content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def collect_targets_from_attrs(rule_attrs, attrs): """Returns a list of targets from the given attributes.""" result = [] for attr_name in attrs: _collect_target_from_attr(rule_attrs, attr_name, result) return [target for target in result if is_valid_aspect_target(target)]
6be1731049f6970004763f5e9ec7d0a3bde76189
3,652,600
from typing import Tuple def extract_codes(text: str) -> Tuple[str, ...]: """Extract names of warnings from full warning text.""" match = CODES_PAT.search(text) if not match: raise ValueError("No warning code found") return tuple(match.group(1).split(","))
6727049c195197ed2407f30093c362a2c6f35cd4
3,652,601
def task_list(request, pk): """ View to get task list based on user list for forms """ user_model = User.objects.filter(is_staff=False) task_model = Task.objects.filter(user=pk) user_detail = User.objects.get(pk=pk) query = request.GET.get('q') if query: task_model = task_model.filter( Q(title__icontains=query) ) return render(request, 'home.html', {"user_model": user_model, 'task_model': task_model, 'user_detail': user_detail})
dbb6545ca66a367b2b3e89a494ac8a9bbdbbb341
3,652,602
import json def load_credentials(): """ load_credentials :return: dict """ with open("credentials.json", "r", encoding="UTF-8") as stream: content = json.loads(stream.read()) return content
2f08fc4e897a7c7eb91de804158ee67cd91635d0
3,652,603
def get_utm_string_from_sr(spatialreference): """ return utm zone string from spatial reference instance """ zone_number = spatialreference.GetUTMZone() if zone_number > 0: return str(zone_number) + 'N' elif zone_number < 0: return str(abs(zone_number)) + 'S' else: return str(zone_number)
50f01758f7ee29f1b994d36cda34b6b36157fd9e
3,652,604
def messages_count(name): """ Get message count for queue curl -X GET -H 'Accept: application/json' http://localhost:8080/queues/C13470112/msgs/count curl -X GET -H 'Accept: application/json' 83.212.127.232:8080/queues/C13470112/msgs/count """ conn = get_conn() queue = conn.get_queue(name) count = queue.count() resp = "Queue "+name+" has "+str(count)+" messages\n" return Response(response=resp, mimetype="application/json")
86abcbc6a9bb81f0ce8a6a19941761c042f5a7e9
3,652,605
def return_intersect(cameraList): """ Calculates the intersection of the Camera objects in the *cameraList*. Function returns an empty Camera if there exists no intersection. Parameters: cameraList : *list* of *camera.Camera* objects A list of cameras from the camera.Camera class, each containing a *poly* and a *coordsList*. Returns: intersectCam : *camera.Camera* object An object from the camera.Camera class that is the intersection between all cameras in the cameraList. If there exists no intersection between any cameras in the camerList, an empty Camera will be returned. """ intersectCam = None for camera in cameraList: if intersectCam is None: # Initiates the intersectCam variable intersectCam = camera else: intersectCam = intersectCam.intersect(camera) return intersectCam
a47613b8d79c4a4535cd5e7e07aa3b26dea019a5
3,652,606
def get_returned_attr_set_node(tree): """ Get the NODE_ATTR_SET containing the attributes which are returned by the module """ # TODO: fix HACK, currently we assume the node containing `imports` is the returned attr set # but this may not always be the case? imports_node = get_imports_node(tree) imports_key_node, _ = [e for e in imports_node.elems if isinstance(e, syntax_tree.Node)] imports_key_value_node = tree.get_parent(imports_key_node) returned_attr_set_node = tree.get_parent(imports_key_value_node) return returned_attr_set_node
f929e4255fcf914ce2d8c2db5ccd74dac5c842d7
3,652,607
from sys import version from datetime import datetime def choose_time_format_method(expression,format): """ :Summary: strftime("%s") is not a valid string formatting method in python, therefore it works on linux servers but not windows. To handle this, this function checks for python version and decides what conversion method to use. the "format" parameter makes sure that that the correct required type is always returned """ # if we are running python3.3 or greater if(version >= version_3_3): # if the datetime object is offset aware if(expression.tzinfo != None): if(format == "str"): return str(int(expression.timestamp())) else: return int(expression.timestamp()) # else if the datetime object is offset naive else: if(format == "str"): return str(int((expression - datetime(1970, 1, 1)).total_seconds())) else: return int((expression - datetime(1970, 1, 1)).total_seconds()) # else if we are running python version lower than python3.3 i.e most linux servers else: if(format == "str"): return expression.strftime("%s") else: return int(expression.strftime("%s"))
dc1a3c3caba2696e43b0e9f2e0d11058d7570f54
3,652,608
def import_measurements(task, subject, gsrn, session): """ Imports measurements for a single MeteringPoint, and starts a start_submit_measurement_pipeline() pipeline for each of the newly imported measurements. :param celery.Task task: :param str subject: :param str gsrn: :param sqlalchemy.orm.Session session: """ __log_extra = { 'gsrn': gsrn, 'subject': subject, 'pipeline': 'import_measurements', 'task': 'import_measurements', } @atomic def __import_measurements(session): """ Import and save to DB as an atomic operation """ return importer.import_measurements_for(meteringpoint, session) # Load MeteringPoint from DB try: meteringpoint = MeteringPointQuery(session) \ .is_active() \ .has_gsrn(gsrn) \ .one() except orm.exc.NoResultFound: raise except Exception as e: raise task.retry(exc=e) # Import measurements into DB try: measurements = __import_measurements() except Exception as e: logger.exception('Failed to import measurements from ElOverblik, retrying...', extra=__log_extra) raise task.retry(exc=e) # Submit each measurement to ledger in parallel for measurement in measurements: task = build_submit_measurement_pipeline( measurement, meteringpoint, session) task.apply_async() # if measurements: # tasks = [ # build_submit_measurement_pipeline(measurement, meteringpoint, session) # for measurement in measurements # ] # # group(*tasks).apply_async()
6f0fc4aec546c5cf7b23bf2471ac625639e9dbbb
3,652,609
import pandas from typing import List def add_agg_series_to_df( df: pandas.DataFrame, grouped_levels: List[str], bottom_levels: List[str] ) -> pandas.DataFrame: """ Add aggregate series columns to wide dataframe. Parameters ---------- df : pandas.DataFrame Wide dataframe containing bottom level series. grouped_levels : List[str] Grouped level, underscore delimited, column names. bottom_levels : List[str] Bottom level, underscore delimited, column names. Returns ------- pandas.DataFrame Wide dataframe with all series in hierarchy. """ component_cols = _get_bl(grouped_levels, bottom_levels) # Add series as specified grouping levels for i, cols in enumerate(component_cols): df[grouped_levels[i]] = df[cols].sum(axis=1) return df
7c3b7b526c394c8a24bf754365dbc809476b7336
3,652,610
def conv_relu_pool_forward(x, w, b, conv_param, pool_param): """ Convenience layer that performs a convolution, a ReLU, and a pool. Inputs: - x: Input to the convolutional layer - w, b, conv_param: Weights and parameters for the convolutional layer - pool_param: Parameters for the pooling layer Returns a tuple of: - out: Output from the pooling layer - cache: Object to give to the backward pass """ convOut, conv_cache = layers.conv_forward(x, w, b, conv_param) reluOut, relu_cache = layers.relu_forward(convOut) out, pool_cache = layers.max_pool_forward(reluOut, pool_param) cache = (conv_cache, relu_cache, pool_cache) return out, cache
d9a32950d1b56b4843938b339c7233e7fc87c5cc
3,652,611
def avg_pixelwise_var(images_seen: np.int16): """ Computes the variance for every pixel p across all images, resulting in a matrix holding the variance for eack pixel p, then calculates the average of that variance across all pixels. This allows us to compensate for different fov sizes. Note: images are normalized to [-1,1] before calculations Params ------ images_seen A numpy matrix holding numpy versions of all of our images Returns ------- The aaverage pixelwise variation across all images, as a float """ # Computes the variance images = (images_seen.astype(np.float32) - 127.5) / 127.5 # Normalize to [-1,1] variance_matrix = np.var(images, 0) # Returns the average of that variance return(np.sum(variance_matrix)/variance_matrix.size)
4b6196ddd25c0cd3ad0cd7cb1928b99772aa563f
3,652,612
def get_r2_matrix(ts): """ Returns the matrix for the specified tree sequence. This is computed via a straightforward Python algorithm. """ n = ts.get_sample_size() m = ts.get_num_mutations() A = np.zeros((m, m), dtype=float) for t1 in ts.trees(): for sA in t1.sites(): assert len(sA.mutations) == 1 mA = sA.mutations[0] A[sA.id, sA.id] = 1 fA = t1.get_num_samples(mA.node) / n samples = list(t1.samples(mA.node)) for t2 in ts.trees(tracked_samples=samples): for sB in t2.sites(): assert len(sB.mutations) == 1 mB = sB.mutations[0] if sB.position > sA.position: fB = t2.get_num_samples(mB.node) / n fAB = t2.get_num_tracked_samples(mB.node) / n D = fAB - fA * fB r2 = D * D / (fA * fB * (1 - fA) * (1 - fB)) A[sA.id, sB.id] = r2 A[sB.id, sA.id] = r2 return A
e6a3eca421c40c9b9bbe218e7f6179eda0e07a00
3,652,613
import os def load_or_run(filepath, fun, *args, **kwargs): """ 계산된 결과 파일이 있으면 로딩하고, 없으면 계산후 저장 ex) res = load_or_run('file_loadorsave', funlongtime, ...., force=False) :param filepath: :param fun: :param force: :return: """ force = kwargs.pop('force', False) compress = kwargs.pop('compress', True) if not filepath.startswith('/') or not filepath.startswith('~'): filepath = os.path.join('/tmp/snipy/load_or_run/', filepath) if not force and os.path.exists(filepath): # 저장되어 있는 것 로딩 mmap_mode = 'r+' if not compress else None return loadfile(filepath, mmap_mode=mmap_mode) res = fun(*args, **kwargs) savefile(res, filepath, compress=compress) return res
45a9f0fe1050201f863a9ba5887fe560eaee8b27
3,652,614
def omdb_title( api_key: str, id_imdb: str = None, media: str = None, title: str = None, season: int = None, episode: int = None, year: int = None, plot: str = None, cache: bool = True, ) -> dict: """ Looks up media by id using the Open Movie Database. Online docs: http://www.omdbapi.com/#parameters """ if (not title and not id_imdb) or (title and id_imdb): raise MnamerException("either id_imdb or title must be specified") elif plot and plot not in OMDB_PLOT_TYPES: raise MnamerException( "plot must be one of %s" % ",".join(OMDB_PLOT_TYPES) ) url = "http://www.omdbapi.com" parameters = { "apikey": api_key, "i": id_imdb, "t": title, "y": year, "season": season, "episode": episode, "type": media, "plot": plot, } parameters = clean_dict(parameters) status, content = request_json(url, parameters, cache=cache) error = content.get("Error") if isinstance(content, dict) else None if status == 401: raise MnamerException("invalid API key") elif status != 200 or not isinstance(content, dict): raise MnamerNetworkException("OMDb down or unavailable?") elif error: raise MnamerNotFoundException(error) return content
54efaba216b7de203fe6960f58a8ebb93b980c4c
3,652,615
def get_status(addr): """Get the current status of a minecraft server. addr -- server address Returns an mcstatus object. """ server = MinecraftServer.lookup(addr) try: return server.status() except Exception: return None
9e5a346d3cec803005ef0c65d24f929b56dfa68f
3,652,616
def calculate_losses(estimator, input_fn, labels): """Get predictions and losses for samples. The assumptions are 1) the loss is cross-entropy loss, and 2) user have specified prediction mode to return predictions, e.g., when mode == tf.estimator.ModeKeys.PREDICT, the model function returns tf.estimator.EstimatorSpec(mode=mode, predictions=tf.nn.softmax(logits)). Args: estimator: model to make prediction input_fn: input function to be used in estimator.predict labels: array of size (n_samples, ), true labels of samples (integer valued) Returns: preds: probability vector of each sample loss: cross entropy loss of each sample """ pred = np.array(list(estimator.predict(input_fn=input_fn))) loss = log_loss(labels, pred) return pred, loss
1a25519d661a6de185c39bb9c65a23a3eea71971
3,652,617
