content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def create_tomography_circuits(circuit, qreg, creg, tomoset): """ Add tomography measurement circuits to a QuantumProgram. The quantum program must contain a circuit 'name', which is treated as a state preparation circuit for state tomography, or as teh circuit being measured for process tomography. This function then appends the circuit with a set of measurements specified by the input `tomography_set`, optionally it also prepends the circuit with state preparation circuits if they are specified in the `tomography_set`. For n-qubit tomography with a tomographically complete set of preparations and measurements this results in $4^n 3^n$ circuits being added to the quantum program. Args: circuit (QuantumCircuit): The circuit to be appended with tomography state preparation and/or measurements. qreg (QuantumRegister): the quantum register containing qubits to be measured. creg (ClassicalRegister): the classical register containing bits to store measurement outcomes. tomoset (tomography_set): the dict of tomography configurations. Returns: list: A list of quantum tomography circuits for the input circuit. Raises: QISKitError: if circuit is not a valid QuantumCircuit Example: For a tomography set specififying state tomography of qubit-0 prepared by a circuit 'circ' this would return: ``` ['circ_meas_X(0)', 'circ_meas_Y(0)', 'circ_meas_Z(0)'] ``` For process tomography of the same circuit with preparation in the SIC-POVM basis it would return: ``` [ 'circ_prep_S0(0)_meas_X(0)', 'circ_prep_S0(0)_meas_Y(0)', 'circ_prep_S0(0)_meas_Z(0)', 'circ_prep_S1(0)_meas_X(0)', 'circ_prep_S1(0)_meas_Y(0)', 'circ_prep_S1(0)_meas_Z(0)', 'circ_prep_S2(0)_meas_X(0)', 'circ_prep_S2(0)_meas_Y(0)', 'circ_prep_S2(0)_meas_Z(0)', 'circ_prep_S3(0)_meas_X(0)', 'circ_prep_S3(0)_meas_Y(0)', 'circ_prep_S3(0)_meas_Z(0)' ] ``` """ if not isinstance(circuit, QuantumCircuit): raise QISKitError('Input circuit must be a QuantumCircuit object') dics = tomoset['circuits'] labels = tomography_circuit_names(tomoset, circuit.name) tomography_circuits = [] for label, conf in zip(labels, dics): tmp = circuit # Add prep circuits if 'prep' in conf: prep = QuantumCircuit(qreg, creg, name='tmp_prep') for qubit, op in conf['prep'].items(): tomoset['prep_basis'].prep_gate(prep, qreg[qubit], op) prep.barrier(qreg[qubit]) tmp = prep + tmp # Add measurement circuits meas = QuantumCircuit(qreg, creg, name='tmp_meas') for qubit, op in conf['meas'].items(): meas.barrier(qreg[qubit]) tomoset['meas_basis'].meas_gate(meas, qreg[qubit], op) meas.measure(qreg[qubit], creg[qubit]) tmp = tmp + meas # Add label to the circuit tmp.name = label tomography_circuits.append(tmp) logger.info('>> created tomography circuits for "%s"', circuit.name) return tomography_circuits
ab42a0b57ccd94f6ffbb64425473c3a90dd10888
3,653,100
def filter_background(bbox, bg_data): """ Takes bounding box and background geojson file assumed to be the US states, and outputs a geojson-like dictionary containing only those features with at least one point within the bounding box, or any state that completely contains the bounding box. This tests if a feature contains the bounding box by drawing the box that contains the feature and checking if that box also contains the bounding box. Because features are odd shapes, this may find that more than one feature completely contains the bounding box. E.g., if you draw a box around Maryland it will also contain a chunk of West Virginia. To deal with this, we are allowed to find that multiple states contain the bounding box. :param bbox: The coordinates of the bounding box as [lon, lat, lon, lat] :param bg_data: a geojson-like dict describing the background :return: the features from bg_filename whose borders intersect bbox OR the feature which completely contains bbox """ box_lon = [bbox[0], bbox[2]] box_lat = [bbox[1], bbox[3]] features = bg_data['features'] in_box = [] for f in features: starting_len = len(in_box) # Define points for bounding box around