
def create_stomp_connection(garden: Garden) -> Connection: """Create a stomp connection wrapper for a garden Constructs a stomp connection wrapper from the garden's stomp connection parameters. Will ignore subscribe_destination as the router shouldn't be subscribing to anything. Args: garden: The garden specifying Returns: The created connection wrapper """ connection_params = garden.connection_params.get("stomp", {}) connection_params = deepcopy(connection_params) connection_params["subscribe_destination"] = None return Connection(**connection_params)
862d6a6862246a02b132313bbf9ab8f62d62a3be
3,652,247
def W_n(S, n_vals, L_vals, J_vals): """ Field-free energy. Includes extra correction terms. -- atomic units -- """ neff = n_vals - get_qd(S, n_vals, L_vals, J_vals) energy = np.array([]) for i, n in enumerate(n_vals): en = -0.5 * (neff[i]**-2.0 - 3.0 * alpha**2.0 / (4.0 * n**4.0) + \ mu_M**2.0 * ((1.0 + (5.0 / 6.0) * (alpha * Z)**2.0)/ n**2.0)) energy = np.append(energy, en) return energy
2a4aa2ab0c6a7d935547ac18933d835848c45d5e
3,652,248
def obter_movimento_manual(tab, peca): # tabuleiro x peca -> tuplo de posicoes """ Recebe uma peca e um tabuleiro e um movimento/posicao introduzidos manualmente, dependendo na fase em que esta o programa. Na fase de colocacao, recebe uma string com uma posicao. Na fase de movimentacao, recebe uma string com duas posicoes. :param tab: tabuleiro :param peca: peca :return: tuplo com posicoes """ linhas = obter_str_linhas() colunas = obter_str_colunas() if len(obter_posicoes_jogador(tab, peca)) < 3: # fase de colocacao pos = str(input('Turno do jogador. Escolha uma posicao: ')) if len(pos) == 2 and pos[0] in colunas and pos[1] in linhas: pos = cria_posicao(pos[0], pos[1]) if eh_posicao_livre(tab, pos): return pos, if len(obter_posicoes_jogador(tab, peca)) == 3: # fase de movimentacao pos = str(input('Turno do jogador. Escolha um movimento: ')) if len(pos) == 4 and pos[0] in colunas and pos[1] in linhas \ and pos[2] in colunas and pos[3] in linhas: pos1 = cria_posicao(pos[0], pos[1]) pos2 = cria_posicao(pos[2], pos[3]) if obter_peca(tab, pos1) == peca: if eh_posicao_livre(tab, pos2): if pos2 in obter_posicoes_adjacentes(pos1): return pos1, pos2 if posicoes_iguais(pos1, pos2) and \ len(obter_pos_adj_livres(tab, pos1)) == 0: return pos1, pos2 raise ValueError('obter_movimento_manual: escolha invalida')
2ac683c047a7852d56b228c11663007b9cdd7a33
3,652,249
import base64 def parse_header(req_header, taint_value): """ 从header头中解析污点的位置 """ header_raw = base64.b64decode(req_header).decode('utf-8').split('\n') for header in header_raw: _header_list = header.split(':') _header_name = _header_list[0] _header_value = ':'.join(_header_list[1:]) if equals(taint_value, _header_value): return _header_name
f0ffdf7a823bd07e0648970a7d0791e44ad9c4a9
3,652,250
from typing import Union from typing import List from pathlib import Path import os def filter_and_sort_files( fnames: Union[str, List[str]], return_matches: bool = False ): """Find all timestamped data files and sort them by their timestamps""" if isinstance(fnames, (Path, str)): fnames = os.listdir(fnames) # use the timestamps from all valid timestamped # filenames to sort the files as the first index # in a tuple matches = zip(map(fname_re.search, map(str, fnames)), fnames) tups = [(m.group("t0"), f, m) for m, f in matches if m is not None] # if return_matches is True, return the match object, # otherwise just return the raw filename return_idx = 2 if return_matches else 1 return [t[return_idx] for t in sorted(tups)]
4670a5a88d257accb42e9feda868be6c6935427f
3,652,251
def fake_batch(obs_space, action_space, batch_size=1): """Create a fake SampleBatch compatible with Policy.learn_on_batch.""" samples = { SampleBatch.CUR_OBS: fake_space_samples(obs_space, batch_size), SampleBatch.ACTIONS: fake_space_samples(action_space, batch_size), SampleBatch.REWARDS: np.random.randn(batch_size).astype(np.float32), SampleBatch.NEXT_OBS: fake_space_samples(obs_space, batch_size), SampleBatch.DONES: np.random.randn(batch_size) > 0, } return SampleBatch(samples)
1e71e17eecdabd8c95aa517564e494e303e10a4b
3,652,252
import collections def compute_macro_f1(answer_stats, prefix=''): """Computes F1, precision, recall for a list of answer scores. This computes the *language-wise macro F1*. For minimal answers, we also compute a partial match score that uses F1, which would be included in this computation via `answer_stats`. Args: answer_stats: List of per-example scores. prefix (''): Prefix to prepend to score dictionary. Returns: Dictionary mapping measurement names to scores. """ has_gold, has_pred, f1, _ = list(zip(*answer_stats)) macro_precision = eval_utils.safe_divide(sum(f1), sum(has_pred)) macro_recall = eval_utils.safe_divide(sum(f1), sum(has_gold)) macro_f1 = eval_utils.safe_divide( 2 * macro_precision * macro_recall, macro_precision + macro_recall) return collections.OrderedDict({ prefix + 'n': len(answer_stats), prefix + 'f1': macro_f1, prefix + 'precision': macro_precision, prefix + 'recall': macro_recall })
08c774b6a06230c298dcbf031d2e188a643df9ef
3,652,253
def piecewise_linear(x, rng, NUM_PEOPLE): """ This function samples the piecewise linear viral_load model Args: x ([type]): [description] rng (np.random.RandomState): random number generator NUM_PEOPLE (int): [description] Returns: np.array: [description] """ viral_loads = [] for person in range(NUM_PEOPLE): plateau_height, plateau_start, plateau_end, recovered = _sample_viral_load_piecewise(rng) viral_load = [] for time_sample in x: if time_sample < plateau_start: cur_viral_load = plateau_height * time_sample / plateau_start elif time_sample < plateau_end: cur_viral_load = plateau_height else: cur_viral_load = plateau_height - plateau_height * (time_sample - plateau_end) / (recovered - plateau_end) if cur_viral_load < 0: cur_viral_load = np.array([0.]) viral_load.append(cur_viral_load) viral_loads.append(np.array(viral_load, dtype=float).flatten()) viral_loads = np.array(viral_loads) return viral_loads
27c27c89769674d7fcf8008f21334ec12acd588c
3,652,254