def text_cleaning(value, stopwords=None): """Applies the four cleaning funtions to a value. Turns value into string, makes lowercase, strips trailing and leading spaces, and removes digits, punctuation, and stopwords Args: value (str): string to be cleaned Returns: str_out (str): string after cleaning """ value = str_lower_strip(value) value = remove_digits(value) value = remove_punctuation(value) value = remove_stopwords(value, stopwords) str_out = value return str_out
291f4150601b7537cbb4d10cb53598dcb9a83829
3,652,618
def calc_pts_lag(npts=20): """ Returns Gauss-Laguerre quadrature points rescaled for line scan integration Parameters ---------- npts : {15, 20, 25}, optional The number of points to Notes ----- The scale is set internally as the best rescaling for a line scan integral; it was checked numerically for the allowed npts. Acceptable pts/scls/approximate line integral scan error: (pts, scl ) : ERR ------------------------------------ (15, 0.072144) : 0.002193 (20, 0.051532) : 0.001498 (25, 0.043266) : 0.001209 The previous HG(20) error was ~0.13ish """ scl = { 15:0.072144, 20:0.051532, 25:0.043266}[npts] pts0, wts0 = np.polynomial.laguerre.laggauss(npts) pts = np.sinh(pts0*scl) wts = scl*wts0*np.cosh(pts0*scl)*np.exp(pts0) return pts, wts
dc491bc8dd46f81809a0dc06da8c123357736622
3,652,619
def APPEND(*ext, **kw): """Decorator to call XDWAPI with trailing arguments *ext. N.B. Decorated function must be of the same name as XDWAPI's one. """ def deco(api): @wraps(api) def func(*args, **kw): args = list(args) if "codepage" in kw: args.append(kw["codepage"]) args.extend(ext) return TRY(getattr(DLL, api.__name__), *args) return func return deco
c73dc1b192835a0eefa53f660b1af4626a3ab75c
3,652,620
def stations_within_radius(stations, centre, r): """Returns a list of all stations (type MonitoringStation) within radius r of a geographic coordinate x.""" stations_inside_radius = [] for station, distance in stations_by_distance(stations, centre): # Check if distance is inside the requried radius if distance < r: stations_inside_radius.append(station) # Return the list return stations_inside_radius
8182bdfc0d46ee64e98358c06b3d4787a0f1fa52
3,652,621
def manage_topseller(request, template_name="manage/marketing/topseller.html"): """ """ inline = manage_topseller_inline(request, as_string=True) # amount options amount_options = [] for value in (10, 25, 50, 100): amount_options.append({ "value": value, "selected": value == request.session.get("topseller-amount") }) return render_to_string(template_name, request=request, context={ "topseller_inline": inline, "amount_options": amount_options, })
e9af634b66a7f7631a0bb7633cc445f05efb615a
3,652,622
from sfepy.base.base import dict_to_struct, debug from sfepy.fem.functions import Function def create_stabil_mat(problem): """Using the stabilization material stub make it the true material.""" # Identity map... ns = {'p' : 'p', 'q' : 'q', 'u' : 'u', 'b' : 'b', 'v' : 'v', 'fluid' : 'fluid', 'omega' : 'omega', 'i1' : 'i1', 'i2' : 'i2'} variables = problem.get_variables() # Indices to the state vector. ii = {} ii['u'] = variables.get_indx(ns['u']) ii['us'] = variables.get_indx(ns['u'], stripped=True) ii['ps'] = variables.get_indx(ns['p'], stripped=True) stabil_mat = problem.materials['stabil'] stabil = dict_to_struct(stabil_mat.datas['special'], flag=(1,)) # The viscosity. fluid_mat = problem.materials[ns['fluid']] viscosity = fluid_mat.function()['viscosity'] # The Friedrich's constant. c_friedrichs = problem.domain.get_diameter() sigma = 1e-12 # 1 / dt. # Element diameter modes. diameter_modes = {'edge' : 0, 'volume' : 1, 'max' : 2} def mat_fun(ts, coor, mode=None, region=None, ig=None, b_norm=1.0): if mode != 'qp': return print '|b|_max (mat_fun):', b_norm gamma = viscosity + b_norm * c_friedrichs data = {} if stabil.gamma is None: data['gamma'] = stabil.gamma_mul * gamma else: data['gamma'] = nm.asarray( stabil.gamma_mul * stabil.gamma, dtype = nm.float64 ) data['gamma'] = nm.tile(data['gamma'], (coor.shape[0], 1, 1)) if stabil.delta is None: term = problem.equations['balance'].terms['dw_lin_convect'] for ig in term.iter_groups(): # This sets term.ig - for 1 group only!!! break var = variables[ns['u']] ap, vg = term.get_approximation(var) delta = 1.0 mode = diameter_modes[stabil.diameter_mode] cells = region.get_cells( ig ) diameters2 = problem.domain.get_element_diameters( ig, cells, vg, mode ) val1 = min( 1.0, 1.0 / sigma ) val2 = sigma * c_friedrichs**2 val3 = (b_norm**2) * min( (c_friedrichs**2) / viscosity, 1.0 / sigma ) # print val1, gamma, val2, val3 delta = stabil.delta_mul * val1 * diameters2 / (gamma + val2 + val3) n_qp = coor.shape[0] / diameters2.shape[0] data['diameters2'] = nm.repeat(diameters2, n_qp) data['diameters2'].shape = data['diameters2'].shape + (1, 1) data['delta'] = nm.repeat(delta, n_qp) data['delta'].shape = data['delta'].shape + (1, 1) else: val = stabil.delta_mul * stabil.delta data['delta'] = nm.tile(data['delta'], (coor.shape[0], 1, 1)) if stabil.tau is None: data['tau'] = stabil.tau_red * data['delta'] else: data['tau'] = nm.asarray( stabil.tau_mul * stabil.tau, dtype = nm.float64 ) data['tau'] = nm.tile(data['tau'], (coor.shape[0], 1, 1)) return data stabil_mat.set_function(Function('stabil', mat_fun)) return stabil_mat, ns, ii
a48d8869c4f4d84d86815a8d0c56ecc88ae05814
3,652,623
from typing import Optional def embedded_services(request: FixtureRequest) -> Optional[str]: """ Enable parametrization for the same cli option """ return getattr(request, 'param', None) or request.config.getoption('embedded_services', None)
908a48d9fa8696e6970fe5884632f1b373063667
3,652,624
def vigenere(plaintext,cypher): """Implementation of vigenere cypher""" i = 0 cyphertext = "" for character in plaintext: n = ord(cypher[i%len(cypher)].lower())-97 new_char = rot_char(character, n) cyphertext += new_char if new_char != ' ': i += 1 return cyphertext
2b5cdd839bcfc0e55cdac65f9752cf88bd34c2e2
3,652,625
def get_local_unit_slip_vector_SS(strike, dip, rake): """ Compute the STRIKE SLIP components of a unit slip vector. Args: strike (float): Clockwise angle (deg) from north of the line at the intersection of the rupture plane and the horizontal plane. dip (float): Angle (degrees) between rupture plane and the horizontal plane normal to the strike (0-90 using right hand rule). rake (float): Direction of motion of the hanging wall relative to the foot wall, as measured by the angle (deg) from the strike vector. Returns: Vector: Unit slip vector in 'local' N-S, E-W, U-D coordinates. """ strike = np.radians(strike) dip = np.radians(dip) rake = np.radians(rake) sx = np.cos(rake) * np.sin(strike) sy = np.cos(rake) * np.cos(strike) sz = 0.0 return Vector(sx, sy, sz)
dddedaeaabe91137c38bbaa2ec2bb1d42a6629c7
3,652,626
def get_country_code(country_name): """Gets the code of the country given its name""" for code, name in COUNTRIES.items(): if name == country_name: return code
bb4a3eebae0b14fc8207ef4301812d3d305a8dfd
3,652,627
def build_model(cfg, train_cfg=None, test_cfg=None): """Build model.""" if train_cfg is None and test_cfg is None: return build(cfg, MODELS) else: return build(cfg, MODELS, dict(train_cfg=train_cfg, test_cfg=test_cfg))
f47aa433bf2cbd637e9ea2e8e842bab9feb12ab1
3,652,628
def find_instruction_type(opcode: str) -> InstructionType: """Finds instruction type for object instruction Parameters ---------- opcode : str opcode of instruction in hex Returns ------- InstructionType type of instruction using InstructionType enum """ # R type instructions always have opcode = 00 if opcode == "00": i_type = InstructionType.R # I type instructions have opcode > 03 elif opcode > "03": i_type = InstructionType.I return i_type
a8f5002834f9e9e847ef4f848a13f6e8037948f6
3,652,629
import string def gen_tier_id(inst, id_base, tier_type=None, alignment=None, no_hyphenate=False): """ Unified method to generate a tier ID string. (See: https://github.com/goodmami/xigt/wiki/Conventions) """ # In order to number this item correctly, we need to decide how many tiers of the same type # there are. This is done by systematically adding filters to the list. filters = [] # First, do we align with another item? (Either segmentation, alignment, or head/dep) if alignment is not None: filters.append(lambda x: aln_match(alignment)(x) or seg_match(alignment)(x) or ref_match(x, alignment, DS_HEAD_ATTRIBUTE)) # Next, does the type match ours? if tier_type is not None: filters.append(type_match(tier_type)) # Get the number of tiers that match this. if not filters: prev_tiers = [] num_tiers = 0 else: prev_tiers = inst.findall(others=filters) num_tiers = len(prev_tiers) id_str = id_base # Now, if we have specified the alignment, we also want to prepend # that to the generated id string. if alignment is not None: if no_hyphenate: return '{}{}'.format(alignment, id_str) else: id_str = '{}-{}'.format(alignment, id_str) # Finally, if we have multiple tiers of the same type that annotate the # same item, we should append a letter for the different analyses. if num_tiers > 0 and inst.find(id=id_str) is not None: while True: letters = string.ascii_lowercase assert num_tiers < 26, "More than 26 alternative analyses not currently supported" potential_id = id_str + '_{}'.format(letters[num_tiers]) if inst.find(id=potential_id) is None: id_str = potential_id break else: num_tiers += 1 return id_str
f21b94677efe25e545d7efd99c68ed1722018c35
3,652,630
def create_temporary_file(filename, contents=""): """ Decorator for constructing a file which is available during a single test and is deleted afterwards. Example usage:: @grader.test @create_temporary_file('hello.txt', 'Hello world!') def hook_test(m): with open('hello.txt') as file: txt = file.read() """ def _inner(test_function): before_test(create_file(filename, contents))(test_function) after_test(delete_file(filename))(test_function) return test_function return _inner
b4ce96e0d239acc379d78b7c13042cea5c0a4fe0
3,652,631
def find_post_translational_modifications(filter=None, page=0, pageSize=100): # noqa: E501 """Find values for an specific property, for example possible taxonomy values for Organism property # noqa: E501 :param filter: Keyword to filter the list of possible values :type filter: str :param page: Number of the page with the possible values for the property :type page: int :param pageSize: Number of values with the possible values for the property :type pageSize: int :rtype: List[PostTranslationalModification] """ unimod_database = UnimodDatabase() l = unimod_database.search_mods_by_keyword(keyword=filter) list_found = l[(page * pageSize):(page * pageSize) + pageSize] return list_found
9c9d196a7d0d3e8c3b2725247504cecf822ac541
3,652,632
def random_vector(A, b): """ Generates a random vector satisfying Ax <= b through rejection sampling. """ dimension = A.shape[1] not_feasible = True while not_feasible == True: config.reject_counter = config.reject_counter + 1 if config.reject_counter == config.milestone: config.milestone = config.milestone * 10 print(config.reject_counter, 'random vectors have been generated so far') rand_vec = np.random.uniform(-0.5, 0.5, dimension) if np.all(np.dot(A, rand_vec) <= b) == True: not_feasible = False return rand_vec
e710ef0a3e49fc7834850465f11232df546b944d
3,652,633
from .transform import mapi from typing import Callable def mapi(mapper: Callable[[TSource, int], TResult]) -> Projection[TSource, TResult]: """Returns an observable sequence whose elements are the result of invoking the mapper function and incorporating the element's index on each element of the source.""" return mapi(mapper)
e640a1a4b68b9115ca2358502b675e4d6710ea83
3,652,634
def game_to_screen(position): """ Converts coordinates from game view into screen coordinates for mouse interaction """ return (GAME_LEFT + position[0], GAME_TOP + position[1])
2176d74a98db1e226dc960b14db35af303bfe9ec
3,652,635
def get_graph_params(filename, nsize=1): """Load and process graph adjacency matrix and upsampling/downsampling matrices.""" data = np.load(filename, encoding='latin1') A = data['A'] U = data['U'] D = data['D'] U, D = scipy_to_pytorch(A, U, D) A = [adjmat_sparse(a, nsize=nsize) for a in A] return A, U, D
5c0671dbe7cd2f56aace9319f78289b1e34defa4
3,652,636
from . import computers def _(dbmodel, backend): """ get_backend_entity for DummyModel DbComputer. DummyModel instances are created when QueryBuilder queries the Django backend. """ djcomputer_instance = djmodels.DbComputer( id=dbmodel.id, uuid=dbmodel.uuid, name=dbmodel.name, hostname=dbmodel.hostname, description=dbmodel.description, transport_type=dbmodel.transport_type, scheduler_type=dbmodel.scheduler_type, metadata=dbmodel.metadata ) return computers.DjangoComputer.from_dbmodel(djcomputer_instance, backend)
