content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import cuml from cuml.metrics import confusion_matrix def build_and_predict_model(ml_input_df): """ Create a standardized feature matrix X and target array y. Returns the model and accuracy statistics """ feature_names = ["college_education", "male"] + [ "clicks_in_%d" % i for i in range(1, 8) ] X = ml_input_df[feature_names] # Standardize input matrix X = (X - X.mean()) / X.std() y = ml_input_df["clicks_in_category"] model = cuml.LogisticRegression( tol=convergence_tol, penalty="none", solver="qn", fit_intercept=True, max_iter=iterations, C=C, ) model.fit(X, y) # # Predict and evaluate accuracy # (Should be 1.0) at SF-1 # results_dict = {} y_pred = model.predict(X) results_dict["auc"] = roc_auc_score(y.to_array(), y_pred.to_array()) results_dict["precision"] = cupy_precision_score(cp.asarray(y), cp.asarray(y_pred)) results_dict["confusion_matrix"] = confusion_matrix( cp.asarray(y, dtype="int32"), cp.asarray(y_pred, dtype="int32") ) results_dict["output_type"] = "supervised" return results_dict
2d3e192986c680d910a401c9a4da295595fe236e
3,652,400
def codes_new_from_file(fileobj, product_kind, headers_only=False): """ @brief Load in memory a message from a file for a given product. The message can be accessed through its id and will be available\n until @ref grib_release is called.\n \b Examples: \ref get_product_kind.py "get_product_kind.py" @param fileobj python file object @param product_kind one of CODES_PRODUCT_GRIB, CODES_PRODUCT_BUFR, CODES_PRODUCT_GTS or CODES_PRODUCT_ANY @param headers_only whether or not to load the message with the headers only @return id of the message loaded in memory @exception GribInternalError """ if product_kind == CODES_PRODUCT_GRIB: return grib_new_from_file(fileobj, headers_only) if product_kind == CODES_PRODUCT_BUFR: return bufr_new_from_file(fileobj, headers_only) if product_kind == CODES_PRODUCT_METAR: return metar_new_from_file(fileobj, headers_only) if product_kind == CODES_PRODUCT_GTS: return gts_new_from_file(fileobj, headers_only) if product_kind == CODES_PRODUCT_ANY: return any_new_from_file(fileobj, headers_only) raise Exception("Invalid product kind: " + product_kind)
47ed09dbf5bf59160dcab4c36dfd202ae7b190a5
3,652,401
from datetime import datetime def list_resources(path, long_format=None, relations=False): """List resources in a given DMF workspace. Args: path (str): Path to the workspace long_format (bool): List in long format flag relations (bool): Show relationships, in long format Returns: None """ t = ColorTerm() d = DMF(path) if long_format: resources = list(d.find()) uuid_pfx = _uuid_prefix([r.uuid for r in resources]) fields = ("uuid", "name", "type", "modified", "created") widths = (uuid_pfx, 30, 20, 19, 19) colors = (t.green, t.white, t.yellow, t.white, t.white) fmts = [f"{{:{w}s}}" for w in widths] left_gutter = "| " if relations else "" # table header print( " " * len(left_gutter) + t.bold + " ".join([f.format(v) for f, v in zip(fmts, fields)]) + t.reset ) def datestr(t): return datetime.isoformat(datetime.fromtimestamp(t)) # table body for r in resources: values = list(getattr(r, k) for k in fields[:-2]) values.append(datestr(r.modified)) values.append(datestr(r.created)) if not values[1] and r.desc: values[1] = r.desc[: widths[1]] else: values[1] = values[1][: widths[1]] if uuid_pfx < 32: values[0] = values[0][:uuid_pfx] print( left_gutter + " ".join([c + f.format(v) for c, f, v in zip(colors, fmts, values)]) + t.reset ) if relations and len(r.relations) > 0: relitems = [] for rel in r.relations: if rel.subject == r.uuid: fmt = f"{t.white}{{p}}->{t.blue}{{o}}" else: fmt = f"{t.blue}{{s}}->{t.white}{{p}}" item = fmt.format( s=rel.subject[:uuid_pfx], p=rel.predicate, o=rel.object[:uuid_pfx], ) relitems.append(item) print(f"+-- {' / '.join(relitems)}") else: items = [] for r in d.find(): name_color = "w" if r.name: name = r.name elif r.desc: name = r.desc[:40] name_color = t.blue else: name = r.uuid name_color = t.green item = f"{name_color}{name}{t.yellow}:{r.type}" items.append(item) if items: columnized = _display_in_columns(items, max_line=t.width) print(columnized + t.reset)
904f04a008efb8add2d7744bfe1dc71009faff17
3,652,402
def calc_streamtemp(tas): """ Global standard regression equation from Punzet et al. (2012) Calculates grid cell stream temperature based on air temperature Both input and output temperature are in K""" # global constants, taken from Punzet et al., 2012 c0 = 32; c1 = -0.13; c2 = 1.94 tas_C = tas - 273.15 streamtemp_C = c0/(1+np.exp(c1*tas_C+c2)) streamtemp = streamtemp_C + 273.15 return streamtemp
493d1ca3b3543db9bfabc8c0e2a4f013da794028
3,652,403
def _process(proc_data): """ Final processing to conform to the schema. Parameters: proc_data: (List of Dictionaries) raw structured data to process Returns: List of Dictionaries. Structured data to conform to the schema. """ # nothing more to process return proc_data
7585a8810667f39d6d6a787f2617590aee1ec8cf
3,652,404
import requests def get_station_info(my_token, station_id): """ This function gets all the information on the station ---------- Input: my_token (str) token generated from "token request page" station_id (str) ---------- Output: dictionary of station information """ station_url = '{}stations/{}'.format(base_url, station_id) return requests.get(station_url, headers = {'token': my_token}).json()
9abcb5b74cb0be45396c1b182845467e3fc0829c
3,652,405
import sys import traceback def json_response(f, *args, **kwargs): """Wrap a view in JSON. This decorator runs the given function and looks out for ajax.AJAXError's, which it encodes into a proper HttpResponse object. If an unknown error is thrown it's encoded as a 500. All errors are then packaged up with an appropriate Content-Type and a JSON body that you can inspect in JavaScript on the client. They look like: { "message": "Error message here.", "code": 500 } Please keep in mind that raw exception messages could very well be exposed to the client if a non-AJAXError is thrown. """ try: result = f(*args, **kwargs) except AJAXError, e: result = e.get_response() except Exception, e: type, message, trace = sys.exc_info() if settings.DEBUG: tb = [{'file': l[0], 'line': l[1], 'in': l[2], 'code': l[3]} for l in traceback.extract_tb(trace)] result = AJAXError(500, message, traceback=tb).get_response() else: result = AJAXError(500, message).get_response() result['Content-Type'] = 'application/json' return result
fd80b5e3d259b9ef69f5278936d8d0dbccae6636
3,652,406
def check_fit_input(coordinates, data, weights, unpack=True): """ Validate the inputs to the fit method of gridders. Checks that the coordinates, data, and weights (if given) all have the same shape. Weights arrays are raveled. Parameters ---------- coordinates : tuple of arrays Arrays with the coordinates of each data point. Should be in the following order: (easting, northing, vertical, ...). data : array or tuple of arrays The data values of each data point. Data can have more than one component. In such cases, data should be a tuple of arrays. weights : None or array If not None, then the weights assigned to each data point. Typically, this should be 1 over the data uncertainty squared. If the data has multiple components, the weights have the same number of components. unpack : bool If False, data and weights will be tuples always. If they are single arrays, then they will be returned as a 1-element tuple. If True, will unpack the tuples if there is only 1 array in each. Returns ------- validated_inputs The validated inputs in the same order. If weights are given, will ravel the array before returning. """ data = check_data(data) weights = check_data(weights) coordinates = check_coordinates(coordinates) if any(i.shape != coordinates[0].shape for i in data): raise ValueError( "Data arrays must have the same shape {} as coordinates. Data shapes: {}.".format( coordinates[0].shape, [i.shape for i in data] ) ) if any(w is not None for w in weights): if len(weights) != len(data): raise ValueError( "Number of data '{}' and weights '{}' must be equal.".format( len(data), len(weights) ) ) if any(i.size != j.size for i in weights for j in data): raise ValueError("Weights must have the same size as the data array.") weights = tuple(i.ravel() for i in weights) else: weights = tuple([None] * len(data)) if unpack: if len(weights) == 1: weights = weights[0] if len(data) == 1: data = data[0] return coordinates, data, weights
eef22bb026aad657f096ac4de00a6d2a5a6fa0f8
3,652,407
import logging import sys def get_logger(name, handler=logging.StreamHandler(sys.stderr), level=logging.DEBUG): """ encapsulate get logger operation :param name: logger name :param handler: logger handler, default is stderr :param level: logger level, default is debug :return: logger """ logger = logging.getLogger(name) handler.setFormatter(logging.Formatter('[%(asctime)s] [{}] %(message)s'.format(name))) logger.addHandler(handler) logger.setLevel(level) return logger
576827fa36ee4e2dae1073653612c1604b953200
3,652,408
def get_local_beneficiaries(map_lat: float, map_lng: float, map_zoom: int) -> DataFrame: """Return only projects that are fairly close to the map's centre.""" return beneficiaries[ (map_lat - 100 / map_zoom < beneficiaries.lat) & (beneficiaries.lat < map_lat + 100 / map_zoom) & (map_lng - 100 / map_zoom < beneficiaries.lng) & (beneficiaries.lng < map_lng + 100 / map_zoom) ][:500]
30e0d7255a70c15a25f499e867974c711ae3f750
3,652,409
import argparse def parse_args(args): """ Parse command line parameters :param args: command line parameters as list of strings :return: command line parameters as :obj:`argparse.Namespace` """ parser = argparse.ArgumentParser( description="Build html reveal.js slides from markdown in docs/ dir") parser.add_argument( '-v', '--verbose', help='Whether to show progress messages on stdout, including HTML', action='store_true') parser.add_argument( '--version', help='print twip package version and exit.', action='version', version='twip {ver}'.format(ver=__version__)) parser.add_argument( '-b', '--blog_path', help='Path to source markdown files. Must contain an `images` subdir', default=BLOG_PATH) parser.add_argument( '-s', '--slide_path', help='Path to dir for output slides (HTML). An images subdir will be added. A slides subdir should already exist.', default=DOCS_PATH) parser.add_argument( '-p', '--presentation', help='Source markdown base file name (without .md extension). The HTML slides will share the same basename.', default='2015-10-27-Hacking-Oregon-Hidden-Political-Connections') return parser.parse_args(args)
ce1d6f0132876263bd7af5456c8a3596a3a49bdf
3,652,410
def create_atoms(atoms, atom_dict): """Transform the atom types in a molecule (e.g., H, C, and O) into the indices (e.g., H=0, C=1, and O=2). """ atoms = [atom_dict[a] for a in atoms] return np.array(atoms)
10f0e0d0669c2148db7cdcd487a6b72ade2e2f06
3,652,411
def uint2float(A,bits,x_min,x_max=None): """ Converts uint[bits] to the corresponding floating point value in the range [x_min,x_max]. """ if x_max is None: x_min,x_max = x_range(x_min) return x_min + (x_max - x_min) * A / ((1 << bits) - 1)
242b72824309a7e0724c42f29e259e52b11a90d2
3,652,412
def partCmp(verA: str, verB: str) -> int: """Compare parts of a semver. Args: verA (str): lhs part to compare verB (str): rhs part to compare Returns: int: 0 if equal, 1 if verA > verB and -1 if verA < verB """ if verA == verB or verA == "*" or verB == "*": return 0 if int(verA) > int(verB): return 1 return -1
d9417ce482bf0c2332175412ba3125435f884336
3,652,413