def mol_sim_matrix(fingerprints1, fingerprints2, method='cosine', filename=None, max_size=1000, print_progress=True): """Create Matrix of all molecular similarities (based on molecular fingerprints). If filename is not None, the result will be saved as npy. To create molecular fingerprints see mol_fingerprints() function from MS_functions. Args: ---- fingerprints1: list List of molecular fingerprints (numpy arrays). fingerprints2: list List of molecular fingerprints (numpy arrays). method: str Method to compare molecular fingerprints. Can be 'cosine', 'dice' etc. (see scipy.spatial.distance.cdist). filename: str Filename to save results to. OR: If file already exists it will be loaded instead. max_size: int Maximum size of (sub) all-vs-all matrix to handle in one go. Will split up larger matrices into max_size x max_size matrices. print_progress: bool, optional If True, print phase of the run to indicate progress. Default = True. """ if filename is not None: try: molecular_similarities = np.load(filename) print("Molecular similarity scores found and loaded.") collect_new_data = False except FileNotFoundError: print("Could not find file ", filename) print("Molecular scores will be calculated from scratch.") collect_new_data = True else: collect_new_data = True if collect_new_data: # Create array of all finterprints fingerprints_arr1 = np.array(fingerprints1) fingerprints_arr2 = np.array(fingerprints2) # Calculate all-vs-all similarity matrix (similarity here= 1-distance ) matrix_size = (fingerprints_arr1.shape[0], fingerprints_arr2.shape[0]) molecular_similarities = np.zeros(matrix_size) # Split large matrices up into smaller ones to track progress splits = int(np.ceil(matrix_size[0]/max_size) * np.ceil(matrix_size[1]/max_size)) count_splits = 0 for i in range(int(np.ceil(matrix_size[0]/max_size))): low1 = i * max_size high1 = min((i + 1) * max_size, matrix_size[0]) for j in range(int(np.ceil(matrix_size[1]/max_size))): low2 = j * max_size high2 = min((j + 1) * max_size, matrix_size[1]) molecular_similarities[low1:high1, low2:high2] = 1 - spatial.distance.cdist( fingerprints_arr1[low1:high1], fingerprints_arr2[low2:high2], method ) # Track progress: count_splits += 1 if print_progress: print('\r', "Calculated submatrix {} out of {}".format(count_splits, splits), end="") if print_progress: print(20 * '--') print("Succesfully calculated matrix with all-vs-all molecular similarity values.") if filename is not None: np.save(filename, molecular_similarities) print("Matrix was saved under:", filename) return molecular_similarities
43bd1fd26d3c4372d7285c8f93ad3a7e7e7d8a61
3,652,255
def energies_over_delta(syst, p, k_x): """Same as energy_operator(), but returns the square-root of the eigenvalues""" operator = energy_operator(syst, p, k_x) return np.sqrt(np.linalg.eigvalsh(operator))
b610ca896791d6036c1a5ed1295f3293408f898a
3,652,256
def count_matching(d1: Die, d2: Die, num_rolls: int) -> int: """ Roll the given dice a number of times and count when they match. Args: d1 (Die): One Die object (must not be None) d2 (Die): Another Die object (must not be None) num_rolls (int): Positive number of rolls to toss. Returns: int number of times both dice showed the same number. """ matching = 0 for _ in range(num_rolls): matching += int(d1.roll() == d2.roll()) return matching
f5e7f119ef639a910b7b824a3aabb47ce7bf1f60
3,652,257
def autoaugment_preproccess( input_size, scale_size, normalize=None, pre_transform=True, **kwargs): """ Args: input_size: scale_size: normalize: pre_transform: **kwargs: Returns: """ if normalize is None: normalize = __imagenet_stats augment = PbaAugment( input_size, scale_size, normalize=normalize, pre_transform=pre_transform, **kwargs) return augment
de24dd19015ff8e4210f98ec5702fbf9ee637ebd
3,652,258
def pubchem_image(cid_or_container, size=500): """ Generate HTML code for a PubChem molecular structure graphic and link. Parameters: cid_or_container: The CID (int, str) or a subscriptable object that contains a key ``cid``. Returns: HTML code for an image from PubChem. """ if type(cid_or_container) in (int, str): cid = cid_or_container elif 'cid' in cid_or_container: cid = cid_or_container['cid'] else: raise MissingParamError('cid') cid_url = 'https://pubchem.ncbi.nlm.nih.gov/compound/{}'.format(cid) imgbase = 'https://pubchem.ncbi.nlm.nih.gov/image/imagefly.cgi?' params = {'cid': cid, 'width': size, 'height': size} img_url = imgbase + urlencode(params) ret = '<a target="_blank" href="{0}"><img src="{1}"></a>' ret = ret.format(cid_url, img_url) return ret
ca7f9fd9ad31bf834596460f047bf393e3cfd486
3,652,259
from typing import Optional from typing import List def to_lines(text: str, k: int) -> Optional[List[str]]: """ Given a block of text and a maximum line length k, split the text into lines of length at most k. If this cannot be done, i.e. a word is longer than k, return None. :param text: the block of text to process :param k: the maximum length of each line :return: the list of lines >>> text = 'the quick brown fox jumps over the lazy dog' >>> to_lines(text, 4) is None True >>> to_lines(text, 5) ['the', 'quick', 'brown', 'fox', 'jumps', 'over', 'the', 'lazy', 'dog'] >>> to_lines(text, 9) ['the quick', 'brown fox', 'jumps', 'over the', 'lazy dog'] >>> to_lines(text, 10) ['the quick', 'brown fox', 'jumps over', 'the lazy', 'dog'] >>> to_lines(text, 12) ['the quick', 'brown fox', 'jumps over', 'the lazy dog'] >>> to_lines('AAAAA', 5) ['AAAAA'] """ def line_to_str(l: List[str]) -> str: return ' '.join(l) # If there is no text or the line length is 0, we can't do anything. if not text or not k: return None # If any word is longer then k, we can't do anything. words = text.split() if max(len(word) for word in words) > k: return None # Now split the word into lines. lines = [] line = [] len_so_far = 0 for word in words: len_word = len(word) if len_word + len_so_far <= k: # We add the word to the line plus a blank space afterwards. # If this is the last word in the line, the blank space will not occur; hence why we check the # condition <= k rather than < k. line.append(word) len_so_far += len_word + 1 else: # Make the line into a string, add it to lines, and reset everything. lines.append(line_to_str(line)) line = [word] len_so_far = len_word + 1 # Last case: if we have a partial line, add it. if line: lines.append(line_to_str(line)) # Assert that none of the lines went over the length. for line in lines: assert(len(line) <= k) return lines