the feature. feature_max_lat = -90 feature_max_lon = -180 feature_min_lat = 90 feature_min_lon = 180 coordinates = f['geometry']['coordinates'] for group in coordinates: if len(in_box) > starting_len: # This feature has already been added break # actual points for MultiPolygons are nested one layer deeper than those for polygons if f['geometry']['type'] == 'MultiPolygon': geom = group[0] else: geom = group for lon, lat in geom: # check if any point along the state's borders falls within the bounding box. if min(box_lon) <= lon <= max(box_lon) and min(box_lat) <= lat <= max(box_lat): in_box.append(f) break # If any point of a feature falls within the bounding box, then the feature cannot contain the box, # so this only needs to be run if the above if statement is not executed feature_min_lon = min(feature_min_lon, lon) feature_min_lat = min(feature_min_lat, lat) feature_max_lon = max(feature_max_lon, lon) feature_max_lat = max(feature_max_lat, lat) # If the box containing a feature also contains the bounding box, keep this feature # Allow adding more than one because otherwise MD contains boxes in WV, and CA would contain most of NV. if feature_min_lat < min(box_lat) and feature_max_lat > max(box_lat) and \ feature_min_lon < min(box_lon) and feature_max_lon > max(box_lon): in_box.append(f) keepers = { 'type': 'FeatureCollection', 'features': in_box } return keepers
f06fe5efe1e3920d8b1092601a121e313da4eec4
3,653,101
def rename_columns(table, mapper): """ Renames the table headings to conform with the ketos naming convention. Args: table: pandas DataFrame Annotation table. mapper: dict Dictionary mapping the headings of the input table to the standard ketos headings. Returns: : pandas DataFrame Table with new headings """ return table.rename(columns=mapper)
c9c9228f4f477b8d5ade234964c2540fd20ddd09
3,653,102
def get_round(year, match): """Get event number by year and (partial) event name A fuzzy match is performed to find the most likely event for the provided name. Args: year (int): Year of the event match (string): Name of the race or gp (e.g. 'Bahrain') Returns: The round number. (2019, 'Bahrain') -> 2 """ def build_string(d): r = len('https://en.wikipedia.org/wiki/') # TODO what the hell is this c, l = d['Circuit'], d['Circuit']['Location'] # noqa: E741 (for now...) return (f"{d['url'][r:]} {d['raceName']} {c['circuitId']} " + f"{c['url'][r:]} {c['circuitName']} {l['locality']} " + f"{l['country']}") races = ergast.fetch_season(year) to_match = [build_string(block) for block in races] ratios = np.array([fuzz.partial_ratio(match, ref) for ref in to_match]) return int(races[np.argmax(ratios)]['round'])
e5f4d724eb2d453251c107287450b1f0166152dc
3,653,103
from typing import Union import json def parse_tuple(s: Union[str, tuple]) -> tuple: """Helper for load_detections_csv, to parse string column into column of Tuples.""" if isinstance(s, str): result = s.replace("(", "[").replace(")", "]") result = result.replace("'", '"').strip() result = result.replace(",]", "]") if result: # print(result) return tuple(sorted((json.loads(result)))) else: return tuple() else: return s
ad568bfc8ccdf8440378e852daccaf2f24a7e2d0
3,653,104
import re def clean(tweet): """ clean tweet text by removing links, special characters using simple regex statements Parameters ---------- tweet : String Single Twitter message Returns ------- tokenized_tweet : List List of cleaned tokens derived from the input Twitter message """ # convert to lower tweet = tweet.lower() # get the stop-words available from the nltk.corpus lib # as the corpus would haver also delete a lot of negations from the tweets # it is considered to use just a subset stop_words = ['i', 'me', 'my', 'myself', 'we', 'our', 'ours', 'ourselves', 'you', "you're", "you've", "you'll", "you'd", 'your', 'yours', 'yourself', 'yourselves', 'he', 'him', 'his', 'himself', 'she', "she's", 'her', 'hers', 'herself', 'it', "it's", 'its', 'itself', 'they', 'them', 'their', 'theirs', 'themselves', 'what', 'which', 'who', 'whom', 'this', 'that', "that'll", 