import io def OrigPosLemConcordancer(sentences, annots, textMnt, wordType="word", nrows=10): """Output HTML for the text (including lemma and pos tags) identified by the AQAnnotation (typically a sentence annotation). Below the sentence (in successive rows) output the original terms, parts of speech, and lemma terms for the text identified by the AQAnnotation. Args: sentences: Sentence annotations that you would like to display. annots: The Dataframe of AQAnnotations that will contain the the AQAnnotations (orig, lemma, pos) for the above sentences textPath: Path for the str files. The sentence annotations must be for documents contained in these str files. wordType: The annotType that identies the AQAnnotation in the above annotations. nrows: Number of sentences to display Returns: HTML """ def _buildOrigPosLemmaRow(entryType, entry): return ("<tr>" + "<td>" + entryType + "</td>" + "<td bgcolor='grey'/>" + "<td bgcolor='grey'/>" + entry + "</tr>") sentenceAnnots = sentences.sort("docId","startOffset").limit(nrows).collect() tmpStr = "" docId = "" docText = "" text= "" lastDoc = "" curDoc = "" # Get the TextAnnotations (for the specified annotType) for each sentence for sentence in sentenceAnnots: textAnnots = annots.filter((col("docId") == sentence.docId) & (col("annotType") == wordType) & (col("startOffset") >= sentence.startOffset) & (col("endOffset") <= sentence.endOffset)) \ .sort("startOffset") \ .collect() # Get the raw text for the sentence annotation if docId != sentence.docId: docid = sentence.docId try: with io.open(textMnt + sentence.docId,'r',encoding='utf-8') as f: docText = f.read() except Exception as ex: print(ex) docText = "" if docText != "": text = docText[sentence.startOffset:sentence.endOffset] else: text = "" tmpStr += "<table border='1' style='font-family: monospace;table-layout: fixed;'><tr>" tmpStr += ("<td>" + sentence.docId + "</td>") tmpStr += ("<td>" + str(sentence.startOffset) + "</td>") tmpStr += ("<td>" + str(sentence.endOffset) + "</td>") tmpStr += ("<td colspan='" + str(len(textAnnots)) + "'>" + text + "</td>") tmpStr += "</tr>" # Get original row origEntry = "" for annot in textAnnots: if (annot.properties != None) and ('orig' in annot.properties) and (len(annot.properties['orig']) > 0): origEntry += ("<td>" + unquote_plus(annot.properties['orig']) + "</td>") else: origEntry += ("<td> </td>") tmpStr += _buildOrigPosLemmaRow('orig',origEntry) # Get pos row posEntry = "" for annot in textAnnots: if (annot.properties != None) and ('pos' in annot.properties) and (len(annot.properties['pos']) > 0): posEntry += ("<td>" + unquote_plus(annot.properties['pos']) + "</td>") else: posEntry += ("<td> </td>") tmpStr += _buildOrigPosLemmaRow('pos',posEntry) # Get lemma row lemmaEntry = "" for annot in textAnnots: if (annot.properties != None) and ('lemma' in annot.properties) and (len(annot.properties['lemma']) > 0): lemmaEntry += ("<td>" + unquote_plus(annot.properties['lemma']) + "</td>") else: lemmaEntry += ("<td> </td>") tmpStr += _buildOrigPosLemmaRow('lemma',lemmaEntry) tmpStr += "</table><p/><p/><p/>" return "<html><body>" + tmpStr + "</body></html>"
f11f0240cbee58954901bd57e728cd54ab51b6dd
3,652,414
import argparse def get_args(**kwargs): """Generate cli args Arguments: kwargs[dict]: Pair value in which key is the arg and value a tuple with the help message and default value Returns: Namespace: Args namespace object """ parser = argparse.ArgumentParser() for key, (help, default) in kwargs.items(): parser.add_argument("--{}".format(key), help=help, default=default) return parser.parse_args()
f2cade1e0ec3b5a1fccd7ea94090c719de2849b6
3,652,415
def show_hidden_article(request, id): """ 展示隐藏的文章 """ db = connect_mongodb_database(request) article = db.articles.find_one({ 'Id':int(id), 'IsPublic': False }) if article is None: return HttpResponse(404) return render_admin_and_back(request, 'show-hidden-article.html', { 'page': u'隐私文章 - '+ article['Title'], 'article': article, })
5f9f9c3bc21ed267d8c13226d51a7f44877af976
3,652,416
def MakeNormalPmf(mu, sigma, num_sigmas, n=201): """Makes a PMF discrete approx to a Normal distribution. mu: float mean sigma: float standard deviation num_sigmas: how many sigmas to extend in each direction n: number of values in the Pmf returns: normalized Pmf """ pmf = Pmf() low = mu - num_sigmas * sigma high = mu + num_sigmas * sigma for x in np.linspace(low, high, n): p = EvalNormalPdf(x, mu, sigma) pmf.Set(x, p) pmf.Normalize() return pmf
9bca22cfd3b3b94fa233be9f78696361d9e36726
3,652,417
import os def _val_from_env(env, attr): """Transforms env-strings to python.""" val = os.environ[env] if attr == 'rules': val = _rules_from_env(val) elif attr == 'wait_command': val = int(val) elif attr in ('require_confirmation', 'no_colors'): val = val.lower() == 'true' return val
023dc8eea2c9ed034f19c6ba89d57a815bc52903
3,652,418
def histogram(a, bins, ranges): """ Examples -------- >>> x = np.random.uniform(0., 1., 100) >>> H, xedges = np.histogram(x, bins=5, range=[0., 1.]) >>> Hn = histogram(x, bins=5, ranges=[0., 1.]) >>> assert np.all(H == Hn) """ hist_arr = np.zeros((bins,), dtype=a.dtype) return _hist1d_numba_seq(hist_arr, a, bins, np.asarray(ranges))
a53a8204180c8f9d2a3fb36595d14c07da262cbd
3,652,419
import os import test def testfile(path, shell='/bin/sh', indent=2, env=None, cleanenv=True, debug=False, testname=None): """Run test at path and return input, output, and diff. This returns a 3-tuple containing the following: (list of lines in test, same list with actual output, diff) diff is a generator that yields the diff between the two lists. If a test exits with return code 80, the actual output is set to None and diff is set to []. Note that the TESTDIR, TESTFILE, and TESTSHELL environment variables are available to use in the test. :param path: Path to test file :type path: bytes or str :param shell: Shell to run test in :type shell: bytes or str or list[bytes] or list[str] :param indent: Amount of indentation to use for shell commands :type indent: int :param env: Optional environment variables for the test shell :type env: dict or None :param cleanenv: Whether or not to sanitize the environment :type cleanenv: bool :param debug: Whether or not to run in debug mode (don't capture stdout) :type debug: bool :param testname: Optional test file name (used in diff output) :type testname: bytes or None :return: Input, output, and diff iterables :rtype: (list[bytes], list[bytes], collections.Iterable[bytes]) """ f = open(path, 'rb') try: abspath = os.path.abspath(path) env = env or os.environ.copy() env['TESTDIR'] = envencode(os.path.dirname(abspath)) env['TESTFILE'] = envencode(os.path.basename(abspath)) if testname is None: # pragma: nocover testname = os.path.basename(abspath) return test(f, shell, indent=indent, testname=testname, env=env, cleanenv=cleanenv, debug=debug) finally: f.close()
05a397c09228fddfa61aba554f6d89cc62c5c59b
3,652,420
def is_valid_python_code(src_string: str): """True if, and only if, ``src_string`` is valid python. Valid python is defined as 'ast.parse(src_string)` doesn't raise a ``SyntaxError``' """ try: ast_parse(src_string) return True except SyntaxError: return False
03ee9d915797ba1cfcbcaf8630d38df529744f1b
3,652,421
def rss_format_export_post(): """ :return: """ try: payload = request.get_json(force=True) # post data in json except: payload = dict(request.form) # post data in form encoding if 'link' in payload: link = read_value_list_or_not(payload, 'link') else: link = '' results, status = export_post(request, 'RSS') if status == 200: return return_rss_format_export(solr_data=results, link=link) return return_response(results, status)
2ddc5b814cabec3fd84f024d44cb04b0063890c5
3,652,422
from typing import Union from typing import Callable from typing import Iterable import asyncio def on_command(name: Union[str, CommandName_T], *, logger: Logger, checkfunc: Callable[[CommandSession], bool] = None, wait_for: Callable[[], bool] = None, cooldown: int = 0, use_default_infolog: bool = True, aliases: Union[Iterable[str], str] = (), permission: int = nonebot.permission.EVERYBODY, only_to_me: bool = True, privileged: bool = False, shell_like: bool = False, **kwargs) -> Callable: """on_command装饰器。被装饰的函数应当接受两个参数session及bot。 参数: name:命令名称。 logger:日志器。 checkfunc:检查是否应该工作的函数。函数执行返回True则执行功能,否则退出。 wait_for: 等待函数。函数执行返回为True后再执行功能,否则等待1秒直到返回为True。 cooldown:命令运行后的冷却时间。冷却时间内无法再次运行。 use_default_infolog:是否使用默认info级别的日志记录。 aliases:命令别名。 permission:命令所需权限。 only_to_me:是否仅响应私聊或者at机器人的指令。 privileged:是否允许复数次执行。 shell_like:是否是类shell指令。 """ def deco(func) -> Callable: @wraps(func) async def wrapper(session: CommandSession): if session.event['user_id'] in BLACKLIST['user']: return if session.event['message_type'] == 'group' and session.event['group_id'] in BLACKLIST['group']: return if checkfunc is not None: if not ((await checkfunc(session) if asyncio.iscoroutinefunction(checkfunc) else checkfunc(session))): return if wait_for is not None: count = 0 while not ((await wait_for()) if asyncio.iscoroutinefunction(wait_for) else wait_for()): await asyncio.sleep(1) count += 1 if count >= _wait_for_maxtime: raise WaitForTimeoutError funcname = func.__module__ + '.' + func.__name__ if funcname in _cooldown_functions[session.self_id].keys(): return try: await func(session, bot) if use_default_infolog: if session.event['message_type'] == 'group': logger.info(f'<Command> Group {session.event["group_id"]} user {session.event["user_id"]} call {funcname} successfully') else: logger.info(f'<Command> Private user {session.event["user_id"]} call {funcname} successfully') except (_PauseException, _FinishException, SwitchException) as e: raise e except Warning as w: logger.warning(f'<Command> Warning {type(w)} occured while {funcname} is running.') except (ApiNotAvailable, RetryExhaustedError) as a: logger.error(f'<Command> Error {type(a)} occured while {funcname} is running.') except ActionFailed as a: logger.error(f'<Command> Error {type(a)} occured while {funcname} is running, retcode = {a.retcode}.') except Exception as e: logger.exception(f'<Command> Error {type(e)} occured while {funcname} is running.') if cooldown > 0: if funcname not in _cooldown_functions[session.self_id]: _cooldown_functions[session.self_id][funcname] = cooldown return nonebot.on_command( name, aliases=aliases, permission=permission, only_to_me=only_to_me, privileged=privileged, shell_like=shell_like, )(debuglog(logger)(wrapper)) return deco
5550188f41a3a8fcfee8ca0fc541f05222d6454e
3,652,423
import os def SetUp(filename, rel_path=RELATIVE_TEST_PATH): """ SetUp returns a parsed C Program.""" if not os.path.exists(PICKLE_FILE): KVStore.CreateNewStore(PICKLE_FILE, redhawk.GetVersion()) return G.GetLanguageSpecificTree(os.path.join(rel_path, filename), PICKLE_FILE, language='c')
259d7f2e8abe61a409c14359b155b25170e70762
3,652,424
def setup_agents(model, initial_locations): """Load the simulated initial locations and return a list that holds all agents. """ initial_locations = initial_locations.reshape(2, model["n_types"], 30000) agents = [] for typ in range(model["n_types"]): for i in range(model["n_agents_by_type"][typ]): agents.append( Agent( typ=typ, initial_location=initial_locations[typ, :, i], n_neighbours=model["n_neighbours"], require_same_type=model["require_same_type"], max_moves=model["max_moves"], ) ) return agents
40368819f0968b3fcaed6a1953f7e4fec453f471
3,652,425
async def get_active_infraction( ctx: Context, user: MemberOrUser, infr_type: str, send_msg: bool = True ) -> t.Optional[dict]: """ Retrieves an active infraction of the given type for the user. If `send_msg` is True and the user has an active infraction matching the `infr_type` parameter, then a message for the moderator will be sent to the context channel letting them know. Otherwise, no message will be sent. """ log.trace(f"Checking if {user} has active infractions of type {infr_type}.") active_infractions = await ctx.bot.api_client.get( 'bot/infractions', params={ 'active': 'true', 'type': infr_type, 'user__id': str(user.id) } ) if active_infractions: # Checks to see if the moderator should be told there is an active infraction if send_msg: log.trace(f"{user} has active infractions of type {infr_type}.") await send_active_infraction_message(ctx, active_infractions[0]) return active_infractions[0] else: log.trace(f"{user} does not have active infractions of type {infr_type}.")