1797f45ce4999a29a9cc74def3f868e473c2775a
3,652,260
def _image_pos(name): """ 查找指定图片在背景图中的位置 """ imsrc = ac.imread('images/bg/{}.png'.format(name[1:])) imobj = ac.imread('images/{}.PNG'.format(name)) # find the match position pos = ac.find_template(imsrc, imobj) circle_center_pos = pos['result'] return circle_center_pos
6d4bd64b252c2acbf86e22e8048150a3e1976045
3,652,261
from typing import Callable from typing import Optional import os import logging def handle_greenness_indices(parameters: tuple, input_folder: str, working_folder: str, msg_func: Callable, err_func: Callable) -> \ Optional[dict]: """Handle running the greenness algorithm Arguments: parameters: the specified parameters for the algorithm input_folder: the base folder where input files are located working_folder: the working folder for the algorithm msg_func: function to write messages to err_func: function to write errors to Return: A dictionary of addittional parameters to pass to the next command or None """ json_filename, experiment_file, search_folder, options = _find_parameter_values(parameters, ('found_json_file', 'experimentdata', 'results_search_folder', 'options')) # Ensure we have our mandatory parameters _handle_missing_parameters('greenness indices', (json_filename,), ('found_json_file',)) _handle_missing_files('greenness indices', (json_filename,), ('found_json_file',)) # Adjust the found files JSON to point to our output folder - making a best effort if search_folder is None new_json_filename = _repoint_files_json_dir(json_filename, search_folder, working_folder, working_folder) if new_json_filename is None: new_json_filename = json_filename # Default our options if options is None: options = '' # Add in additional options if experiment_file is not None: if os.path.isfile(experiment_file): options += ' --metadata ' + experiment_file else: msg = 'Warning: invalid experiment file specified for greenness indices "%s"' % experiment_file logging.warning(msg) msg_func((msg,), True) # Write the arguments json_args = { 'GREENNESS_INDICES_OPTIONS': options if options is not None else '', } json_file_path = os.path.join(working_folder, 'args.json') _write_command_json(json_file_path, json_args) logging.debug("Command JSON: %s", str(json_args)) # Run the command ret_value = _run_command('greenness-indices', input_folder, working_folder, json_file_path, msg_func, err_func, [[new_json_filename,'/scif/apps/src/greenness-indices_files.json']]) command_results = None if ret_value == 0: command_results = {'results': _get_results_json(input_folder, err_func, True)} command_results['top_path'] = working_folder return command_results
4e80f185ea9732c7a7556999db7a1d8c0f8e38fe
3,652,262
def product_except_self(nums: list[int]) -> list[int]: """Computes the product of all the elements of given array at each index excluding the value at that index. Note: could also take math.prod(nums) and divide out the num at each index, but corner cases of num_zeros > 1 and num_zeros == 1 make code inelegant. Args: nums: Returns: Examples: >>> product_except_self([]) [] >>> product_except_self([1,2,3,4]) [24, 12, 8, 6] >>> product_except_self([-1,1,0,-3,3]) [0, 0, 9, 0, 0] """ """ALGORITHM""" ## INITIALIZE VARS ## nums_sz = len(nums) # DS's/res nums_products_except_i = [1] * nums_sz ## Multiply against product of all elements PRECEDING i total_product = 1 for i in range(nums_sz): nums_products_except_i[i] *= total_product total_product *= nums[i] ## Multiply against product of all elements FOLLOWING i total_product = 1 for i in reversed(range(nums_sz)): nums_products_except_i[i] *= total_product total_product *= nums[i] return nums_products_except_i
15090d4873b0dec9ea6119e7c097ccda781e51fa
3,652,263
import os def fetch_pkey(): """Download private key file from secure S3 bucket""" s3_client = boto3.client('s3') s3_client.download_file(S3_BUCKET, BUCKET_KEY, PKEY_FILE) pkey_filename = PKEY_FILE.replace("/tmp/", "") if os.path.isfile(PKEY_FILE): return print(f"{pkey_filename} successfully downloaded from {S3_BUCKET}")
00fe81e359b5e464e292ef8a0b16a1515b45a66e
3,652,264
import itertools def so_mörk(): """Sagnorð.""" return itertools.chain( # Nafnháttur - nútíð er sleppt og ekki til í þáttíð miðmynd {"sng---", "sng--þ", "snm---"}, # Boðháttur - alltaf 2.p og nútíð string_product({"sb"}, MYND, {"2"}, TALA, {"n"}), # Lýsingarháttur nútíðar string_product({"slg---", "slm---"}), # Framsögu- og viðtengingarháttur string_product({"s"}, {"f", "v"}, MYND, PERSÓNA, TALA, TÍÐ), # Lýsingarháttur þátíðar - hann virðist vera til í nefnifalli, þolfalli og þágufalli. Setjum líka inn eignarfall til að vera viss. string_product({"s"}, {"þ"}, MYND, KYN, TALA, FALL), )
07a5c79a78083392a5ce96cfb74c13d644a5585e
3,652,265
def _histogram(values, value_range, nbins=100, dtype=tf.int32, name=None): """Return histogram of values. Given the tensor `values`, this operation returns a rank 1 histogram counting the number of entries in `values` that fell into every bin. The bins are equal width and determined by the arguments `value_range` and `nbins`. Args: values: Numeric `Tensor`. value_range: Shape [2] `Tensor` of same `dtype` as `values`. values <= value_range[0] will be mapped to hist[0], values >= value_range[1] will be mapped to hist[-1]. nbins: Scalar `int32 Tensor`. Number of histogram bins. dtype: dtype for returned histogram. name: A name for this operation (defaults to 'histogram'). Returns: A 1-D `Tensor` holding histogram of values. """ with tf.name_scope(name, 'histogram', [values, value_range, nbins]) as scope: values = tf.convert_to_tensor(values, name='values') values = tf.reshape(values, [-1]) value_range = tf.convert_to_tensor(value_range, name='value_range') nbins_float = np.float32(nbins) # Map tensor values that fall within value_range to [0, 1]. scaled_values = tf.truediv( values - value_range[0], value_range[1] - value_range[0], name='scaled_values') # map tensor values within the open interval value_range to {0,.., nbins-1}, # values outside the open interval will be zero or less, or nbins or more. indices = tf.floor(nbins_float * scaled_values, name='indices') # Clip edge cases (e.g. value = value_range[1]) or "outliers." indices = tf.cast( tf.clip_by_value(indices, 0, nbins_float - 1), tf.int32) return tf.unsorted_segment_sum( tf.ones_like(indices, dtype=dtype), indices, nbins, name=scope)