'these', 'those', 'am', 'is', 'are', 'was', 'were', 'be', 'been', 'being', 'have', 'has', 'had', 'having', 'do', 'does', 'did', 'doing', 'a', 'an', 'the', 'and', 'if', 'or', 'because', 'as', 'until', 'while', 'of', 'at', 'by', 'for', 'with', 'about', 'against', 'between', 'into', 'through', 'during', 'before', 'after', 'above', 'below', 'to', 'from', 'up', 'down', 'in', 'out', 'on', 'off', 'over', 'under', 'again', 'further', 'then', 'once', 'here', 'there', 'when', 'where', 'why', 'how', 'all', 'any', 'both', 'each', 'few', 'more', 'most', 'other', 'some', 'such', 'only', 'own', 'same', 'so', 'than', 'too', 'very', 's', 't', 'will', 'just', 'should', "should've", 'now', 'd', 'll', 'm', 'o', 're', 've', 'y', 'ain', 'ma', '.', ',', ';', '!', '?', '@...', '@', '@…'] # convert to string again as re expects a string-like object (and not a list) # remove all the stopwords as well as the numbers and words shorter than # two letters also check the spelling tmp = "" tmp_c = [tmp + item.replace(",","").replace(";","").replace("?","").replace("!","").replace("#","") for item in tweet.split() if item not in stop_words and not item.isdigit()] tmp_c = " ".join(item for item in tmp_c) # remove other special characters including @, URLs, Usernames and other # special characters return ' '.join(re.sub("(@[A-Za-z0-9]+)| M^|(\w+:\/\/\S+)", " ", tmp_c).split())
fbfacb49f88638610fb071cb6b14d02dadf665e1
3,653,105
def predict(x, u): """ :param x: Particle state (x,y,theta) [size 3 array] :param u: Robot inputs (u1,u2) [size 2 array] :return: Particle's updated state sampled from the motion model """ x = x + motionModel(x, u) + np.random.multivariate_normal(np.zeros(3), Q) return x
7fe3e9fa42e1e74ac448a0139ca6dae8ff5388ad
3,653,106
def plot_multiple(datasets, method='scatter', pen=True, labels=None, **kwargs): """ Plot a series of 1D datasets as a scatter plot with optional lines between markers. Parameters ---------- datasets : a list of ndatasets method : str among [scatter, pen] pen : bool, optional, default: True if method is scatter, this flag tells to draw also the lines between the marks. labels : a list of str, optional labels used for the legend. **kwargs : other parameters that will be passed to the plot1D function """ if not is_sequence(datasets): # we need a sequence. Else it is a single plot. return datasets.plot(**kwargs) if not is_sequence(labels) or len(labels) != len(datasets): # we need a sequence of labels of same lentgh as datasets raise ValueError('the list of labels must be of same length ' 'as the datasets list') for dataset in datasets: if dataset._squeeze_ndim > 1: raise NotImplementedError('plot multiple is designed to work on ' '1D dataset only. you may achieved ' 'several plots with ' 'the `clear=False` parameter as a work ' 'around ' 'solution') # do not save during this plots, nor apply any commands # we will make this when all plots will be done output = kwargs.get('output', None) kwargs['output'] = None commands = kwargs.get('commands', []) kwargs['commands'] = [] clear = kwargs.pop('clear', True) legend = kwargs.pop('legend', None) # remove 'legend' from kwargs before calling plot # else it will generate a conflict for s in datasets: # , colors, markers): ax = s.plot(method=method, pen=pen, marker='AUTO', color='AUTO', ls='AUTO', clear=clear, **kwargs) clear = False # clear=False is necessary for the next plot to say # that we will plot on the same figure # scale all plots if legend is not None: _ = ax.legend(ax.lines, labels, shadow=True, loc=legend, frameon=True, facecolor='lightyellow') # now we can output the final figure kw = {'output': output, 'commands': commands} datasets[0]._plot_resume(datasets[-1], **kw) return ax
85b41b719cb8d33884dd7364b3e0937100167c6a
3,653,107
def _scale_enum(anchor, scales): """ 列举关于一个anchor的三种尺度 128*128,256*256,512*512 Enumerate a set of anchors for each scale wrt an anchor. """ w, h, x_ctr, y_ctr = _whctrs(anchor) #返回宽高和中心坐标,w:16,h:16,x_ctr:7.5,y_ctr:7.5 ws = w * scales #[128 256 512] hs = h * scales #[128 256 512] anchors = _mkanchors(ws, hs, x_ctr, y_ctr) #[[-56 -56 71 71] [-120 -120 135 135] [-248 -248 263 263]] return anchors