dd9dc5eeb0dcd54816675bd2dc19e5a0fc10a59a
3,652,637
import six def retrieve(filename, conf, return_format='dict', save_to_local=False, delete_remote=False, timeout=60): """Retrieving Processed Session File from server via sFTP 1. Get xml file string from server and return object 2. If save_to_local, save to local file system Args: filename: filename of file in outbound folder at remote server with '.asc' as extension. conf: An instance of utils.Configuration. return_format: Return format. The default is ‘dict’. Could be one of ‘dict’, ‘object’ or ‘xml’. save_to_local: whether save file to local. default is false. delete_remote: If delete the remote file after download. The default is False timeout: Timeout in second for ssh connection for sftp. Returns: response XML in desired format. Raises: Exception depends on when get it. """ if not isinstance(conf, utils.Configuration): raise utils.VantivException('conf must be an instance of utils.Configuration') if not isinstance(filename, six.string_types) or len(filename) < 4: raise utils.VantivException('filename must be a string, and at least 4 chars') if not isinstance(timeout, six.integer_types) or timeout < 0: raise utils.VantivException('timeout must be an positive int') response_xml = _get_file_str_from_sftp(filename, conf, delete_remote, timeout) if save_to_local: _save_str_file(response_xml, conf.batch_response_path, filename) return _generate_response(response_xml, return_format, conf)
1ebf550b8a9be3019ed851a5e4571ed9a72f3e44
3,652,638
def get_simulate_func_options( params, options, method="n_step_ahead_with_sampling", df=None, n_simulation_periods=None, ): """Rewrite respy's get_simulation_function such that options can be passed and therefore the seed be changed before any run. Documentation is adapted from :func:`respy.simulate.get_simulate_func()` Parameters ---------- params : pandas.DataFrame DataFrame containing the model parameters. options : dict Dictionary containing the model options. method : {"n_step_ahead_with_sampling", "n_step_ahead_with_data", "one_step_ahead"} The simulation method which can be one of three and is explained in more detail in :func:`respy.simulate.simulate()`. df : pandas.DataFrame or None, default None DataFrame containing one or multiple observations per individual. n_simulation_periods : int or None, default None Simulate data for a number of periods. This options does not affect ``options["n_periods"]`` which controls the number of periods for which decision rules are computed. Returns ------- simulate_function : :func:`simulate` Simulation function where all arguments except the parameter vector and the options are set. """ optim_paras, options = process_params_and_options(params, options) n_simulation_periods, options = _harmonize_simulation_arguments( method, df, n_simulation_periods, options, ) df = _process_input_df_for_simulation(df, method, options, optim_paras) solve = get_solve_func(params, options) n_observations = ( df.shape[0] if method == "one_step_ahead" else df.shape[0] * n_simulation_periods ) shape = (n_observations, len(optim_paras["choices"])) base_draws_sim = create_base_draws( shape, next(options["simulation_seed_startup"]), "random", ) base_draws_wage = create_base_draws( shape, next(options["simulation_seed_startup"]), "random", ) simulate_function = partial( simulate, base_draws_sim=base_draws_sim, base_draws_wage=base_draws_wage, df=df, method=method, n_simulation_periods=n_simulation_periods, solve=solve, ) return simulate_function
9d77730facb29d460c958033873bb2ce02f5a9ed
3,652,639
import os def read_xspec_log_files(es_dir, out_rel_name, boot_num=2): """ Read in all XSPEC log files (with chatter set to 4) that were generated in sed_fit_bootstrap.sh, and append each bootstrap iteration's values to its sed_pars.Parameter. Parameters ---------- es_dir : str The directory with all the energy spectroscopy files from sed_fit_bootstrap.sh. out_rel_name : str The relative (i.e. local) name for the output files. boot_num : int Number of bootstrap iterations implemented. Returns ------- var_pars : np.array of sed_pars.Parameter() 2-D array of the SED parameters that vary with QPO phase, over all the bootstrap iterations. """ all_par_vals = np.zeros((N_SPECTRA, N_PARAMS)) for i in range(1, boot_num + 1): # for i in range(1, 10): boot_log_file = es_dir + "/" + out_rel_name + "_b-" + str(i) + \ "_xspec.log" # print log_file if os.path.isfile(boot_log_file): par_vals = xspec_boot_log_to_array(boot_log_file) # print "Shape of par vals:", np.shape(par_vals) all_par_vals = np.dstack((all_par_vals, par_vals)) else: pass # print "All par vals:", np.shape(all_par_vals) all_par_vals = all_par_vals[:,:,1:] # print "All par vals:", np.shape(all_par_vals) good_boots = np.shape(all_par_vals)[-1] # print "Good boots:", good_boots n_varpars = 0 delete_index = [] for j in range(N_PARAMS): if not check_equal(all_par_vals[:,j,0].flatten()): n_varpars += 1 else: delete_index.append(j) # print "Shape all par vals:", np.shape(all_par_vals) untied_varpar_vals = np.delete(all_par_vals, delete_index, axis=1) # print "Shape untied par vals:", np.shape(untied_varpar_vals) # print untied_varpar_vals return untied_varpar_vals, n_varpars, good_boots
84df2fe905a001877977f6248bafda8e417b0fc5
3,652,640
def get_host_user_and_ssh_key_path(instance_name, project, zone): """Return a tuple of (hostname, username and ssh_key_path).""" output = api.local( 'gcloud compute ssh --project "%s" --zone "%s" %s --dry-run' % (project, zone, instance_name), capture=True) print output m = re.match('/usr/bin/ssh .*-i ([^ ]+)(?: -o [^ ]+)* ([^ ]+)@([^ ]+)', output) return (m.group(3), m.group(2), m.group(1))
eabc88808fe0b73e9df507ea0397c3b9eb38a8de
3,652,641
def TDataStd_TreeNode_Find(*args): """ * class methods working on the node =================================== Returns true if the tree node T is found on the label L. Otherwise, false is returned. :param L: :type L: TDF_Label & :param T: :type T: Handle_TDataStd_TreeNode & :rtype: bool """ return _TDataStd.TDataStd_TreeNode_Find(*args)
6c37e5f05627287eab4c4c13a21d92aa6e4e6a1a
3,652,642
def make_group_corr_mat(df): """ This function reads in each subject's aal roi time series files and creates roi-roi correlation matrices for each subject and then sums them all together. The final output is a 3d matrix of all subjects roi-roi correlations, a mean roi-roi correlation matrix and a roi-roi covariance matrix. **NOTE WELL** This returns correlations transformed by the Fisher z, aka arctanh, function. """ # for each subject do the following for i, (sub, f_id) in enumerate(df[['SUB_ID', 'FILE_ID']].values): #read each subjects aal roi time series files ts_df = pd.read_table('DATA/{}_rois_aal.1D'.format(f_id)) #create a correlation matrix from the roi all time series files corr_mat_r = ts_df.corr() #the correlations need to be transformed to Fisher z, which is #equivalent to the arctanh function. corr_mat_z = np.arctanh(corr_mat_r) #for the first subject, add a correlation matrix of zeros that is the same dimensions as the aal roi-roi matrix if i == 0: all_corr_mat = np.zeros([corr_mat_z.shape[0], corr_mat_z.shape[1], len(df)]) #now add the correlation matrix you just created for each subject to the all_corr_mat matrix (3D) all_corr_mat[:, :, i] = corr_mat_z #create the mean correlation matrix (ignore nas - sometime there are some...) av_corr_mat = np.nanmean(all_corr_mat, axis=2) #create the group covariance matrix (ignore nas - sometime there are some...) var_corr_mat = np.nanvar(all_corr_mat, axis=2) return all_corr_mat, av_corr_mat, var_corr_mat
4d30136e8ce46e984c0039ddaca26efd04f231b9
3,652,643
def get_tradedate(begin, end): """ get tradedate between begin date and end date Params: begin: str,eg: '1999-01-01' end: str,eg: '2017-12-31' Return: pd.DataFrame """ try: conn = pymysql.connect(**config) cursor = conn.cursor() query = "SELECT calendar_date FROM trade_calendar WHERE is_trade_day= 1 AND \ calendar_date>='" + begin + "' AND calendar_date<='" + end + "';" cursor.execute(query) date = pd.DataFrame(list(cursor.fetchall())) date.columns = ['date'] date = pd.DataFrame(pd.to_datetime(date['date'])) return date finally: if conn: conn.close()
9464caee65f12b9704e63068e159494baad25e6a
3,652,644
def collect_tweet(update: Update, context: CallbackContext) -> int: """Tweet caption collection for tweet without attachments""" logger.info("'{update.message.text}' tweet type selected") update.message.reply_text("Enter the tweet") return TWEET
6fc25efa4dc10f2316b70ff18f9a5c77b83c1e4a
3,652,645
from typing import Dict def get_unhandled_crictical_errors(req:HttpRequest, n:int): """ Preprocess errors before injection and gets `n` unhandled errors Typical Return Value if `n` errors were found... {"es":[ { "id": "192.168.1.51", "title":"hey there" } ] } """ errors:Dict = {} # define return object # get the neccessary errors errors_query = Error.objects.filter(isHandled=False, ecode__lt=2000, ecode__gt=1000)[:n] es_tmp:list = [] for error in errors_query: e_tmp:dict victim:object # e_tmp["id"] = error.victim code = error.ecode # if ecode > 1500, then it belongs to the child if code > 1500 and code < 2000: victim = Child.objects.get(ip=error.victim).first() e_tmp["id"] = victim.nickname | victim.ip # if not then belongs to smart task elif code > 1000 and code < 1500: e_tmp["id"] = STask.objects.get(sid=error.victim).first().name # rarely error record may be corrupted else: raise Exception(f"Given ecode{error.ecode} in the error{error.eid} obj is invalid") e_tmp["title"] = get_error_title(error.ecode) es_tmp.append(e_tmp) del e_tmp, victim # compile the return object errors["es"] = es_tmp del es_tmp return JsonResponse(errors)
ae2afdeda89f9a9d946fa60a8ba5e15277388e50
3,652,646
def ADO_mappings(N, K, level_cutoff): """ ADO (auxilary density operators) are indexed by a N by (K + 1) matrix consisting of non-negative integers. ADO_mappings calculates all possible matrices "ado_index" of size N by (K+1) where np.sum(m) < level_cutoff Parameters ---------- N : integer number of states K : integer number of exponentials to include in the spectral density correlation function level_cutoff : integer number of levels at which to terminate the heiarchy expansion Returns ------- ind_to_mat : list of matrices maps index to np.array mat_to_ind : function maps the np.array to the index --------------------------------------------------------------------------- Define S to be the set of all matrices of size N by (K + 1) with non-negative integer values. Define level L_i as: L_i = {m \in S | np.sum(m) == i} L_i can be found using the multichoose function. We will preserve the order that multichoose uses in ordering L_i L_i corresponds to the set of ADOs in the ith heiarchy. L_0 is a singleton set, corresponding to the RDO (reduced density matrix) """ bins = N * (K + 1) permutations = [] for c in range(level_cutoff): permutations.extend(multichoose(bins, c)) inverted_permutations = {tuple(v): i for i, v in enumerate(permutations)} def mat_to_ind(mat): """maps np.array to index""" vec = mat.flatten() try: return inverted_permutations[tuple(vec)] except KeyError: return None ind_to_mat = [np.array(vec).reshape((N, K + 1)) for vec in permutations] return ind_to_mat, mat_to_ind
a76da5569863ea8d17ec248eb09b2b6e5a300ad2
3,652,647
def f_beta(precision, recall, beta): """ Returns the F score for precision, recall and a beta parameter :param precision: a double with the precision value :param recall: a double with the recall value :param beta: a double with the beta parameter of the F measure, which gives more or less weight to precision vs. recall :return: a double value of the f(beta) measure. """ if np.isnan(precision) or np.isnan(recall) or (precision == 0 and recall == 0): return np.nan return ((1 + beta ** 2) * precision * recall) / (((beta ** 2) * precision) + recall)
be6c2b011c51d58d4b5f943671cd53b45632b48f
3,652,648