d15d1a8aac528c5641e391d56cb8141f07c244c5
3,652,266
def find_missing_letter(chars): """ chars: string of characters return: missing letter between chars or after """ letters = [char for char in chars][0] chars = [char.lower() for char in chars] alphabet = [char for char in "abcdefghijklmnopqrstuvwxyz"] starting_index = alphabet.index(chars[0]) for letter in alphabet[starting_index:]: if letter not in chars and chars[0].lower() == letters[0]: return letter if letter not in chars and chars[0].upper() == letters[0]: return letter.upper()
bc663b68ac49095285a24b06554337c1582c8199
3,652,267
def series_to_pyseries( name: str, values: "pl.Series", ) -> "PySeries": """ Construct a PySeries from a Polars Series. """ values.rename(name, in_place=True) return values.inner()
958e08e428948adbdf353b911b9e5ab814e06cdb
3,652,268
def _stagefile(coption, source, destination, filesize, is_stagein, setup=None, **kwargs): """ Stage the file (stagein or stageout) :return: destination file details (checksum, checksum_type) in case of success, throw exception in case of failure :raise: PilotException in case of controlled error """ filesize_cmd, checksum_cmd, checksum_type = None, None, None cmd = '%s -np -f %s %s %s' % (copy_command, coption, source, destination) if setup: cmd = "source %s; %s" % (setup, cmd) #timeout = get_timeout(filesize) #logger.info("Executing command: %s, timeout=%s" % (cmd, timeout)) rcode, stdout, stderr = execute(cmd, **kwargs) logger.info('rcode=%d, stdout=%s, stderr=%s', rcode, stdout, stderr) if rcode: ## error occurred error = resolve_common_transfer_errors(stdout + stderr, is_stagein=is_stagein) #rcode = error.get('rcode') ## TO BE IMPLEMENTED #if not is_stagein and rcode == PilotErrors.ERR_CHKSUMNOTSUP: ## stage-out, on fly checksum verification is not supported .. ignore # logger.info('stage-out: ignore ERR_CHKSUMNOTSUP error .. will explicitly verify uploaded file') # return None, None raise PilotException(error.get('error'), code=error.get('rcode'), state=error.get('state')) # extract filesize and checksum values from output if coption != "": filesize_cmd, checksum_cmd, checksum_type = get_file_info_from_output(stdout + stderr) ## verify transfer by returned checksum or call remote checksum calculation ## to be moved at the base level is_verified = True ## TO BE IMPLEMENTED LATER if not is_verified: rcode = ErrorCodes.GETADMISMATCH if is_stagein else ErrorCodes.PUTADMISMATCH raise PilotException("Copy command failed", code=rcode, state='AD_MISMATCH') return filesize_cmd, checksum_cmd, checksum_type
725fb5d77489746a8ed0dd587a32bda669008456
3,652,269
def tally_cache_file(results_dir): """Return a fake tally cache file for testing.""" file = results_dir / 'tally.npz' file.touch() return file
271c58cc263cf0bfba80f00b0831303326d4d1a8
3,652,270
import torch def get_soft_label(cls_label, num_classes): """ compute soft label replace one-hot label :param cls_label:ground truth class label :param num_classes:mount of classes :return: """ # def metrix_fun(a, b): # torch.IntTensor(a) # torch.IntTensor(b) # metrix_dis = (a - b) ** 2 # return metrix_dis def metrix_fun(a, b): a = a.type_as(torch.FloatTensor()) b = b.type_as(torch.FloatTensor()) metrix_dis = (torch.log(a) - torch.log(b)) ** 2 return metrix_dis def exp(x): x = x.type_as(torch.FloatTensor()) return torch.exp(x) rt = torch.IntTensor([cls_label]) # must be torch.IntTensor or torch.LongTensor rk = torch.IntTensor([idx for idx in range(1, num_classes + 1, 1)]) metrix_vector = exp(-metrix_fun(rt, rk)) return metrix_vector / torch.sum(metrix_vector)
e08e6fc86252bf76dd8a852c63e92776b4fdcfc3
3,652,271
def get_option(args, config, key, default=None): """Gets key option from args if it is provided, otherwise tries to get it from config""" if hasattr(args, key) and getattr(args, key) is not None: return getattr(args, key) return config.get(key, default)
54d77c6ae3e40b2739156b07747facc4a952c237
3,652,272
from operator import index def z_decode(p): """ decode php param from string to python p: bytes """ if p[0]==0x4e: #NULL 0x4e-'N' return None,p[2:] elif p[0]==0x62: #bool 0x62-'b' if p[2] == 0x30: # 0x30-'0' return False,p[4:] else: return True,p[4:] elif p[0]==0x69: #int 0x69-'i' i = index(p, 0x3b, 1) # 0x3b-';' return int(p[2:i]),p[i+1:] elif p[0]==0x64: #double 0x64-'d' i = index(p, 0x3b, 1) # 0x3b-';' return float(p[2:i]),p[i+1:] elif p[0]==0x73: #string 0x73-'s' len_end = index(p, 0x3a, 2) # 0x3a-':' str_len = int(p[2:len_end]) end = len_end + 1 + str_len + 2 v = p[(len_end + 2) : (len_end + 2 + str_len)] return str(v, php_python.CHARSET), p[end+1:] elif p[0]==0x61: #array 0x61-'a' list_=[] #数组 dict_={} #字典 flag=True #类型,true-元组 false-字典 second = index(p, 0x3a, 2) # 0x3a-":" num = int(p[2:second]) #元素数量 pp = p[second+2:] #所有元素 for i in range(num): key,pp=z_decode(pp) #key解析 if (i == 0): #判断第一个元素key是否int 0 if (not isinstance(key, int)) or (key != 0): flag = False val,pp=z_decode(pp) #value解析 list_.append(val) dict_[key]=val return (list_, pp[2:]) if flag else (dict_, pp[2:]) else: return p,''
e4735532f783bdbcc76512ba414b296b743ebeb7
3,652,273
import re def parse_extension(uri): """ Parse the extension of URI. """ patt = re.compile(r'(\.\w+)') return re.findall(patt, uri)[-1]
5ed4eee77b92f04e62390128939113168d715342
3,652,274
import math def rotz(ang): """ Calculate the transform for rotation around the Z-axis. Arguments: angle: Rotation angle in degrees. Returns: A 4x4 numpy array of float32 representing a homogeneous coordinates matrix for rotation around the Z axis. """ rad = math.radians(ang) c = math.cos(rad) s = math.sin(rad) return [ [c, -s, 0.0, 0.0], [s, c, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], [0.0, 0.0, 0.0, 1.0], ]
4332242c5818ccc00d64cbebf7a861727e080964
3,652,275
def getBits(data, offset, bits=1): """ Get specified bits from integer >>> bin(getBits(0b0011100,2)) '0b1' >>> bin(getBits(0b0011100,0,4)) '0b1100' """ mask = ((1 << bits) - 1) << offset return (data & mask) >> offset
0bdae35f5afa076d0e5a73b91d2743d9cf156f7d
3,652,276