b0b8e9418b935daf2961fbd690a4ccf2b6bd6d7b
3,653,108
import codecs def metamodel_from_file(file_name, **kwargs): """ Creates new metamodel from the given file. Args: file_name(str): The name of the file with textX language description. other params: See metamodel_from_str. """ with codecs.open(file_name, 'r', 'utf-8') as f: lang_desc = f.read() metamodel = metamodel_from_str(lang_desc=lang_desc, file_name=file_name, **kwargs) return metamodel
526a1876ed11aff2341133d061573ae9f3bfb1fe
3,653,109
import sirepo.template import copy def _python(data): """Generate python in current directory Args: data (dict): simulation Returns: py.path.Local: file to append """ template = sirepo.template.import_module(data) res = pkio.py_path('run.py') res.write(template.python_source_for_model(copy.deepcopy(data), None)) return res
df0d2eae8155f1093dde02db73fd5185983d6847
3,653,110
def load_hosts_conf(path='/etc/hosts'): """parse hosts file""" hosts = {} try: with open(path, 'r') as f: for line in f.readlines(): parts = line.strip().split() if len(parts) < 2: continue addr = ip_address(parts[0]) if addr: for hostname in parts[1:]: if hostname: hosts[hostname] = addr except IOError as e: hosts['localhost'] = '127.0.0.1' return hosts
c6e2d1f34f5aa140a3bccfbd4d9791641cc75fff
3,653,111
import os def get_first_env(*args): """ Return the first env var encountered from list PLEASE NOTE: Always prefer using get_env, this helper is for app transitioning to a new config structure. Example: get_first_env('DB_NAME', 'DATABASE_NAME') """ for name in args: if name in os.environ: return os.environ[name] error_msg = "Missing any of these env vars {}".format(args) raise ImproperlyConfigured(error_msg)
70438ee5b991e2f6c90905e89fb16fb0fd6f5de2
3,653,112
import pandas def pick(df, isnotnull=None, **kwargs): """Function to pick row indices from DataFrame. Copied from kkpandas This method provides a nicer interface to choose rows from a DataFrame that satisfy specified constraints on the columns. isnotnull : column name, or list of column names, that should not be null. See pandas.isnull for a defintion of null All additional kwargs are interpreted as {column_name: acceptable_values}. For each column_name, acceptable_values in kwargs.items(): The returned indices into column_name must contain one of the items in acceptable_values. If acceptable_values is None, then that test is skipped. Note that this means there is currently no way to select rows that ARE none in some column. If acceptable_values is a single string or value (instead of a list), then the returned rows must contain that single string or value. TODO: add flags for string behavior, AND/OR behavior, error if item not found, return unique, .... """ msk = np.ones(len(df), dtype=np.bool) for key, val in list(kwargs.items()): if val is None: continue elif is_nonstring_iter(val): msk &= df[key].isin(val) else: msk &= (df[key] == val) if isnotnull is not None: # Edge case if not is_nonstring_iter(isnotnull): isnotnull = [isnotnull] # Filter by not null for key in isnotnull: msk &= -pandas.isnull(df[key]) return df.index[msk]
e8cdf1fb88ef92748c73095c62ca80c29bd40fec
3,653,113
import random def _waveform_distortion(waveform, distortion_methods_conf): """ Apply distortion on waveform This distortion will not change the length of the waveform. Args: waveform: numpy float tensor, (length,) distortion_methods_conf: a list of config for ditortion method. a method will be randomly selected by 'method_rate' and apply on the waveform. Returns: distorted waveform. """ r = random.uniform(0, 1) acc = 0.0 for distortion_method in distortion_methods_conf: method_rate = distortion_method['method_rate'] acc += method_rate if r < acc: distortion_type = distortion_method['name'] distortion_conf = distortion_method['params'] point_rate = distortion_method['point_rate'] return distort_wav_conf(waveform, distortion_type, distortion_conf , point_rate) return waveform