import os import tempfile def convert_image_to_dicom(image_file): """Read an image file, convert it to Dicom and return the file path""" # Load pixel array from image. img = Image.open(image_file) if ('RGB' == img.mode) or ('RGBA' == img.mode): # Assuming greyscale image, keep only one channel. pix = np.array(img)[:, :, 0] elif 'L' == img.mode: # One black and white channel. pix = np.array(img)[:, :] else: raise ValueError('Unhandled Image mode: {}'.format(img.mode)) # Write pixel array to Dicom file. stk = sitk.GetImageFromArray(pix) writer = sitk.ImageFileWriter() writer.KeepOriginalImageUIDOn() img_basename = os.path.splitext(os.path.basename(image_file))[0] + '_' dicom_file = tempfile.NamedTemporaryFile(prefix=img_basename).name + '.dcm' writer.SetFileName(dicom_file) writer.Execute(stk) return dicom_file
722a5364cd64b5c5261dbb746e24d37e6288f14d
3,652,649
import ntpath, os, yaml def get_cfg(existing_cfg, _log): """ generates """ _sanity_check(existing_cfg, _log) with open(os.path.join(os.path.dirname(__file__), "{}.yml".format(ntpath.basename(__file__).split(".")[0])), 'r') as stream: try: ret = yaml.load(stream) except yaml.YAMLError as exc: assert "Default config yaml for '{}' not found!".format(os.path.splitext(__file__)[0]) return ret
3d69096ebc1b78ad52dcc5b35b225ccfea5ff189
3,652,650
import socket import os import tqdm import urllib import logging def download_alphafold_cif( proteins: list, out_folder: str, out_format: str = "{}.cif", alphafold_cif_url: str = 'https://alphafold.ebi.ac.uk/files/AF-{}-F1-model_v1.cif', timeout: int = 60, verbose_log: bool = False, ) -> tuple: """ Function to download .cif files of protein structures predicted by AlphaFold. Parameters ---------- proteins : list List (or any other iterable) of UniProt protein accessions for which to download the structures. out_folder : str Path to the output folder. alphafold_cif_url : str The base link from where to download cif files. The brackets {} are replaced by a protein name from the proteins list. Default is 'https://alphafold.ebi.ac.uk/files/AF-{}-F1-model_v1.cif'. timeout : int Time to wait for reconnection of downloads. Default is 60. verbose_log: bool Whether to write verbose logging information. Default is False. Returns ------- : (list, list, list) The lists of valid, invalid and existing protein accessions. """ socket.setdefaulttimeout(timeout) valid_proteins = [] invalid_proteins = [] existing_proteins = [] if not os.path.exists(out_folder): os.makedirs(out_folder) for protein in tqdm.tqdm(proteins): name_in = alphafold_cif_url.format(protein) name_out = os.path.join( out_folder, out_format.format(protein) ) if os.path.isfile(name_out): existing_proteins.append(protein) else: try: urllib.request.urlretrieve(name_in, name_out) valid_proteins.append(protein) except urllib.error.HTTPError: if verbose_log: logging.info(f"Protein {protein} not available for CIF download.") invalid_proteins.append(protein) logging.info(f"Valid proteins: {len(valid_proteins)}") logging.info(f"Invalid proteins: {len(invalid_proteins)}") logging.info(f"Existing proteins: {len(existing_proteins)}") return(valid_proteins, invalid_proteins, existing_proteins)
c70265b920837d23c27ee5732a3a9e155a29a30d
3,652,651
import sys import os def _gecko_path(): """Either get the executable or raise an error""" if sys.platform == "win32": return os.path.join(PCKG_PATH, "win32", "geckodriver.exe") if sys.platform == 'linux': return os.path.join(PCKG_PATH, "linux", "geckodriver") if sys.platform == 'darwin': return os.path.join(PCKG_PATH, "macos", "geckodriver") raise OSError("not supported yet")
a5b82091eca7545781740c3ff4d03da532b818a4
3,652,652
import struct def readShort(f): """Read 2 bytes as BE integer in file f""" read_bytes = f.read(2) return struct.unpack(">h", read_bytes)[0]
1b31c2285d055df3c128e8158dcc67eb6c0a2b18
3,652,653
def get_color(thing): """Get color for thing. :param thing: Thing to get color for. :return: Color tuple if rule exists otherwise None. """ for rule in _COLOR_RULES: color = rule(thing) if color is not None: return color return None
79620c0ec8d5e9a153038b9b6a65f36158dce255
3,652,654
def build_table(infos): """ Builds markdown table. """ table_str = '| ' for key in infos[0].keys(): table_str += key + ' | ' table_str += '\n' table_str += '| ' for key in infos[0].keys(): table_str += '--- | ' table_str += '\n' for info in infos: table_str += '| ' for value in info.values(): table_str += str(value) + ' | ' table_str += '\n' return table_str
8d31e6abc9edd0014acbac3570e4a2bc711baa4a
3,652,655
import six import threading def notify_telegram(title, content, token=None, chat=None, mention_user=None, **kwargs): """ Sends a telegram notification and returns *True* on success. The communication with the telegram API might have some delays and is therefore handled by a thread. """ # test import cfg = Config.instance() # get default token and chat if not token: token = cfg.get_expanded("notifications", "telegram_token") if not chat: chat = cfg.get_expanded("notifications", "telegram_chat") if not token or not chat: logger.warning("cannot send Telegram notification, token ({}) or chat ({}) empty".format( token, chat)) return False # append the user to mention to the title # unless explicitly set to empty string mention_text = "" if mention_user is None: mention_user = cfg.get_expanded("notifications", "telegram_mention_user") if mention_user: mention_text = " (@{})".format(mention_user) # request data for the API call request = { "parse_mode": "Markdown", } # standard or attachment content? if isinstance(content, six.string_types): request["text"] = "{}{}\n\n{}".format(title, mention_text, content) else: # content is a dict, add some formatting request["text"] = "{}{}\n\n".format(title, mention_text) for key, value in content.items(): request["text"] += "_{}_: {}\n".format(key, value) # extend by arbitrary kwargs request.update(kwargs) # threaded, non-blocking API communication thread = threading.Thread(target=_notify_telegram, args=(token, chat, request)) thread.start() return True
a736025f5c6a6acff634f325ecbad0e591f30174
3,652,656
def convert_to_dapr_duration(td: timedelta) -> str: """Converts date.timedelta to Dapr duration format. Args: td (datetime.timedelta): python datetime object. Returns: str: dapr duration format string. """ total_minutes, secs = divmod(td.total_seconds(), 60.0) hours, mins = divmod(total_minutes, 60.0) return f'{hours:.0f}h{mins:.0f}m{secs:.0f}s'
729cde6d2dccea1c8fa36eec506ee8ee6ea34b6e
3,652,657
def get_slot(handler_input, slot_name): # type: (HandlerInput, AnyStr) -> Optional[Slot] """Return the slot information from intent request. The method retrieves the slot information :py:class:`ask_sdk_model.slot.Slot` from the input intent request for the given ``slot_name``. More information on the slots can be found here : https://developer.amazon.com/docs/custom-skills/request-types-reference.html#slot-object If there is no such slot, then a ``None`` is returned. If the input request is not an :py:class:`ask_sdk_model.intent_request.IntentRequest`, a :py:class:`TypeError` is raised. :param handler_input: The handler input instance that is generally passed in the sdk's request and exception components :type handler_input: ask_sdk_core.handler_input.HandlerInput :param slot_name: Name of the slot that needs to be retrieved :type slot_name: str :return: Slot information for the provided slot name if it exists, or a `None` value :rtype: Optional[ask_sdk_model.slot.Slot] :raises: TypeError if the input is not an IntentRequest """ request = handler_input.request_envelope.request if isinstance(request, IntentRequest): if request.intent.slots is not None: return request.intent.slots.get(slot_name, None) else: return None raise TypeError("The provided request is not an IntentRequest")
c564f3b82fb21c12b81d1fda0214c330e7355080
3,652,658
from typing import Callable def password_to_key( hash_implementation: Callable[[bytes], TDigestable], padding_length: int ) -> Callable[[bytes, bytes], bytes]: """ Create a helper function to convert passwords to SNMP compliant keys according to :rfc:`3414`. >>> hasher = password_to_key(hashlib.sha1, 20) >>> key = hasher(b"mypasswd", b"target-engine-id") >>> key.hex() '999ec23ca66b9d3f187ab5208840c30b0450b452' :param hash_implementation: A callable that creates an object with a ".digest()" method from a bytes-object. Usable examples are `hashlib.md5` and `hashlib.sha1` :param padding_length: The padding length to be used during hashing (as defined in the SNMP rfc) :returns: A callable which can be used to derive an SNMP compliant key from a password. """ @lru_cache(maxsize=None) def hasher(password: bytes, engine_id: bytes) -> bytes: """ Derive a key from a password and engine-id. :param password: The user password :param engine_id: The target engine ID :returns: The derived key """ # Repeat the password for a total of 1MB worth of data (as per SNMP rfc) hash_size = 1024 * 1024 num_words = hash_size // len(password) tmp = (password * (num_words + 1))[:hash_size] hash_instance = hash_implementation(tmp) key = hash_instance.digest() localised_buffer = ( key[:padding_length] + engine_id + key[:padding_length] ) final_key = hash_implementation(localised_buffer).digest() return final_key hasher.__name__ = f"<hasher:{hash_implementation}>" # type: ignore return hasher
3f638afaa5c950f70edf39ca699701ec1709729e
3,652,659
import re def categorize_tag_key_characters(OSM_FILE = "data\\round_rock.xml", category = 'Summary'): """Categorizes attributes into those with: all lower character, all lower after colon(:), containing special/problem characters and all all others that were not listed in above which includes uppercase characters and/or multiple colons. Keyword arguments: OSM_File -- .osm or .xml file (default "data\\round_rock.xml") category -- print specific keys of categories of characters from regex search (default 'Summary' ['All', 'lower', 'lower_colon', 'porblemchars', 'other']) """ if category == 'All': category = ('lower', 'lower_colon', 'porblemchars', 'other') category_list = list(category) lower = re.compile(r'^([a-z]|_)*$') lower_colon = re.compile(r'^([a-z]|_)*:([a-z]|_)*$') problemchars = re.compile(r'[=\+/&<>;\'"\?%#$@\,\. \t\r\n]') lower_set = set() lower_colon_set = set() problemchars_set = set() other_set = set() def key_type(element, keys): if element.tag == "tag": if lower.match(element.attrib['k']): lower_set.add(element.attrib['k']) keys["lower"] += 1 elif lower_colon.match(element.attrib['k']): lower_colon_set.add(element.attrib['k']) keys["lower_colon"] += 1 elif problemchars.match(element.attrib['k']): problemchars_set.add(element.attrib['k']) keys["problemchars"] += 1 else: other_set.add(element.attrib['k']) keys["other"] += 1 return keys def process_map(filename): keys = {"lower": 0, "lower_colon": 0, "problemchars": 0, "other": 0} for _, element in ET.iterparse(filename): keys = key_type(element, keys) print(keys) print( "\nThere are:\n\ {} unique keys in lower,\n\ {} unique keys in lower_colon,\n\ {} unique keys in problemchars and\n\ {} unique keys in other.\n" .format(len(lower_set), len(lower_colon_set), len(problemchars_set), len(other_set)) ) if 'lower' in category_list: print('\n\nlower set has {} items. The unique items are: \n\n{} \n\n' .format(keys["lower"], sorted(lower_set))) if 'lower_colon' in category_list: print('lower_colon set has {} items. The unique items are: \n\n{} \n\n' .format(keys["lower_colon"], sorted(lower_colon_set))) if 'problemchars' in category_list: print('problemchars set has {} items. The unique items are: \n\n{} \n\n' .format(keys["problemchars"], sorted(problemchars_set))) if 'other' in category_list: print('other set has {} items. The unique items are: \n\n{} \n\n' .format(keys["other"], sorted(other_set))) return keys keys_dicts = process_map(OSM_FILE) return keys_dicts
4e2f6c6a24a14114ce8f5c8d2855847859ad4d8f
3,652,660
def rotate_left(value, count, nbits, offset): """ Rotate a value to the left (or right) @param value: value to rotate @param count: number of times to rotate. negative counter means rotate to the right @param nbits: number of bits to rotate @param offset: offset of the first bit to rotate @return: the value with the specified field rotated all other bits are not modified """ assert offset >= 0, "offset must be >= 0" assert nbits > 0, "nbits must be > 0" mask = 2**(offset+nbits) - 2**offset tmp = value & mask if count > 0: for x in xrange(count): if (tmp >> (offset+nbits-1)) & 1: tmp = (tmp << 1) | (1 << offset) else: tmp = (tmp << 1) else: for x in xrange(-count): if (tmp >> offset) & 1: tmp = (tmp >> 1) | (1 << (offset+nbits-1)) else: tmp = (tmp >> 1) value = (value-(value&mask)) | (tmp & mask) return value
ed24a0a958bed1ab1a01c4a858bfba0fd163e2fd
3,652,661