def rescale(img, input_height, input_width): """Code from Loading_Pretrained_Models.ipynb - a Caffe2 tutorial""" aspect = img.shape[1]/float(img.shape[0]) if(aspect>1): # landscape orientation - wide image res = int(aspect * input_height) imgScaled = skimage.transform.resize(img, (input_width, res)) if(aspect<1): # portrait orientation - tall image res = int(input_width/aspect) imgScaled = skimage.transform.resize(img, (res, input_height)) if(aspect == 1): imgScaled = skimage.transform.resize(img, (input_width, input_height)) return imgScaled
6d6ac5cf1f496c9b7209e2b665e314c587471e82
3,652,277
def compute_halfmax_crossings(sig): """ Compute threshold_crossing, linearly interpolated. Note this code assumes there is just one peak in the signal. """ half_max = np.max(sig)/2.0 fwhm_set = np.where(sig > half_max) l_ndx = np.min(fwhm_set) #assumes a clean peak. if l_ndx > 0: fwhm_left_ndx = l_ndx - 1 + ((half_max - sig[l_ndx-1]) / (float(sig[l_ndx]) - sig[l_ndx-1])) else: fwhm_left_ndx = 0 r_ndx = np.max(fwhm_set) #assumes a clean peak. if r_ndx < len(sig)-1: fwhm_right_ndx = r_ndx + ((half_max - sig[r_ndx]) / (float(sig[r_ndx+1]) - sig[r_ndx])) else: fwhm_right_ndx = len(sig)-1 return np.array([fwhm_left_ndx,fwhm_right_ndx])
81347177aa442bf20ac56194127444ab5948a065
3,652,278
def quote_identities(expression): """ Rewrite sqlglot AST to ensure all identities are quoted. Example: >>> import sqlglot >>> expression = sqlglot.parse_one("SELECT x.a AS a FROM db.x") >>> quote_identities(expression).sql() 'SELECT "x"."a" AS "a" FROM "db"."x"' Args: expression (sqlglot.Expression): expression to quote Returns: sqlglot.Expression: quoted expression """ def qualify(node): if isinstance(node, exp.Identifier): node.set("quoted", True) return node return expression.transform(qualify)
7689e883eb5360bee7e22c57b4e177be2f732e8b
3,652,279
import struct import zlib def write_png(data, origin='upper', colormap=None): """ Transform an array of data into a PNG string. This can be written to disk using binary I/O, or encoded using base64 for an inline PNG like this: >>> png_str = write_png(array) >>> 'data:image/png;base64,'+png_str.encode('base64') Inspired from http://stackoverflow.com/questions/902761/saving-a-numpy-array-as-an-image Parameters ---------- data: numpy array or equivalent list-like object. Must be NxM (mono), NxMx3 (RGB) or NxMx4 (RGBA) origin : ['upper' | 'lower'], optional, default 'upper' Place the [0,0] index of the array in the upper left or lower left corner of the axes. colormap : callable, used only for `mono` image. Function of the form [x -> (r,g,b)] or [x -> (r,g,b,a)] for transforming a mono image into RGB. It must output iterables of length 3 or 4, with values between 0. and 1. Hint: you can use colormaps from `matplotlib.cm`. Returns ------- PNG formatted byte string """ if np is None: raise ImportError('The NumPy package is required' ' for this functionality') if colormap is None: def colormap(x): return (x, x, x, 1) array = np.atleast_3d(data) height, width, nblayers = array.shape if nblayers not in [1, 3, 4]: raise ValueError('Data must be NxM (mono), ' 'NxMx3 (RGB), or NxMx4 (RGBA)') assert array.shape == (height, width, nblayers) if nblayers == 1: array = np.array(list(map(colormap, array.ravel()))) nblayers = array.shape[1] if nblayers not in [3, 4]: raise ValueError('colormap must provide colors of' 'length 3 (RGB) or 4 (RGBA)') array = array.reshape((height, width, nblayers)) assert array.shape == (height, width, nblayers) if nblayers == 3: array = np.concatenate((array, np.ones((height, width, 1))), axis=2) nblayers = 4 assert array.shape == (height, width, nblayers) assert nblayers == 4 # Normalize to uint8 if it isn't already. if array.dtype != 'uint8': array = array * 255./array.max(axis=(0, 1)).reshape((1, 1, 4)) array = array.astype('uint8') # Eventually flip the image. if origin == 'lower': array = array[::-1, :, :] # Transform the array to bytes. raw_data = b''.join([b'\x00' + array[i, :, :].tobytes() for i in range(height)]) def png_pack(png_tag, data): chunk_head = png_tag + data return (struct.pack('!I', len(data)) + chunk_head + struct.pack('!I', 0xFFFFFFFF & zlib.crc32(chunk_head))) return b''.join([ b'\x89PNG\r\n\x1a\n', png_pack(b'IHDR', struct.pack('!2I5B', width, height, 8, 6, 0, 0, 0)), png_pack(b'IDAT', zlib.compress(raw_data, 9)), png_pack(b'IEND', b'')])
516c609bbe19974065a1dc32b34de80bab06c17e
3,652,280
def prepare_url(url, source_url=None): """ Operations that purify a url, removes arguments, redirects, and merges relatives with absolutes. """ try: if source_url is not None: source_domain = urlparse(source_url).netloc proper_url = urljoin(source_url, url) proper_url = redirect_back(proper_url, source_domain) # proper_url = remove_args(proper_url) else: # proper_url = remove_args(url) proper_url = url except ValueError as e: log.critical('url %s failed on err %s' % (url, str(e))) proper_url = '' return proper_url
867d3eb31a20893f6f5be4bd4f6a925f38d7c1a3
3,652,281
import re def str_contains_num_version_range_with_x(str): """ Check if a string contains a range of number version with x. :param str: the string to check. :return: true if the string contains a a range of number version with x, false else. """ return bool(re.search(r'\d+((\.\d+)+)?(\.x)? < \d+((\.\d+)+)?(\.x)?', str))
d11c34d1378b29df279da63882a9e34581fd9c13
3,652,282
import argparse def get_args(): """ gets cli args via the argparse module """ msg = "This script records cpu statistics" # create an instance of parser from the argparse module parser = argparse.ArgumentParser(description=msg) # add expected arguments parser.add_argument('-s', dest='silent', required=False, action="store_true", help="dont display statistics to screen") parser.add_argument('-a', dest='append', required=False, action="store_true", help="dont overwrite previous files") parser.add_argument('-c', dest='convert', required=False, action="store_true", help="converts data to human readable") parser.add_argument('-n', dest='noheader', required=False, action="store_true", help="dont write header") parser.add_argument('-R', dest='refresh', required=False) parser.add_argument('-r', dest='runtime', required=False) parser.add_argument('-o', dest='outfile', required=False) args = parser.parse_args() if args.silent: silent = True else: silent = False if args.noheader: noheader = True else: noheader = False if args.append: append = True else: append = False if args.refresh: refresh = float(args.refresh) else: # default refresh i s 5 seconds refresh = 5 if args.runtime: runtime = float(args.runtime) else: # default runtime is eight hours runtime = 28800 if args.outfile: outfile = args.outfile else: outfile = 'memutil.csv' if args.convert: convert = True else: convert = False return silent, noheader, refresh, runtime, append, outfile, convert