63361319b75e072489544e2956d21ff5cbe08590
3,652,426
def __compute_optical_function_vs_s(transporter, particles, optical_function_name): # todo Adjust """ Compute values of optical function vs s for one particle, which coordinates are x_min, theta_x_min, ... or x_mean - delta_x, ... :param transporter: transport function :param particles: BunchConfiguration object :param optical_function_name: String, name of optical function, as specified in matrix_indexes :return: matrix with rows: s and optical function """ particles = transporter(particles) result = np.append(particles["end"].T[tmi.ptc_twiss[Parameters.S]].reshape((-1, 1)), particles["end"].T[tmi.ptc_twiss[optical_function_name]].reshape((-1, 1)), axis=1) return result
f4a68dad10184cc8c1c6185e49ef2e488a831fbb
3,652,427
def plot_arb_images(label, data, label_string): """ Neatly displays arbitrary numbers of images from the camera returns fig Parameters: ----------- label: array of values that each image is labeled by, e.g. time data: array of arrays of image data label_string: string describing label, e.g. 's' """ length = len(data) columns = 10 if length % columns is not 0: rows = length / columns + 1 else: rows = length / columns fig = _p.figure() fig.set_figheight(rows * 5) fig.set_figwidth(10) for i in range(length): ax = fig.add_subplot(rows, columns, i + 1) ax.matshow(data[i], vmin=_n.min(data), vmax=_n.max(data)) ax.set_title('%s\n%.1f%s' % (i, label[i], label_string)) if i % 10 is 0: ax.set_xticks([]) ax.set_ylabel('pixels') else: ax.set_xticks([]) ax.set_yticks([]) fig.tight_layout() return fig
56e22d9f7a0651d56e93873b95c2228162f4a602
3,652,428
def listGslbServer(**kargs): """ List the Servers of KT Cloud GSLB. * Args: - zone(String, Required) : [KR-CA, KR-CB, KR-M, KR-M2] * Examples: print(gslb.listGslbServer(zone='KR-M')) """ my_apikey, my_secretkey = c.read_config() if not 'zone' in kargs: return c.printZoneHelp() ZoneName = kargs['zone'] del kargs['zone'] kargs['zoneid'] = c.getzoneidbyhname(ZoneName) M2Bool = c.IsM2(ZoneName) baseurl = c.geturl(ctype='gslb', m2=M2Bool) kargs['command'] = 'listGslbServer' kargs['response'] = 'json' kargs['apikey'] = my_apikey return c.makerequest(kargs, baseurl, my_secretkey)
18d8f0e6699b7cb3080eef5a3d040420ea45329d
3,652,429
import numpy def imencode(image, pix_fmt=IM_RGB, quality=DEFAULT_QUALITY): """ Encode image into jpeg codec Adapt convert image pixel color with pix_fmt Parameters ---------- image: source pix_fmt: format of pixel color. Default: RGB quality: JPEG quality image. Returns ------- Buffer of image encoded """ check_type("image", image, numpy.ndarray) if pix_fmt == IM_RGB: image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) _, buf = cv2.imencode('.jpeg', image, params=[cv2.IMWRITE_JPEG_QUALITY, int(quality)]) return buf
65750d176275e56da55c0660370a56f44baa6e48
3,652,430
def split_train_test_data(X, Y, train_rate): """ 将数据集划分为训练集与测试集 :param X: 数据集的特征 :param Y: 数据集的标签 :param train_rate: 训练集的比例 :return: 训练集的特征;训练集的标签;测试集的特征;测试集的标签 """ number = len(X) number_train = int(number * train_rate) number_test = number - number_train train_X = [] train_Y = [] test_X = [] test_Y = [] for i in range(number): if number_test > 0: if number_train == 0 or np.random.randint(2) == 0: number_test -= 1 test_X.append(X[i]) test_Y.append(Y[i]) else: number_train -= 1 train_X.append(X[i]) train_Y.append(Y[i]) else: number_train -= 1 train_X.append(X[i]) train_Y.append(Y[i]) return np.array(train_X), np.array(train_Y), np.array(test_X), np.array(test_Y)
7943278bc662968f8e019368ed8744d9e2a23929
3,652,431
def nonsingular_concat(X, vector): """Appends vector to matrix X iff the resulting matrix is nonsingular. Args: X (np.array): NxM Matrix to be appended to vector (np.array): Nx1 vector to be appended to X Returns: new_X (np.array): Nx(M+1) Matrix or None """ # Cast vector to matrix vector = np.atleast_2d(vector) # Append vector as new row at bottom of matrix new_X = np.concatenate((X, vector), axis=0) # Check if matrix is still non-singular if new_X.shape[0] == np.linalg.matrix_rank(new_X): return new_X else: return None
68a1f6f8b0ea5e14fbbcacc618f2d19b07814813
3,652,432
from typing import Union def get_oxidation_state(element: Union[str, Element]) -> int: """Get a typical oxidation state If it doesn't exist in the database, 0 is returned. Args: element (str/ Element): Input element Return: Oxidation state of the element. """ try: return oxidation_state_dict[str(element)] except KeyError: logger.warning(f"Oxidation state: {element} is unavailable. Set 0.") return 0
24187bd8eb5c6d5794f1e287c676b0f16c170d55
3,652,433
from typing import Callable def __quality_indexes( graph: nx.Graph, communities: object, scoring_function: Callable[[object, object], float], summary: bool = True, ) -> object: """ :param graph: NetworkX/igraph graph :param communities: NodeClustering object :param summary: boolean. If **True** it is returned an aggregated score for the partition is returned, otherwise individual-communitys ones. Default **True**. :return: If **summary==True** a FitnessResult object, otherwise a list of floats. """ graph = convert_graph_formats(graph, nx.Graph) values = [] for com in communities.communities: community = nx.subgraph(graph, com) values.append(scoring_function(graph, community)) if summary: return FitnessResult( min=min(values), max=max(values), score=np.mean(values), std=np.std(values) ) return values
a328ec08bef43248c6e8fd7a0f11901801b0e2a5
3,652,434
from re import DEBUG import os def serve_scripts(scripts): """ Combines one or more script files into one and embeds them in the small autoCSP JavaScript framework. """ debug = DEBUG and not LOCKED_MODE views_path = os.path.expanduser(PATHS['VIEWS']) with open(views_path + 'static/sha256.js', 'r') as f: sha256js = f.read() template = lib.webinterface.render_template('framework.js', debug=debug, scripts=scripts, sha256js=sha256js) return wrap_static(template, '.js')
27c4faedd7de71c1943250706c8ffca2e30251b3
3,652,435
def readFromDB_DSC_authorityKey(authorityKey: bytes, connection: Connection) -> DocumentSignerCertificate: """Reading from database""" try: logger.info("Reading DSC object from database with authority key.") return connection.getSession().query(DocumentSignerCertificateStorage).filter(DocumentSignerCertificateStorage.authorityKey == authorityKey).all() except Exception: raise DocumentSignerCertificateStorageError("Problem with writing the object")
34cff097201af92d337568094b8d48577f7e440f
3,652,436
def history_report(history, config=None, html=True): """ Test a model and save a history report. Parameters ---------- history : memote.HistoryManager The manager grants access to previous results. config : dict, optional The final test report configuration. html : bool, optional Whether to render the report as full HTML or JSON (default True). """ if config is None: config = ReportConfiguration.load() report = HistoryReport(history=history, configuration=config) if html: return report.render_html() else: return report.render_json()
8ba956c959b72f37b570b91ea4f01287eb8783c6
3,652,437
def derive_from_dem(dem): """derive slope and flow direction from a DEM. Results are returned in a dictionary that contains references to ArcPy Raster objects stored in the "in_memory" (temporary) workspace """ # set the snap raster for subsequent operations env.snapRaster = dem # calculate flow direction for the whole DEM flowdir = FlowDirection(in_surface_raster=dem, force_flow="NORMAL") flow_direction_raster = so("flowdir","random","in_memory") flowdir.save(flow_direction_raster) # calculate slope for the whole DEM slope = Slope(in_raster=dem, output_measurement="PERCENT_RISE", method="PLANAR") slope_raster = so("slope","random","in_memory") slope.save(slope_raster) return { "flow_direction_raster": Raster(flow_direction_raster), "slope_raster": Raster(slope_raster), }
4563e4ccd6695865c05c7a945dcc6244fb8af012
3,652,438
from typing import Optional def from_error_details(error: str, message: str, stacktrace: Optional[str]) -> BidiException: """Create specific WebDriver BiDi exception class from error details. Defaults to ``UnknownErrorException`` if `error` is unknown. """ cls = get(error) return cls(error, message, stacktrace)
238566bcf1092b685deebcadcf60c1905e585cb9
3,652,439
def tangential_proj(u, n): """ See for instance: https://link.springer.com/content/pdf/10.1023/A:1022235512626.pdf """ return (ufl.Identity(u.ufl_shape[0]) - ufl.outer(n, n)) * u
92c8eafa222418221b2fb0e1b242dbd76696407d
3,652,440
def _RemoveEdges(tris, match): """tris is list of triangles. er is as returned from _MaxMatch or _GreedyMatch. Return list of (A,D,B,C) resulting from deleting edge (A,B) causing a merge of two triangles; append to that list the remaining unmatched triangles.""" ans = [] triset = set(tris) while len(match) > 0: (_, e, tl, tr) = match.pop() (a, b) = e if tl in triset: triset.remove(tl) if tr in triset: triset.remove(tr) c = _OtherVert(tl, a, b) d = _OtherVert(tr, a, b) if c is None or d is None: continue ans.append((a, d, b, c)) return ans + list(triset)
d2415f7275652254ca87a7621e483a29816a8083
3,652,441
def get_course_authoring_url(course_locator): """ Gets course authoring microfrontend URL """ return configuration_helpers.get_value_for_org( course_locator.org, 'COURSE_AUTHORING_MICROFRONTEND_URL', settings.COURSE_AUTHORING_MICROFRONTEND_URL )
cea917ca211be1fdd1b4cf028652101392fd80ab
3,652,442
def sumDwellStateSub(params): """Threaded, sums dwell times with 1 day seeing no change & accounting for fractional days""" (dfIn,dwellTime,weight) = params dfOut = dfIn.copy(deep=True) while dwellTime > 1: if dwellTime > 2: increment = 1 else: increment = dwellTime-1 dfOut += dfShift(dfIn,1) * increment dwellTime += -1 return dfOut * weight
47ab530bfad9a321bf349e7542f279aae0958a9b
3,652,443
def launch_attacker_view(): """ Accepts a JSON payload with the following structure: { "target": "nlb-something.fqdn.com", "attacker": "1.2.3.4" } If the payload parses correctly, then launch a reverse shell listener using pexpect.spawn then spawn the auto-sploit.sh tool and enter the target and attacker info again using pexpect :return: Simple String response for now """ managed_instances = get_managed_instances() if request.method == 'GET': return render_template('routing/attacker_view.html', log_group=log_group, attacker_ip=attacker_ip, managed_instances=managed_instances, gd_events_of_interest=gd_events_of_interest, target_ip=target_ip) if request.method == 'POST': logger.info('Attacker is {} and Victim is {}'.format(attacker_ip, target_ip)) print('Attacker is {} and Victim is {}'.format(attacker_ip, target_ip)) if target_ip == "" or attacker_ip == "": logger.info('Incorrect Json format!') print(request.payload) res = make_response(jsonify( { "result": "error", "message": "ERROR - Incorrect Json format" }), 200) res.headers['Content-type'] = 'application/json' return res # Run auto_sploit.sh _launch_listener() logger.info('launching listener process') # # Create the payload from the attacker source ip input create_payload() # Run the exploit jenkins_cli_url = 'http://' + target_ip + ':80/cli' # # Get an initial session id with download session = exploit_get_sessionid(jenkins_cli_url) # if session: # Try and upload payload if upload_chunked(jenkins_cli_url, session, "asdf"): logger.info('Exploit_launched_ok') res = make_response(jsonify( { "result": "success", "message": "SUCCESS - auto-sploit launched!" }), 200) res.headers['Content-type'] = 'application/json' return res else: logger.info('Failed to launch exploit') res = make_response(jsonify( { "result": "error", "message": "ERROR - Unable to run exploit" }), 200) res.headers['Content-type'] = 'application/json' return res
2c987a2b552fa5cfc6e85240c71d496fe43785c3
3,652,444