def geo_to_string(value): """ Convert geo objects to strings, because they don't support equality. """ if isinstance(value, list): return [geo_to_string(x) for x in value] if isinstance(value, dict): result = {} for dict_key, dict_value in value.iteritems(): result[dict_key] = geo_to_string(dict_value) return result if isinstance(value, aerospike.GeoJSON): return str(value) return value
9566a980128767ea4b2d651c88d715673e7ef005
3,652,662
import argparse import sys def get_args(): """Get command-line arguments""" parser = argparse.ArgumentParser( description="I'm a snitch", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('FILE1', help='Input file 1', metavar='FILE', type=argparse.FileType('rt')) parser.add_argument('FILE2', help='Input file 2', metavar='FILE', type=argparse.FileType('rt')) parser.add_argument('-o', '--outfile', help='Output filename', metavar='FILE', type=argparse.FileType('wt'), default=sys.stdout) return parser.parse_args()
5ff11678d2d45f2cbb51e71841195009bb45a0f2
3,652,663
import http def page_not_found(request, template_name='404.html'): """ Default 404 handler. Templates: `404.html` Context: request_path The path of the requested URL (e.g., '/app/pages/bad_page/') """ t = loader.get_template(template_name) # You need to create a 404.html template. return http.HttpResponseNotFound(t.render(RequestContext(request, {'request_path': request.path})))
de0348f3c3bf963f1614d13ffc32bb79d30437b0
3,652,664
import csv def load_data(filename): """ Load shopping data from a CSV file `filename` and convert into a list of evidence lists and a list of labels. Return a tuple (evidence, labels). evidence should be a list of lists, where each list contains the following values, in order: - Administrative, an integer - Administrative_Duration, a floating point number - Informational, an integer - Informational_Duration, a floating point number - ProductRelated, an integer - ProductRelated_Duration, a floating point number - BounceRates, a floating point number - ExitRates, a floating point number - PageValues, a floating point number - SpecialDay, a floating point number - Month, an index from 0 (January) to 11 (December) - OperatingSystems, an integer - Browser, an integer - Region, an integer - TrafficType, an integer - VisitorType, an integer 0 (not returning) or 1 (returning) - Weekend, an integer 0 (if false) or 1 (if true) labels should be the corresponding list of labels, where each label is 1 if Revenue is true, and 0 otherwise. """ with open("shopping.csv") as f: reader = csv.reader(f) next(reader) months = ["Jan", "Feb", "Mar", "Apr", "May", "June", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"] data = [] for row in reader: data.append({ "evidence": [int(row[0]), float(row[1]), int(row[2]), float(row[3]), int(row[4]), float(row[5]), float(row[6]), float(row[7]), float(row[8]), float(row[9]), months.index(row[10]), int(row[11]), int(row[12]), int(row[13]), int(row[14]), 0 if row[15] == "New_Visitor" else 1, 0 if row[16] == "FALSE" else 1], "label": 0 if row[17] == "FALSE" else 1 }) evidence = [row["evidence"] for row in data] labels = [row["label"] for row in data] return (evidence, labels)
eb2465d0ebfb7398a3742d8fb79463d3d7b076f0
3,652,665
def instance_mock(cls, request, name=None, spec_set=True, **kwargs): """ Return a mock for an instance of *cls* that draws its spec from the class and does not allow new attributes to be set on the instance. If *name* is missing or |None|, the name of the returned |Mock| instance is set to *request.fixturename*. Additional keyword arguments are passed through to the Mock() call that creates the mock. """ if name is None: name = request.fixturename return create_autospec(cls, _name=name, spec_set=spec_set, instance=True, **kwargs)
ccc60e2f90f63a131059714b3ddb213246807a0b
3,652,666
import functools import torch def auto_fp16(apply_to=None, out_fp32=False): """Decorator to enable fp16 training automatically. This decorator is useful when you write custom modules and want to support mixed precision training. If inputs arguments are fp32 tensors, they will be converted to fp16 automatically. Arguments other than fp32 tensors are ignored. Args: apply_to (Iterable, optional): The argument names to be converted. `None` indicates all arguments. out_fp32 (bool): Whether to convert the output back to fp32. Example: >>> import torch.nn as nn >>> class MyModule1(nn.Module): >>> >>> # Convert x and y to fp16 >>> @auto_fp16() >>> def forward(self, x, y): >>> pass >>> import torch.nn as nn >>> class MyModule2(nn.Module): >>> >>> # convert pred to fp16 >>> @auto_fp16(apply_to=('pred', )) >>> def do_something(self, pred, others): >>> pass """ def auto_fp16_wrapper(old_func): @functools.wraps(old_func) def new_func(*args, **kwargs): # check if the module has set the attribute `fp16_enabled`, if not, # just fallback to the original method. if not isinstance(args[0], torch.nn.Module): raise TypeError('@auto_fp16 can only be used to decorate the ' 'method of nn.Module') if not (hasattr(args[0], 'fp16_enabled') and args[0].fp16_enabled): return old_func(*args, **kwargs) # get the arg spec of the decorated method args_info = getfullargspec(old_func) # get the argument names to be casted args_to_cast = args_info.args if apply_to is None else apply_to # convert the args that need to be processed new_args = [] # NOTE: default args are not taken into consideration if args: arg_names = args_info.args[:len(args)] for i, arg_name in enumerate(arg_names): if arg_name in args_to_cast: new_args.append( cast_tensor_type(args[i], torch.float, torch.half)) else: new_args.append(args[i]) # convert the kwargs that need to be processed new_kwargs = {} if kwargs: for arg_name, arg_value in kwargs.items(): if arg_name in args_to_cast: new_kwargs[arg_name] = cast_tensor_type( arg_value, torch.float, torch.half) else: new_kwargs[arg_name] = arg_value # apply converted arguments to the decorated method output = old_func(*new_args, **new_kwargs) # cast the results back to fp32 if necessary if out_fp32: output = cast_tensor_type(output, torch.half, torch.float) return output return new_func return auto_fp16_wrapper
1b3292ce6382f82b210d07ec48557f3c06ed7259
3,652,667
def get_loci_score(state, loci_w, data_w, species_w, better_loci, species_counts, total_individuals, total_species, individuals): """ Scoring function with user-specified weights. :param state: :param loci_w: the included proportion of loci from the original data set (higher is better). :param data_w: 1 - the proportion of missing data for the selected loci (higher is better). :param species_w: the average proportion of species represented per locus (higher is better). :param better_loci: :param species_counts: :param total_individuals: :param total_species: :param individuals: :return: """ num_loci = sum(state) species_loci_counts = {species: 0 for species in species_counts} individual_count = 0 missing_counts = {individual: 0 for individual in individuals} total_loci = len(better_loci) for i in range(total_loci): if state[i] == 0: continue found_species = set() found_individuals = set() lines = better_loci[i].split("\n") for line in lines: if line == "": continue (individual, sequence) = line[1:].split() found_individuals.add(individual) individual_count += 1 species = individual.split("_")[-1] found_species.add(species) for species in found_species: species_loci_counts[species] += 1 # Keep track of the amount of missing data for each individual. for individual in individuals: if individual not in found_individuals: missing_counts[individual] += 1 num_missing = num_loci * total_individuals - individual_count score_comps = [loci_w * float(num_loci) / float(total_loci), data_w * (1 - float(num_missing) / float(num_loci * total_individuals)), species_w * float(sum([species_loci_counts[species] for species in species_loci_counts])) / (float(num_loci) * float(total_species))] return score_comps, missing_counts
e5e12bf2f9f76e994289a33b52d4cdc3d641ec8e
3,652,668
def make_per_cell_fastqs( reads, outdir, channel_id, output_format, cell_barcode_pattern, good_barcodes_filename): """Write the filtered cell barcodes in reads from barcodes_with_significant_umi_file fastq.gzs to outdir Parameters ---------- reads : str read records from fasta path greater than or equal to min_umi_per_cell outdir: str write the per cell barcode fastq.gzs to outdir channel_id: str prefix to fastq output_format: str format of output files, can be either fastq or fastq.gz cell_barcode_pattern: regex pattern cell barcode pattern to detect in the record name barcodes_with_significant_umi_file: list list of containing barcodes that have significant umi counts Returns ------- Write the filtered cell barcodes in reads from barcodes_with_significant_umi_file fastq.gzs to outdir """ if channel_id is None: channel_id = "" good_barcodes = read_barcodes_file(good_barcodes_filename) fastqs = [] record_count = 0 for record in screed.open(reads): record_count += 1 if record_count == 0: return fastqs good_cell_barcode_records = get_good_cell_barcode_records( reads, good_barcodes, cell_barcode_pattern) for cell_barcode, records in good_cell_barcode_records.items(): if channel_id == "": filename = "{}/{}.{}".format( outdir, cell_barcode, output_format) else: filename = "{}/{}_{}.{}".format( outdir, channel_id, cell_barcode, output_format) write_fastq(records, filename) fastqs.append(filename) return fastqs
16f45364e8a081addf7b126c3d5af4fb00de4bdc
3,652,669
def plot_roc_curve(data, cls_name, title='ROC curve'): """ :param data: list [(fpr, tpr), (), ...] :param cls_name: tuple of names for each class :param title: plot title :return: """ def cal_auc(tpr, fpr): return np.trapz(tpr, fpr) def plot_single_curve(fpr, tpr, cls_ind): auc = cal_auc(tpr, fpr) plt.plot(fpr, tpr, label="%s ROC curve (area = %.2f)" % (cls_name[cls_ind], auc)) return auc assert isinstance(data, list) if len(cls_name) == 2: assert len(data) == 1 else: assert len(data) == len(cls_name) fig = plt.figure() args = [(fpr, tpr, i) for i, (fpr, tpr) in enumerate(data)] if len(cls_name) > 2: auc = np.mean(list(map(lambda x: plot_single_curve(*x), args))) else: fpr, tpr = data[0] auc = cal_auc(tpr, fpr) plt.plot(fpr, tpr, label="%s vs. %s ROC curve (area = %.2f)" % (cls_name[1], cls_name[0], auc)) ax = plt.gca() ax.plot([0, 1], [0, 1], ls="--", c=".3") plt.title(title + ' (mean area = %.4f)' % auc) plt.ylabel('True positive rate') plt.xlabel('False positive rate') plt.legend() return fig, auc
5b2a56c3f193954173431341185b3bdc53c33c7a
3,652,670
import time def train(elastic_coordinator, train_step, state): """ This is the main elastic data parallel loop. It starts from an initial 'state'. Each iteration calls 'train_step' and returns a new state. 'train_step' has the following interface: state, worker_stats = train_step(state) When 'train_step' exhausts all the data, a StopIteration exception should be thrown. """ assert isinstance(state, torchelastic.State) failure_count = 0 rank = 0 checkpoint_util = CheckpointUtil(elastic_coordinator) while not elastic_coordinator.should_stop_training(): # See: https://github.com/pytorch/elastic/issues/7 if failure_count >= MAX_FAILURES: e = RuntimeError( "Exceeded max number of recoverable failures: {}".format(failure_count) ) elastic_coordinator.on_error(e) raise e start_time = time.time() snapshot = state.capture_snapshot() try: store, rank, world_size = elastic_coordinator.rendezvous_barrier() elastic_coordinator.init_process_group() # load checkpoint if necessary state = checkpoint_util.load_checkpoint(state, rank) state_sync_start_time = time.time() state.sync(world_size, rank) publish_metric( "torchelastic", "state_sync.duration.ms", get_elapsed_time_ms(state_sync_start_time), ) checkpoint_util.set_checkpoint_loaded() elastic_coordinator.barrier() log.info("Rank {0} synced state with other nodes".format(rank)) except StopException: log.info("Rank {0} received stopped signal. Exiting training.".format(rank)) break except RuntimeError as e: # See: https://github.com/pytorch/elastic/issues/7 elastic_coordinator.on_error(e) state.apply_snapshot(snapshot) failure_count += 1 continue except (NonRetryableException, Exception) as e: elastic_coordinator.on_error(e) raise finally: publish_metric( "torch_elastic", "outer_train_loop.duration.ms", get_elapsed_time_ms(start_time), ) # Note that the loop might not even start if the rendezvous was closed # due to one of the trainer processes completing earlier. while not elastic_coordinator.should_stop_training(): start_time = time.time() snapshot = state.capture_snapshot() try: train_step_start_time = time.time() state, worker_stats = train_step(state) publish_metric( "torchelastic", "train_step.duration.ms", get_elapsed_time_ms(train_step_start_time), ) elastic_coordinator.monitor_progress(state, worker_stats) checkpoint_util.save_checkpoint(state, rank) if elastic_coordinator.should_rendezvous(state): log.info("Rank {0} will re-rendezvous".format(rank)) # Executor told us, for whatever reason, to re-rendezvous. # This can occur if another node encounters an error, # if a new node becomes available to train, # or potentially even if it's time to checkpoint. break elastic_coordinator.report_progress(state) except StopIteration: log.info("Rank {0} finished all the iterations".format(rank)) # Current trainer process completed processing assigned subset of # examples. Other trainer processes need to stop as well. # This sends an explicit signal on training completion. elastic_coordinator.signal_training_done() break except RuntimeError as e: # See: https://github.com/pytorch/elastic/issues/7 elastic_coordinator.on_error(e) state.apply_snapshot(snapshot) failure_count += 1 break except Exception as e: elastic_coordinator.on_error(e) raise finally: publish_metric( "torchelastic", "inner_train_loop.duration.ms", get_elapsed_time_ms(start_time), ) if elastic_coordinator.should_stop_training(): return state else: # This is an error condition and should not happen. raise Exception( "Exiting without training complete. rank: {0}," " should_stop_training: {1}".format( rank, elastic_coordinator.should_stop_training() ) )