a97cdbf33710bac17d78581548970e85c2397e15
3,652,283
from typing import Callable from typing import Coroutine def mpc_coro_ignore( func: Callable[..., Coroutine[SecureElement, None, SecureElement]] ) -> Callable[..., SecureElement]: """ A wrapper for an MPC coroutine that ensures that the behaviour of the code is unaffected by the type annotations. :param func: The async function to be wrapped :return: A placeholder for which a result will automatically be set when the coroutine has finished running """ return mpc_coro(func, apply_program_counter_wrapper=False, ignore_type_hints=True)
eefd690145067856709c4edf02958eba428a4313
3,652,284
def is_all_in_one(config): """ Returns True if packstack is running allinone setup, otherwise returns False. """ # Even if some host have been excluded from installation, we must count # with them when checking all-in-one. MariaDB host should however be # omitted if we are not installing MariaDB. return len(filtered_hosts(config, exclude=False, dbhost=True)) == 1
35bd2f2edf3f12575612edb27218509db769d68f
3,652,285
def index(): """ example action using the internationalization operator T and flash rendered by views/default/index.html or views/generic.html if you need a simple wiki simply replace the two lines below with: return auth.wiki() """ response.title = 'Award management' data = {"message": "Put the award links here."} return data
6a0e910c793bf538f65826579a9ba6c9401bd4de
3,652,286
import requests import json def session_generate(instanceAddress, appSecret): # pragma: no cover """ **Deprecated** Issue a token to authenticate the user. :param instanceAddress: Specify the misskey instance address. :param appSecret: Specifies the secret key. :type instanceAddress: str :type appSecret: str :rtype: dict """ res = requests.post(f"https://{instanceAddress}/api/auth/session/generate", data=json.dumps({'appSecret': appSecret}), headers={'content-type': 'application/json'}) if res.status_code != 200: raise MisskeyAPIException('/auth/session/generate', 200, res.status_code, res.text) else: return json.loads(res.text)
69e8b6cf54d92041326cc4f8d2dafa82a0f043a7
3,652,287
def _dream_proposals( currentVectors, history, dimensions, nChains, DEpairs, gamma, jitter, eps ): """ generates and returns proposal vectors given the current states """ sampleRange = history.ncombined_history currentIndex = np.arange(sampleRange - nChains,sampleRange)[:, np.newaxis] combined_history = history.combined_history #choose some chains without replacement to combine chains = _random_no_replace(DEpairs * 2, sampleRange - 1, nChains) # makes sure we have already selected the current chain so it is not replaced # this ensures that the the two chosen chains cannot be the same as the chain for which the jump is chains += (chains >= currentIndex) chainDifferences = (np.sum(combined_history[chains[:, 0:DEpairs], :], axis = 1) - np.sum(combined_history[chains[:, DEpairs:(DEpairs*2)], :], axis = 1)) e = np.random.normal(0, jitter, (nChains,dimensions)) E = np.random.normal(0, eps,(nChains,dimensions)) # could replace eps with 1e-6 here proposalVectors = currentVectors + (1 + e) * gamma[:,np.newaxis] * chainDifferences + E return proposalVectors
d72075d09589b77f7077a5785db9f77e6a4182b0
3,652,288
from typing import Optional import os import tempfile import shutil def handle_compressed_file( file_prefix: FilePrefix, datatypes_registry, ext: str = "auto", tmp_prefix: Optional[str] = "sniff_uncompress_", tmp_dir: Optional[str] = None, in_place: bool = False, check_content: bool = True, ) -> HandleCompressedFileResponse: """ Check uploaded files for compression, check compressed file contents, and uncompress if necessary. Supports GZip, BZip2, and the first file in a Zip file. For performance reasons, the temporary file used for uncompression is located in the same directory as the input/output file. This behavior can be changed with the `tmp_dir` param. ``ext`` as returned will only be changed from the ``ext`` input param if the param was an autodetect type (``auto``) and the file was sniffed as a keep-compressed datatype. ``is_valid`` as returned will only be set if the file is compressed and contains invalid contents (or the first file in the case of a zip file), this is so lengthy decompression can be bypassed if there is invalid content in the first 32KB. Otherwise the caller should be checking content. """ CHUNK_SIZE = 2**20 # 1Mb is_compressed = False compressed_type = None keep_compressed = False is_valid = False filename = file_prefix.filename uncompressed_path = filename tmp_dir = tmp_dir or os.path.dirname(filename) check_compressed_function = COMPRESSION_CHECK_FUNCTIONS.get(file_prefix.compressed_format) if check_compressed_function: is_compressed, is_valid = check_compressed_function(filename, check_content=check_content) compressed_type = file_prefix.compressed_format if is_compressed and is_valid: if ext in AUTO_DETECT_EXTENSIONS: # attempt to sniff for a keep-compressed datatype (observing the sniff order) sniff_datatypes = filter(lambda d: getattr(d, "compressed", False), datatypes_registry.sniff_order) sniffed_ext = run_sniffers_raw(file_prefix, sniff_datatypes) if sniffed_ext: ext = sniffed_ext keep_compressed = True else: datatype = datatypes_registry.get_datatype_by_extension(ext) keep_compressed = getattr(datatype, "compressed", False) # don't waste time decompressing if we sniff invalid contents if is_compressed and is_valid and file_prefix.auto_decompress and not keep_compressed: assert compressed_type # Tell type checker is_compressed will only be true if compressed_type is also set. with tempfile.NamedTemporaryFile(prefix=tmp_prefix, dir=tmp_dir, delete=False) as uncompressed: with DECOMPRESSION_FUNCTIONS[compressed_type](filename) as compressed_file: # TODO: it'd be ideal to convert to posix newlines and space-to-tab here as well try: for chunk in file_reader(compressed_file, CHUNK_SIZE): if not chunk: break uncompressed.write(chunk) except OSError as e: os.remove(uncompressed.name) raise OSError( "Problem uncompressing {} data, please try retrieving the data uncompressed: {}".format( compressed_type, util.unicodify(e) ) ) finally: is_compressed = False uncompressed_path = uncompressed.name if in_place: # Replace the compressed file with the uncompressed file shutil.move(uncompressed_path, filename) uncompressed_path = filename elif not is_compressed or not check_content: is_valid = True return HandleCompressedFileResponse(is_valid, ext, uncompressed_path, compressed_type, is_compressed)