import copy def stretch(alignment, factor): """Time-stretch the alignment by a constant factor""" # Get phoneme durations durations = [factor * p.duration() for p in alignment.phonemes()] alignment = copy.deepcopy(alignment) alignment.update(durations=durations) return alignment
1ea58c32509365d503379df616edd00718cfca19
3,652,445
import time import torch import sys def train(epoch, train_loader, model, contrast, criterion_l, criterion_ab, optimizer, opt): """ one epoch training """ model.train() contrast.train() batch_time = AverageMeter() data_time = AverageMeter() losses = AverageMeter() l_loss_meter = AverageMeter() ab_loss_meter = AverageMeter() l_prob_meter = AverageMeter() ab_prob_meter = AverageMeter() end = time.time() for idx, (inputs, index) in enumerate(train_loader): data_time.update(time.time() - end) # l, ab = inputs['rgb'], inputs['rgb'] l, ab = inputs['rgb'], inputs['dep'] label = inputs['label'] bsz = l.size(0) l = l.float() ab = ab.float() if torch.cuda.is_available(): index = index.cuda() l = l.cuda() ab = ab.cuda() # ===================forward===================== feat_l, feat_ab = model(l, ab) # [bs, 128] # print (feat_l.size()) # print (feat_ab.size()) out_l, out_ab = contrast(feat_l, feat_ab, index) l_loss = criterion_l(out_l) ab_loss = criterion_ab(out_ab) l_prob = out_l[:, 0].mean() ab_prob = out_ab[:, 0].mean() loss = l_loss + ab_loss # ===================backward===================== optimizer.zero_grad() if opt.amp: with amp.scale_loss(loss, optimizer) as scaled_loss: scaled_loss.backward() else: loss.backward() # torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1e-4, norm_type=2.0) optimizer.step() # ===================meters===================== losses.update(loss.item(), bsz) l_loss_meter.update(l_loss.item(), bsz) l_prob_meter.update(l_prob.item(), bsz) ab_loss_meter.update(ab_loss.item(), bsz) ab_prob_meter.update(ab_prob.item(), bsz) torch.cuda.synchronize() batch_time.update(time.time() - end) end = time.time() # print info if (idx + 1) % opt.print_freq == 0: print('Train: [{0}][{1}/{2}]\t' # 'BT {batch_time.val:.3f} ({batch_time.avg:.3f})\t' # 'DT {data_time.val:.3f} ({data_time.avg:.3f})\t' 'loss {loss.val:.3f} ({loss.avg:.3f})\t' 'l_p {lprobs.val:.3f} ({lprobs.avg:.3f})\t' 'ab_p {abprobs.val:.3f} ({abprobs.avg:.3f})'.format( epoch, idx + 1, len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses, lprobs=l_prob_meter, abprobs=ab_prob_meter)) # print(out_l.shape) sys.stdout.flush() return l_loss_meter.avg, l_prob_meter.avg, ab_loss_meter.avg, ab_prob_meter.avg
8c1b5bc514f4013939b6403fe5c9860288492a8b
3,652,446
import itertools import sys def create_issue_digraph(epics_stories): """Return a graph representation of all issues. Blocking dependencies are modelled as graph edges. """ log.info('creating graph...') graph = nx.DiGraph() for epic, stories in epics_stories.items(): for issue in stories: graph.add_node(issue.id, issue=issue, epic=epic) for issue in itertools.chain(*epics_stories.values()): for target_issue_id in get_blocked_keys(issue): if target_issue_id not in graph.nodes: log.warning( f'issue {issue.key} blocks unknown issue {target_issue_id}') continue graph.add_edge(issue.id, target_issue_id) if not nx.is_directed_acyclic_graph(graph): log.error('graph has at least one cycle: {}'. format(nx.find_cycle(graph))) sys.exit(1) return graph
f497341846a030e4e9be3235191f812593518c73
3,652,447
import os def loadmesh(basedirMesh, ptcode=None, meshname=None, invertZ=True, fname=None): """ Load Mesh object, flip z and return Mesh meshname includes ctcode """ if fname is None: try: mesh = vv.meshRead(os.path.join(basedirMesh, ptcode, meshname)) except FileNotFoundError: mesh = vv.meshRead(os.path.join(basedirMesh, meshname)) else: try: mesh = vv.meshRead(os.path.join(basedirMesh, ptcode, fname)) except FileNotFoundError: mesh = vv.meshRead(os.path.join(basedirMesh, fname)) if invertZ == True: # z is negative, must be flipped to match dicom orientation CT data mesh._vertices[:, -1] *= -1 return mesh
f1940a07f8cb8949eb7cbbed822a4a57f400146d
3,652,448
from thrift_sasl import TSaslClientTransport from impala.sasl_compat import PureSASLClient import getpass def get_transport(socket, host, kerberos_service_name, auth_mechanism='NOSASL', user=None, password=None): """ Creates a new Thrift Transport using the specified auth_mechanism. Supported auth_mechanisms are: - None or 'NOSASL' - returns simple buffered transport (default) - 'PLAIN' - returns a SASL transport with the PLAIN mechanism - 'GSSAPI' - returns a SASL transport with the GSSAPI mechanism """ log.debug('get_transport: socket=%s host=%s kerberos_service_name=%s ' 'auth_mechanism=%s user=%s password=fuggetaboutit', socket, host, kerberos_service_name, auth_mechanism, user) if auth_mechanism == 'NOSASL': return TBufferedTransport(socket) # Set defaults for PLAIN SASL / LDAP connections. if auth_mechanism in ['LDAP', 'PLAIN']: if user is None: user = getpass.getuser() log.debug('get_transport: user=%s', user) if password is None: if auth_mechanism == 'LDAP': password = '' else: # PLAIN always requires a password for HS2. password = 'password' log.debug('get_transport: password=%s', password) auth_mechanism = 'PLAIN' # sasl doesn't know mechanism LDAP # Initializes a sasl client try: import sasl # pylint: disable=import-error def sasl_factory(): sasl_client = sasl.Client() sasl_client.setAttr('host', host) sasl_client.setAttr('service', kerberos_service_name) if auth_mechanism.upper() in ['PLAIN', 'LDAP']: sasl_client.setAttr('username', user) sasl_client.setAttr('password', password) sasl_client.init() return sasl_client except ImportError: log.warn("Unable to import 'sasl'. Fallback to 'puresasl'.") def sasl_factory(): return PureSASLClient(host, username=user, password=password, service=kerberos_service_name) return TSaslClientTransport(sasl_factory, auth_mechanism, socket)
71e7763066eaf5234b767101930505077954939f
3,652,449
def _read_node( data, pos, md_total ): """ 2 3 0 3 10 11 12 1 1 0 1 99 2 1 1 2 The quantity of child nodes. The quantity of metadata entries. Zero or more child nodes (as specified in the header). """ child_count = data[ pos ] pos += 1 md_count = data[ pos ] pos += 1 for i in range( child_count ): pos, md_total = _read_node( data, pos, md_total ) for m in range( md_count ): md_total += data[ pos ] pos += 1 return ( pos, md_total )
768036031ab75b532d667769477f8d3144129ac8
3,652,450
def _large_flag_fit(x, yDat, yFit, initz, speciesDict, minSize, errBound): """ Attempts to more robustly fit saturated lyman alpha regions that have not converged to satisfactory fits using the standard tools. Uses a preselected sample of a wide range of initial parameter guesses designed to fit saturated lines (see get_test_lines). **Parameters** :x: (N) ndarray array of wavelength :ydat: (N) ndarray array of desired flux profile to be fitted for the wavelength space given by x. Same size as x. :yFit: (N) ndarray array of flux profile fitted for the wavelength space given by x already. Same size as x. :initz: float redshift to try putting first line at (maximum absorption for region) :speciesDict: dictionary dictionary containing all relevant parameters needed to create an absorption line of a given species (f,Gamma,lambda0) as well as max and min values for parameters to be fit :minsize: float minimum absorption allowed for a line to still count as a line given in normalized flux (ie: for minSize=.9, only lines with minimum flux less than .9 will be fitted) :errbound: float maximum total error allowed for an acceptable fit **Returns** :bestP: (3,) ndarray array of best parameters if a good enough fit is found in the form [[N1,b1,z1], [N2,b2,z2],...] """ #Set up some initial line guesses lineTests = _get_test_lines(initz) #Keep track of the lowest achieved error bestError = 1000 #Iterate through test line guesses for initLines in lineTests: if initLines[1,0]==0: initLines = np.delete(initLines,1,axis=0) #Do fitting with initLines as first guess linesP,flag=_complex_fit(x,yDat,yFit,initz, minSize,errBound,speciesDict,initP=initLines) #Find error of last fit yNewFit=_gen_flux_lines(x,linesP,speciesDict) dif = yFit*yNewFit-yDat errSq=sum(dif**2) #If error lower, keep track of the lines used to make that fit if errSq < bestError: bestError = errSq bestP = linesP if bestError>10*errBound*len(x): return [] else: return bestP
c065e9e1500977dfa1a522ebd238d2e71e188c6a
3,652,451
from typing import Type def mse_large_arrays_masked(dataA: 'LargeArray', dataB: 'LargeArray', mask: 'LargeArray', dtype: Type, batchSizeFlat=1e8): """ Compute MSE between two HDF datasets, considering elements where the mask is set to true (one). Computation is performed in batches to decrease memory requirements. """ if dataA.shape != dataB.shape or dataA.shape != mask.shape: raise ValueError("Arguments should have equal shapes, {}, {} and {} given." .format(dataA.shape, dataB.shape, mask.shape)) sum = 0.0 count = 0 for batchStart, batchEnd in get_batch_indices(dataA.shape, dtype, batchSizeFlat): batchMask = mask[batchStart:batchEnd] diff = batchMask * (dataA[batchStart:batchEnd].astype(dtype) - dataB[batchStart:batchEnd].astype(dtype)) square = np.square(diff) nonzeroNumber = np.count_nonzero(batchMask) sum += np.sum(square) count += nonzeroNumber return sum / count if count > 0 else float('nan')
27636fc32d208d544b0b2f9790015e6f3d86a69d
3,652,452
import copy def xml_elem_or_str_to_text(elem_or_xmlstr, default_return=""): """ Return string with all tags stripped out from either etree element or xml marked up string If string is empty or None, return the default_return >>> root = etree.fromstring(test_xml) >>> xml_elem_or_str_to_text(test_xml, None)[0:100] 'this is just authoring test stuff\\n whatever is in the abstract\\n \\n ' >>> xml_elem_or_str_to_text(root, None)[0:100] 'this is just authoring test stuff\\n whatever is in the abstract\\n \\n ' >>> root = etree.fromstring("<myxml>this <b>is <i>really</i><empty/></b> xml.</myxml>", None) #mixed content element >>> xml_elem_or_str_to_text(root, None) 'this is really xml.' >>> isinstance(xml_elem_or_str_to_text(root, None), str) # make sure it's string True >>> xml_elem_or_str_to_text(xml_xpath_return_textsingleton(root, "pxxx", ""), None) """ ret_val = default_return if elem_or_xmlstr is None or elem_or_xmlstr == "": ret_val = default_return elif isinstance(elem_or_xmlstr, lxml.etree._ElementUnicodeResult): ret_val = "%s" % elem_or_xmlstr # convert to string # just in case the caller sent a string. else: try: if isinstance(elem_or_xmlstr, str): parser = lxml.etree.XMLParser(encoding='utf-8', recover=True) elem = etree.fromstring(elem_or_xmlstr.encode("utf8"), parser) else: elem = copy.copy(elem_or_xmlstr) # etree will otherwise change calling parm elem_or_xmlstr when stripping except Exception as err: logger.error(err) ret_val = default_return try: etree.strip_tags(elem, '*') inner_text = elem.text if inner_text: ret_val = inner_text.strip() else: ret_val = default_return except Exception as err: logger.error("xmlElemOrStrToText: ", err) ret_val = default_return if ret_val == "": ret_val = default_return return ret_val
1e13c74d3d7d69fdd1ce8011384e1ee564f366f1
3,652,453
def sequence_equals(sequence1, sequence2): """ Inspired by django's self.assertSequenceEquals Useful for comparing lists with querysets and similar situations where simple == fails because of different type. """ assert len(sequence1) == len(sequence2), (len(sequence1), len(sequence2)) for item_from_s1, item_from_s2 in zip(sequence1, sequence2): assert item_from_s1 == item_from_s2, (item_from_s1, item_from_s2) return True
38016a347caf79458bb2a872d0fd80d6b813ba33
3,652,454
