content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
import pickle import os def getAllTraj () : """ get all trajectories from C.TRAJ_DIR """ def loadPickle (f) : with open(osp.join(C.TRAJ_DIR, f), 'rb') as fd : return pickle.load(fd) return list(map(loadPickle, os.listdir(C.TRAJ_DIR)))
b7d5bfda197445723d024800ec276d7e2050a987
3,652,700
def _get_count(_khoros_object, _user_id, _object_type): """This function returns the count of a specific user object (e.g. ``albums``, ``followers``, etc.) for a user. :param _khoros_object: The core :py:class:`khoros.Khoros` object :type _khoros_object: class[khoros.Khoros] :param _user_id: The User ID associated with the user :type _user_id: int, str :param _object_type: The type of object for which to get the count (e.g. ``albums``, ``followers``, etc.) :returns: The user object count as an integer :raises: :py:exc:`khoros.errors.exceptions.GETRequestError` """ _api_response = query_users_table_by_id(_khoros_object, f'{_object_type}.count(*)', _user_id) return int(_api_response['data']['items'][0][_object_type]['count'])
5e0cb02a74a819984ab271fcaad469a60f4bdf43
3,652,701
def antiSymmetrizeSignal(y, symmetryStep): """ Dischard symmetric part of a signal by taking the difference of the signal at x[n] and x[n + symmetry_step] get your corresponding x data as x[0:len(y)/2] Parameters ---------- y : array_like numpy array or list of data values to anti symmtetrize symmetryStep : scalar expected symmetry of the signal at x[n] occurs at x[n+symmetryStep] Returns ---------- y_symmetrized : ndarray numpy array of dimension size(y)/2 of the antisymmetrized data """ y = np.array(y) s = np.zeros(len(y)/2) for idx in range(0, len(s)): # (positive field - negative field)/2 s[idx] = (y[idx] - y[idx+symmetryStep])/2.-(y[0] - y[0+symmetryStep])/2. return s
0936d5fc3883d3ce6ee2f6c77fb9b4bc59177426
3,652,702
def lms_to_rgb(img): """ rgb_matrix = np.array( [[0.0809444479, -0.130504409, 0.116721066], [0.113614708, -0.0102485335, 0.0540193266], [-0.000365296938, -0.00412161469, 0.693511405] ] ) """ rgb_matrix = np.array( [[ 2.85831110e+00, -1.62870796e+00, -2.48186967e-02], [-2.10434776e-01, 1.15841493e+00, 3.20463334e-04], [-4.18895045e-02, -1.18154333e-01, 1.06888657e+00]] ) return np.tensordot(img, rgb_matrix, axes=([2], [1]))
76ce7a5f73712a6d9f241d66b3af8a54752b141d
3,652,703
import time def timeit(func): """ Decorator that returns the total runtime of a function @param func: function to be timed @return: (func, time_taken). Time is in seconds """ def wrapper(*args, **kwargs) -> float: start = time.time() func(*args, **kwargs) total_time = time.time() - start return total_time return wrapper
68723a74c96c2d004eed9533f9023d77833c509b
3,652,704
def merge_count(data1, data2): """Auxiliary method to merge the lengths.""" return data1 + data2
8c0280b043b7d21a411ac14d3571acc50327fdbc
3,652,705
def orthogonal_procrustes(fixed, moving): """ Implements point based registration via the Orthogonal Procrustes method. Based on Arun's method: Least-Squares Fitting of two, 3-D Point Sets, Arun, 1987, `10.1109/TPAMI.1987.4767965 <http://dx.doi.org/10.1109/TPAMI.1987.4767965>`_. Also see `this <http://eecs.vanderbilt.edu/people/mikefitzpatrick/papers/2009_Medim_Fitzpatrick_TRE_FRE_uncorrelated_as_published.pdf>`_ and `this <http://tango.andrew.cmu.edu/~gustavor/42431-intro-bioimaging/readings/ch8.pdf>`_. :param fixed: point set, N x 3 ndarray :param moving: point set, N x 3 ndarray of corresponding points :returns: 3x3 rotation ndarray, 3x1 translation ndarray, FRE :raises: ValueError """ validate_procrustes_inputs(fixed, moving) # This is what we are calculating R = np.eye(3) T = np.zeros((3, 1)) # Arun equation 4 p = np.ndarray.mean(moving, 0) # Arun equation 6 p_prime = np.ndarray.mean(fixed, 0) # Arun equation 7 q = moving - p # Arun equation 8 q_prime = fixed - p_prime # Arun equation 11 H = np.matmul(q.transpose(), q_prime) # Arun equation 12 # Note: numpy factors h = u * np.diag(s) * v svd = np.linalg.svd(H) # Replace Arun Equation 13 with Fitzpatrick, chapter 8, page 470, # to avoid reflections, see issue #19 X = _fitzpatricks_X(svd) # Arun step 5, after equation 13. det_X = np.linalg.det(X) if det_X < 0 and np.all(np.flip(np.isclose(svd[1], np.zeros((3, 1))))): # Don't yet know how to generate test data. # If you hit this line, please report it, and save your data. raise ValueError("Registration fails as determinant < 0" " and no singular values are close enough to zero") if det_X < 0 and np.any(np.isclose(svd[1], np.zeros((3, 1)))): # Implement 2a in section VI in Arun paper. v_prime = svd[2].transpose() v_prime[0][2] *= -1 v_prime[1][2] *= -1 v_prime[2][2] *= -1 X = np.matmul(v_prime, svd[0].transpose()) # Compute output R = X tmp = p_prime.transpose() - np.matmul(R, p.transpose()) T[0][0] = tmp[0] T[1][0] = tmp[1] T[2][0] = tmp[2] fre = compute_fre(fixed, moving, R, T) return R, T, fre
5818c67e478ad9dd59ae5a1ba0c847d60234f222
3,652,706
def make_model(arch_params, patch_size): """ Returns the model. Used to select the model. """ return RDN(arch_params, patch_size)
6cf91ea68bcf58d4aa143a606bd774761f37acb0
3,652,707
def calc_error(frame, gap, method_name): """Calculate the error between the ground truth and the GAP prediction""" frame.single_point(method_name=method_name, n_cores=1) pred = frame.copy() pred.run_gap(gap=gap, n_cores=1) error = np.abs(pred.energy - frame.energy) logger.info(f'|E_GAP - E_0| = {np.round(error, 3)} eV') return error
9a3eb0b115c394703cb7446852982fa1468607ad
3,652,708
def find_model(sender, model_name): """ Register new model to ORM """ MC = get_mc() model = MC.get((MC.c.model_name==model_name) & (MC.c.uuid!='')) if model: model_inst = model.get_instance() orm.set_model(model_name, model_inst.table_name, appname=__name__, model_path='') return orm.__models__.get(model_name)
4c78f135b502119fffb6b2ccf5f09335e739a97a
3,652,709
def list_subtitles(videos, languages, pool_class=ProviderPool, **kwargs): """List subtitles. The `videos` must pass the `languages` check of :func:`check_video`. All other parameters are passed onwards to the provided `pool_class` constructor. :param videos: videos to list subtitles for. :type videos: set of :class:`~subliminal.video.Video` :param languages: languages to search for. :type languages: set of :class:`~babelfish.language.Language` :param pool_class: class to use as provider pool. :type: :class:`ProviderPool`, :class:`AsyncProviderPool` or similar :return: found subtitles per video. :rtype: dict of :class:`~subliminal.video.Video` to list of :class:`~subliminal.subtitle.Subtitle` """ listed_subtitles = defaultdict(list) # check videos checked_videos = [] for video in videos: if not check_video(video, languages=languages): logger.info('Skipping video %r', video) continue checked_videos.append(video) # return immediately if no video passed the checks if not checked_videos: return listed_subtitles # list subtitles with pool_class(**kwargs) as pool: for video in checked_videos: logger.info('Listing subtitles for %r', video) subtitles = pool.list_subtitles(video, languages - video.subtitle_languages) listed_subtitles[video].extend(subtitles) logger.info('Found %d subtitle(s)', len(subtitles)) return listed_subtitles
f5d9fa450f0df5c71c320d972e54c2502bbfd37d
3,652,710
def public_incursion_no_expires(url, request): """ Mock endpoint for incursion. Public endpoint without cache """ return httmock.response( status_code=200, content=[ { "type": "Incursion", "state": "mobilizing", "staging_solar_system_id": 30003893, "constellation_id": 20000568, "infested_solar_systems": [ 30003888, ], "has_boss": True, "faction_id": 500019, "influence": 1 } ] )
31d008b6479d8e2a5e4bc9f2d7b4af8cc4a40b03
3,652,711
def bad_topics(): """ Manage Inappropriate topics """ req = request.vars view_info = {} view_info['errors'] = [] tot_del = 0 if req.form_submitted: for item in req: if item[:9] == 'inapp_id_': inapp_id = int(req[item]) db(db.zf_topic_inappropriate.id==inapp_id).update(read_flag=True) tot_del += 1 topics = db((db.zf_topic_inappropriate.read_flag==False) & (db.zf_topic.id==db.zf_topic_inappropriate.topic_id)).select(db.zf_topic_inappropriate.ALL, db.zf_topic.title, orderby=~db.zf_topic_inappropriate.creation_date) view_info.update({'removed': tot_del}) return dict(request=request, topics=topics, view_info=view_info) else: topics = db((db.zf_topic_inappropriate.read_flag==False) & (db.zf_topic.id==db.zf_topic_inappropriate.topic_id)).select(db.zf_topic_inappropriate.ALL, db.zf_topic.title, orderby=~db.zf_topic_inappropriate.creation_date) return dict(request=request, topics=topics, view_info=view_info)
64c40b98a77c5934bd0593c9f5c4f31370980e8a
3,652,712
def get_min_id_for_repo_mirror_config(): """ Gets the minimum id for a repository mirroring. """ return RepoMirrorConfig.select(fn.Min(RepoMirrorConfig.id)).scalar()
21a99988a1805f61ede9d689494b59b61c0391d8
3,652,713
def check_series( Z, enforce_univariate=False, allow_empty=False, allow_numpy=True, enforce_index_type=None, ): """Validate input data. Parameters ---------- Z : pd.Series, pd.DataFrame Univariate or multivariate time series enforce_univariate : bool, optional (default=False) If True, multivariate Z will raise an error. allow_empty : bool enforce_index_type : type, optional (default=None) type of time index Returns ------- y : pd.Series, pd.DataFrame Validated time series Raises ------ ValueError, TypeError If Z is an invalid input """ # Check if pandas series or numpy array if not allow_numpy: valid_data_types = tuple( filter(lambda x: x is not np.ndarray, VALID_DATA_TYPES) ) else: valid_data_types = VALID_DATA_TYPES if not isinstance(Z, valid_data_types): raise TypeError( f"Data must be a one of {valid_data_types}, but found type: {type(Z)}" ) if enforce_univariate: _check_is_univariate(Z) # check time index check_time_index( Z.index, allow_empty=allow_empty, enforce_index_type=enforce_index_type ) return Z
5831c75953b8953ec54982712c1e4d3cccb22cc8
3,652,714
def B(s): """string to byte-string in Python 2 (including old versions that don't support b"") and Python 3""" if type(s)==type(u""): return s.encode('utf-8') # Python 3 return s
b741bf4a64bd866283ca789745f373db360f4016
3,652,715
def gather_tiling_strategy(data, axis): """Custom tiling strategy for gather op""" strategy = list() base = 0 for priority_value, pos in enumerate(range(len(data.shape) - 1, axis, -1)): priority_value = priority_value + base strategy.append(ct_util.create_constraint_on_tensor(tensor=data, values=priority_value, constraints=ct_util.TileConstraint.SET_PRIORITY, tensor_pos=pos)[0]) return strategy
afceb113c9b6c25f40f4f885ccaf08860427291f
3,652,716