980857aece095f894580b0d523dc10b4c94a6977
3,652,289
import copy import json def compress_r_params(r_params_dict): """ Convert a dictionary of r_paramsters to a compressed string format Parameters ---------- r_params_dict: Dictionary dictionary with parameters for weighting matrix. Proper fields and formats depend on the mode of data_weighting. data_weighting == 'dayenu': dictionary with fields 'filter_centers', list of floats (or float) specifying the (delay) channel numbers at which to center filtering windows. Can specify fractional channel number. 'filter_half_widths', list of floats (or float) specifying the width of each filter window in (delay) channel numbers. Can specify fractional channel number. 'filter_factors', list of floats (or float) specifying how much power within each filter window is to be suppressed. Returns ------- string containing r_params dictionary in json format and only containing one copy of each unique dictionary with a list of associated baselines. """ if r_params_dict == {} or r_params_dict is None: return '' else: r_params_unique = {} r_params_unique_bls = {} r_params_index = -1 for rp in r_params_dict: #do not include data set in tuple key already_in = False for rpu in r_params_unique: if r_params_unique[rpu] == r_params_dict[rp]: r_params_unique_bls[rpu] += [rp,] already_in = True if not already_in: r_params_index += 1 r_params_unique[r_params_index] = copy.copy(r_params_dict[rp]) r_params_unique_bls[r_params_index] = [rp,] for rpi in r_params_unique: r_params_unique[rpi]['baselines'] = r_params_unique_bls[rpi] r_params_str = json.dumps(r_params_unique) return r_params_str
4e56badfb7ea773d9d1104b134aa61b83d8d2f2f
3,652,290
def replace_ext(filename, oldext, newext): """Safely replaces a file extension new a new one""" if filename.endswith(oldext): return filename[:-len(oldext)] + newext else: raise Exception("file '%s' does not have extension '%s'" % (filename, oldext))
33ab99860cfe90b72388635d5d958abe431fa45e
3,652,291
def getAllArt(): """ 1/ verify if user is authenticated (login) 2/ if yes he can post a new article if not he can only read article """ if request.method == "GET": articles = actualArticle.getAll() return articles elif request.method == 'PUT': if 'logged_in' in session: response = actualArticle.crud(request, id) articles = actualArticle.getAll() return articles else: message="To add a new article you have to login" return message
d7506d4fbe3b4f670c30ce18501fe6ea4d410169
3,652,292
from typing import Union from typing import Tuple import warnings def normalize_citation(line: str) -> Union[Tuple[str, str], Tuple[None, str]]: """Normalize a citation string that might be a crazy URL from a publisher.""" warnings.warn("this function has been externalized to :func:`citation_url.parse`") return citation_url.parse(line)
c004e75aae0bcb625d8906421057a484b6831606
3,652,293
import joblib import os def cnn_predict_grid(data_in=None, win_sizes=[((int(8), int(5)), 2, 1),((int(10), int(6)), 3, 2),((int(13), int(8)), 4, 3)], problim = 0.95, model_fpath=model_fpath, scaler_fpath=scaler_fpath, nc_fpath='D:/Master/data/cmems_data/global_10km/noland/phys_noland_2016_060.nc', storedir=None): """ Test the model using multiple sliding windows, there will be multiple returned predictions data in: [lon,lat,x,y,ssl,uvel,vvel] storedir: path to directory for storing image of predicted grid, if None, no image is stored""" print("\n\n") lon,lat,x,y,ssl,uvel,vvel = data_in # Recreate the exact same model purely from the file custom_objects = { "f1_m": f1_m, "precision_m": precision_m, "recall_m": recall_m } clf = load_model(model_fpath, custom_objects=custom_objects) scaler = joblib.load(scaler_fpath) # Import the std sklearn scaler model nx, ny = ssl.shape # Create canvas to show the cv2 rectangles around predictions fig, ax = plt.subplots(figsize=(15, 12)) n=-1 color_array = np.sqrt(((uvel.T-n)/2)**2 + ((vvel.T-n)/2)**2) # x and y needs to be equally spaced for streamplot if not (same_dist_elems(x) or same_dist_elems(y)): x, y = np.arange(len(x)), np.arange(len(y)) ax.contourf(x, y, ssl.T, cmap='rainbow', levels=150) ax.streamplot(x, y, uvel.T, vvel.T, color=color_array, density=10) #ax.quiver(x, y, uvel.T, vvel.T, scale=3) fig.subplots_adjust(0,0,1,1) fig.canvas.draw() im = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8) im = im.reshape(fig.canvas.get_width_height()[::-1] + (3,)) imCopy = cv2.cvtColor(im,cv2.COLOR_RGB2BGR) imH, imW, _ = imCopy.shape # col, row winScaleW, winScaleH = imW*1.0/nx, imH*1.0/ny # Scalar coeff from dataset to cv2 image # Define what variables are used as channel, if only uvel and vvel it should be [1,2] to_be_scaled = [1,2] data = [ssl, uvel, vvel] # Holds rectangle coordinates with dataset and image indexes cyc_r, acyc_r = [], [] cyc_r_im, acyc_r_im = [], [] print("++ Performing sliding window and predicting using pre-trained CNN model") # Loop over different window sizes, they will be resized down to correct dimensiona anyways for wSize, wStep, hStep in win_sizes: # loop over the sliding window of indeces for rectIdx, (i, j, (xIdxs, yIdxs)) in enumerate(sliding_window(ssl, wStep, hStep, windowSize=wSize)): if xIdxs[-1] >= nx or yIdxs[-1] >= ny: continue winW2, winH2 = winW*6, winH*6 winSize = (winH2, winW2) masked = False # Continue if window hits land data_window, data_scaled_window = [], [] for c in range(len(data)): # Creates window, checks if masked, if not returns the window a = check_window(data[c], xIdxs, yIdxs) if a is None: masked = True break # append window if not masked data_window.append( a ) # Resize the original window to CNN input dim