def statistical_features(ds, exclude_col_names: list = [], feature_names=['mean', 'median', 'stddev', 'variance', 'max', 'min', 'skew', 'kurt', 'sqr']): """ Compute statistical features. Args: ds (DataStream): Windowed/grouped DataStream object exclude_col_names list(str): name of the columns on which features should not be computed feature_names list(str): names of the features. Supported features are ['mean', 'median', 'stddev', 'variance', 'max', 'min', 'skew', 'kurt', 'sqr', 'zero_cross_rate' Returns: DataStream object with all the existing data columns and FFT features """ exclude_col_names.extend(["timestamp", "localtime", "user", "version"]) data = ds._data._df.drop(*exclude_col_names) df_column_names = data.columns basic_schema = StructType([ StructField("timestamp", TimestampType()), StructField("localtime", TimestampType()), StructField("user", StringType()), StructField("version", IntegerType()), StructField("start_time", TimestampType()), StructField("end_time", TimestampType()) ]) features_list = [] for cn in df_column_names: for sf in feature_names: features_list.append(StructField(cn + "_" + sf, FloatType(), True)) features_schema = StructType(basic_schema.fields + features_list) def calculate_zero_cross_rate(series): """ How often the signal changes sign (+/-) """ series_mean = np.mean(series) series = [v - series_mean for v in series] zero_cross_count = (np.diff(np.sign(series)) != 0).sum() return zero_cross_count / len(series) def get_sqr(series): sqr = np.mean([v * v for v in series]) return sqr @pandas_udf(features_schema, PandasUDFType.GROUPED_MAP) def get_stats_features_udf(df): results = [] timestamp = df['timestamp'].iloc[0] localtime = df['localtime'].iloc[0] user = df['user'].iloc[0] version = df['version'].iloc[0] start_time = timestamp end_time = df['timestamp'].iloc[-1] df.drop(exclude_col_names, axis=1, inplace=True) if "mean" in feature_names: df_mean = df.mean() df_mean.index += '_mean' results.append(df_mean) if "median" in feature_names: df_median = df.median() df_median.index += '_median' results.append(df_median) if "stddev" in feature_names: df_stddev = df.std() df_stddev.index += '_stddev' results.append(df_stddev) if "variance" in feature_names: df_var = df.var() df_var.index += '_variance' results.append(df_var) if "max" in feature_names: df_max = df.max() df_max.index += '_max' results.append(df_max) if "min" in feature_names: df_min = df.min() df_min.index += '_min' results.append(df_min) if "skew" in feature_names: df_skew = df.skew() df_skew.index += '_skew' results.append(df_skew) if "kurt" in feature_names: df_kurt = df.kurt() df_kurt.index += '_kurt' results.append(df_kurt) if "sqr" in feature_names: df_sqr = df.apply(get_sqr) df_sqr.index += '_sqr' results.append(df_sqr) output = pd.DataFrame(pd.concat(results)).T basic_df = pd.DataFrame([[timestamp, localtime, user, int(version), start_time, end_time]], columns=['timestamp', 'localtime', 'user', 'version', 'start_time', 'end_time']) return basic_df.assign(**output) # check if datastream object contains grouped type of DataFrame if not isinstance(ds._data, GroupedData): raise Exception( "DataStream object is not grouped data type. Please use 'window' operation on datastream object before running this algorithm") data = ds._data.apply(get_stats_features_udf) return DataStream(data=data, metadata=Metadata())
544b32b3f909c8f98ae18ae43006719105627a85
3,652,455
def second_order_difference(t, y): """ Calculate the second order difference. Args: t: ndarray, the list of the three independent variables y: ndarray, three values of the function at every t Returns: double: the second order difference of given points """ # claculate the first order difference first_order_difference = (y[1:] - y[:-1]) / (t[1:] - t[:-1]) return (first_order_difference[1] - first_order_difference[0]) / (t[2] - t[0])
40e37d2b34104772966afc34e41c1ebc742c9adf
3,652,456
def timeDelay( gpsTime, rightAscension, declination, unit, det1, det2 ): """ timeDelay( gpsTime, rightAscension, declination, unit, det1, det2 ) Calculates the time delay in seconds between the detectors 'det1' and 'det2' (e.g. 'H1') for a sky location at (rightAscension and declination) which must be given in certain units ('radians' or 'degree'). The time is passes as GPS time. A positive time delay means the GW arrives first at 'det2', then at 'det1'. Example: antenna.timeDelay( 877320548.000, 355.084,31.757, 'degree','H1','L1') 0.0011604683260994519 Given these values, the signal arrives first at detector L1, and 1.16 ms later at H2 """ # check the input arguments if unit =='radians': ra_rad = rightAscension de_rad = declination elif unit =='degree': ra_rad = rightAscension/180.0*pi de_rad = declination/180.0*pi else: raise ValueError("Unknown unit %s" % unit) # check input values if ra_rad<0.0 or ra_rad> 2*pi: raise ValueError( "ERROR. right ascension=%f "\ "not within reasonable range."\ % (rightAscension)) if de_rad<-pi or de_rad> pi: raise ValueError( "ERROR. declination=%f not within reasonable range."\ % (declination)) if det1 == det2: return 0.0 gps = lal.LIGOTimeGPS( gpsTime ) x1 = lalsimulation.DetectorPrefixToLALDetector(det1).location x2 = lalsimulation.DetectorPrefixToLALDetector(det2).location timedelay = lal.ArrivalTimeDiff(list(x1), list(x2), ra_rad, de_rad, gps) return timedelay
eb0f444ad2a2be0cf10d62fdbe8b41c8d924c798
3,652,457
def RngBinStr(n): """ Takes a int which represents the length of the final binary number. Returns a string which represents a number in binary where each char was randomly generated and has lenght n. """ num = "" for i in range(n): if rng.random() < 0.5: num += "0" else: num += "1" return num
cf063532425b51243f3ba95f90df892bda121363
3,652,458
def get_bdbox_from_heatmap(heatmap, threshold=0.2, smooth_radius=20): """ Function to extract bounding boxes of objects in heatmap Input : Heatmap : matrix extracted with GradCAM. threshold : value defining the values we consider , increasing it increases the size of bounding boxes. smooth_radius : radius on which each pixel is blurred. Output : returned_objects : List of bounding boxes, N_objects * [ xmin, xmax, ymin, ymax, width, height ] """ # If heatmap is all zeros i initialize a default bounding box which wraps entire image xmin = 0 xmax = heatmap.shape[1] ymin = 0 ymax = heatmap.shape[0] width = xmax-xmin height = ymax-ymin returned_objects = [] # Count if there is any "hot" value on the heatmap count = (heatmap > threshold).sum() # Blur the image to have continuous regions heatmap = ndimage.uniform_filter(heatmap, smooth_radius) # Threshold the heatmap with 1 for values > threshold and 0 else thresholded = np.where(heatmap > threshold, 1, 0) # Apply morphological filter to fill potential holes in the heatmap thresholded = ndimage.morphology.binary_fill_holes(thresholded) # Detect all independant objects in the image labeled_image, num_features = ndimage.label(thresholded) objects = ndimage.measurements.find_objects(labeled_image) # We loop in each object ( if any is detected ) and append it to a global list if count > 0: for obj in objects: x = obj[1] y = obj[0] xmin = x.start xmax = x.stop ymin = y.start ymax = y.stop width = xmax-xmin height = ymax-ymin returned_objects.append([xmin, xmax, ymin, ymax, width, height]) else: returned_objects.append([xmin, xmax, ymin, ymax, width, height]) return returned_objects
0a7397263cf2b8b238679f3cd54b8bcb67553387
3,652,459
def get_request(request_id, to_json=False, session=None): """ Get a request or raise a NoObject exception. :param request_id: The id of the request. :param to_json: return json format. :param session: The database session in use. :raises NoObject: If no request is founded. :returns: Request. """ try: query = session.query(models.Request).with_hint(models.Request, "INDEX(REQUESTS REQUESTS_SCOPE_NAME_IDX)", 'oracle')\ .filter(models.Request.request_id == request_id) ret = query.first() if not ret: return None else: if to_json: return ret.to_dict_json() else: return ret.to_dict() except sqlalchemy.orm.exc.NoResultFound as error: raise exceptions.NoObject('request request_id: %s cannot be found: %s' % (request_id, error))
41d34057b859a88818866a03392ec6f96d2b4983
3,652,460
def gen_multi_correlated(N, n, c_mat, p_arr, use_zscc=False, verify=False, test_sat=False, pack_output=True, print_stat=False): """Generate a set of bitstreams that are correlated according to the supplied correlation matrix""" #Test if the desired parameters are satisfiable sat_result = corr_sat(N, n, c_mat, p_arr, for_gen=True, print_stat=print_stat, use_zscc=use_zscc) if not sat_result: if print_stat: print("SCC MATRIX NOT SATISFIABLE") return test_sat #Don't fail the test if we were intending to check correlation satisfiability sat = sat_result[0] if not test_sat and not sat: if print_stat: print("SCC MATRIX NOT SATISFIABLE") return False Dij = sat_result[1] N_arr = sat_result[2] if print_stat: print(c_mat) print(p_arr) #Perform the generation bs_arr = np.zeros((n,N), dtype=np.uint8) def gmc_rec(i): """Recursive portion of gen_multi_correlated""" nonlocal N, n, N_arr, Dij, bs_arr if i == n-1: sentinel = 's' last_cand = next(next_cand(N, N_arr[i], Dij, bs_arr, i), sentinel) if last_cand is not sentinel: bs_arr[i, :] = last_cand return True else: return False else: for cand in next_cand(N, N_arr[i], Dij, bs_arr, i): bs_arr[i, :] = cand if gmc_rec(i+1): return True return False gmc_result = gmc_rec(0) if not test_sat and not gmc_result: if print_stat: print("GEN_MULTI_CORRELATED FAILED: Couldn't find a valid solution") return False if test_sat: if gmc_result != sat: print("Generation result: '{}' did not match scc sat result: '{}'. Corr mat: \n{}. p arr: {}" \ .format(gmc_result, sat, c_mat, p_arr)) return False else: print("SCC SAT TEST PASS. Corr mat: \n{}. p arr: {}".format(c_mat, p_arr)) #Verify the generation if print_stat: print(bs_arr) if verify and gmc_result: cmat_actual = bs.get_corr_mat(bs_arr, bs_len=N, use_zscc=use_zscc) if np.any(np.abs(cmat_actual - c_mat) > 1e-3): if print_stat: print("GEN_MULTI_CORRELATED FAILED: Resulting SCC Matrix doesn't match: \n {} \n should be \n {}" .format(cmat_actual, c_mat)) return False for idx, bs_i in enumerate(bs_arr): p_actual = bs.bs_mean(np.packbits(bs_i), bs_len=N) if np.any(np.abs(p_actual - p_arr[idx]) > 1e-3): if print_stat: print("GEN_MULTI_CORRELATED FAILED: Resulting probability is incorrect: {} (should be {})".format(p_actual, p_arr[idx])) return False if print_stat: print("GEN_MULTI_CORRELATED PASS") if pack_output: return True, np.packbits(bs_arr, axis=1) else: return True, bs_arr
0b1cf206e92363910877b0202b9fb94d377358a3
3,652,461
def rxzero_traj_eval_grad(parms, t_idx): """ Analytical gradient for evaluated trajectory with respect to the log-normal parameters It is expected to boost the optimization performance when the parameters are high-dimensional... """ v_amp_array = np.array([rxzero_vel_amp_eval(parm, t_idx) for parm in parms]) phi_array = np.array([rxzero_normal_Phi_eval(parm, t_idx) for parm in parms]) v_amp_grad_array = np.array([np.vstack([rxzero_vel_amp_eval_grad(parm[0:4], t_idx).T, np.zeros((2, len(t_idx)))]).T for parm in parms]) phi_grad_array = np.array([rxzero_normal_Phi_eval_grad(parm, t_idx) for parm in parms]) v_x_grad = np.concatenate([(v_amp_grad_array[parm_idx].T * np.cos(phi_array[parm_idx]) - v_amp_array[parm_idx] * np.sin(phi_array[parm_idx]) * phi_grad_array[parm_idx].T).T for parm_idx in range(len(parms))], axis=1) v_y_grad = np.concatenate([(v_amp_grad_array[parm_idx].T * np.sin(phi_array[parm_idx]) + v_amp_array[parm_idx] * np.cos(phi_array[parm_idx]) * phi_grad_array[parm_idx].T).T for parm_idx in range(len(parms))], axis=1) dt = t_idx[1] - t_idx[0] pos_x_grad = np.cumsum(v_x_grad, axis=0) * dt pos_y_grad = np.cumsum(v_y_grad, axis=0) * dt return np.array([pos_x_grad, pos_y_grad]), np.array([v_x_grad, v_y_grad])