from typing import Optional import requests import time def fetch( uri: str, auth: Optional[str] = None, endpoint: Optional[str] = None, **data ) -> OAuthResponse: """Perform post given URI with auth and provided data.""" req = requests.Request("POST", uri, data=data, auth=auth) prepared = req.prepare() timeout = time.time() + app.config["OAUTH_FETCH_TOTAL_TIMEOUT"] retry = 0 result = _error( errors.SERVER_ERROR, "An unknown error occurred talking to provider." ) for i in range(app.config["OAUTH_FETCH_TOTAL_RETRIES"]): prefix = "attempt #%d %s" % (i + 1, uri) # TODO: Add jitter to backoff and/or retry after? backoff = (2**i - 1) * app.config["OAUTH_FETCH_BACKOFF_FACTOR"] remaining_timeout = timeout - time.time() if (retry or backoff) > remaining_timeout: app.logger.debug("Abort %s no timeout remaining.", prefix) break elif (retry or backoff) > 0: app.logger.debug("Retry %s [sleep %.3f]", prefix, retry or backoff) time.sleep(retry or backoff) result, status, retry = _fetch(prepared, remaining_timeout, endpoint) labels = {"endpoint": endpoint, "status": stats.status(status)} stats.ClientRetryHistogram.labels(**labels).observe(i) if status is not None and "error" in result: error = result["error"] error = app.config["OAUTH_FETCH_ERROR_TYPES"].get(error, error) if error not in errors.DESCRIPTIONS: error = "invalid_error" stats.ClientErrorCounter.labels(error=error, **labels).inc() if status is None: pass # We didn't even get a response, so try again. elif status not in app.config["OAUTH_FETCH_RETRY_STATUS_CODES"]: break elif "error" not in result: break # No error reported so might as well return it. app.logger.debug( "Result %s [status %s] [retry after %s]", prefix, status, retry ) # TODO: consider returning retry after time so it can be used. return result
c9fc1cf96fa0f0037b50ec30a68d17ea05d892d9
3,652,717
def redscreen(main_filename, back_filename): """ Implements the notion of "redscreening". That is, the image in the main_filename has its "sufficiently" red pixels replaced with pized from the corresponding x,y location in the image in the file back_filename. Returns the resulting "redscreened" image. """ image = SimpleImage(main_filename) back = SimpleImage(back_filename) for pixel in image: average = (pixel.red + pixel.green + pixel.blue) // 3 # See if this pixel is "sufficiently" red if pixel.red >= average * INTENSITY_THRESHOLD: # If so, we get the corresponding pixel from the # back image and overwrite the pixel in # the main image with that from the back image. x = pixel.x y = pixel.y image.set_pixel(x, y, back.get_pixel(x, y)) return image
96824872ceb488497fbd56a662b8fb5098bf2341
3,652,718
def density_speed_conversion(N, frac_per_car=0.025, min_val=0.2): """ Fraction to multiply speed by if there are N nearby vehicles """ z = 1.0 - (frac_per_car * N) # z = 1.0 - 0.04 * N return max(z, min_val)
95285a11be84df5ec1b6c16c5f24b3831b1c0348
3,652,719
import logging def connect_to_amqp(sysconfig): """ Connect to an AMQP Server, and return the connection and Exchange. :param sysconfig: The slickqaweb.model.systemConfiguration.amqpSystemConfiguration.AMQPSystemConfiguration instance to use as the source of information of how to connect. :return: (connection, exchange) on success, exception on error """ assert isinstance(sysconfig, AMQPSystemConfiguration) configuration = dict() configuration['AMQP'] = dict() if hasattr(sysconfig, 'hostname') and sysconfig.hostname is not None: configuration['AMQP']['hostname'] = sysconfig.hostname else: raise AMQPConnectionError(message="No hostname defined for AMQP connection.") if hasattr(sysconfig, 'port') and sysconfig.port is not None: configuration['AMQP']['port'] = sysconfig.port if hasattr(sysconfig, 'username') and sysconfig.username is not None: configuration['AMQP']['username'] = sysconfig.username if hasattr(sysconfig, 'password') and sysconfig.password is not None: configuration['AMQP']['password'] = sysconfig.password if hasattr(sysconfig, 'virtualHost') and sysconfig.virtualHost is not None: configuration['AMQP']['virtual host'] = sysconfig.virtualHost if hasattr(sysconfig, 'exchangeName') and sysconfig.exchangeName is not None: configuration['AMQP']['exchange'] = sysconfig.exchangeName else: raise AMQPConnectionError(message="No exchange defined for AMQP connection.") logger = logging.getLogger("slickqaweb.amqpcon.connect_to_amqp") url = str.format("amqp://{hostname}:{port}", **dict(list(configuration['AMQP'].items()))) if 'virtual host' in configuration['AMQP'] and configuration['AMQP']['virtual host'] != '': url = str.format("{}/{}", url, configuration['AMQP']['virtual host']) logger.debug("AMQPConnection configured with url %s", url) exchange = Exchange(configuration['AMQP'].get('exchange', "amqp.topic"), type='topic', durable=True) logger.debug("AMQPConnection is using exchange %s", exchange) connection = None if 'username' in configuration['AMQP'] and 'password' in configuration['AMQP']: username = configuration['AMQP']['username'] password = configuration['AMQP']['password'] logger.debug("Using username %s and password %s to connect to AMQP Broker", username, password) connection = Connection(url, userid=username, password=password) else: connection = Connection(url) # typically connection connect on demand, but we want to flush out errors before proceeding connection.connect() exchange = exchange(connection) exchange.declare() return (connection, exchange)
82a14bfd757caa1666c172d4aba64a2053ad5810
3,652,720
def int_to_datetime(int_date, ds=None): """Convert integer date indices to datetimes.""" if ds is None: return TIME_ZERO + int_date * np.timedelta64(1, 'D') if not hasattr(ds, 'original_time'): raise ValueError('Dataset with no original_time cannot be used to ' 'convert ints to datetimes.') first_int = ds.time.values[0] delta_int = _get_delta(ds.time) first_date = ds.original_time.values[0] delta_date = _get_delta(ds.original_time) return first_date + ((int_date - first_int) / delta_int) * delta_date
2e081ff019628800fb5c44eec4fa73333d755dde
3,652,721
def show_plugin(name, path, user): """ Show a plugin in a wordpress install and check if it is installed name Wordpress plugin name path path to wordpress install location user user to run the command as CLI Example: .. code-block:: bash salt '*' wordpress.show_plugin HyperDB /var/www/html apache """ ret = {"name": name} resp = __salt__["cmd.shell"]( ("wp --path={0} plugin status {1}").format(path, name), runas=user ).split("\n") for line in resp: if "Status" in line: ret["status"] = line.split(" ")[-1].lower() elif "Version" in line: ret["version"] = line.split(" ")[-1].lower() return ret
fded4735eda73dc19dd51dc13a1141345505b3b9
3,652,722
def get_receiver_type(rinex_fname): """ Return the receiver type (header line REC # / TYPE / VERS) found in *rinex_fname*. """ with open(rinex_fname) as fid: for line in fid: if line.rstrip().endswith('END OF HEADER'): break elif line.rstrip().endswith('REC # / TYPE / VERS'): return line[20:40].strip() raise ValueError('receiver type not found in header of RINEX file ' '{}'.format(rinex_fname))
7391f7a100455b8ff5ab01790f62518a3c4a079b
3,652,723
def is_cyclone_phrase(phrase): """Returns whether all the space-delimited words in phrases are cyclone words A phrase is a cyclone phrase if and only if all of its component words are cyclone words, so we first split the phrase into words using .split(), and then check if all of the words are cyclone words. """ return all([is_cyclone_word(word) for word in phrase.split()])
8014490ea2391b1acec1ba641ba89277065f2dd9
3,652,724
def wl_to_wavenumber(wl, angular=False): """Given wavelength in meters, convert to wavenumber in 1/cm. The wave number represents the number of wavelengths in one cm. If angular is true, will calculate angular wavenumber. """ if angular: wnum = (2*np.pi)/(wl*100) else: wnum = 1/(wl*100) return wnum
ca34e3abc5f9ed0d555c836819c9f3c8d3ab9e4b
3,652,725
def easeOutCubic(n): """A cubic tween function that begins fast and then decelerates. Args: n (float): The time progress, starting at 0.0 and ending at 1.0. Returns: (float) The line progress, starting at 0.0 and ending at 1.0. Suitable for passing to getPointOnLine(). """ _checkRange(n) n = n - 1 return n**3 + 1
20aea25b2ee937618df2b674178f2a767c373da7
3,652,726
import torch import sys import copy def _evaluate_batch_beam(model, params, dico, batch, lengths, positions, langs, src_lens, trg_lens, \ gen_type, alpha, beta, gamma, dec_len, iter_mult, selected_pos, beam_size, length_penalty): """Run on one example""" n_iter = dec_len * iter_mult # log probabilities of previously present tokens at each position vocab_size = len(dico) mask_tok = dico.word2id[MASK_WORD] total_topbeam_scores = np.array([0.] * beam_size) batch = batch.repeat((1, beam_size)) lengths = lengths.repeat((beam_size)) positions = positions.repeat((1, beam_size)) langs = langs.repeat((1, beam_size)) for dec_iter in range(n_iter): # predict the token depending on selected_pos pred_mask = torch.zeros_like(batch).byte() if gen_type == "src2trg": pred_mask[src_lens[0] + selected_pos[dec_iter%dec_len] + 1, :] = 1 elif gen_type == "trg2src": pred_mask[selected_pos[dec_iter%dec_len] + 1, :] = 1 # NOTE(Alex): shouldn't there be some masking here? tensor = model('fwd', x=batch, lengths=lengths, positions=positions, langs=langs, causal=False) # beam_size x |V| scores_pred = model('predict_wo_targets', tensor=tensor, pred_mask=pred_mask) # get top_beam scores and tokens; need to take log softamx so scores are on same scale log_probs_pred = torch.log_softmax(scores_pred, dim=-1) # beam_size x beam_size topbeam_scores, topbeam_toks = log_probs_pred.topk(beam_size, dim=-1) ### exception for first if dec_iter == 0: total_topbeam_scores = total_topbeam_scores + np.diagonal(topbeam_scores.cpu().numpy())# + selected_pos_scores for i_beam, topbeam_tok in enumerate(torch.diagonal(topbeam_toks)): # substitute that token in if gen_type == "src2trg": batch[src_lens[0] + selected_pos[dec_iter%dec_len] + 1][i_beam] = topbeam_tok elif gen_type == "trg2src": batch[selected_pos[dec_iter%dec_len] + 1][i_beam] = topbeam_tok else: sys.exit("something is wrong") continue ### all iterations except first # compute updated beam scores topbeam_scores = topbeam_scores.cpu().numpy() new_total_topbeam_scores = np.expand_dims(total_topbeam_scores, 1) + topbeam_scores # sort and take beam_size highest new_topbeam_tok_flat = new_total_topbeam_scores.reshape(-1).argsort()[-beam_size:] # create clones of the tokens and scores so far so we don't overwrite when updating batch_clone = batch.clone() total_topbeam_scores_clone = copy.deepcopy(total_topbeam_scores) # iterate over the highest scoring beams for i_beam, topbeam_tok_flat in enumerate(new_topbeam_tok_flat): topbeam_tok_row = int(np.floor(topbeam_tok_flat / beam_size)) topbeam_tok_col = int(topbeam_tok_flat % beam_size) topbeam_tok = topbeam_toks[topbeam_tok_row][topbeam_tok_col] batch[:,i_beam] = batch_clone[:, topbeam_tok_row] total_topbeam_scores[i_beam] = total_topbeam_scores_clone[topbeam_tok_row] + \ topbeam_scores[topbeam_tok_row][topbeam_tok_col] # substitute that token in if gen_type == "src2trg": batch[src_lens[0] + selected_pos[dec_iter%dec_len] + 1][i_beam] = topbeam_tok elif gen_type == "trg2src": batch[selected_pos[dec_iter%dec_len] + 1][i_beam] = topbeam_tok else: sys.exit("something is wrong") return batch, total_topbeam_scores / (dec_len ** length_penalty)
0ea481615566e98f9d4d2769b8b2fe99a2392beb
3,652,727
import re def _fix_entries(entries): """recursive function to collapse entries into correct format""" cur_chapter_re, chapter_entry = None, None new_entries = [] for entry in entries: title, doxy_path, subentries = entry if subentries is not None: new_subentries = _fix_entries(subentries) new_entries.append([title, doxy_path, new_subentries]) elif cur_chapter_re and cur_chapter_re.match(title): chapter_entry[2].append(entry) else: new_entries.append(entry) chapter_match = CHAPTER_RE.match(title) if chapter_match: cur_chapter_re = re.compile( chapter_match.group('num') + r'\.\d+:') chapter_entry = entry chapter_entry[-1] = [] else: cur_chapter_re, chapter_entry = None, None return new_entries
1f8ac466533c17c1ad4e7cf2d27f2e7ff098ae79
3,652,728