cca32854f3d72f381d40a5ca8802c29996413149
3,653,114
def _pad_returns(returns): """ Pads a returns Series or DataFrame with business days, in case the existing Date index is sparse (as with PNL csvs). Sparse indexes if not padded will affect the Sharpe ratio because the 0 return days will not be included in the mean and std. """ bdays = pd.date_range(start=returns.index.min(), end=returns.index.max(),freq="B") idx = returns.index.union(bdays) return returns.reindex(index=idx).fillna(0)
fde27dd928d3f0510f98fa4eba8f89f7d6b81922
3,653,115
def add_header(r): """ Add headers to both force latest IE rendering engine or Chrome Frame, and also to cache the rendered page for 10 minutes. """ r.headers["Cache-Control"] = "no-cache, no-store, must-revalidate" r.headers["Pragma"] = "no-cache" r.headers["Expires"] = "0" r.headers['Cache-Control'] = 'public, max-age=0' #if r.headers["Content-Type"] !="application/json" and r.status_code!=304: # print(str(r.status_code)+" -",end="") return r
3a758340d1c13cc29f0013f3d2fec77c47099c02
3,653,116
def pair_sorter(aln): """Get the alignment name and attributes for sorting.""" return ( aln.name, not aln.first_in_pair, aln.unmapped, aln.supplementary_alignment, aln.secondary_alignment)
217eac7c89a12f68f4c9fe324c4feb6c2a955d58
3,653,117
import requests import yaml import json def _read_input_from(input_from): """ Reads the labels from the input from. """ inputs = [] for input_from_line in input_from.splitlines(): # Skip if line is empty. if input_from_line.strip() == '': continue # Load file content print(f"::debug::Loading labels from '{input_from_line}'.") input_from_content = None if input_from_line.startswith('http://') or input_from_line.startswith('https://'): requests_url_response = requests.get(input_from) if requests_url_response.ok: input_from_content = requests_url_response.text else: raise Exception(f'Unable to read file from {input_from}: {requests_url_response.reason}') else: with open(input_from_line, 'r') as input_from_file: input_from_content = input_from_file.read() if input_from_line.endswith('.yaml') or input_from_line.endswith('.yml'): inputs.extend(yaml.load(input_from_content, Loader=yaml.FullLoader)) if input_from_line.endswith('.json'): inputs.extend(json.loads(input_from_content)) return inputs
2477771fecf99e1f6ef59a0ebeceb3a650b9f414
3,653,118
def project_to2d( pts: np.ndarray, K: np.ndarray, R: np.ndarray, t: np.ndarray ) -> np.ndarray: """Project 3d points to 2d. Projects a set of 3-D points, pts, into 2-D using the camera intrinsic matrix (K), and the extrinsic rotation matric (R), and extrinsic translation vector (t). Note that this uses the matlab convention, such that M = [R;t] * K, and pts2d = pts3d * M """ M = np.concatenate((R, t), axis=0) @ K projPts = np.concatenate((pts, np.ones((pts.shape[0], 1))), axis=1) @ M projPts[:, :2] = projPts[:, :2] / projPts[:, 2:] return projPts
5f9bc03ae0086649746651da4e5e8e1d870db6bd
3,653,119
import copy def uncontract_general(basis, use_copy=True): """ Removes the general contractions from a basis set The input basis set is not modified. The returned basis may have functions with coefficients of zero and may have duplicate shells. If use_copy is True, the input basis set is not modified. """ if use_copy: basis = copy.deepcopy(basis) for k, el in basis['elements'].items(): if not 'electron_shells' in el: continue newshells = [] for sh in el['electron_shells']: # See if we actually have to uncontract # Also, don't uncontract sp, spd,.... orbitals # (leave that to uncontract_spdf) if len(sh['coefficients']) == 1 or len(sh['angular_momentum']) > 1: newshells.append(sh) else: if len(sh['angular_momentum']) == 1: for c in sh['coefficients']: # copy, them replace 'coefficients' newsh = sh.copy() newsh['coefficients'] = [c] newshells.append(newsh) el['electron_shells'] = newshells # If use_basis is True, we already made our deep copy return prune_basis(basis, False)
de6638ae34b4d6f0b3a467048683ac363f71f9c1
3,653,120