47aa04aa2096f472dd0f5612c95903fd638cb1d0
3,652,462
import traceback def exec_geoprocessing_model(): """算法模型试运行测试 根据算法模型的guid标识,算法模型的输入参数,运行算法模型 --- tags: - system_manage_api/geoprocessing_model parameters: - in: string name: guid type: string required: true description: 流程模型的guid - in: array name: param type: array required: true description: 算法模型的初始化参数 responses: 200: description: 算法模型运行的结果,结果数组 schema: properties: geoprocessing_model_result: type: object description: 结果数组,[{"function_name":"","value":""},{},...] 500: description: 服务运行错误,异常信息 schema: properties: errMessage: type: string description: 异常信息,包括异常信息的类型 traceMessage: type: string description: 异常更加详细的信息,包括异常的位置 """ try: # exe_functinons_param = {} # exe_functinons_already = {} # exe_functinons_result = {} # param_dic = {x["guid"]: x["default_value"] for x in list(request.json.get('param', []))} # #根据算法模型的guid,从数据库中获取所有的函数信息 # #包括模块、名函数名、参数名称等 # pg_helper = PgHelper() # records = pg_helper.query_datatable( # '''select module_name,function_name,parameter_name,guid, # from_module_name,from_function_name,from_name # from gy_geoprocessing_model_node # where geoprocessing_model_guid=%s''', (request.json.get('guid', None),)) # for x in records: # if not (x["module_name"], x["function_name"]) in exe_functinons_param: # exe_functinons_param[(x["module_name"], x["function_name"])] = {} # exe_functinons_already[(x["module_name"], x["function_name"])] = False # if x["guid"] in param_dic: # exe_functinons_param[(x["module_name"], x["function_name"])][x["parameter_name"]] = param_dic[x["guid"]] # else: # exe_functinons_param[(x["module_name"], x["function_name"])][x["parameter_name"]] = None # exe_functinons_result[(x["from_module_name"], x["from_function_name"], x["from_name"])] = (x["module_name"], x["function_name"], # x["parameter_name"]) # flag_loop = True # latest_result = {} # while flag_loop: # flag_loop = False # #循环每一个函数 # for key_f in exe_functinons_param: # #函数已经运行过 # if exe_functinons_already[key_f]: # continue # #如果一个函数的所有参数值都不是None,在运行所有的函数 # func_exeable = True # for key_p in exe_functinons_param[key_f]: # if exe_functinons_param[key_f][key_p] is None: # func_exeable = False # flag_loop = True # break # #运行函数 # if func_exeable: # latest_result = {} # exe_functinons_already[key_f] = True # temp_result = geoprocessing_algorithm.__dict__[key_f[0]].__dict__[key_f[1]](**exe_functinons_param[key_f]) # #将结果赋给相应的参数 # for key_re in temp_result: # if key_f + (key_re,) in exe_functinons_result: # exe_functinons_param[exe_functinons_result[key_f + # (key_re,)][:-1]][exe_functinons_result[key_f + # (key_re,)][-1]] = temp_result[key_re] # latest_result[key_f] = temp_result # #将最新一次的运行结果进行解析,返回前段 # ret_string = "" # for key_f in latest_result: # for x in geoprocessing_algorithm.__dict__[key_f[0]].__dict__[key_f[1]].__annotations__["return"]: # if x["name_en"] in latest_result[key_f]: # ret_string = ret_string + x["name_zh_cn"] + ":" + str(latest_result[key_f][x["name_en"]]) + "\n" # return jsonify({"geoprocessing_model_result": ret_string}), 200 return jsonify({}), 200 except Exception as exception: return jsonify({"errMessage": repr(exception), "traceMessage": traceback.format_exc()}), 500
8cfcc56117747c78d8b2c4fc10dc29fa8115aa67
3,652,463
import requests def perform_extra_url_query(url): """Performs a request to the URL supplied Arguments: url {string} -- A URL directing to another page of results from the NASA API Returns: Response object -- The response received from the NASA API """ response = requests.request("GET", url) check_query_was_successful(response) return response
7d5fe2d6467d90e1f7e85d2fc51187a36f62305d
3,652,464
from org.optaplanner.optapy import PythonWrapperGenerator # noqa from org.optaplanner.core.api.domain.solution import \ def problem_fact_property(fact_type: Type) -> Callable[[Callable[[], List]], Callable[[], List]]: """Specifies that a property on a @planning_solution class is a problem fact. A problem fact must not change during solving (except through a ProblemFactChange event). The constraints in a ConstraintProvider rely on problem facts for ConstraintFactory.from(Class). Do not annotate planning entities as problem facts: they are automatically available as facts for ConstraintFactory.from(Class). """ def problem_fact_property_function_mapper(getter_function: Callable[[], Any]): ensure_init() ProblemFactProperty as JavaProblemFactProperty getter_function.__optapy_return = get_class(fact_type) getter_function.__optaplannerPlanningEntityCollectionProperty = { 'annotationType': JavaProblemFactProperty } return getter_function return problem_fact_property_function_mapper
068cdbc1a8dab95b5a742740195b4fdaf595de2a
3,652,465
def _load_method_arguments(name, argtypes, args): """Preload argument values to avoid freeing any intermediate data.""" if not argtypes: return args if len(args) != len(argtypes): raise ValueError(f"{name}: Arguments length does not match argtypes length") return [ arg if hasattr(argtype, "_type_") else argtype.from_param(arg) for (arg, argtype) in zip(args, argtypes) ]
0eb6a16c2e4c1cd46a114923f81e93af331c3d6e
3,652,466
import json def crash_document_add(key=None): """ POST: api/vX/crash/<application_key> add a crash document by web service """ if 'Content-Type' not in request.headers or request.headers['Content-Type'].find('multipart/form-data') < 0: return jsonify({ 'success': False, 'message': 'input error' }) reports = request.files.getlist('reports') if reports: ds = DocumentService() for report in reports: documents = json.loads(report.read()) if not isinstance(documents, list): documents = [documents] for document in documents: result, msg = ds.add_document(key, document, DocumentModel.crash) if not result: # error return abort(417, {'message': msg}) # success return jsonify({'success': True, 'message': None}) # no reports return abort(400, {'message': 'input error'})
669c30141d5fb50128b3c60577433938daec5a2a
3,652,467
def log_data(model, action, before, after, instance): """Logs mutation signals for Favourite and Category models Args: model(str): the target class of the audit-log: favourite or category action(str): the type of mutation to be logged: create, update, delete before(dict): the previous value of the data mutated after(dict): the new value of the data mutated instance(object): the favourite or category instance being mutated Returns: object: instance of AuditLog created for the mutation """ log = { 'model': model, 'action': action, 'date': timezone.now(), 'before': before, 'after': after, 'resource_id': instance.id } return AuditLog.objects.create(**log)
f23ef8d2a759130ac55d3dc55f4497099776414f
3,652,468
import requests def download(url, local_filename, chunk_size=1024 * 10): """Download `url` into `local_filename'. :param url: The URL to download from. :type url: str :param local_filename: The local filename to save into. :type local_filename: str :param chunk_size: The size to download chunks in bytes (10Kb by default). :type chunk_size: int :rtype: str :returns: The path saved to. """ response = requests.get(url) with open(local_filename, 'wb') as fp: for chunk in response.iter_content(chunk_size=chunk_size): if chunk: fp.write(chunk) return fp.name
0a86b8600e72e349a4e1344d2ce1ad2bb00b889d
3,652,469
import glob import os def main(args=None): """Command line interface. :param list args: command line options (defaults to sys.argv) :returns: exit code :rtype: int """ parser = ArgumentParser( prog='baseline', description='Overwrite script with baseline update.') parser.add_argument( 'path', nargs='*', help='module or directory path') parser.add_argument( '-w', '--walk', action='store_true', help='recursively walk directories') args = parser.parse_args(args) paths = args.path or ['.'] paths = [path for pattern in paths for path in glob(pattern)] if args.walk: for dirpath in (p for p in paths if os.path.isdir(p)): for root, _dirs, files in os.walk(dirpath): paths += (os.path.join(root, filename) for filename in files) else: for dirpath in (p for p in paths if os.path.isdir(p)): paths += (os.path.join(dirpath, pth) for pth in os.listdir(dirpath)) update_paths = [ os.path.abspath(p) for p in paths if p.lower().endswith(UPDATE_EXT)] if update_paths: script_paths = [pth[:-len(UPDATE_EXT)] + '.py' for pth in update_paths] print('Found updates for:') for path in script_paths: print(' ' + os.path.relpath(path)) print() try: input('Hit [ENTER] to update, [Ctrl-C] to cancel ') except KeyboardInterrupt: print() print('Update canceled.') else: print() for script_path, update_path in zip(script_paths, update_paths): with open(update_path) as update: new_content = update.read() with open(script_path, 'w') as script: script.write(new_content) os.remove(update_path) print( os.path.relpath(update_path) + ' -> ' + os.path.relpath(script_path)) return 0
8af697724070557fbf0df669ad9b324e51e19a39
3,652,470
def tokenize(data, tok="space", lang="en"): """Tokenize text data. There are 5 tokenizers supported: - "space": split along whitespaces - "char": split in characters - "13a": Official WMT tokenization - "zh": Chinese tokenization (See ``sacrebleu`` doc) - "moses": Moses tokenizer (you can specify lthe language). Uses the `sacremoses <https://github.com/alvations/sacremoses>`_ Args: data (list, str): String or list (of lists...) of strings. tok (str, optional): Tokenization. Defaults to "space". lang (str, optional): Language (only useful for the moses tokenizer). Defaults to "en". Returns: list, str: Tokenized data """ if tok is "space": def tokenizer(x): return x.split() elif tok is "char": def tokenizer(x): return list(x) elif tok is "13a": def tokenizer(x): return sacrebleu.tokenize_13a(x).split(" ") elif tok is "zh": def tokenizer(x): return sacrebleu.tokenize_zh(x).split(" ") elif tok is "moses": moses_tok = sacremoses.MosesTokenizer(lang=lang) def tokenizer(x): return moses_tok.tokenize(x) else: raise ValueError(f"Unknown tokenizer {tok}") return _tokenize(data, tokenizer)
0974edc3a4d66b90add101002fbcc1486c21e5ce
3,652,471
def ift2(x, dim=(-2, -1)): """ Process the inverse 2D fast fourier transform and swaps the axis to get correct results using ftAxis Parameters ---------- x: (ndarray) the array on which the FFT should be done dim: the axis (or a tuple of axes) over which is done the FFT (default is the last of the array) Returns ------- See Also -------- ftAxis, ftAxis_time, ift, ft2, ift2 """ assert isinstance(x, np.ndarray) if hasattr(dim, '__iter__'): for d in dim: if not isinstance(d, int): raise TypeError( 'elements in dim should be an integer specifying the array dimension over which to do the calculation') assert d <= len(x.shape) else: if not isinstance(dim, int): raise TypeError( 'elements in dim should be an integer specifying the array dimension over which to do the calculation') assert dim <= len(x.shape) out = np.fft.fftshift(np.fft.ifft2(np.fft.fftshift(x, axes=dim)), axes=dim) return out
50377bb81fa17c152f8b8053cdae1502dbc791ad
3,652,472
def chi2_test_independence(prediction_files: list, confidence_level: float): """Given a list of prediction files and a required confidence level, return whether the sentiment probability is independent on which prediction file it comes from. Returns True if the sentiment probability is independent of source.""" df = generate_sentiment_counts_multiple_files(prediction_files) observed = df[:-1].drop(columns='row_sum') expected = np.outer(df['row_sum'][:-1], df.loc['col_sum'][:-1]) / df.loc['col_sum']['row_sum'] expected = pd.DataFrame(expected) expected.columns = df.columns[:-1] expected.index = df.index[:-1] chi2_stats = ((observed - expected)**2 / expected).sum().sum() degs_of_freedom = len(observed) * len(observed.iloc[0]) critical_value = chi2.ppf(q=confidence_level, df=degs_of_freedom) p_value = 1 - chi2.cdf(x=chi2_stats, df=degs_of_freedom) LOGGER.info( f"chi2_stats = {chi2_stats}, critical_value = {critical_value}, p_value = {p_value:.10f}" ) return p_value > (1 - confidence_level)