def _check_bulk_delete(attempted_pairs, result): """ Checks if the RCv3 bulk delete command was successful. """ response, body = result if response.code == 204: # All done! return body errors = [] non_members = pset() for error in body["errors"]: match = _SERVER_NOT_A_MEMBER_PATTERN.match(error) if match is not None: pair = match.groupdict() non_members = non_members.add( (normalize_lb_id(pair["lb_id"]), pair["server_id"])) continue match = _LB_INACTIVE_PATTERN.match(error) if match is not None: errors.append(LBInactive(match.group("lb_id"))) continue match = _LB_DOESNT_EXIST_PATTERN.match(error) if match is not None: del_lb_id = normalize_lb_id(match.group("lb_id")) # consider all pairs with this LB to be removed removed = [(lb_id, node_id) for lb_id, node_id in attempted_pairs if lb_id == del_lb_id] non_members |= pset(removed) continue match = _SERVER_DOES_NOT_EXIST.match(error) if match is not None: del_server_id = match.group("server_id") # consider all pairs with this server to be removed removed = [(lb_id, node_id) for lb_id, node_id in attempted_pairs if node_id == del_server_id] non_members |= pset(removed) else: raise UnknownBulkResponse(body) if errors: raise BulkErrors(errors) elif non_members: to_retry = pset(attempted_pairs) - non_members return bulk_delete(to_retry) if to_retry else None else: raise UnknownBulkResponse(body)
2bf99d74a23d3522a2a53a711fbb2c8d43748eb1
3,652,729
def get_frontend_ui_base_url(config: "CFG") -> str: """ Return ui base url """ return as_url_folder(urljoin(get_root_frontend_url(config), FRONTEND_UI_SUBPATH))
4c34a1830431e28ec084853be6d93f1e487865a9
3,652,730
def read_image(name): """ Reads image into a training example. Might be good to threshold it. """ im = Image.open(name) pix = im.load() example = [] for x in range(16): for y in range(16): example.append(pix[x, y]) return example
be510bfee0a24e331d1b9bfb197b02edaafd0d70
3,652,731
def l3tc_underlay_lag_config_unconfig(config, dut1, dut2, po_name, members_dut1, members_dut2): """ :param config: :param dut1: :param dut2: :param po_name: :param members_dut1: :param members_dut2: :return: """ st.banner("{}Configuring LAG between Spine and Leaf node.".format('Un' if config != 'yes' else '')) result = True if config == 'yes': # configure po and add members [out, exceptions] = \ utils.exec_all(fast_start, [[poapi.config_portchannel, dut1, dut2, po_name, members_dut1, members_dut2, "add"]]) st.log([out, exceptions]) else: # del po and delete members [out, exceptions] = \ utils.exec_all(fast_start, [[poapi.config_portchannel, dut1, dut2, po_name, members_dut1, members_dut2, "del"]]) st.log([out, exceptions]) return result
de4c8775b178380e5d9c90ee3c74082d6553d97f
3,652,732
def _xrdcp_copyjob(wb, copy_job: CopyFile, xrd_cp_args: XrdCpArgs, printout: str = '') -> int: """xrdcp based task that process a copyfile and it's arguments""" if not copy_job: return overwrite = xrd_cp_args.overwrite batch = xrd_cp_args.batch sources = xrd_cp_args.sources chunks = xrd_cp_args.chunks chunksize = xrd_cp_args.chunksize makedir = xrd_cp_args.makedir tpc = xrd_cp_args.tpc posc = xrd_cp_args.posc # hashtype = xrd_cp_args.hashtype streams = xrd_cp_args.streams cksum = xrd_cp_args.cksum timeout = xrd_cp_args.timeout rate = xrd_cp_args.rate cmdline = f'{copy_job.src} {copy_job.dst}' return retf_print(_xrdcp_sysproc(cmdline, timeout))
ce4475329a6f75d1819874492f26ceef7113a0f2
3,652,733
import logging def merge_preclusters_ld(preclusters): """ Bundle together preclusters that share one LD snp * [ Cluster ] Returntype: [ Cluster ] """ clusters = list(preclusters) for cluster in clusters: chrom = cluster.gwas_snps[0].snp.chrom start = min(gwas_snp.snp.pos for gwas_snp in cluster.gwas_snps) end = max(gwas_snp.snp.pos for gwas_snp in cluster.gwas_snps) # A dictionary that maps from snp to merged clusters snp_owner = dict() for cluster in preclusters: for ld_snp in cluster.ld_snps: # If this SNP has been seen in a different cluster if ld_snp in snp_owner and snp_owner[ld_snp] is not cluster: # Set other_cluster to that different cluster other_cluster = snp_owner[ld_snp] merged_cluster = merge_clusters(cluster, other_cluster) # Remove the two previous clusters and replace them with # the merged cluster clusters.remove(cluster) clusters.remove(other_cluster) clusters.append(merged_cluster) # Set the new cluster as the owner of these SNPs. for snp in merged_cluster.ld_snps: snp_owner[snp] = merged_cluster for snp in cluster.ld_snps: snp_owner[snp] = merged_cluster # Skip the rest of this cluster. break else: snp_owner[ld_snp] = cluster for cluster in clusters: chrom = cluster.gwas_snps[0].snp.chrom start = min(gwas_snp.snp.pos for gwas_snp in cluster.gwas_snps) end = max(gwas_snp.snp.pos for gwas_snp in cluster.gwas_snps) logging.info("\tFound %i clusters from the GWAS peaks" % (len(clusters))) return clusters
fd5409c1fc8463a2c795b2cc2685c1cf1a77f4ad
3,652,734
def cross_recurrence_matrix( xps, yps ): """Cross reccurence matrix. Args: xps (numpy.array): yps (numpy.array): Returns: numpy.array : A 2D numpy array. """ return recurrence_matrix( xps, yps )
017fa50fdd3c68e4bf1703635365d84c3508d0b3
3,652,735
import numpy def define_panels(x, y, N=40): """ Discretizes the geometry into panels using 'cosine' method. Parameters ---------- x: 1D array of floats x-coordinate of the points defining the geometry. y: 1D array of floats y-coordinate of the points defining the geometry. N: integer, optional Number of panels; default: 40. Returns ------- panels: 1D Numpy array of Panel objects. The list of panels. """ R = (x.max()-x.min())/2.0 # circle radius x_center = (x.max()+x.min())/2.0 # x-coordinate of circle center theta = numpy.linspace(0.0, 2.0*numpy.pi, N+1) # array of angles x_circle = x_center + R*numpy.cos(theta) # x-coordinates of circle x_ends = numpy.copy(x_circle) # x-coordinate of panels end-points y_ends = numpy.empty_like(x_ends) # y-coordinate of panels end-points # extend coordinates to consider closed surface x, y = numpy.append(x, x[0]), numpy.append(y, y[0]) # compute y-coordinate of end-points by projection I = 0 for i in range(N): while I < len(x)-1: if (x[I] <= x_ends[i] <= x[I+1]) or (x[I+1] <= x_ends[i] <= x[I]): break else: I += 1 a = (y[I+1]-y[I])/(x[I+1]-x[I]) b = y[I+1] - a*x[I+1] y_ends[i] = a*x_ends[i] + b y_ends[N] = y_ends[0] # create panels panels = numpy.empty(N, dtype=object) for i in range(N): panels[i] = Panel(x_ends[i], y_ends[i], x_ends[i+1], y_ends[i+1]) return panels
e34ae13a7cdddc8be69e5cbba84b964bd11e6ec3
3,652,736
def compile_for_llvm(function_name, def_string, optimization_level=-1, globals_dict=None): """Compiles function_name, defined in def_string to be run through LLVM. Compiles and runs def_string in a temporary namespace, pulls the function named 'function_name' out of that namespace, optimizes it at level 'optimization_level', -1 for the default optimization, and marks it to be JITted and run through LLVM. """ namespace = {} if globals_dict is None: globals_dict = globals() exec def_string in globals_dict, namespace func = namespace[function_name] if optimization_level is not None: if optimization_level >= DEFAULT_OPT_LEVEL: func.__code__.co_optimization = optimization_level func.__code__.co_use_jit = True return func
61494afcde311e63138f75fb8bf59244d5c6d4e0
3,652,737
def setup_svm_classifier(training_data, y_training, testing_data, features, method="count", ngrams=(1,1)): """ Setup SVM classifier model using own implementation Parameters ---------- training_data: Pandas dataframe The dataframe containing the training data for the classifier testing_data: Pandas dataframe The dataframe containing the testing data for the classifier y_training: Pandas dataframe The dataframe containing the y training data for the classifier features: String or list of strings if using multiple features Names of columns of df that are used for trainig the classifier method: String Can be either "count" or "tfidf" for specifying method of feature weighting ngrams: tuple (min_n, max_n), with min_n, max_n integer values range for ngrams used for vectorization Returns ------- model: SVM Classifier (scratch implementation) Trained SVM Classifier from own implementation vec: sklearn CountVectorizer or TfidfVectorizer CountVectorizer or TfidfVectorizer fit and transformed for training data x_testing: Pandas dataframe The dataframe containing the test data for the SVM classifier """ # generate x and y training data if method == "count": vec, x_training, x_testing = define_features_vectorizer(features, training_data, testing_data,ngramrange=ngrams) elif method == "tfidf": vec, x_training, x_testing = define_features_tfidf(features, training_data, testing_data,ngramrange=ngrams) else: print("Method has to be either count or tfidf") return 1 # train classifier model = SVMClassifier_scratch() model.fit(x_training, y_training) return model, vec, x_testing
111937690db2c170852b57cdbfc3135c628ac26c
3,652,738
def buildHeaderString(keys): """ Use authentication keys to build a literal header string that will be passed to the API with every call. """ headers = { # Request headers 'participant-key': keys["participantKey"], 'Content-Type': 'application/json', 'Ocp-Apim-Subscription-Key': keys["subscriptionKey"] } return headers
4505fb679dec9727a62dd328f92f832ab45c417b
3,652,739
from typing import List from typing import cast def build_goods_query( good_ids: List[str], currency_id: str, is_searching_for_sellers: bool ) -> Query: """ Build buyer or seller search query. Specifically, build the search query - to look for sellers if the agent is a buyer, or - to look for buyers if the agent is a seller. In particular, if the agent is a buyer and the demanded good ids are {'tac_good_0', 'tac_good_2', 'tac_good_3'}, the resulting constraint expression is: tac_good_0 >= 1 OR tac_good_2 >= 1 OR tac_good_3 >= 1 That is, the OEF will return all the sellers that have at least one of the good in the query (assuming that the sellers are registered with the data model specified). :param good_ids: the list of good ids to put in the query :param currency_id: the currency used for pricing and transacting. :param is_searching_for_sellers: Boolean indicating whether the query is for sellers (supply) or buyers (demand). :return: the query """ data_model = _build_goods_datamodel( good_ids=good_ids, is_supply=is_searching_for_sellers ) constraints = [Constraint(good_id, ConstraintType(">=", 1)) for good_id in good_ids] constraints.append(Constraint("currency_id", ConstraintType("==", currency_id))) constraint_expr = cast(List[ConstraintExpr], constraints) if len(good_ids) > 1: constraint_expr = [Or(constraint_expr)] query = Query(constraint_expr, model=data_model) return query
97cccadc265743d743f3e2e757e0c81ff110072b
3,652,740
def make_piecewise_const(num_segments): """Makes a piecewise constant semi-sinusoid curve with num_segments segments.""" true_values = np.sin(np.arange(0, np.pi, step=0.001)) seg_idx = np.arange(true_values.shape[0]) // (true_values.shape[0] / num_segments) return pd.Series(true_values).groupby(seg_idx).mean().tolist()
d6004488ae0109b730cb73dc9e58e65caaed8798
3,652,741
def convert_rational_from_float(number): """ converts a float to rational as form of a tuple. """ f = Fraction(str(number)) # str act as a round return f.numerator, f.denominator
f3a00a150795b008ccc8667a3a0437eb2de2e2af
3,652,742
def classname(obj): """Returns the name of an objects class""" return obj.__class__.__name__
15b03c9ce341bd151187f03e8e95e6299e4756c3
3,652,743