def read_sd15ch1_images(root_dir, image_relative_path_seq, resize=None, color=False): """ WARNING ------- - All images must have the same shape (this is the case for the frames, and all models but the ones of the "01-original" category). - Loading many images at one can quickly fill up your RAM. Returns ------- - np.array((number_of_images, images_height, images_width)) if `color` is `False` - np.array((number_of_images, images_height, images_width, image_channels)) otherwise. """ # Read first image, if any, to get image shape # Note: all images must have the same shape if len(image_relative_path_seq) == 0: return np.array([]) # We have a least 1 element img0 = read_sd15ch1_image(root_dir, image_relative_path_seq[0], resize, color) # allocate some contiguous memory to host the decoded images dim_axis0 = (len(image_relative_path_seq), ) # make it a tuple dim_axis_others = img0.shape imgs_shape = dim_axis0 + dim_axis_others __info("About to allocate %d bytes for an array of shape %s." % (np.prod(imgs_shape) * 4, imgs_shape)) imgs = np.zeros(imgs_shape, dtype=np.float32) # Handle first image imgs[0, ...] = img0 # Loop over other images for ii, rel_path in enumerate(image_relative_path_seq[1:], start=1): imgi = read_sd15ch1_image(root_dir, rel_path, resize, color) if imgi.shape != dim_axis_others: __err("All images must have the same shape. Inconsistent dataset. Aborting loading.", RuntimeError) imgs[ii, ...] = imgi return imgs
0d6efd2eac2762440ae532564e4f680a1f056d30
3,653,121
def is_private_bool(script_dict): """ Returns is_private boolean value from user dictionary object """ return script_dict['entry_data']['ProfilePage'][0]['graphql']['user']['is_private']
1e8b30a38dc527dc5e2ea73e75c253d8f1a59550
3,653,122
def manage_greylist(request): """ View for managing greylist. """ message = None if request.method == 'POST': form = GreylistForm(request.POST) if form.is_valid(): # Set details to empty string if blank new_greylisted_guest = form.save(commit=False) new_greylisted_guest.addedBy = request.user new_greylisted_guest.save() message = 'Successfully added entry to greylist' else: message = 'Error adding entry to greylist' else: form = GreylistForm() context = { 'greylist': [ ( greylisting, user_can_delete_greylisting(request.user, greylisting), ) for greylisting in GreylistedGuest.objects.all().order_by('name') ], 'message': message, 'form': form, } return render(request, 'parties/greylist/manage.html', context)
eafbbf10b6150189d25c7d863cb00f6565648925
3,653,123
def get_regions(): """Summary Returns: TYPE: Description """ client = boto3.client('ec2') region_response = client.describe_regions() regions = [region['RegionName'] for region in region_response['Regions']] return regions
700119f1c852ad9475823170388c062f62291637
3,653,124
def _is_ignored_read_event(request): """Return True if this read event was generated by an automated process, as indicated by the user configurable LOG_IGNORE* settings. See settings_site.py for description and rationale for the settings. """ if ( django.conf.settings.LOG_IGNORE_TRUSTED_SUBJECT and d1_gmn.app.auth.is_trusted_subject(request) ): return True if ( django.conf.settings.LOG_IGNORE_NODE_SUBJECT and d1_gmn.app.auth.is_client_side_cert_subject(request) ): return True if _has_regex_match( request.META["REMOTE_ADDR"], django.conf.settings.LOG_IGNORE_IP_ADDRESS ): return True if _has_regex_match( request.META.get("HTTP_USER_AGENT", "<not provided>"), django.conf.settings.LOG_IGNORE_USER_AGENT, ): return True if _has_regex_match( request.primary_subject_str, django.conf.settings.LOG_IGNORE_SUBJECT ): return True return False
f6f7417fe923ef6bd56a6d649ef302ed811185e8
3,653,125