ea7886bba7db96ff85e1687b3b3e24cbc8f8af9d
3,652,671
def make_animation(data_list, **kwargs): """ Creates an animation from list of McStasData objects Parameters ---------- data_list : list of McStasData List of McStasData objects for animation Keyword arguments ----------------- filename : str Filename for saving the gif fps : float Number of frames per second """ figsize, data_list = _handle_kwargs(data_list, **kwargs) if "fps" in kwargs: period_in_ms = 1000 / kwargs["fps"] else: period_in_ms = 200 # find limits for entire dataset maximum_values = [] minimum_values = [] is_1D = False is_2D = False for data in data_list: if isinstance(data.metadata.dimension, int): is_1D = True elif len(data.metadata.dimension) == 2: is_2D = True min_value, max_value = _find_min_max_I(data) # When data empty, min and max value is 0, skip if not (min_value == 0 and max_value == 0): minimum_values.append(min_value) maximum_values.append(max_value) if is_1D and is_2D: raise ValueError( "Both 1D and 2D data in animation, only one allowed.") if len(minimum_values) == 0: raise ValueError( "No data found for animation!") maximum_value = np.array(maximum_values).max() minimum_value = np.array(minimum_values).min() if "orders_of_mag" in kwargs: orders_of_mag = kwargs["orders_of_mag"] mag_diff = np.log10(maximum_value) - np.log10(minimum_value) if mag_diff > orders_of_mag: minimum_value_log10 = np.log10(maximum_value) - orders_of_mag minimum_value = 10**(minimum_value_log10) kwargs["fixed_minimum_value"] = minimum_value kwargs["fixed_maximum_value"] = maximum_value fig, ax0 = plt.subplots(figsize=figsize) im = _plot_fig_ax(data_list[0], fig, ax0, **kwargs) def animate_2D(index): data = data_list[index] intensity = data.Intensity im.set_array(intensity.ravel()) return im, anim = animation.FuncAnimation(fig, animate_2D, frames=len(data_list), interval=period_in_ms, blit=False, repeat=True) plt.show() # The animation doesn't play unless it is saved. Bug. if "filename" in kwargs: filename = kwargs["filename"] if not filename.endswith(".gif"): filename = filename + ".gif" # check if imagemagick available? print("Saving animation with filename : \"" + filename + "\"") anim.save(filename, writer="imagemagick")
334a04f660018d2a05da1ceadf5ef2fdc8e8cdc6
3,652,672
import torch def softmax_mask(w: torch.Tensor, dim=-1, mask: torch.BoolTensor = None ) -> torch.Tensor: """ Allows having -np.inf in w to mask out, or give explicit bool mask :param w: :param dim: :param mask: :return: """ if mask is None: mask = w != -np.inf minval = torch.min(w[~mask]) # to avoid affecting torch.max w1 = w.clone() w1[~mask] = minval # to prevent over/underflow w1 = w1 - torch.max(w1, dim=dim, keepdim=True)[0] w1 = torch.exp(w1) p = w1 / torch.sum(w1 * mask.float(), dim=dim, keepdim=True) p[~mask] = 0. return p
6cf295b308040d3ad4019ab8292b37a679fb6e27
3,652,673
from jack.readers.multiple_choice.shared import MultipleChoiceSingleSupportInputModule from jack.readers.natural_language_inference.modular_nli_model import ModularNLIModel from jack.readers.multiple_choice.shared import SimpleMCOutputModule from typing import Union def modular_nli_reader(resources_or_conf: Union[dict, SharedResources] = None): """Creates a Modular NLI reader instance. Model defined in config.""" shared_resources = create_shared_resources(resources_or_conf) input_module = MultipleChoiceSingleSupportInputModule(shared_resources) model_module = ModularNLIModel(shared_resources) output_module = SimpleMCOutputModule(shared_resources) return TFReader(shared_resources, input_module, model_module, output_module)
03032966355fcb3405cbc2f311908d7be1f2485d
3,652,674
def move_box_and_gtt(n_targets=3, time_limit=DEFAULT_TIME_LIMIT, control_timestep=DEFAULT_CONTROL_TIMESTEP): """Loads `move_box_or_gtt` task.""" return _make_predicate_task( n_boxes=1, n_targets=n_targets, include_gtt_predicates=True, include_move_box_predicates=True, max_num_predicates=2, control_timestep=control_timestep, time_limit=time_limit)
4ae2377d0449b93d3dc0ff34e18010c7bff004d8
3,652,675
import json def get_body(data_dict, database_id, media_status, media_type): """ 获取json数据 :param media_type: :param media_status: :param data_dict: :param database_id: :return: """ status = "" music_status = "" if media_status == MediaStatus.WISH.value: status = "想看" music_status = "想听" elif media_status == MediaStatus.DO.value: status = "在看" music_status = "在听" elif media_status == MediaStatus.COLLECT.value: status = "看过" music_status = "听过" else: status = "" music_status = "" log_detail.info(f"【RUN】- {media_type}数据信息整理为json格式") rating = data_dict[MediaInfo.RATING_F.value] # rating = float(rat) if rat == "" else 0 if media_type == MediaType.MUSIC.value: body = { "parent": { "type": "database_id", "database_id": f"{database_id}" }, "properties": { "音乐": { "title": [{ "type": "text", "text": { "content": data_dict[MediaInfo.TITLE.value] } }] }, "封面": { "files": [{ "type": "external", "name": data_dict[MediaInfo.IMG.value][-13:], "external": { "url": data_dict[MediaInfo.IMG.value] } }] }, "表演者": { "rich_text": [{ "type": "text", "text": { "content": data_dict[MediaInfo.PERFORMER.value] } }] }, "发行时间": { "select": { "name": data_dict[MediaInfo.RELEASE_DATE.value][0:4] } }, "标记状态": { "select": { "name": f"{music_status}" } }, "豆瓣链接": { "url": f"{data_dict[MediaInfo.URL.value]}" } } } # 评分 if data_dict[MediaInfo.RATING_F.value]: rating_f = float(data_dict[MediaInfo.RATING_F.value]) tmp_dict = get_non_null_params_body(property_type=DatabaseProperty.NUMBER.value, property_params=rating_f) body["properties"]["评分"] = tmp_dict # 评分人数 if data_dict[MediaInfo.ASSESS.value]: tmp_dict = get_non_null_params_body(property_type=DatabaseProperty.NUMBER.value, property_params=data_dict[MediaInfo.ASSESS.value]) body["properties"]["评分人数"] = tmp_dict return body elif media_type == MediaType.MOVIE.value: # 导演 编剧 主演 text_director = ' / '.join(data_dict[MediaInfo.DIRECTOR.value]) text_screenwriter = ' / '.join(data_dict[MediaInfo.SCREENWRITER.value]) text_starring = ' / '.join(data_dict[MediaInfo.STARRING.value]) str_type = get_multi_select_body(data_dict[MediaInfo.MOVIE_TYPE.value]) json_type = json.loads(str_type) str_c_or_r = get_multi_select_body(data_dict[MediaInfo.C_OR_R.value]) json_c_or_r = json.loads(str_c_or_r) body = { "parent": { "type": "database_id", "database_id": f"{database_id}" }, "properties": { "名字": { "title": [{ "type": "text", "text": { "content": data_dict[MediaInfo.TITLE.value] } }] }, "导演": { "rich_text": [{ "type": "text", "text": { "content": text_director } }] }, "编剧": { "rich_text": [{ "type": "text", "text": { "content": text_screenwriter } }] }, "主演": { "rich_text": [{ "type": "text", "text": { "content": text_starring } }] }, "类型": { "multi_select": json_type }, "国家地区": { "multi_select": json_c_or_r }, "IMDb": { "url": f"https://www.imdb.com/title/{data_dict[MediaInfo.IMDB.value]}" }, "标记状态": { "select": { "name": f"{status}" } }, "分类": { "select": { "name": f"{data_dict[MediaInfo.CATEGORIES.value]}" } }, "简介": { "rich_text": [{ "type": "text", "text": { "content": data_dict[MediaInfo.RELATED.value] } }] }, "封面": { "files": [{ "type": "external", "name": data_dict[MediaInfo.IMG.value][-15:], "external": { "url": data_dict[MediaInfo.IMG.value] } }] }, "豆瓣链接": { "url": f"{data_dict[MediaInfo.URL.value]}" } } } # 评分 if data_dict[MediaInfo.RATING_F.value]: rating_f = float(data_dict[MediaInfo.RATING_F.value]) tmp_dict = get_non_null_params_body(property_type=DatabaseProperty.NUMBER.value, property_params=rating_f) body["properties"]["评分"] = tmp_dict # 评分人数 if data_dict[MediaInfo.ASSESS.value]: tmp_dict = get_non_null_params_body(property_type=DatabaseProperty.NUMBER.value, property_params=data_dict[MediaInfo.ASSESS.value]) body["properties"]["评分人数"] = tmp_dict return body elif media_type == MediaType.BOOK.value: body = { "parent": { "type": "database_id", "database_id": f"{database_id}" }, "properties": { "书名": { "title": [{ "type": "text", "text": { "content": data_dict[MediaInfo.TITLE.value] } }] }, "封面": { "files": [{ "type": "external", "name": data_dict[MediaInfo.IMG.value][-13:], "external": { "url": data_dict[MediaInfo.IMG.value] } }] }, "作者": { "rich_text": [{ "type": "text", "text": { "content": data_dict[MediaInfo.AUTHOR.value] } }] }, "出版年份": { "select": { "name": data_dict[MediaInfo.PUB_DATE.value][0:4] } }, "标记状态": { "select": { "name": f"{status}" } }, "豆瓣链接": { "url": f"{data_dict[MediaInfo.URL.value]}" } } } # ISBN if data_dict[MediaInfo.ISBN.value]: tmp_dict = get_non_null_params_body(property_type=DatabaseProperty.URL.value, property_params=data_dict[MediaInfo.ISBN.value]) body["properties"]["ISBN"] = tmp_dict # 价格 if data_dict[MediaInfo.PRICE.value]: tmp_float = float(data_dict[MediaInfo.PRICE.value]) tmp_dict = get_non_null_params_body(property_type=DatabaseProperty.NUMBER.value, property_params=tmp_float) body["properties"]["价格"] = tmp_dict # 评分 if data_dict[MediaInfo.RATING_F.value]: rating_f = float(data_dict[MediaInfo.RATING_F.value]) tmp_dict = get_non_null_params_body(property_type=DatabaseProperty.NUMBER.value, property_params=rating_f) body["properties"]["评分"] = tmp_dict # 评分人数 if data_dict[MediaInfo.ASSESS.value]: tmp_dict = get_non_null_params_body(property_type=DatabaseProperty.NUMBER.value, property_params=data_dict[MediaInfo.ASSESS.value]) body["properties"]["评分人数"] = tmp_dict # 页数 if data_dict[MediaInfo.PAGES.value]: pages_num = int(data_dict[MediaInfo.PAGES.value]) tmp_dict = get_non_null_params_body(property_type=DatabaseProperty.NUMBER.value, property_params=pages_num) body["properties"]["页数"] = tmp_dict # 出版社 if data_dict[MediaInfo.PUBLISHER.value]: tmp_dict = get_non_null_params_body(property_type=DatabaseProperty.SELECT.value, property_params=data_dict[MediaInfo.PUBLISHER.value]) body["properties"]["出版社"] = tmp_dict return body
4d09b4000c47dc1dc56aa73ca7b176d40f360e97
3,652,676
def _find_full_periods(events, quantity, capacity): """Find the full periods.""" full_periods = [] used = 0 full_start = None for event_date in sorted(events): used += events[event_date]['quantity'] if not full_start and used + quantity > capacity: full_start = event_date elif full_start and used + quantity <= capacity: full_periods.append((full_start, event_date)) full_start = None return full_periods
16c36ce8cc5a91031117534e66c67605e13e3bd4
3,652,677
import random def crop_image(img, target_size, center): """ crop_image """ height, width = img.shape[:2] size = target_size if center == True: w_start = (width - size) / 2 h_start = (height - size) / 2 else: w_start = random.randint(0, width - size) h_start = random.randint(0, height - size) w_end = w_start + size h_end = h_start + size img = img[h_start:h_end, w_start:w_end, :] return img