def train(epoch, model, dataloader, optimizer, criterion, device, writer, cfg): """ training the model. Args: epoch (int): number of training steps. model (class): model of training. dataloader (dict): dict of dataset iterator. Keys are tasknames, values are corresponding dataloaders. optimizer (Callable): optimizer of training. criterion (Callable): loss criterion of training. device (torch.device): device of training. writer (class): output to tensorboard. cfg: configutation of training. Return: losses[-1] : the loss of training """ model.train() metric = PRMetric() losses = [] for batch_idx, (x, y) in enumerate(dataloader, 1): for key, value in x.items(): x[key] = value.to(device) y = y.to(device) optimizer.zero_grad() y_pred = model(x) if cfg.model_name == 'capsule': loss = model.loss(y_pred, y) else: loss = criterion(y_pred, y) loss.backward() optimizer.step() metric.update(y_true=y, y_pred=y_pred) losses.append(loss.item()) data_total = len(dataloader.dataset) data_cal = data_total if batch_idx == len(dataloader) else batch_idx * len(y) if (cfg.train_log and batch_idx % cfg.log_interval == 0) or batch_idx == len(dataloader): # p r f1 皆为 macro,因为micro时三者相同,定义为acc acc, p, r, f1 = metric.compute() logger.info(f'Train Epoch {epoch}: [{data_cal}/{data_total} ({100. * data_cal / data_total:.0f}%)]\t' f'Loss: {loss.item():.6f}') logger.info(f'Train Epoch {epoch}: Acc: {100. * acc:.2f}%\t' f'macro metrics: [p: {p:.4f}, r:{r:.4f}, f1:{f1:.4f}]') if cfg.show_plot and not cfg.only_comparison_plot: if cfg.plot_utils == 'matplot': plt.plot(losses) plt.title(f'epoch {epoch} train loss') plt.show() if cfg.plot_utils == 'tensorboard': for i in range(len(losses)): writer.add_scalar(f'epoch_{epoch}_training_loss', losses[i], i) return losses[-1]
41de6aa37b41c837d9921e673414a70cc798478b
3,652,744
def custom_timeseries_widget_for_behavior(node, **kwargs): """Use a custom TimeSeries widget for behavior data""" if node.name == 'Velocity': return SeparateTracesPlotlyWidget(node) else: return show_timeseries(node)
34b296ab98b0eb6f9e2ddd080d5919a0a7158adc
3,652,745
def db_tween_factory(handler, registry): """A database tween, doing automatic session management.""" def db_tween(request): response = None try: response = handler(request) finally: session = getattr(request, "_db_session", None) if session is not None: # always rollback/close the read-only session try: session.rollback() except DatabaseError: registry.raven_client.captureException() finally: registry.db.release_session(session) return response return db_tween
5e5150855db08931af8ba82e3f44e51b6caf54f3
3,652,746
import time def calibrate_profiler(n, timer=time.time): """ Calibration routine to returns the fudge factor. The fudge factor is the amount of time it takes to call and return from the profiler handler. The profiler can't measure this time, so it will be attributed to the user code unless it's subtracted off. """ starttime = timer() p = Profiler(fudge=0.0) for i in range(n): a_very_long_function_name() p.stop() stoptime = timer() simpletime = p.get_time('a_very_long_function_name') realtime = stoptime - starttime profiletime = simpletime + p.overhead losttime = realtime - profiletime return losttime/(2*n) # 2 profile events per function call
ee1f0af52f5530542503be4f277c90f249f83fb5
3,652,747
def getbias(x, bias): """Bias in Ken Perlin’s bias and gain functions.""" return x / ((1.0 / bias - 2.0) * (1.0 - x) + 1.0 + 1e-6)
0bc551e660e133e0416f5e426e5c7c302ac3fbbe
3,652,748
from typing import Dict from typing import Optional def get_exif_flash_fired(exif_data: Dict) -> Optional[bool]: """ Parses the "flash" value from exif do determine if it was fired. Possible values: +-------------------------------------------------------+------+----------+-------+ | Status | Hex | Binary | Fired | +-------------------------------------------------------+------+----------+-------+ | No Flash | 0x0 | 00000000 | No | | Fired | 0x1 | 00000001 | Yes | | "Fired, Return not detected" | 0x5 | 00000101 | Yes | | "Fired, Return detected" | 0x7 | 00000111 | Yes | | "On, Did not fire" | 0x8 | 00001000 | No | | "On, Fired" | 0x9 | 00001001 | Yes | | "On, Return not detected" | 0xd | 00001011 | Yes | | "On, Return detected" | 0xf | 00001111 | Yes | | "Off, Did not fire" | 0x10 | 00010000 | No | | "Off, Did not fire, Return not detected" | 0x14 | 00010100 | No | | "Auto, Did not fire" | 0x18 | 00011000 | No | | "Auto, Fired" | 0x19 | 00011001 | Yes | | "Auto, Fired, Return not detected" | 0x1d | 00011101 | Yes | | "Auto, Fired, Return detected" | 0x1f | 00011111 | Yes | | No flash function | 0x20 | 00100000 | No | | "Off, No flash function" | 0x30 | 00110000 | No | | "Fired, Red-eye reduction" | 0x41 | 01000001 | Yes | | "Fired, Red-eye reduction, Return not detected" | 0x45 | 01000101 | Yes | | "Fired, Red-eye reduction, Return detected" | 0x47 | 01000111 | Yes | | "On, Red-eye reduction" | 0x49 | 01001001 | Yes | | "On, Red-eye reduction, Return not detected" | 0x4d | 01001101 | Yes | | "On, Red-eye reduction, Return detected" | 0x4f | 01001111 | Yes | | "Off, Red-eye reduction" | 0x50 | 01010000 | No | | "Auto, Did not fire, Red-eye reduction" | 0x58 | 01011000 | No | | "Auto, Fired, Red-eye reduction" | 0x59 | 01011001 | Yes | | "Auto, Fired, Red-eye reduction, Return not detected" | 0x5d | 01011101 | Yes | | "Auto, Fired, Red-eye reduction, Return detected" | 0x5f | 01011111 | Yes | +-------------------------------------------------------+------+----------+-------+ :param exif_data: :return: If the flash was fired, or None if the exif information is not present """ if 'Flash' not in exif_data: return None return bool((int(exif_data['Flash']) & 1) > 0)
82b4fc095d60426622202243f141614b9632340f
3,652,749
import shlex import os def gyp_generator_flags(): """Parses and returns GYP_GENERATOR_FLAGS env var as a dictionary.""" return dict(arg.split('=', 1) for arg in shlex.split(os.environ.get('GYP_GENERATOR_FLAGS', '')))
51777f7b9ad87291dc176ce4673cb8a9cd5864f9
3,652,750
import requests import json def get_geoJson(addr): """ Queries the Google Maps API for specified address, returns a dict of the formatted address, the state/territory name, and a float-ified version of the latitude and longitude. """ res = requests.get(queryurl.format(addr=addr, gmapkey=gmapkey)) dictr = {} if res.json()["status"] == "ZERO_RESULTS" or not res.ok: dictr["res"] = res else: print(json.dumps(res.json(), indent=4)) rresj = res.json()["results"][0] dictr["formatted_address"] = rresj["formatted_address"] dictr["latlong"] = rresj["geometry"]["location"] for el in rresj["address_components"]: if el["types"][0] == "administrative_area_level_1": dictr["state"] = el["short_name"] return dictr
500c2aa18c8b3b305c912b91efcc9f51121ca7b3
3,652,751
def display_data_in_new_tab(message, args, pipeline_data): """ Displays the current message data in a new tab """ window = sublime.active_window() tab = window.new_file() tab.set_scratch(True) edit_token = message['edit_token'] tab.insert(edit_token, 0, message['data']) return tab
a64b7ac4138b921a53adb96b9933f1825048b955
3,652,752
def _cost( q,p, xt_measure, connec, params ) : """ Returns a total cost, sum of a small regularization term and the data attachment. .. math :: C(q_0, p_0) = .01 * H(q0,p0) + 1 * A(q_1, x_t) Needless to say, the weights can be tuned according to the signal-to-noise ratio. """ s,r = params # Deformation scale, Attachment scale q1 = _HamiltonianShooting(q,p,s)[0] # Geodesic shooting from q0 to q1 # To compute a data attachment cost, we need the set of vertices 'q1' into a measure. q1_measure = Curve._vertices_to_measure( q1, connec ) attach_info = _data_attachment( q1_measure, xt_measure, r ) return [ .01* _Hqp(q, p, s) + 1* attach_info[0] , attach_info[1] ]
193d23a11d9704867d0a89846a6a7187de1e953a
3,652,753
def get_full_lang_code(lang=None): """ Get the full language code Args: lang (str, optional): A BCP-47 language code, or None for default Returns: str: A full language code, such as "en-us" or "de-de" """ if not lang: lang = __active_lang return lang or "en-us"
1e0e49797dc5ed3f1fd148ac4ca1ca073231268c
3,652,754
def acquire_images(cam, nodemap, nodemap_tldevice): """ This function acquires and saves 10 images from a device. :param cam: Camera to acquire images from. :param nodemap: Device nodemap. :param nodemap_tldevice: Transport layer device nodemap. :type cam: CameraPtr :type nodemap: INodeMap :type nodemap_tldevice: INodeMap :return: True if successful, False otherwise. :rtype: bool """ print '*** IMAGE ACQUISITION ***\n' try: result = True # Set acquisition mode to continuous # # *** NOTES *** # Because the example acquires and saves 10 images, setting acquisition # mode to continuous lets the example finish. If set to single frame # or multiframe (at a lower number of images), the example would just # hang. This would happen because the example has been written to # acquire 10 images while the camera would have been programmed to # retrieve less than that. # # Setting the value of an enumeration node is slightly more complicated # than other node types. Two nodes must be retrieved: first, the # enumeration node is retrieved from the nodemap; and second, the entry # node is retrieved from the enumeration node. The integer value of the # entry node is then set as the new value of the enumeration node. # # Notice that both the enumeration and the entry nodes are checked for # availability and readability/writability. Enumeration nodes are # generally readable and writable whereas their entry nodes are only # ever readable. # # Retrieve enumeration node from nodemap # In order to access the node entries, they have to be casted to a pointer type (CEnumerationPtr here) node_acquisition_mode = PySpin.CEnumerationPtr(nodemap.GetNode('AcquisitionMode')) if not PySpin.IsAvailable(node_acquisition_mode) or not PySpin.IsWritable(node_acquisition_mode): print 'Unable to set acquisition mode to continuous (enum retrieval). Aborting...' return False # Retrieve entry node from enumeration node node_acquisition_mode_continuous = node_acquisition_mode.GetEntryByName('Continuous') if not PySpin.IsAvailable(node_acquisition_mode_continuous) or not PySpin.IsReadable(node_acquisition_mode_continuous): print 'Unable to set acquisition mode to continuous (entry retrieval). Aborting...' return False # Retrieve integer value from entry node acquisition_mode_continuous = node_acquisition_mode_continuous.GetValue() # Set integer value from entry node as new value of enumeration node node_acquisition_mode.SetIntValue(acquisition_mode_continuous) print 'Acquisition mode set to continuous...' # Begin acquiring images # # *** NOTES *** # What happens when the camera begins acquiring images depends on the # acquisition mode. Single frame captures only a single image, multi # frame catures a set number of images, and continuous captures a # continuous stream of images. Because the example calls for the # retrieval of 10 images, continuous mode has been set. # # *** LATER *** # Image acquisition must be ended when no more images are needed. cam.BeginAcquisition() print 'Acquiring images...' # Retrieve device serial number for filename # # *** NOTES *** # The device serial number is retrieved in order to keep cameras from # overwriting one another. Grabbing image IDs could also accomplish # this. device_serial_number = '' node_device_serial_number = PySpin.CStringPtr(nodemap_tldevice.GetNode('DeviceSerialNumber')) if PySpin.IsAvailable(node_device_serial_number) and PySpin.IsReadable(node_device_serial_number): device_serial_number = node_device_serial_number.GetValue() print 'Device serial number retrieved as %s...' % device_serial_number # Retrieve, convert, and save images for i in range(NUM_IMAGES): try: # Retrieve next received image # # *** NOTES *** # Capturing an image houses images on the camera buffer. Trying # to capture an image that does not exist will hang the camera. # # *** LATER *** # Once an image from the buffer is saved and/or no longer # needed, the image must be released in order to keep the # buffer from filling up. image_result = cam.GetNextImage(1000) # Ensure image completion # # *** NOTES *** # Images can easily be checked for completion. This should be # done whenever a complete image is expected or required. # Further, check image status for a little more insight into # why an image is incomplete. if image_result.IsIncomplete(): print 'Image incomplete with image status %d ...' % image_result.GetImageStatus() else: # Print image information; height and width recorded in pixels # # *** NOTES *** # Images have quite a bit of available metadata including # things such as CRC, image status, and offset values, to # name a few. width = image_result.GetWidth() height = image_result.GetHeight() print 'Grabbed Image %d, width = %d, height = %d' % (i, width, height) # Convert image to mono 8 # # *** NOTES *** # Images can be converted between pixel formats by using # the appropriate enumeration value. Unlike the original # image, the converted one does not need to be released as # it does not affect the camera buffer. # # When converting images, color processing algorithm is an # optional parameter. image_converted = image_result.Convert(PySpin.PixelFormat_Mono8, PySpin.HQ_LINEAR) # Create a unique filename if device_serial_number: filename = 'Acquisition-%s-%d.jpg' % (device_serial_number, i) else: # if serial number is empty filename = 'Acquisition-%d.jpg' % i # Save image # # *** NOTES *** # The standard practice of the examples is to use device # serial numbers to keep images of one device from # overwriting those of another. image_converted.Save(filename) print 'Image saved at %s' % filename # Release image # # *** NOTES *** # Images retrieved directly from the camera (i.e. non-converted # images) need to be released in order to keep from filling the # buffer. image_result.Release() print '' except PySpin.SpinnakerException as ex: print 'Error: %s' % ex return False # End acquisition # # *** NOTES *** # Ending acquisition appropriately helps ensure that devices clean up # properly and do not need to be power-cycled to maintain integrity. cam.EndAcquisition() except PySpin.SpinnakerException as ex: print 'Error: %s' % ex return False return result
dd3454b3ddbff27dd73750c630ff5e63737fa50c
3,652,755
import importlib def apply_operations(source: dict, graph: BaseGraph) -> BaseGraph: """ Apply operations as defined in the YAML. Parameters ---------- source: dict The source from the YAML graph: kgx.graph.base_graph.BaseGraph The graph corresponding to the source Returns ------- kgx.graph.base_graph.BaseGraph The graph corresponding to the source """ operations = source['operations'] for operation in operations: op_name = operation['name'] op_args = operation['args'] module_name = '.'.join(op_name.split('.')[0:-1]) function_name = op_name.split('.')[-1] f = getattr(importlib.import_module(module_name), function_name) log.info(f"Applying operation {op_name} with args: {op_args}") f(graph, **op_args) return graph
d78410d27da574efc30d08555eaefde0c77cb513
3,652,756
def tt_logdotexp(A, b): """Construct a Theano graph for a numerically stable log-scale dot product. The result is more or less equivalent to `tt.log(tt.exp(A).dot(tt.exp(b)))` """ A_bcast = A.dimshuffle(list(range(A.ndim)) + ["x"]) sqz = False shape_b = ["x"] + list(range(b.ndim)) if len(shape_b) < 3: shape_b += ["x"] sqz = True b_bcast = b.dimshuffle(shape_b) res = tt_logsumexp(A_bcast + b_bcast, axis=1) return res.squeeze() if sqz else res
f543557a0b24159ede7d8cc0c8ed5df3ed2123f4
3,652,757
def _check_like(val, _np_types, _native_types, check_str=None): # pylint: disable=too-many-return-statements """ Checks the follwing: - if val is instance of _np_types or _native_types - if val is a list or ndarray of _np_types or _native_types - if val is a string or list of strings that can be parsed by check_str Does not check: - if val is an ndarray of strings that can be parsed by check_str """ _all_types = _np_types + _native_types if isinstance(val, _all_types): return True elif isinstance(val, string_types): return check_str and check_str(val) elif isinstance(val, (list, tuple)): for v in val: if isinstance(v, string_types): if check_str and check_str(v): continue if not isinstance(v, _all_types): return False return True elif hasattr(val, 'dtype'): if val.dtype == np.object: return all(isinstance(v, _native_types) for v in val) else: return val.dtype.type in _np_types else: return False
ab7875d329c09a491178b721c112b64142d2e566
3,652,758
def rotation_matrix(x, y, theta): """ Calculate the rotation matrix. Origin is assumed to be (0, 0) theta must be in radians """ return [np.cos(theta) * x - np.sin(theta) * y, np.sin(theta) * x + np.cos(theta) * y]
53f646429f7a4b719b197cacbc71442ebef719d4
3,652,759
from typing import List def create_players(num_human: int, num_random: int, smart_players: List[int]) \ -> List[Player]: """Return a new list of Player objects. <num_human> is the number of human player, <num_random> is the number of random players, and <smart_players> is a list of difficulty levels for each SmartPlayer that is to be created. The list should contain <num_human> HumanPlayer objects first, then <num_random> RandomPlayer objects, then the same number of SmartPlayer objects as the length of <smart_players>. The difficulty levels in <smart_players> should be applied to each SmartPlayer object, in order. """ goal = generate_goals(num_random + num_human + len(smart_players)) final = [] for x in range(num_human): final.append(HumanPlayer(x, goal[x])) for y in range(num_random): final.append(RandomPlayer(num_human + y, goal[num_human + y])) for z in range(len(smart_players)): final.append(SmartPlayer(num_human + num_random + z, goal[num_human + num_random + z], smart_players[z])) return final
10a7e840992417d46c79d794e66e1de5de16dd95
3,652,760
import os import stat def file_info(path): """ Return file information on `path`. Example output: { 'filename': 'passwd', 'dir': '/etc/', 'path': '/etc/passwd', 'type': 'file', 'size': 2790, 'mode': 33188, 'uid': 0, 'gid': 0, 'device': 64769 } """ fname = os.path.basename(path) fdir = os.path.dirname(path) fstat = os.lstat(path) ftype = file_types.get(stat.S_IFMT(fstat.st_mode), "unknown") return { "filename": fname, "dir": fdir, "path": path, "type": ftype, "size": fstat.st_size, "mode": fstat.st_mode, "uid": fstat.st_uid, "gid": fstat.st_gid, "device": fstat.st_dev, }
36d8c92a6cc20f95f73f3a2c6c986222f1e9633e
3,652,761
def extract_test_params(root): """VFT parameters, e.g. TEST_PATTERN, TEST_STRATEGY, ...""" res = {} ''' xpath = STATIC_TEST + '*' elems = root.findall(xpath) + root.findall(xpath+'/FIXATION_CHECK*') #return {e.tag:int(e.text) for e in elems if e.text.isdigit()} print(xpath) for e in elems: print(e.tag) if e.text.isdigit(): res[e.tag] = int(e.text) elif len(e.text) > 1: #print(e.tag, e.text,type(e.text),'$'*100) res[e.tag] =e.text else: for ee in e: if ee.tag not in ['QUESTIONS_ASKED','SF']: if ee.text.isdigit(): res[ee.tag] = int(ee.text) elif len(ee.text) > 1: res[ee.tag] = ee.text ''' for p in params: xpath = STATIC_TEST + p el = root.findall(xpath) if not el: res[p.split('/')[-1]] ='' elif el[0].text.isdigit(): res[el[0].tag] = int(el[0].text) else: res[el[0].tag] = el[0].text for pth in [DISPLAY_NAME,VISIT_DATE,SERIES_DATE_TIME,TEST_NODE+'PUPIL_DIAMETER',TEST_NODE+'PUPIL_DIAMETER_AUTO',TEST_NODE+'EXAM_TIME']: e=root.find(pth) if e.text is None: res[e.tag] = e.text else: if e.text.isdigit(): res[e.tag] = int(e.text) else: res[e.tag] = e.text ''' vkind = ['THRESHOLD', 'TOTAL', 'PATTERN'] for vk in vkind: vs = extract_vft_values(root, vk) mat = vf2matrix(vs) res[vk+'_MATRIX'] = [mat] ''' return res
ebd0e1d86af8d741ff993fc54b6ef4b3a7be6ac4
3,652,762
from typing import Optional from typing import List def csc_list( city: str, state: Optional[str] = None, country: Optional[str] = None, ) -> List[db.Geoname]: """ >>> [g.country_code for g in csc_list('sydney')] ['AU', 'CA', 'US', 'US', 'ZA', 'VU', 'US', 'US', 'CA'] >>> [g.name for g in csc_list('sydney', country='australia')] ['Sydney'] >>> [g.timezone for g in csc_list('sydney', state='victoria')][:3] ['Australia/Sydney', 'America/Glace_Bay', 'America/Phoenix'] """ if state and country: cinfo = db.country_info(country) states = [ g for g in db.select_geonames_name(state) if g.feature_class == 'A' and g.country_code == cinfo.iso ] cities = [ g for g in db.select_geonames_name(city) if g.feature_class == 'P' and g.country_code == cinfo.iso ] city_matches = list(_match(cities, states)) if city_matches: return [c for (c, _) in city_matches] # # Try omitting state. If the country is specified, that alone may be sufficient. # if country: cinfo = db.country_info(country) cities = [ g for g in db.select_geonames_name(city) if g.feature_class == 'P' and g.country_code == cinfo.iso ] if cities: return cities # # Perhaps state is really a city? # if state and country: cinfo = db.country_info(country) cities = [ g for g in db.select_geonames_name(state) if g.country_code == cinfo.iso ] if cities: return cities # # Perhaps the specified country is wrong? # if state: states = [g for g in db.select_geonames_name(state) if g.feature_class == 'A'] cities = [g for g in db.select_geonames_name(city) if g.feature_class == 'P'] city_matches = list(_match(cities, states)) if city_matches: return [c for (c, _) in city_matches] # # Perhaps city itself is unique? # cities = [g for g in db.select_geonames_name(city) if g.feature_class == 'P'] if cities: return cities return list(db.select_geonames_name(city))
6c27a16c22a40d095bd3e3fad7660bbee867751e
3,652,763
from typing import Iterable from typing import Tuple def calculate_frame_score(current_frame_hsv: Iterable[cupy.ndarray], last_frame_hsv: Iterable[cupy.ndarray]) -> Tuple[float]: """Calculates score between two adjacent frames in the HSV colourspace. Frames should be split, e.g. cv2.split(cv2.cvtColor(frame_data, cv2.COLOR_BGR2HSV)). Arguments: curr_frame_hsv: Current frame. last_frame_hsv: Previous frame. Returns: Tuple containing the average pixel change for each component as well as the average across all components, e.g. (avg_h, avg_s, avg_v, avg_all). """ current_frame_hsv = [x.astype(cupy.int32) for x in current_frame_hsv] last_frame_hsv = [x.astype(cupy.int32) for x in last_frame_hsv] delta_hsv = [0, 0, 0, 0] for i in range(3): num_pixels = current_frame_hsv[i].shape[0] * current_frame_hsv[i].shape[1] delta_hsv[i] = cupy.sum( cupy.abs(current_frame_hsv[i] - last_frame_hsv[i])) / float(num_pixels) delta_hsv[3] = sum(delta_hsv[0:3]) / 3.0 return tuple(delta_hsv)
db5819ab0696364569f79f326ab7e28f0f0371b3
3,652,764
def huber_loss_function(sq_resi, k=1.345): """Robust loss function which penalises outliers, as detailed in Jankowski et al (2018). Parameters ---------- sq_resi : `float` or `list` A single or list of the squared residuals. k : `float`, optional A constant that defines at which distance the loss function starts to penalize outliers. |br| Default: 1.345. Returns ------- rho : `float` or `list` The modified squared residuals. """ single_value = False if isinstance(sq_resi, float) or isinstance(sq_resi, int): sq_resi = np.array([sq_resi]) single_value = True elif isinstance(sq_resi, list): sq_resi = np.array(sq_resi) rho = [] residual = np.sqrt(abs(sq_resi)) for j in range(len(residual)): if residual[j] < k: rho.append( sq_resi[j]/2 ) else: rho.append( k * residual[j] - 1./2. * k**2 ) if single_value: return rho[0] else: return rho