def aten_embedding(mapper, graph, node): """ 构造embedding的PaddleLayer。 TorchScript示例: %inputs_embeds.1 : Tensor = aten::embedding(%57, %input_ids.1, %45, %46, %46) 参数含义: %inputs_embeds.1 (Tensor): 输出,embedding后的结果。 %57 (Tensor): weights。 %input_ids.1 (Tensor): 需要进行embedding的特征层。 %45 (int): padding_idx。 %46 (bool): scale_grad_by_freq。 %46 (bool): sparse。 """ scope_name = mapper.normalize_scope_name(node) op_name = name_generator("embedding", mapper.nn_name2id) output_name = mapper._get_outputs_name(node)[0] layer_outputs = [op_name, output_name] layer_inputs = {} layer_attrs = {} inputs_name, inputs_node = mapper._get_inputs_name(node) # 获取当前节点输出的list current_outputs = [output_name] # 处理输入0,即%57 weights = mapper.pytorch_params[inputs_name[0]] mapper.paddle_params[op_name + ".weight"] = weights layer_attrs["num_embeddings"] = weights.shape[0] layer_attrs["embedding_dim"] = weights.shape[1] # 处理输入1,即%input_ids.1 mapper._check_input(graph, inputs_node[1], inputs_name[1], current_outputs, scope_name) layer_inputs["input"] = inputs_name[1] # 获取当前节点输入的list current_inputs = list(layer_inputs.values()) # 处理输入2,即%45 if mapper.attrs[inputs_name[2]] == -1: layer_attrs["padding_idx"] = None else: layer_attrs["padding_idx"] = mapper.attrs[inputs_name[2]] # 处理输入4,即%46 layer_attrs["sparse"] = mapper.attrs[inputs_name[4]] graph.add_layer( "paddle.nn.Embedding", inputs=layer_inputs, outputs=layer_outputs, scope_name=scope_name, **layer_attrs) return current_inputs, current_outputs
d174c7e551bb3db7e7dc5d9014de9edd48ee4032
3,653,126
import os def build_drivers(compilation_commands, linker_commands, kernel_src_dir, target_arch, clang_path, llvm_link_path, llvm_bit_code_out, is_clang_build): """ The main method that performs the building and linking of the driver files. :param compilation_commands: Parsed compilation commands from the json. :param linker_commands: Parsed linker commands from the json. :param kernel_src_dir: Path to the kernel source directory. :param target_arch: Number representing target architecture. :param clang_path: Path to clang. :param llvm_link_path: Path to llvm-link :param llvm_bit_code_out: Folder where all the linked bitcode files should be stored. :param is_clang_build: Flag to indicate that this is a clang build. :return: True """ output_llvm_sh_file = os.path.join(llvm_bit_code_out, 'llvm_build.sh') fp_out = open(output_llvm_sh_file, 'w') fp_out.write("#!/bin/bash\n") log_info("Writing all compilation commands to", output_llvm_sh_file) all_compilation_commands = [] obj_bc_map = {} for curr_compilation_command in compilation_commands: if is_clang_build: wd, obj_file, bc_file, build_str = _get_llvm_build_str_from_llvm(clang_path, curr_compilation_command.curr_args, kernel_src_dir, target_arch, curr_compilation_command.work_dir, curr_compilation_command.src_file, curr_compilation_command.output_file, llvm_bit_code_out) else: wd, obj_file, bc_file, build_str = _get_llvm_build_str(clang_path, curr_compilation_command.curr_args, kernel_src_dir, target_arch, curr_compilation_command.work_dir, curr_compilation_command.src_file, curr_compilation_command.output_file, llvm_bit_code_out) all_compilation_commands.append((wd, build_str)) obj_bc_map[obj_file] = bc_file fp_out.write("cd " + wd + ";" + build_str + "\n") fp_out.close() log_info("Got", len(all_compilation_commands), "compilation commands.") log_info("Running compilation commands in multiprocessing modea.") p = Pool(cpu_count()) return_vals = p.map(run_program_with_wd, all_compilation_commands) log_success("Finished running compilation commands.") output_llvm_sh_file = os.path.join(llvm_bit_code_out, 'llvm_link_cmds.sh') fp_out = open(output_llvm_sh_file, 'w') fp_out.write("#!/bin/bash\n") log_info("Writing all linker commands to", output_llvm_sh_file) all_linker_commands = [] recursive_linker_commands = [] for curr_linked_command in linker_commands: curr_ret_val = _get_llvm_link_str(llvm_link_path, kernel_src_dir, curr_linked_command.input_files, obj_bc_map, curr_linked_command.output_file, curr_linked_command.work_dir, llvm_bit_code_out) if curr_ret_val is not None: wd, obj_file, bc_file, build_str = curr_ret_val all_linker_commands.append((wd, build_str)) obj_bc_map[obj_file] = bc_file fp_out.write("cd " + wd + ";" + build_str + "\n") else: # these are recursive linker commands. recursive_linker_commands.append(curr_linked_command) log_info("Got", len(all_linker_commands), "regular linker commands.") log_info("Running linker commands in multiprocessing mode.") p = Pool(cpu_count()) return_vals = p.map(run_program_with_wd, all_linker_commands) log_success("Finished running linker commands.") if len(recursive_linker_commands) > 0: log_info("Got", len(recursive_linker_commands), " recursive linker commands.") _process_recursive_linker_commands(recursive_linker_commands, kernel_src_dir, llvm_link_path, llvm_bit_code_out, obj_bc_map, fp_out) fp_out.close() return True