c61d4410155501e3869f2e243af22d7fc13c10ee
3,652,678
def _histogram( data=None, bins="freedman-diaconis", p=None, density=False, kind="step", line_kwargs={}, patch_kwargs={}, **kwargs, ): """ Make a plot of a histogram of a data set. Parameters ---------- data : array_like 1D array of data to make a histogram out of bins : int, array_like, or str, default 'freedman-diaconis' If int or array_like, setting for `bins` kwarg to be passed to `np.histogram()`. If 'exact', then each unique value in the data gets its own bin. If 'integer', then integer data is assumed and each integer gets its own bin. If 'sqrt', uses the square root rule to determine number of bins. If `freedman-diaconis`, uses the Freedman-Diaconis rule for number of bins. p : bokeh.plotting.Figure instance, or None (default) If None, create a new figure. Otherwise, populate the existing figure `p`. density : bool, default False If True, normalized the histogram. Otherwise, base the histogram on counts. kind : str, default 'step' The kind of histogram to display. Allowed values are 'step' and 'step_filled'. line_kwargs : dict Any kwargs to be passed to p.line() in making the line of the histogram. patch_kwargs : dict Any kwargs to be passed to p.patch() in making the fill of the histogram. kwargs : dict All other kwargs are passed to bokeh.plotting.figure() Returns ------- output : Bokeh figure Figure populated with histogram. """ if data is None: raise RuntimeError("Input `data` must be specified.") # Instantiate Bokeh plot if not already passed in if p is None: y_axis_label = kwargs.pop("y_axis_label", "density" if density else "count") if "plot_height" not in kwargs and "frame_height" not in kwargs: kwargs["frame_height"] = 275 if "plot_width" not in kwargs and "frame_width" not in kwargs: kwargs["frame_width"] = 400 y_range = kwargs.pop("y_range", bokeh.models.DataRange1d(start=0)) p = bokeh.plotting.figure(y_axis_label=y_axis_label, y_range=y_range, **kwargs) # Compute histogram bins = _bins_to_np(data, bins) e0, f0 = _compute_histogram(data, bins, density) if kind == "step": p.line(e0, f0, **line_kwargs) if kind == "step_filled": x2 = [e0.min(), e0.max()] y2 = [0, 0] p = fill_between(e0, f0, x2, y2, show_line=True, p=p, patch_kwargs=patch_kwargs) return p
cc766f3367c0c7b5c3c1f56c120f8e682c14a8fb
3,652,679
def getGarbageBlock(): """获取正在标记的众生区块 { ?block_id= } 返回 json { "is_success":bool, "data": {"id": , "election_period": "beings_block_id": "votes": "vote_list": "status": "create_time": """ try: beings_block_id = request.args.get("block_id") res = blockOfGarbage.getGarbageBlockQueue(beings_block_id) if res is None: http_message = HttpMessage(is_success=False, data=res) else: http_message = HttpMessage(is_success=True, data=res) return http_message.getJson() except Exception as err: print(err) http_message = HttpMessage(is_success=False, data="参数错误") return http_message.getJson()
9faff268d1f492adde467a100d93e99d0b2cc583
3,652,680
def partition(items, low, high): """Return index `p` after in-place partitioning given items in range `[low...high]` by choosing a pivot (TODO: document your method here) from that range, moving pivot into index `p`, items less than pivot into range `[low...p-1]`, and items greater than pivot into range `[p+1...high]`. TODO: Running time: ??? O(n) TODO: Memory usage: ??? O(1) # TODO: Choose a pivot any way and document your method in docstring above # TODO: Loop through all items in range [low...high] # TODO: Move items less than pivot into front of range [low...p-1] # TODO: Move items greater than pivot into back of range [p+1...high] # TODO: Move pivot item into final position [p] and return index p """ divider = low #keeps track of the pivot index used for comparision pivot = high #default pivot index for i in range(low, high): # Move items less than pivot into front of range [low...p-1] # Move items greater than pivot into back of range [p+1...high] if items[i] < items[pivot]: #this does the work items[i], items[divider] = items[divider], items[i] # by moving the items less than divider += 1 # and leaving items greater where they are # Move pivot item into final position [p] and return index p items[pivot], items[divider] = items[divider], items[pivot] return divider
23e98f9af46239e74ce990f7c0873159d3dff43e
3,652,681
from typing import Dict import itertools def cluster_confusion_matrix(pred_cluster:Dict, target_cluster:Dict) -> EvalUnit: """ simulate confusion matrix Args: pred_cluster: Dict element: cluster_id (cluster_id from 0 to max_size)| predicted clusters target_cluster: Dict element:cluster_id (cluster_id from 0 to max_size) | target clusters Returns: In order to return detailed data, It will return a EvalUnit, """ pred_elements = list(pred_cluster.keys()) target_elements = list(target_cluster.keys()) it = itertools.product(pred_elements,target_elements) tp,fp,tn,fn = 0,0,0,0 for x,y in it: if x != y:#other word x_cluster = pred_elements[x] x_cluster_ = target_elements[x] y_cluster = pred_elements[y] y_cluster_ = target_elements[y] if x_cluster == y_cluster and x_cluster_ == y_cluster_: tp += 1 elif x_cluster != y_cluster and x_cluster_ != y_cluster_: tn += 1 elif x_cluster == y_cluster and x_cluster_ != y_cluster_: fp += 1 else: fn +=1 return EvalUnit(tp,tn,fp,fn,'rand_index')
b3a5afb5c01cf5cb07c43e3666111d06e9229259
3,652,682
def change_short(x, y, limit): """Return abs(y - x) as a fraction of x, but with a limit. >>> x, y = 2, 5 >>> abs(y - x) / x 1.5 >>> change_short(x, y, 100) 1.5 >>> change_short(x, y, 1) # 1 is smaller than 1.5 1 >>> x = 0 >>> change_short(x, y, 100) # No error, even though abs(y - x) / x divides by 0! 100 """ return limited(x, limit if (x == 0) else abs(y - x) / x, limit)
1d4965650f12c95ba54f1ce38fc63e1e6eb39573
3,652,683
import copy import tqdm def generate_correlation_map(f, x_data, y_data, method='chisquare_spectroscopic', filter=None, resolution_diag=20, resolution_map=15, fit_args=tuple(), fit_kws={}, distance=5, npar=1): """Generates a correlation map for either the chisquare or the MLE method. On the diagonal, the chisquare or loglikelihood is drawn as a function of one fixed parameter. Refitting to the data each time gives the points on the line. A dashed line is drawn on these plots, with the intersection with the plots giving the correct confidence interval for the parameter. In solid lines, the interval estimated by the fitting routine is drawn. On the offdiagonal, two parameters are fixed and the model is again fitted to the data. The change in chisquare/loglikelihood is mapped to 1, 2 and 3 sigma contourmaps. Parameters ---------- f: :class:`.BaseModel` Instance of the model for which the contour map has to be generated. x_data: array_like or list of array_likes Data on the x-axis for the fit. Must be appropriate input for *f*. y_data: array_like or list of array_likes Data on the y-axis for the fit. Must be appropriate input for *f*. Other parameters ---------------- method: {'chisquare', 'chisquare_spectroscopic', mle'} Chooses between generating the map for the chisquare routine or for the likelihood routine. filter: list of strings Only the parameters matching the names given in this list will be used to generate the maps. resolution_diag: int Number of points for the line plot on each diagonal. resolution_map: int Number of points along each dimension for the meshgrids. fit_kws: dictionary Dictionary of keywords to pass on to the fitting routine. npar: int Number of parameters for which simultaneous predictions need to be made. Influences the uncertainty estimates from the parabola.""" # Save the original goodness-of-fit and parameters for later use mapping = {'chisquare_spectroscopic': (fitting.chisquare_spectroscopic_fit, 'chisqr_chi'), 'chisquare': (fitting.chisquare_fit, 'chisqr_chi'), 'mle': (fitting.likelihood_fit, 'likelihood_mle')} func, attr = mapping.pop(method.lower(), (fitting.chisquare_spectroscopic_fit, 'chisqr_chi')) title = '{}\n${}_{{-{}}}^{{+{}}}$' title_e = '{}\n$({}_{{-{}}}^{{+{}}})e{}$' fit_kws['verbose'] = False fit_kws['hessian'] = False to_save = {'mle': ('fit_mle', 'result_mle')} to_save = to_save.pop(method.lower(), ('chisq_res_par', 'ndof_chi', 'redchi_chi')) saved = [copy.deepcopy(getattr(f, attr)) for attr in to_save] # func(f, x_data, y_data, *fit_args, **fit_kws) orig_value = getattr(f, attr) orig_params = copy.deepcopy(f.params) state = fitting._get_state(f, method=method.lower()) ranges = {} chifunc = lambda x: chi2.cdf(x, npar) - 0.682689492 # Calculate 1 sigma boundary boundary = optimize.root(chifunc, npar).x[0] * 0.5 if method.lower() == 'mle' else optimize.root(chifunc, npar).x[0] # Select all variable parameters, generate the figure param_names = [] no_params = 0 for p in orig_params: if orig_params[p].vary and (filter is None or any([f in p for f in filter])): no_params += 1 param_names.append(p) fig, axes, cbar = _make_axes_grid(no_params, axis_padding=0, cbar=no_params > 1) # Make the plots on the diagonal: plot the chisquare/likelihood # for the best fitting values while setting one parameter to # a fixed value. saved_params = copy.deepcopy(f.params) function_kws = {'method': method.lower(), 'func_args': fit_args, 'func_kwargs': fit_kws} function_kws['orig_stat'] = orig_value for i in range(no_params): params = copy.deepcopy(saved_params) ranges[param_names[i]] = {} # Set the y-ticklabels. ax = axes[i, i] ax.set_title(param_names[i]) if i == no_params-1: if method.lower().startswith('chisquare'): ax.set_ylabel(r'$\Delta\chi^2$') else: ax.set_ylabel(r'$\Delta\mathcal{L}$') # Select starting point to determine error widths. value = orig_params[param_names[i]].value stderr = orig_params[param_names[i]].stderr print(stderr) stderr = stderr if stderr is not None else 0.01 * np.abs(value) stderr = stderr if stderr != 0 else 0.01 * np.abs(value) result_left, success_left = fitting._find_boundary(-stderr, param_names[i], boundary, f, x_data, y_data, function_kwargs=function_kws) result_right, success_right = fitting._find_boundary(stderr, param_names[i], boundary, f, x_data, y_data, function_kwargs=function_kws) success = success_left * success_right ranges[param_names[i]]['left'] = result_left ranges[param_names[i]]['right'] = result_right if not success: print("Warning: boundary calculation did not fully succeed for " + param_names[i]) right = np.abs(ranges[param_names[i]]['right'] - value) left = np.abs(ranges[param_names[i]]['left'] - value) params[param_names[i]].vary = False left_val, right_val = max(value - distance * left, orig_params[param_names[i]].min), min(value + distance * right, orig_params[param_names[i]].max) ranges[param_names[i]]['right_val'] = right_val ranges[param_names[i]]['left_val'] = left_val value_range = np.linspace(left_val, right_val, resolution_diag) value_range = np.sort(np.append(value_range, np.array([value - left, value + right, value]))) chisquare = np.zeros(len(value_range)) # Calculate the new value, and store it in the array. Update the progressbar. with tqdm.tqdm(value_range, desc=param_names[i], leave=True) as pbar: for j, v in enumerate(value_range): chisquare[j] = fitting.calculate_updated_statistic(v, param_names[i], f, x_data, y_data, **function_kws) fitting._set_state(f, state, method=method.lower()) pbar.update(1) # Plot the result ax.plot(value_range, chisquare, color='k') c = '#0093e6' # Indicate the used interval. ax.axvline(value + right, ls="dashed", color=c) ax.axvline(value - left, ls="dashed", color=c) ax.axvline(value, ls="dashed", color=c) ax.axhline(boundary, color=c) up = '{:.2ug}'.format(u.ufloat(value, right)) down = '{:.2ug}'.format(u.ufloat(value, left)) val = up.split('+')[0].split('(')[-1] r = up.split('-')[1].split(')')[0] l = down.split('-')[1].split(')')[0] if 'e' in up or 'e' in down: ex = up.split('e')[-1] ax.set_title(title_e.format(param_names[i], val, l, r, ex)) else: ax.set_title(title.format(param_names[i], val, l, r)) # Restore the parameters. fitting._set_state(f, state, method=method.lower()) for i, j in zip(*np.tril_indices_from(axes, -1)): params = copy.deepcopy(orig_params) ax = axes[i, j] x_name = param_names[j] y_name = param_names[i] if j == 0: ax.set_ylabel(y_name) if i == no_params - 1: ax.set_xlabel(x_name) right = ranges[x_name]['right_val'] left = ranges[x_name]['left_val'] x_range = np.append(np.linspace(left, right, resolution_map), orig_params[x_name].value) x_range = np.sort(x_range) right = ranges[y_name]['right_val'] left = ranges[y_name]['left_val'] y_range = np.append(np.linspace(left, right, resolution_map), orig_params[y_name].value) y_range = np.sort(y_range) X, Y = np.meshgrid(x_range, y_range) Z = np.zeros(X.shape) i_indices, j_indices = np.indices(Z.shape) with tqdm.tqdm(i_indices.flatten(), desc=param_names[j]+' ' + param_names[i], leave=True) as pbar: for k, l in zip(i_indices.flatten(), j_indices.flatten()): x = X[k, l] y = Y[k, l] print(x, y, f.params['Background0'].value) Z[k, l] = fitting.calculate_updated_statistic([x, y], [x_name, y_name], f, x_data, y_data, **function_kws) fitting._set_state(f, state, method=method.lower()) pbar.update(1) Z = -Z npar = 1 bounds = [] for bound in [0.997300204, 0.954499736, 0.682689492]: chifunc = lambda x: chi2.cdf(x, npar) - bound # Calculate 1 sigma boundary bounds.append(-optimize.root(chifunc, npar).x[0]) # bounds = sorted([-number*number for number in np.arange(1, 9, .1)]) bounds.append(1) if method.lower() == 'mle': bounds = [b * 0.5 for b in bounds] norm = mpl.colors.BoundaryNorm(bounds, invcmap.N) contourset = ax.contourf(X, Y, Z, bounds, cmap=invcmap, norm=norm) f.params = copy.deepcopy(orig_params) if method.lower() == 'mle': f.fit_mle = copy.deepcopy(orig_params) else: f.chisq_res_par try: cbar = plt.colorbar(contourset, cax=cbar, orientation='vertical') cbar.ax.yaxis.set_ticks([0, 1/6, 0.5, 5/6]) cbar.ax.set_yticklabels(['', r'3$\sigma$', r'2$\sigma$', r'1$\sigma$']) except: pass setattr(f, attr, orig_value) for attr, value in zip(to_save, saved): setattr(f, attr, copy.deepcopy(value)) for a in axes.flatten(): if a is not None: for label in a.get_xticklabels()[::2]: label.set_visible(False) for label in a.get_yticklabels()[::2]: label.set_visible(False) return fig, axes, cbar