bf8d5f3aa042297014b7b93316fe557784c4c5b1
3,652,765
import re def clean_sentence(sentence: str) -> str: """ Bertに入れる前にtextに行う前処理 Args: sentence (str): [description] Returns: str: [description] """ sentence = re.sub(r"<[^>]*?>", "", sentence) # タグ除外 sentence = mojimoji.zen_to_han(sentence, kana=False) sentence = neologdn.normalize(sentence) sentence = re.sub( r'[!"#$%&\'\\\\()*+,\-./:;<=>?@\[\]\^\_\`{|}~「」〔〕“”〈〉『』【】&*・()$#@?!`+¥%︰-@]。、♪', " ", sentence, ) # 記号 sentence = re.sub(r"https?://[\w/:%#\$&\?\(\)~\.=\+\-]+", "", sentence) sentence = re.sub(r"[0-90-9a-zA-Za-zA-Z]+", " ", sentence) sentence = "".join( [ emoji_dict[c].get("short_name", "") if c in emoji.UNICODE_EMOJI["en"] else c for c in sentence ] ) return sentence
bf5f9df5ab04ff96ae7f8199dfbeafae30d764eb
3,652,766
from typing import Union from enum import Enum def assert_user(user_id: int, permission: Union[str, Enum] = None) -> bool: """ Assert that a user_id belongs to the requesting user, or that the requesting user has a given permission. """ permission = ( permission.value if isinstance(permission, Enum) else permission ) return flask.g.user.id == user_id or flask.g.user.has_permission( permission )
6ef54d60a0b62e4ffb1330dba7bffeeac0df03c7
3,652,767
def single_prob(n, n0, psi, c=2): """ Eq. 1.3 in Conlisk et al. (2007), note that this implmentation is only correct when the variable c = 2 Note: if psi = .5 this is the special HEAP case in which the function no longer depends on n. c = number of cells """ a = (1 - psi) / psi F = (get_F(a, n) * get_F((c - 1) * a, n0 - n)) / get_F(c * a, n0) return float(F)
05c0c627a05bb683fa3c20cacefa121f5cddba14
3,652,768
def array_pair_sum_iterative(arr, k): """ returns the array of pairs using an iterative method. complexity: O(n^2) """ result = [] for i in range(len(arr)): for j in range(i + 1, len(arr)): if arr[i] + arr[j] == k: result.append([arr[i], arr[j]]) return result
c4f0eb5e290c784a8132472d85023662be291a71
3,652,769
def merge_named_payload(name_to_merge_op): """Merging dictionary payload by key. name_to_merge_op is a dict mapping from field names to merge_ops. Example: If name_to_merge_op is { 'f1': mergeop1, 'f2': mergeop2, 'f3': mergeop3 }, Then two payloads { 'f1': a1, 'f2': b1, 'f3': c1 } and { 'f1': a2, 'f2': b2, 'f3': c2 } will be merged into { 'f1': mergeop1(a1, a2), 'f2': mergeop2(b1, b2), 'f3': mergeop3(c1, c2) }. """ def merge(p1,p2): p = {} for name, op in name_to_merge_op.items(): p[name] = op(p1[name], p2[name]) return p return merge
ee20147b7937dff208da6ea0d025fe466d8e92ed
3,652,770
def euclidean_distance(this_set, other_set, bsf_dist): """Calculate the Euclidean distance between 2 1-D arrays. If the distance is larger than bsf_dist, then we end the calculation and return the bsf_dist. Args: this_set: ndarray The array other_set: ndarray The comparative array. bsf_dist: The best so far distance. Returns: output: float The accumulation of Euclidean distance. """ sum_dist = 0 for index in range(0, len(this_set)): sum_dist += (this_set[index] - other_set[index]) ** 2 if sum_dist > bsf_dist: return bsf_dist return sum_dist
7055c0de77cad987738c9b3ec89b0381002fbfd4
3,652,771
from typing import List from typing import Union import subprocess def run_cmd_simple(cmd: str, variables: dict, env=None, args: List[str] = None, libraries=None) -> Union[dict, str]: """ Run cmd with variables written in environment. :param args: cmd arguments :param cmd: to run :param variables: variables :param env: custom environment :param libraries: additional libraries used for source compilation :return: output in json (if can be parsed) or plaintext """ env = _prepare_env(variables, env=env) cmd, cwd = _prepare_cmd(cmd, args, variables, libraries=libraries) p = subprocess.Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, env=env, cwd=cwd) if p.wait() == 0: out = p.stdout.read().decode() debug(out) return _parse_output(out) else: out = p.stdout.read().decode() warning(out) raise Exception('Execution failed.')
b16693f291ade54f470e4c7173cf06cca774cdf6
3,652,772
def host(provider: Provider) -> Host: """Create host""" return provider.host_create(utils.random_string())
36e1b6f0ddf8edc055d56cac746271f5d3801111
3,652,773
def bj_struktur_p89(x, n: int = 5, **s): # brute force """_summary_ :param x: _description_ :type x: _type_ :param n: _description_, defaults to 5 :type n: int, optional :return: _description_ :rtype: _type_ """ gamma, K = gamma_K_function(**s) b_j = np.empty((x.size, n + 1)) for i, xi in enumerate(x): for j in range(n + 1): b_j[i, j] = bj_p89(K, xi, j) return b_j
d21fc501411ada9f2173da7ca447418e2f51a86f
3,652,774
def _get_pulse_width_and_area(tr, ipick, icross, max_pulse_duration=.08): """ Measure the width & area of the arrival pulse on the displacement trace Start from the displacement peak index (=icross - location of first zero crossing of velocity) :param tr: displacement trace :type tr: obspy.core.trace.Trace or microquake.core.Trace :param ipick: index of pick in trace :type ipick: int :param icross: index of first zero crossing in corresponding velocity trace :type icross: int :param max_pulse_duration: max allowed duration (sec) beyond pick to search for zero crossing of disp pulse :type max_pulse_duration: float return pulse_width, pulse_area :returns: pulse_width, pulse_area: Returns the width and area of the displacement pulse :rtype: float, float """ fname = '_get_pulse_width_and_area' data = tr.data sign = np.sign(data) nmax = int(max_pulse_duration * tr.stats.sampling_rate) iend = ipick + nmax epsilon = 1e-10 if icross >= iend: i = iend - 1 for i in range(icross, iend): diff = np.abs(data[i] - data[ipick]) if diff < epsilon or sign[i] != sign[icross]: break if i == iend - 1: logger.info("%s: Unable to locate termination of displacement " "pulse for tr:%s!" % (fname, tr.get_id())) return 0, 0 istop = i pulse_width = float(istop - ipick) * tr.stats.delta pulse_area = np.trapz(data[ipick:istop], dx=tr.stats.delta) return pulse_width, pulse_area
43598f797f2956def740881b33b38d8824ba7ff3
3,652,775
def load_backend(name, options=None): """Load the named backend. Returns the backend class registered for the name. If you pass None as the name, this will load the default backend. See the documenation for get_default() for more information. Raises: UnknownBackend: The name is not recognized. LoadingError: There was an error loading the backend. """ if name is None: assert options is None return get_default() if options is None: options = {} if name not in _backends: raise UnknownBackend(name) options = _backends[name][1](**options) key = (name, tuple(sorted(list(options.items())))) res = _active_backends.get(key, None) if res is None: try: res = _backends[name][0](options) _active_backends[key] = res except Exception as e: raise LoadingError(name) from e return res
1df4c1b0c0d9d81e607a5884f3391883ab6ea3c5
3,652,776
def test() -> ScadObject: """ Create something. """ result = IDUObject() result += box(10, 10, 5, center=True).translated((0, 0, -1)).named("Translated big box") result -= box(4, 4, 4, center=True) result += box(10, 10, 5) result *= sphere(7).translated((0, 0, 1)) return ( result.rotated((-45, 0, 0)) .rendered(10) .commented("Render it now!") .colored("green", alpha=0.5) .commented( """ This file is autogenerated by r7scad. It is not supposed to be edited manually. """ ) )
2d8c413a6b60969de60746c4fb356da88a95e06a
3,652,777
def rollout(policy, env_class, step_fn=default_rollout_step, max_steps=None): """Perform rollout using provided policy and env. :param policy: policy to use when simulating these episodes. :param env_class: class to instantiate an env object from. :param step_fn: a function to be called at each step of rollout. The function can have 2 or 3 parameters, and must return an action: * 2 parameter definition: policy, observation. * 3 parameter definition: policy, observation, step_num. Default value is ``agentos.core.default_rollout_step``. :param max_steps: cap on number of steps per episode. :return: the trajectory that was followed during this rollout. A trajectory is a named tuple that contains the initial observation (a scalar) as well as the following arrays: actions, observations, rewards, dones, contexts. The ith entry of each array corresponds to the action taken at the ith step of the rollout, and the respective results returned by the environment after taking that action. To learn more about the semantics of these, see the documentation and code of gym.Env. """ actions = [] observations = [] rewards = [] dones = [] contexts = [] env = env_class() obs = env.reset() init_obs = obs done = False step_num = 0 while True: if done or (max_steps and step_num >= max_steps): break if step_fn.__code__.co_argcount == 2: action = step_fn(policy, obs) elif step_fn.__code__.co_argcount == 3: action = step_fn(policy, obs, step_num) else: raise TypeError("step_fn must accept 2 or 3 parameters.") obs, reward, done, ctx = env.step(action) actions.append(action) observations.append(obs) rewards.append(reward) dones.append(done) contexts.append(ctx) step_num += 1 Trajectory = namedtuple( "Trajectory", [ "init_obs", "actions", "observations", "rewards", "dones", "contexts", ], ) return Trajectory( init_obs, actions, observations, rewards, dones, contexts )
d5ac3246338165d3cfdb5e37ae5a6cbbe5df0408
3,652,778
def get_source(location, **kwargs): """Factory for StubSource Instance. Args: location (str): PathLike object or valid URL Returns: obj: Either Local or Remote StubSource Instance """ try: utils.ensure_existing_dir(location) except NotADirectoryError: return RemoteStubSource(location, **kwargs) else: return LocalStubSource(location, **kwargs)
6b240d7ad523c2a45ca21c3030a96ec5aebb69c2
3,652,779
def about(request): """ Prepare and displays the about view of the web application. Args: request: django HttpRequest class Returns: A django HttpResponse class """ template = loader.get_template('about.html') return HttpResponse(template.render())
ecf2a890e49a5fe786024f7d7f524e1396064f48
3,652,780
def url(parser, token): """Overwrites built in url tag to use . It works identicaly, except that where possible it will use subdomains to refer to a project instead of a full url path. For example, if the subdomain is vessel12.domain.com it will refer to a page 'details' as /details/ instead of /site/vessel12/details/ REQUIREMENTS: * MIDDLEWARE_CLASSES in settings should contain 'core.middleware.subdomain.SubdomainMiddleware' * These keys should be in the django settings file: SUBDOMAIN_IS_PROJECTNAME = True MAIN_HOST_NAME = <your site's hostname> * APACHE url rewriting should be in effect to rewrite subdomain to site/project/. To get you started: the following apache config does this for the domain 'devcomicframework.org' (put this in your apache config file) RewriteEngine on RewriteCond $1 .*/$ RewriteCond $1 !^/site/.* RewriteCond %{HTTP_HOST} !^devcomicframework\.org$ RewriteCond %{HTTP_HOST} !^www.devcomicframework\.org$ RewriteCond %{HTTP_HOST} ^([^.]+)\.devcomicframework\.org$ RewriteRule (.*) /site/%1$1 [PT] TODO: turn on and off this behaviour in settings, maybe explicitly define base domain to also make it possible to use dots in the base domain. """ orgnode = defaulttags.url(parser, token) return comic_URLNode( orgnode.view_name, orgnode.args, orgnode.kwargs, orgnode.asvar )