870a91afa202b19398c620756492bd5297c4eb69
3,652,473
import os import yaml import shutil def fetch_all_device_paths(): """ Return all device paths inside worker nodes Returns: list : List containing all device paths """ path = os.path.join(constants.EXTERNAL_DIR, "device-by-id-ocp") clone_repo(constants.OCP_QE_DEVICEPATH_REPO, path) os.chdir(path) logger.info("Running script to fetch device paths...") run_cmd("ansible-playbook devices_by_id.yml") with open("local-storage-block.yaml") as local_storage_block: local_block = yaml.load(local_storage_block, Loader=yaml.FullLoader) dev_paths = local_block["spec"]["storageClassDevices"][0]["devicePaths"] logger.info(f"All devices are {dev_paths}") os.chdir(constants.TOP_DIR) shutil.rmtree(path) return dev_paths
ff2086b2b17aa41af5d775b6007757bdab32ad3c
3,652,474
import os def align(fastq_file, pair_file, index_dir, names, align_dir, data): """Perform piped alignment of fastq input files, generating sorted, deduplicated BAM. """ umi_ext = "-cumi" if "umi_bam" in data else "" out_file = os.path.join(align_dir, "{0}-sort{1}.bam".format(dd.get_sample_name(data), umi_ext)) num_cores = data["config"]["algorithm"].get("num_cores", 1) rg_info = "rgid={rg} rgpl={pl} rgpu={pu} rgsm={sample}".format(**names) pair_file = pair_file if pair_file else "" final_file = None if data.get("align_split"): # BBMap does not accept input fastq streams raise ValueError("bbmap is not compatible with alignment splitting, set `align_split: false`") pair_arg = "in2=%s" % pair_file if pair_file else "" if not utils.file_exists(out_file) and (final_file is None or not utils.file_exists(final_file)): with postalign.tobam_cl(data, out_file, pair_file != "") as (tobam_cl, tx_out_file): if index_dir.endswith(("/ref", "/ref/")): index_dir = os.path.dirname(index_dir) # sam=1.3 required for compatibility with strelka2 cmd = ("bbmap.sh sam=1.3 mdtag=t {rg_info} path={index_dir} in1={fastq_file} " "{pair_arg} out=stdout.sam | ") do.run(cmd.format(**locals()) + tobam_cl, "bbmap alignment: %s" % dd.get_sample_name(data)) data["work_bam"] = out_file return data
0725dc73016e6b58af6948f7ca8611ab1c9819dd
3,652,475
import json async def insert(cls:"PhaazeDatabase", WebRequest:Request, DBReq:DBRequest) -> Response: """ Used to insert a new entry into a existing container """ # prepare request for a valid insert try: DBInsertRequest:InsertRequest = InsertRequest(DBReq) return await performInsert(cls, DBInsertRequest) except (MissingIntoField, InvalidContent, ContainerNotFound, ContainerBroken, SysLoadError, SysStoreError) as e: res = dict( code = e.code, status = e.status, msg = e.msg() ) return cls.response(status=e.code, body=json.dumps(res)) except Exception as ex: return await cls.criticalError(ex)
20772f847137422a1da227da38946c9b1a01106a
3,652,476
def eulerAngleXYZ(t123, unit=np.pi/180., dtype=np.float32): """ :: In [14]: eulerAngleXYZ([45,0,0]) Out[14]: array([[ 1. , 0. , 0. , 0. ], [-0. , 0.7071, 0.7071, 0. ], [ 0. , -0.7071, 0.7071, 0. ], [ 0. , 0. , 0. , 1. ]], dtype=float32) In [15]: eulerAngleXYZ([0,45,0]) Out[15]: array([[ 0.7071, 0. , -0.7071, 0. ], [-0. , 1. , 0. , 0. ], [ 0.7071, -0. , 0.7071, 0. ], [ 0. , 0. , 0. , 1. ]], dtype=float32) In [16]: eulerAngleXYZ([0,0,45]) Out[16]: array([[ 0.7071, 0.7071, 0. , 0. ], [-0.7071, 0.7071, 0. , 0. ], [ 0. , -0. , 1. , 0. ], [ 0. , 0. , 0. , 1. ]], dtype=float32) In [11]: extractEulerAnglesXYZ(eulerAngleXYZ([45,0,0])) Out[11]: array([ 45., 0., 0.], dtype=float32) In [12]: extractEulerAnglesXYZ(eulerAngleXYZ([0,45,0])) Out[12]: array([ 0., 45., -0.], dtype=float32) In [13]: extractEulerAnglesXYZ(eulerAngleXYZ([0,0,45])) Out[13]: array([ 0., 0., 45.], dtype=float32) https://github.com/g-truc/glm/blob/master/glm/gtx/euler_angles.inl :: template<typename T> GLM_FUNC_QUALIFIER mat<4, 4, T, defaultp> eulerAngleXYZ ( T const & t1, T const & t2, T const & t3 ) { T c1 = glm::cos(-t1); T c2 = glm::cos(-t2); T c3 = glm::cos(-t3); T s1 = glm::sin(-t1); T s2 = glm::sin(-t2); T s3 = glm::sin(-t3); mat<4, 4, T, defaultp> Result; Result[0][0] = c2 * c3; Result[0][1] =-c1 * s3 + s1 * s2 * c3; Result[0][2] = s1 * s3 + c1 * s2 * c3; Result[0][3] = static_cast<T>(0); Result[1][0] = c2 * s3; Result[1][1] = c1 * c3 + s1 * s2 * s3; Result[1][2] =-s1 * c3 + c1 * s2 * s3; Result[1][3] = static_cast<T>(0); Result[2][0] =-s2; Result[2][1] = s1 * c2; Result[2][2] = c1 * c2; Result[2][3] = static_cast<T>(0); Result[3][0] = static_cast<T>(0); Result[3][1] = static_cast<T>(0); Result[3][2] = static_cast<T>(0); Result[3][3] = static_cast<T>(1); return Result; } """ a = np.asarray(t123, dtype=dtype) a *= unit t1 = a[0] t2 = a[1] t3 = a[2] c1 = np.cos(-t1); c2 = np.cos(-t2); c3 = np.cos(-t3); s1 = np.sin(-t1); s2 = np.sin(-t2); s3 = np.sin(-t3); Result = np.eye(4, dtype=dtype); Result[0][0] = c2 * c3; Result[0][1] =-c1 * s3 + s1 * s2 * c3; Result[0][2] = s1 * s3 + c1 * s2 * c3; Result[0][3] = 0; Result[1][0] = c2 * s3; Result[1][1] = c1 * c3 + s1 * s2 * s3; Result[1][2] =-s1 * c3 + c1 * s2 * s3; Result[1][3] = 0; Result[2][0] =-s2; Result[2][1] = s1 * c2; Result[2][2] = c1 * c2; Result[2][3] = 0; Result[3][0] = 0; Result[3][1] = 0; Result[3][2] = 0; Result[3][3] = 1; return Result;
a0e6f0b58c1510aa27cb5064ddebd40b3688de37
3,652,477
def is_on_cooldown(data): """ Checks to see if user is on cooldown. Based on Castorr91's Gamble""" # check if command is on cooldown cooldown = Parent.IsOnCooldown(ScriptName, CGSettings.Command) user_cool_down = Parent.IsOnUserCooldown(ScriptName, CGSettings.Command, data.User) caster = Parent.HasPermission(data.User, "Caster", "") if (cooldown or user_cool_down) and caster is False and not CGSettings.CasterCD: if CGSettings.UseCD: cooldownDuration = Parent.GetCooldownDuration(ScriptName, CGSettings.Command) userCDD = Parent.GetUserCooldownDuration(ScriptName, CGSettings.Command, data.User) if cooldownDuration > userCDD: m_CooldownRemaining = cooldownDuration message = CGSettings.OnCoolDown.format(data.UserName, m_CooldownRemaining) SendResp(data, CGSettings.Usage, message) else: m_CooldownRemaining = userCDD message = CGSettings.OnUserCoolDown.format(data.UserName, m_CooldownRemaining) SendResp(data, CGSettings.Usage, message) return True elif (cooldown or user_cool_down) and CGSettings.CasterCD: if CGSettings.UseCD: cooldownDuration = Parent.GetCooldownDuration(ScriptName, CGSettings.Command) userCDD = Parent.GetUserCooldownDuration(ScriptName, CGSettings.Command, data.User) if cooldownDuration > userCDD: m_CooldownRemaining = cooldownDuration message = CGSettings.OnCoolDown.format(data.UserName, m_CooldownRemaining) SendResp(data, CGSettings.Usage, message) else: m_CooldownRemaining = userCDD message = CGSettings.OnUserCoolDown.format(data.UserName, m_CooldownRemaining) SendResp(data, CGSettings.Usage, message) return True return False
b15180c7e890298cc1949ddfb199b42156ee66d9
3,652,478
def human_readable_size(num): """ To show size as 100K, 100M, 10G instead of showing in bytes. """ for s in reversed(SYMBOLS): power = SYMBOLS.index(s)+1 if num >= 1024**power: value = float(num) / (1024**power) return '%.1f%s' % (value, s) # if size less than 1024 or human readable not required return '%s' % num
3c4ad148bc717b7058e90b3abf5efd67f6d92651
3,652,479
def sum_2_level_dict(two_level_dict): """Sum all entries in a two level dict Parameters ---------- two_level_dict : dict Nested dict Returns ------- tot_sum : float Number of all entries in nested dict """ '''tot_sum = 0 for i in two_level_dict: for j in two_level_dict[i]: tot_sum += two_level_dict[i][j] ''' tot_sum = 0 for _, j in two_level_dict.items(): tot_sum += sum(j.values()) return tot_sum
6b5be015fb84fa20006c11e9a3e0f094a6761e74
3,652,480
import os def file_ref(name): """Helper function for getting paths to testing spectra.""" file = os.path.join(os.path.dirname(test_analyzer.__file__), "test_analyzer", name) return file
60d6ef96ada77c2f0fe7b1d9e9012fec9f7f415c
3,652,481
def q_values_from_q_func(q_func, num_grid_cells, state_bounds, action_n): """Computes q value tensor from a q value function Args: q_func (funct): function from state to q value num_grid_cells (int): number of grid_cells for resulting q value tensor state_bounds (list of tuples): state bounds for resulting q value tensor action_n (int): number of actions in action space Returns: np.ndarray: q value tensor """ q_values = np.zeros(num_grid_cells + (action_n,)) it = np.nditer(q_values, flags=['multi_index']) while not it.finished: qs = q_func( index_to_state( num_grid_cells, state_bounds=state_bounds, discrete=it.multi_index[:-1] ) ) q_values[it.multi_index] = qs[0] it.iternext() return q_values
2378f2021e16678b75622a23c9e57ba6b2f6d1d7
3,652,482
import requests import sys def list_keypairs(k5token, project_id, region): """Summary - list K5 project keypairs Args: k5token (TYPE): valid regional domain scoped token project_id (TYPE): Description region (TYPE): K5 region Returns: TYPE: http response object Deleted Parameters: userid(TYPE): K5 user id """ try: serverURL = 'https://compute.' + region + \ '.cloud.global.fujitsu.com/v2/' + project_id + '/os-keypairs' response = requests.get(serverURL, headers={ 'X-Auth-Token': k5token, 'Content-Type': 'application/json', 'Accept': 'application/json'}) return response except: return ("\nUnexpected error:", sys.exc_info())
9b7851ffbec5bb46f88a767ca5caca8368ead0eb
3,652,483
import re def check_ip(ip): """ Check whether the IP is valid or not. Args: IP (str): IP to check Raises: None Returns: bool: True if valid, else False """ ip = ip.strip() if re.match(r'^(?:(25[0-5]|2[0-4][0-9]|1[0-9][0-9]|[1-9][0-9]|[0-9])' '(\.(?!$)|$)){4}$', ip): return True else: return False
2ff9a9262e46546fcb8854edee4b3b18ae1e2cc4
3,652,484
from typing import Iterator from typing import Optional def _stream_lines(blob: bytes) -> Iterator[bytes]: """ Split bytes into lines (newline (\\n) character) on demand. >>> iter = _stream_lines(b"foo\\nbar\\n") >>> next(iter) b'foo' >>> next(iter) b'bar' >>> next(iter) Traceback (most recent call last): ... StopIteration >>> iter = _stream_lines(b"\\x00") >>> next(iter) b'\\x00' :param blob: the bytes to split. :return: a generated list of lines. """ start = 0 def _index(needle: bytes) -> Optional[int]: try: return blob.index(needle, start) except ValueError: return None line_index = _index(b"\n") while line_index is not None: yield blob[start:line_index] start = line_index + 1 line_index = _index(b"\n") # Deal with blobs that do not end in a newline. if start < len(blob): yield blob[start:]
8a166af1f765ca9eb70728d4c4bb21c00d7ddbf8
3,652,485
from typing import Dict async def fetch_all_organizations(session: ClientSession) -> Dict: """Fetch all organizations from organization-catalog.""" url = f"{Config.org_cat_uri()}/organizations" org_list = await fetch_json_data(url, None, session) return {org["organizationId"]: org for org in org_list} if org_list else dict()
bf033ed85671214d9282acba3361fbdc1e6d4f6e
3,652,486