data_window[c] = cv2.resize(data_window[c], dsize=(winSize), interpolation=cv2.INTER_CUBIC) if c in to_be_scaled: # Create a copy of window to be scaled data_scaled_window.append(data_window[c].copy()) k = len(data_scaled_window) - 1 # Flatten array before applying scalar data_scaled_window[k] = data_scaled_window[k].flatten() # Scale the data data_scaled_window[k] = scaler[k].transform([data_scaled_window[k]])[0] # Reshape scaled data to original shape data_scaled_window[k] = data_scaled_window[k].reshape(winW2, winH2) # continue to next window if mask (land) is present if masked: continue # Transfrom input window to CNN input format X_cnn = np.zeros((1,winW2,winH2,nChannels)) for lo in range(winW2): # Row for la in range(winH2): # Column for c in range(nChannels): # Channels X_cnn[0,lo,la,c] = data_scaled_window[c][lo,la] # Predict and receive probability prob = clf.predict(X_cnn) # This is the size of the current sliding window nxWin, nyWin = len(xIdxs), len(yIdxs) # y starts in top left for cv2, want it to be bottom left xr, yr = int(winScaleW*(i)), int(winScaleH*(ny-j)) # rect coords xrW, yrW= int(winScaleW*nxWin), int(winScaleH*nyWin) # rect width # If either cyclone or acyclone are above probability limit, we have a prediction if any(p >= problim for p in prob[0,1:]): if prob[0,1] >= problim: acyc_r.append([i, j, i + nxWin, j + nyWin]) acyc_r_im.append([xr, yr, xr + xrW, yr - xrW]) cv2.rectangle(imCopy, (xr, yr), (xr + xrW, yr - xrW), (217, 83, 25), 2) #print('anti-cyclone | prob: {}'.format(prob[0,1]*100)) else: cyc_r.append([i, j, i + nxWin, j + nyWin]) cyc_r_im.append([xr, yr, xr + xrW, yr - xrW]) cv2.rectangle(imCopy, (xr, yr), (xr + xrW, yr - xrW), (0, 76, 217), 2) #print('cyclone | prob: {}'.format(prob[0,2]*100)) # We want to return both grouped and ungrouped predictions, in case user wants different grouping # Predictions need at least 2 rectangles with 20% overlap to be a final prediciton cyc_r_im_grouped, _ = cv2.groupRectangles(rectList=cyc_r_im, groupThreshold=1, eps=0.2) acyc_r_im_grouped, _ = cv2.groupRectangles(rectList=acyc_r_im, groupThreshold=1, eps=0.2) # if a store directory is defined, create and store an image of both grouped and ungrouped # predicted grid at location imgdir = 'C:/Users/47415/Master/images/compare/' if isinstance(storedir, str): if not os.path.isdir(imgdir + storedir): os.makedirs(imgdir + storedir) cv2.imwrite(imgdir + f'{storedir}/full_pred_grid.png', imCopy) imCopy = cv2.cvtColor(im,cv2.COLOR_RGB2BGR) draw_rectangles(imCopy, cyc_r_im_grouped, lon, lat, winScaleW, winScaleH, 'cyclone') draw_rectangles(imCopy, acyc_r_im_grouped, lon, lat, winScaleW, winScaleH, 'anti-cyclone') cv2.imwrite(imgdir + f'{storedir}/grouped_pred_grid.png', imCopy) #cv2.imshow("Window", imCopy) #cv2.waitKey(0) plt.close(fig) return cyc_r, acyc_r, cyc_r_im_grouped, acyc_r_im_grouped
4d29cea83917b32969d3e9b0b271e337508757b7
3,652,294
def connect_syndicate( username=CONFIG.SYNDICATE_OPENCLOUD_USER, password=CONFIG.SYNDICATE_OPENCLOUD_PASSWORD, user_pkey_pem=CONFIG.SYNDICATE_OPENCLOUD_PKEY ): """ Connect to the OpenCloud Syndicate SMI, using the OpenCloud user credentials. """ debug = True if hasattr(CONFIG, "DEBUG"): debug = CONFIG.DEBUG client = syntool.Client( username, CONFIG.SYNDICATE_SMI_URL, password=password, user_pkey_pem=user_pkey_pem, debug=debug ) return client
61530129f45c89d6b735979dfa2fec347d364a06
3,652,295
def get_all_comb_pairs(M, b_monitor=False): """returns all possible combination pairs from M repeated measurements (M choose 2) Args: M (int): number of measurements per Returns: indices1, incides2 """ indices1 = np.zeros(int(M*(M-1)/2)) indices2 = np.zeros(int(M*(M-1)/2)) qq = 0 for q0 in range(M): dt = q0+1 for q1 in range(M-q0-1): indices1[qq] = q1 indices2[qq] = q1+dt qq += 1 if b_monitor: print("indices1:", indices1) print("indices2:", indices2) return (indices1, indices2)
9b537d040463e6db2a0bd0616bc3110cf0c9e7f6
3,652,296
def gomc_sim_completed_properly(job, control_filename_str): """General check to see if the gomc simulation was completed properly.""" with job: job_run_properly_bool = False output_log_file = "out_{}.dat".format(control_filename_str) if job.isfile(output_log_file): # with open(f"workspace/{job.id}/{output_log_file}", "r") as fp: with open(f"{output_log_file}", "r") as fp: out_gomc = fp.readlines() for i, line in enumerate(out_gomc): if "Move" in line: split_move_line = line.split() if ( split_move_line[0] == "Move" and split_move_line[1] == "Type" and split_move_line[2] == "Mol." and split_move_line[3] == "Kind" ): job_run_properly_bool = True else: job_run_properly_bool = False return job_run_properly_bool
95c5b9dec8e38f5a06ad4031c72d14629ebdefe3
3,652,297
import functools import time def debounce(timeout, **kwargs): """Use: @debounce(text=lambda t: t.id, ...) def on_message(self, foo=..., bar=..., text=None, ...)""" keys = sorted(kwargs.items()) def wrapper(f): @functools.wraps(f) def handler(self, *args, **kwargs): # Construct a tuple of keys from the input args key = tuple(fn(kwargs.get(k)) for k, fn in keys) curr = set() if hasattr(self, '__debounce_curr'): curr = self.__debounce_curr prev = set() if hasattr(self, '__debounce_prev'): prev = self.__debounce_prev now = time.time() tick = time.time() if hasattr(self, '__debounce_tick'): tick = self.__debounce_tick # Check the current and previous sets, if present if key in curr or key in prev: return # Rotate and update if now > tick: prev = curr curr = set() tick = now + timeout curr.add(key) self.__debounce_curr = curr self.__debounce_prev = prev self.__debounce_tick = tick # Call the wrapped function return f(self, *args, **kwargs) return handler return wrapper
ac457a68834f1a6305ff4be8f7f19607f17e95fb
3,652,298
def isolated_add_event(event, quiet=True): """ Add an event object, but in its own transaction, not bound to an existing transaction scope Returns a dict object of the event as was added to the system :param event: event object :param quiet: boolean indicating if false then exceptions on event add should be swallowed to prevent blocking the caller. If false, exceptions are raised :return: """ with session_scope() as session: return add_event_json(event.to_dict(), session, quiet)
e2a20c21738c42dbed36d545b127131c13f98c59
3,652,299