191c7598cdf079fe97452d4914534191e7eb1fe4
3,652,781
import math import logging def getAp(ground_truth, predict, fullEval=False): """ Calculate AP at IOU=.50:.05:.95, AP at IOU=.50, AP at IOU=.75 :param ground_truth: {img_id1:{{'position': 4x2 array, 'is_matched': 0 or 1}, {...}, ...}, img_id2:{...}, ...} :param predict: [{'position':4x2 array, 'img_id': image Id, 'confident': confident}, {...}, ...] :return: AP, AP at IOU=.50, AP at IOU=.75 """ is_match = {'is_matched': 0} ap_050_095 = 0. ap_050 = 0. ap_075 = 0. prec_050_095 = 0. prec_050 = 0. prec_075 = 0. recall_050_095 = 0. recall_050 = 0. recall_075 = 0. if fullEval: for i in np.arange(0.50, 1.0, 0.05): for key in ground_truth: for win_idx in range(len(ground_truth[key])): ground_truth[key][win_idx].update(is_match) # reset 'is_matched' for all windows ap, recall, precision = evaluateAP(ground_truth, predict, threshold=i) if math.isclose(round(i, 2), 0.5): ap_050 = ap prec_050 = precision recall_050 = recall if math.isclose(round(i, 2), 0.75): ap_075 = ap prec_075 = precision recall_075 = recall ap_050_095 += ap prec_050_095 += precision recall_050_095 += recall logging.info("threshold:%.2f"%i + " precsion:%.2f"%(precision*100) + " recall:%.2f"%(recall*100)) else: ap_050, recall_050, prec_050 = evaluateAP(ground_truth, predict, threshold=0.5) ap_050_095 = ap_050_095 / 10 prec_050_095 = prec_050_095 / 10 recall_050_095 = recall_050_095 / 10 return [ap_050_095, ap_050, ap_075], \ [prec_050_095, prec_050, prec_075], \ [recall_050_095, recall_050, recall_075]
ac44c514166f8e70a6625f4e1ad89b36564ffba4
3,652,782
def aumenta_fome(ani): """ aumenta_fome: animal --> animal Recebe um animal e devolve o mesmo com o valor da fome incrementado por 1 """ if obter_freq_alimentacao(ani) == 0: return ani else: ani['a'][0] += 1 return ani
377e3800e12877f1b8cd1cba19fe3a430ade0207
3,652,783
import warnings def match_inputs( bp_tree, table, sample_metadata, feature_metadata=None, ignore_missing_samples=False, filter_missing_features=False ): """Matches various input sources. Also "splits up" the feature metadata, first by calling taxonomy_utils.split_taxonomy() on it and then by splitting the resulting DataFrame into two separate DataFrames (one for tips and one for internal nodes). Parameters ---------- bp_tree: bp.BP The tree to be visualized. table: pd.DataFrame Representation of the feature table. The index should describe feature IDs; the columns should describe sample IDs. (It's expected that feature IDs in the table only describe tips in the tree, not internal nodes.) sample_metadata: pd.DataFrame Sample metadata. The index should describe sample IDs; the columns should describe different sample metadata fields' names. feature_metadata: pd.DataFrame or None Feature metadata. If this is passed, the index should describe feature IDs and the columns should describe different feature metadata fields' names. (Feature IDs here can describe tips or internal nodes in the tree.) ignore_missing_samples: bool If True, pads missing samples (i.e. samples in the table but not the metadata) with placeholder metadata. If False, raises a DataMatchingError if any such samples exist. (Note that in either case, samples in the metadata but not in the table are filtered out; and if no samples are shared between the table and metadata, a DataMatchingError is raised regardless.) This is analogous to the ignore_missing_samples flag in Emperor. filter_missing_features: bool If True, filters features from the table that aren't present as tips in the tree. If False, raises a DataMatchingError if any such features exist. (Note that in either case, features in the tree but not in the table are preserved.) Returns ------- (table, sample_metadata, tip_metadata, int_metadata): (pd.DataFrame, pd.DataFrame, pd.DataFrame / None, pd.DataFrame / None) Versions of the input table, sample metadata, and feature metadata filtered such that: -The table only contains features also present as tips in the tree. -The sample metadata only contains samples also present in the table. -Samples present in the table but not in the sample metadata will have all of their sample metadata values set to "This sample has no metadata". (This will only be done if ignore_missing_samples is True; otherwise, this situation will trigger an error. See below.) -If feature metadata was not passed, tip_metadata and int_metadata will both be None. Otherwise, tip_metadata will contain the entries of the feature metadata where the feature name was present as a tip in the tree, and int_metadata will contain the entries of the feature metadata where the feature name was present as internal node(s) in the tree. -Also, for sanity's sake, this will call taxonomy_utils.split_taxonomy() on the feature metadata before splitting it up into tip and internal node metadata. Raises ------ DataMatchingError If any of the following conditions are met: 1. No features are shared between the tree's tips and table. 2. There are features present in the table but not as tips in the tree, AND filter_missing_features is False. 3. No samples are shared between the sample metadata and table. 4. There are samples present in the table but not in the sample metadata, AND ignore_missing_samples is False. 5. The feature metadata was passed, but no features present in it are also present as tips or internal nodes in the tree. References ---------- This function was based on match_table_and_data() in Qurro's code: https://github.com/biocore/qurro/blob/b9613534b2125c2e7ee22e79fdff311812f4fefe/qurro/_df_utils.py#L255 """ # Match table and tree. # (Ignore None-named tips in the tree, which will be replaced later on # with "default" names like "EmpressNode0".) tip_names = set(bp_tree.bp_tree_tips()) tree_and_table_features = table.index.intersection(tip_names) if len(tree_and_table_features) == 0: # Error condition 1 raise DataMatchingError( "No features in the feature table are present as tips in the tree." ) ff_table = table.copy() if len(tree_and_table_features) < len(table.index): if filter_missing_features: # Filter table to just features that are also present in the tree. # # Note that we *don't* filter the tree analogously, because it's ok # for the tree's nodes to be a superset of the table's features # (and this is going to be the case in most datasets where the # features correspond to tips, since internal nodes aren't # explicitly described in the feature table). ff_table = table.loc[tree_and_table_features] # Report to user about any dropped features from table. dropped_feature_ct = table.shape[0] - ff_table.shape[0] warnings.warn( ( "{} feature(s) in the table were not present as tips in " "the tree. These feature(s) have been removed from the " "visualization." ).format( dropped_feature_ct ), DataMatchingWarning ) else: # Error condition 2 raise DataMatchingError( "The feature table contains features that aren't present as " "tips in the tree. You can override this error by using the " "--p-filter-missing-features flag." ) # Match table (post-feature-filtering, if done) and sample metadata. table_samples = set(ff_table.columns) sm_samples = set(sample_metadata.index) sm_and_table_samples = sm_samples & table_samples if len(sm_and_table_samples) == 0: # Error condition 3 raise DataMatchingError( "No samples in the feature table are present in the sample " "metadata." ) padded_metadata = sample_metadata.copy() if len(sm_and_table_samples) < len(ff_table.columns): if ignore_missing_samples: # Works similarly to how Emperor does this: see # https://github.com/biocore/emperor/blob/659b62a9f02a6423b6258c814d0e83dbfd05220e/emperor/core.py#L350 samples_without_metadata = table_samples - sm_samples padded_metadata = pd.DataFrame( index=samples_without_metadata, columns=sample_metadata.columns, dtype=str ) padded_metadata.fillna("This sample has no metadata", inplace=True) sample_metadata = pd.concat([sample_metadata, padded_metadata]) # Report to user about samples we needed to "pad." warnings.warn( ( "{} sample(s) in the table were not present in the " "sample metadata. These sample(s) have been assigned " "placeholder metadata." ).format( len(samples_without_metadata) ), DataMatchingWarning ) else: # Error condition 4 raise DataMatchingError( "The feature table contains samples that aren't present in " "the sample metadata. You can override this error by using " "the --p-ignore-missing-samples flag." ) # If we've made it this far, then there must be at least *one* sample # present in both the sample metadata and the table: and by this point the # metadata's samples should be a superset of the table's samples (since we # padded the metadata above if there were any samples that *weren't* in the # table). # # All that's left to do is to filter the sample metadata to just the # samples that are also present in the table. sf_sample_metadata = sample_metadata.loc[ff_table.columns] # If desired, we could report here to the user about any dropped samples # from the metadata by looking at the difference between # sample_metadata.shape[0] and sf_sample_metadata.shape[0]. However, the # presence of such "dropped samples" is a common occurrence in 16S studies, # so we currently don't do that for the sake of avoiding alarm fatigue. # If the feature metadata was passed, filter it so that it only contains # features present as tips / internal nodes in the tree tip_metadata = None int_metadata = None if feature_metadata is not None: # Split up taxonomy column, if present in the feature metadata ts_feature_metadata = taxonomy_utils.split_taxonomy(feature_metadata) fm_ids = ts_feature_metadata.index # Subset tip metadata fm_and_tip_features = fm_ids.intersection(tip_names) tip_metadata = ts_feature_metadata.loc[fm_and_tip_features] # Subset internal node metadata internal_node_names = set(bp_tree.bp_tree_non_tips()) fm_and_int_features = fm_ids.intersection(internal_node_names) int_metadata = ts_feature_metadata.loc[fm_and_int_features] if len(tip_metadata.index) == 0 and len(int_metadata.index) == 0: # Error condition 5 raise DataMatchingError( "No features in the feature metadata are present in the tree, " "either as tips or as internal nodes." ) return ff_table, sf_sample_metadata, tip_metadata, int_metadata
92a97fc39c233a0969c24774d74fdd6b304f5442
3,652,784
def im_adjust(img, tol=1, bit=8): """ Adjust contrast of the image """ limit = np.percentile(img, [tol, 100 - tol]) im_adjusted = im_bit_convert(img, bit=bit, norm=True, limit=limit.tolist()) return im_adjusted
2bbccc08d4dd6aeed50c6fb505ff801e3201c73a
3,652,785
import math def FibanocciSphere(samples=1): """ Return a Fibanocci sphere with N number of points on the surface. This will act as the template for the nanoparticle core. Args: Placeholder Returns: Placeholder Raises: Placeholder """ points = [] phi = math.pi * (3. - math.sqrt(5.)) # golden angle in radians for i in range(samples): y = 1 - (i / float(samples - 1)) * 2 # y goes from 1 to -1 radius = math.sqrt(1 - y * y) # radius at y theta = phi * i # golden angle increment x = math.cos(theta) * radius z = math.sin(theta) * radius points.append((x, y, z)) return points
ea47b7c2eed34bd826ddff1619adac887439f5e0
3,652,786
import inspect def get_code(): """ returns the code for the activity_selection function """ return inspect.getsource(activity_selection)
3bae49b5feea34813c518a3ec3a62a4cde35445f
3,652,787