from typing import Optional import tqdm def create_splits_random(df: pd.DataFrame, val_frac: float, test_frac: float = 0., test_split: Optional[set[tuple[str, str]]] = None, ) -> dict[str, list[tuple[str, str]]]: """ Args: df: pd.DataFrame, contains columns ['dataset', 'location', 'label'] each row is a single image assumes each image is assigned exactly 1 label val_frac: float, desired fraction of dataset to use for val set test_frac: float, desired fraction of dataset to use for test set, must be 0 if test_split is given test_split: optional set of (dataset, location) tuples to use as test split Returns: dict, keys are ['train', 'val', 'test'], values are lists of locs, where each loc is a tuple (dataset, location) """ if test_split is not None: assert test_frac == 0 train_frac = 1. - val_frac - test_frac targets = {'train': train_frac, 'val': val_frac, 'test': test_frac} # merge dataset and location into a single string '<dataset>/<location>' df['dataset_location'] = df['dataset'] + '/' + df['location'] # create DataFrame of counts. rows = locations, columns = labels loc_label_counts = (df.groupby(['label', 'dataset_location']).size() .unstack('label', fill_value=0)) num_locs = len(loc_label_counts) # label_count: label => number of examples # loc_count: label => number of locs containing that label label_count = loc_label_counts.sum() loc_count = (loc_label_counts > 0).sum() best_score = np.inf # lower is better best_splits = None for _ in tqdm(range(10_000)): # generate a new split num_train = int(num_locs * (train_frac + np.random.uniform(-.03, .03))) if test_frac > 0: num_val = int(num_locs * (val_frac + np.random.uniform(-.03, .03))) else: num_val = num_locs - num_train permuted_locs = loc_label_counts.index[np.random.permutation(num_locs)] split_to_locs = {'train': permuted_locs[:num_train], 'val': permuted_locs[num_train:num_train + num_val]} if test_frac > 0: split_to_locs['test'] = permuted_locs[num_train + num_val:] # score the split score = 0. for split, locs in split_to_locs.items(): split_df = loc_label_counts.loc[locs] target = targets[split] # SSE for # of images per label (with 2x weight) crop_frac = split_df.sum() / label_count score += 2 * ((crop_frac - target) ** 2).sum() # SSE for # of locs per label loc_frac = (split_df > 0).sum() / loc_count score += ((loc_frac - target) ** 2).sum() if score < best_score: tqdm.write(f'New lowest score: {score}') best_score = score best_splits = split_to_locs assert best_splits is not None split_to_locs = { s: sorted(locs.map(lambda x: tuple(x.split('/', maxsplit=1)))) for s, locs in best_splits.items() } if test_split is not None: split_to_locs['test'] = test_split return split_to_locs
b8410d8672d11c8133b7d6d8dcdead46e668b3aa
3,652,487
def ha_close(close,high,low,open, n=2, fillna=False): """Relative Strength Index (RSI) Compares the magnitude of recent gains and losses over a specified time period to measure speed and change of price movements of a security. It is primarily used to attempt to identify overbought or oversold conditions in the trading of an asset. https://www.investopedia.com/terms/r/rsi.asp Args: close(pandas.Series): dataset 'Close' column. n(int): n period. fillna(bool): if True, fill nan values. Returns: pandas.Series: New feature generated. """ indicator = Heikin_Ashi(close=df[close],high=df[high],low=df[low],open=df[open],n=2,fillna = fillna) return indicator.ha_close()
655ce9be20f56a22cbe32ed0eaf7615d2b891577
3,652,488
def PLUGIN_ENTRY(): """ Required plugin entry point for IDAPython Plugins. """ return funcref_t()
5c669321d8fc890b8b352e4041dc75773d191664
3,652,489
def chao1_var_no_doubletons(singles, chao1): """Calculates chao1 variance in absence of doubletons. From EstimateS manual, equation 7. chao1 is the estimate of the mean of Chao1 from the same dataset. """ s = float(singles) return s*(s-1)/2 + s*(2*s-1)**2/4 - s**4/(4*chao1)
6b93743a35c70c9ed5b9f3fc9bece1e9363c5802
3,652,490
def inBarrel(chain, index): """ Establish if the outer hit of a muon is in the barrel region. """ if abs(chain.muon_outerPositionz[index]) < 108: return True
9cbc5dad868d6e0ca221524ef8fc5ed5501adaa4
3,652,491
import logging def load_pretrained_embeddings(pretrained_fname: str) -> np.array: """ Load float matrix from one file """ logging.log(logging.INFO, "Loading pre-trained embedding file: %s" % pretrained_fname) # TODO: np.loadtxt refuses to work for some reason # pretrained_embeddings = np.loadtxt(self.args.word_embedding_file, usecols=range(1, word_embedding_size+1)) pretrained_embeddings = [] with open(pretrained_fname, 'r') as f: for line in f: embedding = [float(s) for s in line.split()[1:]] pretrained_embeddings.append(embedding) pretrained_embeddings = np.array(pretrained_embeddings) pretrained_embeddings /= np.std(pretrained_embeddings) return pretrained_embeddings
7d64851b9e602a7f588abec6fd88908e695f0c5c
3,652,492
from typing import Union from typing import Callable from typing import Optional from typing import Any def text(message: Text, default: Text = "", validate: Union[Validator, Callable[[Text], bool], None] = None, # noqa qmark: Text = DEFAULT_QUESTION_PREFIX, style: Optional[Style] = None, path_autocomplete=False, exec_autocomplete=False, custom_autocomplete=None, ** kwargs: Any) -> Question: """Prompt the user to enter a free text message. This question type can be used to prompt the user for some text input. Args: message: Question text default: Default value will be returned if the user just hits enter. validate: Require the entered value to pass a validation. The value can not be submited until the validator accepts it (e.g. to check minimum password length). This can either be a function accepting the input and returning a boolean, or an class reference to a subclass of the prompt toolkit Validator class. qmark: Question prefix displayed in front of the question. By default this is a `?` style: A custom color and style for the question parts. You can configure colors as well as font types for different elements. Returns: Question: Question instance, ready to be prompted (using `.ask()`). """ merged_style = merge_styles([DEFAULT_STYLE, style]) validator = build_validator(validate) def get_prompt_tokens(): return [("class:qmark", qmark), ("class:question", ' {} '.format(message))] promptArgs = dict({ 'style': merged_style, 'validator': validator, 'complete_style': CompleteStyle.READLINE_LIKE, }) if path_autocomplete: promptArgs['completer'] = PathCompleter( expanduser=True, delimiters=' \t\n;,') elif exec_autocomplete: promptArgs['completer'] = ExecutableCompleter(delimiters=' \t\n;,') elif custom_autocomplete is not None and len(custom_autocomplete): promptArgs['completer'] = WordCompleter( custom_autocomplete, ignore_case=True, sentence=True) p = PromptSession(get_prompt_tokens, **promptArgs, **kwargs) p.default_buffer.reset(Document(default)) return Question(p.app)
74a79a0ce10503cf10841e8370de870c7e42f8e9
3,652,493
def nav_bar(context): """ Define an active tab for the navigation bar """ home_active = '' about_active = '' detail_active = '' list_active = '' logout_active = '' signup_active = '' login_active = '' friends_active = '' snippets_active = '' request = context['request'] url_name = resolve(request.path_info).url_name if url_name == 'home': home_active = 'active' elif url_name == 'about': about_active = 'active' elif url_name == 'detail': detail_active = 'active' elif url_name == 'list': list_active = 'active' elif url_name == 'friends': friends_active = 'active' elif url_name == 'account_logout': logout_active = 'active' elif url_name == 'account_signup': signup_active = 'active' elif url_name == 'account_login': login_active = 'active' elif url_name == 'snippets' or url_name == 'snippet': snippets_active = 'active' return { 'request': request, 'home_active': home_active, 'about_active': about_active, 'detail_active': detail_active, 'list_active': list_active, 'friends_active': friends_active, 'logout_active': logout_active, 'signup_active': signup_active, 'login_active': login_active, 'snippets_active': snippets_active, }
77b5a8bb367228cc31a0f2454e494d97a5e2b411
3,652,494
def setup_models(basedir, name, lc=True): """ Setup model container for simulation Parameters ---------- basedir : string Base directory name : string Name of source component Returns ------- models : `~gammalib.GModels()` Model container """ # Initialise model container models = gammalib.GModels() # Extract binary component binaries = gammalib.GModels(basedir+'/1dc/models/model_galactic_binaries.xml') binary = binaries[name] # Optionally remove lightcurve if not lc: binary.temporal(gammalib.GModelTemporalConst()) # Append binary to model container models.append(binary) # Append background model to container models.extend(gammalib.GModels(basedir+'/1dc/models/model_bkg.xml')) # Return model container return models
8b8db045d5c7b669f579a8f3b74abe204c82c285
3,652,495
def create_csm(image): """ Given an image file create a Community Sensor Model. Parameters ---------- image : str The image filename to create a CSM for Returns ------- model : object A CSM sensor model (or None if no associated model is available.) """ isd = csmapi.Isd(image) plugins = csmapi.Plugin.getList() for plugin in plugins: num_models = plugin.getNumModels() for model_index in range(num_models): model_name = plugin.getModelName(model_index) if plugin.canModelBeConstructedFromISD(isd, model_name): return plugin.constructModelFromISD(isd, model_name)
681c3b5886346e793b26d2e7c801b924ca82b546
3,652,496
def walk(obj, path='', skiphidden=True): """Returns a recursive iterator over all Nodes starting from findnode(obj, path). If skiphidden is True (the default) then structure branches starting with an underscore will be ignored. """ node = findnode(obj, path) return walknode(node, skiphidden)
efd3e10329d7e8832fa33c9425974ea2cd80938c
3,652,497
import os import requests def setThermalMode(host, args, session): """ Set thermal control mode @param host: string, the hostname or IP address of the bmc @param args: contains additional arguments used for setting the thermal control mode @param session: the active session to use @param args.zone: the zone to set the mode on @param args.mode: the mode to enable @return: Session object """ url = "https://" + host + "/xyz/openbmc_project/control/thermal/" + \ args.zone + "/attr/Current" # Check args.mode against supported modes using `getThermalMode` output modes = getThermalMode(host, args, session) modes = os.linesep.join([m for m in modes.splitlines() if m]) modes = modes.replace("\n", ";").strip() modesDict = dict(m.split(': ') for m in modes.split(';')) sModes = ''.join(s for s in modesDict['Supported Modes'] if s not in '[ ]') if args.mode.casefold() not in \ (m.casefold() for m in sModes.split(',')) or not args.mode: result = ("Unsupported mode('" + args.mode + "') given, " + "select a supported mode: \n" + getThermalMode(host, args, session)) return result data = '{"data":"' + args.mode + '"}' try: res = session.get(url, headers=jsonHeader, verify=False, timeout=30) except(requests.exceptions.Timeout): return(connectionErrHandler(args.json, "Timeout", None)) except(requests.exceptions.ConnectionError) as err: return connectionErrHandler(args.json, "ConnectionError", err) except(requests.exceptions.RequestException) as err: return connectionErrHandler(args.json, "RequestException", err) if (data and res.status_code != 404): try: res = session.put(url, headers=jsonHeader, data=data, verify=False, timeout=30) except(requests.exceptions.Timeout): return(connectionErrHandler(args.json, "Timeout", None)) except(requests.exceptions.ConnectionError) as err: return connectionErrHandler(args.json, "ConnectionError", err) except(requests.exceptions.RequestException) as err: return connectionErrHandler(args.json, "RequestException", err) if res.status_code == 403: return "The specified thermal control zone(" + args.zone + ")" + \ " does not exist" return res.text else: return "Setting thermal control mode(" + args.mode + ")" + \ " not supported or operation not available"
198b5c112e1f217665c78d6b9a8b87551844e073
3,652,498
def to_string(class_name): """ Magic method that is used by the Metaclass created for Itop object. """ string = "%s : { " % type(class_name) for attribute, value in class_name.__dict__.iteritems(): string += "%s : %s, " % (attribute, value) string += "}" return string
a7e155c92c4e62c1f070a474905a7e0c654f45ff
3,652,499