1294f1a93a98602ee50e5e52aacea6e678625520
3,652,684
import socket def local_ip(): """find out local IP, when running spark driver locally for remote cluster""" ip = ((([ip for ip in socket.gethostbyname_ex(socket.gethostname())[2] if not ip.startswith("127.")] or [[(s.connect( ("8.8.8.8", 53)), s.getsockname()[0], s.close()) for s in [socket.socket(socket.AF_INET, socket.SOCK_DGRAM)]][0][1]]) + ["no IP found"])[0]) return ip
d45978f3f433adba5cb1181d71cb367ceabd880f
3,652,685
def string_to_int_replacements(setting, item, for_property): """Maps keys to values from setting and item for replacing string templates for settings which need to be converted to/from Strings. """ replacements = common_replacements(setting, item) replacements.update({ '$string_to_int': string_to_int(item, property=for_property), '$int_to_string': int_to_string(item)}) return replacements
c6ae6a55fdda2fe13bd3ac7001da528d704e3df7
3,652,686
import os def get_var_path(path): """ get the path stored in the 'app/data' directory :param path: string :return: string """ return os.path.join(VAR_DIR, path)
9341acbdefde801b12229ed3e8275495e5ed37a7
3,652,687
import pathlib import subprocess def GitClone( clone_url: str, destination: pathlib.Path, shallow: bool = False, recursive: bool = False, timeout: int = 3600, ) -> pathlib.Path: """Clone a repository from Github. Args: clone_url: The URL of the repo to clone. destination: The output path. If this is already a non-empty directory, this will fail. shallow: Perform a shallow clone if set. recursive: Clone submodules. timeout: The maximum number of seconds to run a clone for before failing. Returns: The destination argument. Raises: RepoCloneFailed: On error. """ cmd = [ "timeout", "-s9", str(timeout), "git", "clone", clone_url, str(destination), ] if shallow: cmd += ["--depth", "1"] if recursive: cmd.append("--recursive") try: subprocess.check_call(cmd) except subprocess.CalledProcessError: raise RepoCloneFailed(f"Failed to clone repository: {clone_url}") if not (destination / ".git").is_dir(): raise RepoCloneFailed( f"Cloned repo `{clone_url}` but `{destination}/.git` not found" ) return destination
1c164c0af81cd83d956d66b8fe073cedb0d16a18
3,652,688
import struct def UnpackU32(buf, offset=0, endian='big'): """ Unpack a 32-bit unsigned integer into 4 bytes. Parameters: buf - Input packed buffer. offset - Offset in buffer. endian - Byte order. Return: 2-tuple of unpacked value, new buffer offset. """ try: return (struct.unpack_from(_EndianCode[endian]+'I', buf, offset)[0], offset+4) except (KeyError, TypeError, DeprecationWarning, struct.error) as inst: _UnpackException('u32', offset, endian, inst)
061ba5e8c4db891100549d0181475b8915d9fb0a
3,652,689
def get_reset_token(user, expires_sec=1800): """ Create a specify token for reset user password Args: user: expires_sec: Returns: token: string """ hash_token_password = Serializer(APP.config['SECRET_KEY'], expires_sec) return hash_token_password.dumps({'user_name': user.user_name}).decode('utf-8')
6477f03ca25a206db18c4a0a59ae0fac1106e262
3,652,690
from typing import Union def _on_error_resume_next(*sources: Union[Observable, Future]) -> Observable: """Continues an observable sequence that is terminated normally or by an exception with the next observable sequence. Examples: >>> res = rx.on_error_resume_next(xs, ys, zs) Returns: An observable sequence that concatenates the source sequences, even if a sequence terminates exceptionally. """ sources_ = iter(sources) def subscribe(observer, scheduler=None): scheduler = scheduler or current_thread_scheduler subscription = SerialDisposable() cancelable = SerialDisposable() def action(scheduler, state=None): try: source = next(sources_) except StopIteration: observer.on_completed() return # Allow source to be a factory method taking an error source = source(state) if callable(source) else source current = rx.from_future(source) if is_future(source) else source d = SingleAssignmentDisposable() subscription.disposable = d def on_resume(state=None): scheduler.schedule(action, state) d.disposable = current.subscribe_(observer.on_next, on_resume, on_resume, scheduler) cancelable.disposable = scheduler.schedule(action) return CompositeDisposable(subscription, cancelable) return Observable(subscribe)
ed604de1b566bc73b394143bb0b8bc487646ac1a
3,652,691
def prompt_for_value(field_name: str, field_type): """Promt the user to input a value for the parameter `field_name`.""" print_formatted_text( f"No value found for field '{field_name}' of type '{field_type}'. " "Please enter a value for this parameter:" ) response = prompt("> ") while response == "": print_formatted_text(f"No input received, please enter a value:") response = prompt("> ") return parse_value_from_string(response)
3483b718f09d5a99a37a9d6086e462acf546cbf3
3,652,692
def move_j(joints, accel, vel): """ Function that returns UR script for linear movement in joint space. Args: joints: A list of 6 joint angles (double). accel: tool accel in m/s^2 accel: tool accel in m/s^2 vel: tool speed in m/s Returns: script: UR script """ # TODO: Test # TODO: Check acceleration and velocity are below set limit joint_positions = _format_joint_positions(joints) return "movej({}, a = {:.2f}, v = {:.2f})\n".format(joint_positions, abs(accel), abs(vel))
4798c58de190b026a7b4d59378c277880d8c8077
3,652,693
def create_dist_list(dist: str, param1: str, param2: str) -> list: """ Creates a list with a special syntax describing a distribution Syntax: [identifier, param1, param2 (if necessary)] """ dist_list: list = [] if dist == 'fix': dist_list = ["f", float(param1)] elif dist == 'binary': dist_list = ["b", float(param1)] elif dist == 'binomial': dist_list = ["i", float(param1), float(param2)] elif dist == 'normal': dist_list = ["n", float(param1), float(param2)] elif dist == 'uniform': dist_list = ["u", float(param1), float(param2)] elif dist == 'poisson': dist_list = ["p", float(param1)] elif dist == 'exponential': dist_list = ["e", float(param1)] elif dist == 'lognormal': dist_list = ["l", float(param1), float(param2)] elif dist == 'chisquare': dist_list = ["c", float(param1)] elif dist == 'standard-t': dist_list = ["t", float(param1)] return dist_list
19cb93867639bcb4ae8152e4a28bb5d068a9c756
3,652,694
def compute_arfgm(t, qd, p, qw=0.0): """computes relative humidity from temperature, pressure and specific humidty (qd) This might be similar to https://unidata.github.io/MetPy/latest/api/generated/metpy.calc.relative_humidity_from_specific_humidity.html algorithm from RemapToRemo addgm **Arguments:** *p:* atmospheric pressure ([Pa], 3d) *t:* temperature fields ([K], 3d) *qd:* specific humidity fields ([kg/kg], 3d) *qw:* liquid water content ([kg/kg], 3d) **Returns:** *relhum:* relative humidity ([%],3d) """ # return fgqd(fgee(t),p) #gqd = np.where(t >= C.B3, fgqd(fgew(t), p), fgqd(fgee(t), p)) fge = np.where(t >= C.B3, fgew(t), fgee(t)) gqd = fgqd(fge, p) relhum = qd / gqd return np.where(relhum > 1.0, (gqd + qw) / gqd, (qd + qw) / gqd)
3e74be0b2099774482c32e2a3fbc4e2ee3f339fe
3,652,695
import os def getOutputMeshpath(path, meshtype=None): """Returns the folder path for mesh file export as specified in the GUI. Phobos by default creates a directory 'meshes' in the export path and subsequently creates sub-directories of "export/path/meshes" for every format, e.g. resulting in "export/path/mesh/obj" for .obj file export. Args: path(str): export path root (set in the GUI) meshtype(str, optional): a valid mesh type, otherwise the type set in the GUI is used (Default value = None) Returns: string: output path for meshes """ return os.path.join(path, 'meshes', meshtype if meshtype else getOutputMeshtype())
39336f2d02a58898d96a3d9a0c22d05716a46b50
3,652,696
def load_data(): """ loads the data for this task :return: """ fpath = 'images/ball.png' radius = 70 Im = cv2.imread(fpath, 0).astype('float32')/255 # 0 .. 1 # we resize the image to speed-up the level set method Im = cv2.resize(Im, dsize=(0, 0), fx=0.5, fy=0.5) height, width = Im.shape centre = (width // 2, height // 2) Y, X = np.ogrid[:height, :width] phi = radius - np.sqrt((X - centre[0]) ** 2 + (Y - centre[1]) ** 2) return Im, phi
3caaa20ecb43853910f1d42667bd481bbe62e17d
3,652,697
def create_response_body(input_json): """Create a json response with specific args of input JSON.""" city_name = str(input_json['name']) country_code = str(input_json['sys']['country']) temp_celsius = get_val_unit(input_json, 'main', 'temp', ' °C') wind_speed = get_val_unit(input_json, 'wind', 'speed', ' m/s') wind_deg = get_val_unit(input_json, 'wind', 'deg', ' deg') cloudines = get_cloudines(input_json) pressure = get_val_unit(input_json, 'main', 'pressure', ' hPa') humidity_percent = get_val_unit(input_json, 'main', 'humidity', '%') coord_lon = str(input_json['coord']['lon']) coord_lat = str(input_json['coord']['lat']) sunrise_hour = get_hour_time(input_json, 'sys', 'sunrise') sunset_hour = get_hour_time(input_json, 'sys', 'sunset') requested_time = get_datetime_from_unix(0, input_json, 'dt') output_json = { "location_name": f"{city_name}, {country_code}", "temperature": temp_celsius, "wind": f"{wind_speed}, {wind_deg}", "cloudines": cloudines, "pressure": pressure, "humidity": humidity_percent, "sunrise": sunrise_hour, "sunset": sunset_hour, "geo_coordinates": [coord_lat, coord_lon], "requested_time": requested_time } return output_json
4696f6d6929eea941697bf7aab49d139e4bd6229
3,652,698
import os def get_GESLA_surge_filename(city): """Get the path to the file containing GESLA-2 surge data for ‘city’.""" if city == "Brest": filename = "brest-brest-france-refmar_SkewSurges.txt" elif city == "La Rochelle": filename = "la_rochelle_la_palli-la_rochelle_la_palli-france-refmar_SkewSurges.txt" elif city == "Saint-Jean-de-Luz": filename = "saint_jean_de_luz_so-saint_jean_de_luz_so-france-refmar_SkewSurges.txt" elif city == "Cherbourg": filename = "cherbourg-cherbourg-france-refmar_SkewSurges.txt" elif city == "Le Havre": filename = "le_havre-le_havre-france-refmar_SkewSurges.txt" elif city == "Newlyn": # Choose one of the following files # filename = "newlyn,_cornwall-294a-united_kingdom-uhslc_SkewSurges.txt" # 1915-2010, 2 MB # filename = "newlyn-newlyn-glossdm-bodc_SkewSurges.txt" # 1916-1944, 600 kB filename = "newlyn-p001-uk-bodc_SkewSurges.txt" # 1915-2014, 1.7 MB elif city == "Vigo": filename = "vigo-vigo-spain-ieo_SkewSurges.txt" elif city == "La Coruna": filename = "la_coruna-830a-spain-uhslc_SkewSurges.txt" elif city == "Santander": filename = "santander-sant-spain-ieo_SkewSurges.txt" else: raise ValueError("unknown city: " + repr(city)) return os.path.join(GESLA_DIR, filename)
e08fde26c527b6126cf7b9a7eb3ae720abc8ff19
3,652,699