def calc_luminosity(flux, fluxerr, mu): """ Normalise flux light curves with distance modulus. Parameters ---------- flux : array List of floating point flux values. fluxerr : array List of floating point flux errors. mu : float Distance modulus from luminosity distance. Returns ------- fluxout : array Same shape as input flux. fluxerrout : array Same shape as input fluxerr. """ d = 10 ** (mu/5 + 1) dsquared = d**2 norm = 1e18 fluxout = flux * (4 * np.pi * dsquared/norm) fluxerrout = fluxerr * (4 * np.pi * dsquared/norm) return fluxout, fluxerrout
8cfebee024ae73355daf64b96260d45e57115c8f
3,652,788
from typing import Optional import os def download_file(url: str, destination: str, timeout: Optional[int] = None, silent: Optional[bool] = False) -> str: """ Downloads file by given URL to destination dir. """ file_name = get_file_name_from_url(url) file_path = join(destination, file_name) parsed_url: ParseResult = urlparse(url) with urlopen(url, timeout=timeout) as resp: code: int = resp.getcode() if parsed_url.scheme != 'file' and code != 200: raise IOError(f'Bad HTTP response code: {code}') total = int(resp.getheader('Content-Length')) if parsed_url.scheme != 'file' \ else os.path.getsize(parsed_url.path) if not isfile(file_path) or getsize(file_path) != total: if not silent: echo(f'Downloading {file_name}') with open(file_path, 'wb') as file, \ progressbar(length=total, width=PROGRESS_BAR_WIDTH, bar_template=PROGRESS_BAR_TEMPLATE) as progress_bar: while True: chunk = resp.read(CHUNK_SIZE) if not chunk: break file.write(chunk) if not silent: progress_bar.update(len(chunk)) return file_path
c49e8974b01c101cf0d0a0defe572ca8f65b780a
3,652,789
def inference(images): """Build the CIFAR-10 model. Args: images: Images returned from distorted_inputs() or inputs(). Returns: Logits. """ ### # We instantiate all variables using tf.get_variable() instead of # tf.Variable() in order to share variables across multiple GPU training runs. # If we only ran this model on a single GPU, we could simplify this function # by replacing all instances of tf.get_variable() with tf.Variable(). # # conv1 #xavier = tf.contrib.layers.xavier_initializer_conv2d() with tf.variable_scope('conv1') as scope: kernel1 = _variable_with_weight_decay('weights', shape=[3, 3, 3, 128], stddev=5e-2, wd=None) conv = tf.nn.conv2d(images, kernel1, [1, 2, 2, 1], padding='SAME') #conv = tf.nn.dropout(conv, 0.9) biases1 = cifar10._variable_on_cpu('biases', [128], tf.constant_initializer(0.0)) pre_activation = tf.nn.bias_add(conv, biases1) conv1 = tf.nn.relu(pre_activation, name = scope.name) cifar10._activation_summary(conv1) norm1 = tf.contrib.layers.batch_norm(conv1, scale=True, is_training=True, updates_collections=None) # conv2 with tf.variable_scope('conv2') as scope: kernel2 = _variable_with_weight_decay('weights', shape=[5, 5, 128, 128], stddev=5e-2, wd=None) conv = tf.nn.conv2d(norm1, kernel2, [1, 1, 1, 1], padding='SAME') biases2 = cifar10._variable_on_cpu('biases', [128], tf.constant_initializer(0.1)) pre_activation = tf.nn.bias_add(conv, biases2) conv2 = tf.nn.relu(pre_activation, name = scope.name) #conv2 = tf.nn.dropout(conv2, 0.9) cifar10._activation_summary(conv2) # concat conv2 with norm1 to increase the number of features, this step does not affect the Differential_Privacy preserving guarantee current = tf.concat((conv2, norm1), axis=3) # norm2 norm2 = tf.contrib.layers.batch_norm(current, scale=True, is_training=True, updates_collections=None) # conv3 with tf.variable_scope('conv3') as scope: kernel3 = _variable_with_weight_decay('weights', shape=[5, 5, 256, 256], stddev=5e-2, wd=None) conv = tf.nn.conv2d(norm2, kernel3, [1, 1, 1, 1], padding='SAME') biases3 = cifar10._variable_on_cpu('biases', [256], tf.constant_initializer(0.1)) pre_activation = tf.nn.bias_add(conv, biases3) conv3 = tf.nn.relu(pre_activation, name = scope.name) #conv3 = tf.nn.dropout(conv3, 0.9) cifar10._activation_summary(conv3) # norm3 norm3 = tf.contrib.layers.batch_norm(conv3, scale=True, is_training=True, updates_collections=None) #pool3, row_pooling_sequence, col_pooling_sequence = tf.nn.fractional_max_pool(norm3, pooling_ratio=[1.0, 2.0, 2.0, 1.0]) pool3 = avg_pool(norm3, 2) # local4 with tf.variable_scope('local4') as scope: weights1 = cifar10._variable_with_weight_decay('weights', shape=[5 * 5 * 256, hk], stddev=0.04, wd=None) biases4 = cifar10._variable_on_cpu('biases', [hk], tf.constant_initializer(0.1)) h_pool2_flat = tf.reshape(pool3, [-1, 5*5*256]); z2 = tf.add(tf.matmul(h_pool2_flat, weights1), biases4, name=scope.name) #Applying normalization for the flat connected layer h_fc1# batch_mean2, batch_var2 = tf.nn.moments(z2,[0]) scale2 = tf.Variable(tf.ones([hk])) beta2 = tf.Variable(tf.zeros([hk])) BN_norm = tf.nn.batch_normalization(z2,batch_mean2,batch_var2,beta2,scale2,1e-3) ### local4 = max_out(BN_norm, hk) cifar10._activation_summary(local4) """print(images.get_shape()); print(norm1.get_shape()); print(norm2.get_shape()); print(pool3.get_shape()); print(local4.get_shape());""" # linear layer(WX + b), # We don't apply softmax here because # tf.nn.sparse_softmax_cross_entropy_with_logits accepts the unscaled logits # and performs the softmax internally for efficiency. weights2 = cifar10._variable_with_weight_decay('weights', [hk, 10], stddev=1/(hk*1.0), wd=0.0) biases5 = cifar10._variable_on_cpu('biases', [10], tf.constant_initializer(0.0)) softmax_linear = tf.add(tf.matmul(local4, weights2), biases5, name=scope.name) cifar10._activation_summary(softmax_linear) return softmax_linear
224c6792b4f2b066d8627d222e6f89b469921de3
3,652,790
def cluster_molecules(mols, cutoff=0.6): """ Cluster molecules by fingerprint distance using the Butina algorithm. Parameters ---------- mols : list of rdkit.Chem.rdchem.Mol List of molecules. cutoff : float Distance cutoff Butina clustering. Returns ------- pandas.DataFrame Table with cluster ID - molecule ID pairs. """ # Generate fingerprints fingerprints = _generate_fingerprints(mols) # Calculate Tanimoto distance matrix distance_matrix = _get_tanimoto_distance_matrix(fingerprints) # Now cluster the data with the implemented Butina algorithm clusters = Butina.ClusterData(distance_matrix, len(fingerprints), cutoff, isDistData=True) # Sort clusters by size clusters = sorted(clusters, key=len, reverse=True) # Get cluster ID - molecule ID pairs clustered_molecules = [] for cluster_id, molecule_ids in enumerate(clusters, start=1): for cluster_member_id, molecule_id in enumerate(molecule_ids, start=1): clustered_molecules.append([cluster_id, cluster_member_id, molecule_id]) clustered_molecules = pd.DataFrame( clustered_molecules, columns=["cluster_id", "cluster_member_id", "molecule_id"] ) # Print details on clustering print("Number of molecules:", len(fingerprints)) print("Threshold: ", cutoff) print("Number of clusters: ", len(clusters)) print( "# Clusters with only 1 molecule: ", len([cluster for cluster in clusters if len(cluster) == 1]), ) print( "# Clusters with more than 5 molecules: ", len([cluster for cluster in clusters if len(cluster) > 5]), ) print( "# Clusters with more than 25 molecules: ", len([cluster for cluster in clusters if len(cluster) > 25]), ) print( "# Clusters with more than 100 molecules: ", len([cluster for cluster in clusters if len(cluster) > 100]), ) return clustered_molecules
ba98342d10512b4ee08e756644a26bc8585f5abc
3,652,791
import timeit def exec_benchmarks_empty_inspection(code_to_benchmark, repeats): """ Benchmark some code without mlinspect and with mlinspect with varying numbers of inspections """ benchmark_results = { "no mlinspect": timeit.repeat(stmt=code_to_benchmark.benchmark_exec, setup=code_to_benchmark.benchmark_setup, repeat=repeats, number=1), "no inspection": benchmark_code_str_with_inspections(code_to_benchmark.benchmark_exec_func_str, code_to_benchmark.benchmark_setup_func_str, "[]", repeats), "one inspection": benchmark_code_str_with_inspections(code_to_benchmark.benchmark_exec_func_str, code_to_benchmark.benchmark_setup_func_str, "[EmptyInspection(0)]", repeats), "two inspections": benchmark_code_str_with_inspections(code_to_benchmark.benchmark_exec_func_str, code_to_benchmark.benchmark_setup_func_str, "[EmptyInspection(0), EmptyInspection(1)]", repeats), "three inspections": benchmark_code_str_with_inspections(code_to_benchmark.benchmark_exec_func_str, code_to_benchmark.benchmark_setup_func_str, "[EmptyInspection(0), " + "EmptyInspection(1), EmptyInspection(2)]", repeats)} return benchmark_results
c4038b98968c9c44b5cbd0bfc9e92654dae8aca2
3,652,792
def detect_version(): """ Try to detect the main package/module version by looking at: module.__version__ otherwise, return 'dev' """ try: m = __import__(package_name, fromlist=['__version__']) return getattr(m, '__version__', 'dev') except ImportError: pass return 'dev'
c9cb3a30d84c7e9118df46dcc73ce37278788db5
3,652,793
def model(p, x): """ Evaluate the model given an X array """ return p[0] + p[1]*x + p[2]*x**2. + p[3]*x**3.
fe923f6f6aea907d3dc07756813ed848fbcc2ac6
3,652,794
def normalize(x:"tensor|np.ndarray") -> "tensor|np.ndarray": """Min-max normalization (0-1): :param x:"tensor|np.ndarray": :returns: Union[Tensor,np.ndarray] - Return same type as input but scaled between 0 - 1 """ return (x - x.min())/(x.max()-x.min())
6230077008c084bdcbebfc32d25251564c4266f0
3,652,795
import warnings import Bio def apply_on_multi_fasta(file, function, *args): """Apply a function on each sequence in a multiple FASTA file (DEPRECATED). file - filename of a FASTA format file function - the function you wish to invoke on each record *args - any extra arguments you want passed to the function This function will iterate over each record in a FASTA file as SeqRecord objects, calling your function with the record (and supplied args) as arguments. This function returns a list. For those records where your function returns a value, this is taken as a sequence and used to construct a FASTA format string. If your function never has a return value, this means apply_on_multi_fasta will return an empty list. """ warnings.warn("apply_on_multi_fasta is deprecated", Bio.BiopythonDeprecationWarning) try: f = globals()[function] except: raise NotImplementedError("%s not implemented" % function) handle = open(file, 'r') records = SeqIO.parse(handle, "fasta") results = [] for record in records: arguments = [record.sequence] for arg in args: arguments.append(arg) result = f(*arguments) if result: results.append('>%s\n%s' % (record.name, result)) handle.close() return results
e204322e512a0f1eb875d7a6434ab6e3356cff10
3,652,796
def resize_bbox(box, image_size, resize_size): """ Args: box: iterable (ints) of length 4 (x0, y0, x1, y1) image_size: iterable (ints) of length 2 (width, height) resize_size: iterable (ints) of length 2 (width, height) Returns: new_box: iterable (ints) of length 4 (x0, y0, x1, y1) """ check_box_convention(np.array(box), 'x0y0x1y1') box_x0, box_y0, box_x1, box_y1 = map(float, box) image_w, image_h = map(float, image_size) new_image_w, new_image_h = map(float, resize_size) newbox_x0 = box_x0 * new_image_w / image_w newbox_y0 = box_y0 * new_image_h / image_h newbox_x1 = box_x1 * new_image_w / image_w newbox_y1 = box_y1 * new_image_h / image_h return int(newbox_x0), int(newbox_y0), int(newbox_x1), int(newbox_y1)
3b6a309e6ccf0e244bb5a51a922bcf96303116ea
3,652,797
import time def perf_counter_ms(): """Returns a millisecond performance counter""" return time.perf_counter() * 1_000
55f1bbbd8d58593d85f2c6bb4ca4f79ad22f233a
3,652,798
import struct def make_shutdown_packet( ): """Create a shutdown packet.""" packet = struct.pack( "<B", OP_SHUTDOWN ); return packet;
6d696d76c9aa783e477f65e5c89106b2fff6db6d
3,652,799