ca6dcd258d118c8114204303e5993ee376780d70
3,653,127
def _validate_opts(opts): """ Check that all of the types of values passed into the config are of the right types """ def format_multi_opt(valid_type): try: num_types = len(valid_type) except TypeError: # Bare type name won't have a length, return the name of the type # passed. return valid_type.__name__ else: def get_types(types, type_tuple): for item in type_tuple: if isinstance(item, tuple): get_types(types, item) else: try: types.append(item.__name__) except AttributeError: log.warning( "Unable to interpret type %s while validating " "configuration", item, ) types = [] get_types(types, valid_type) ret = ", ".join(types[:-1]) ret += " or " + types[-1] return ret errors = [] err = ( "Config option '{0}' with value {1} has an invalid type of {2}, a " "{3} is required for this option" ) for key, val in opts.items(): if key in VALID_OPTS: if val is None: if VALID_OPTS[key] is None: continue else: try: if None in VALID_OPTS[key]: continue except TypeError: # VALID_OPTS[key] is not iterable and not None pass if isinstance(val, VALID_OPTS[key]): continue if hasattr(VALID_OPTS[key], "__call__"): try: VALID_OPTS[key](val) if isinstance(val, (list, dict)): # We'll only get here if VALID_OPTS[key] is str or # bool, and the passed value is a list/dict. Attempting # to run int() or float() on a list/dict will raise an # exception, but running str() or bool() on it will # pass despite not being the correct type. errors.append( err.format( key, val, type(val).__name__, VALID_OPTS[key].__name__ ) ) except (TypeError, ValueError): errors.append( err.format( key, val, type(val).__name__, VALID_OPTS[key].__name__ ) ) continue errors.append( err.format( key, val, type(val).__name__, format_multi_opt(VALID_OPTS[key]) ) ) # Convert list to comma-delimited string for 'return' config option if isinstance(opts.get("return"), list): opts["return"] = ",".join(opts["return"]) for error in errors: log.warning(error) if errors: return False return True
cafd1048a7496728715a192a4f70c7d50ade3622
3,653,128
async def from_string(input, output_path=None, options=None): """ Convert given string or strings to PDF document :param input: string with a desired text. Could be a raw text or a html file :param output_path: (optional) path to output PDF file. If not provided, PDF will be returned as string :param options: (optional) dict to configure pyppeteer page.pdf action Returns: output_path if provided else PDF Binary """ sources = Source(input, 'string') r = PDFMate(sources, options=options) return await r.to_pdf(output_path)
2b3b6d9523d516fd3d258a3f722655720f49d91b
3,653,129
def parse_tuple(tuple_string): """ strip any whitespace then outter characters. """ return tuple_string.strip().strip("\"[]")
d0052dce0582ca04d70455f1833d98545792c8ac
3,653,130
def create_size(): """Create a new size.""" in_out_schema = SizeSchema() try: new_size = in_out_schema.load(request.json) except ValidationError as err: abort(400, {'message': err.messages}) try: db.session.add(new_size) db.session.commit() except IntegrityError as err: db.session.rollback() log.exception(err) abort(400, {'message': 'Data integrity violated.'}) return in_out_schema.jsonify(new_size)
f85b339c5ec5c38b8778de25456caa6fb0680d76
3,653,131
import click from typing import Optional def inject_snakefmt_config( ctx: click.Context, param: click.Parameter, config_file: Optional[str] = None ) -> Optional[str]: """ If no config file argument provided, parses "pyproject.toml" if one exists. Injects any parsed configuration into the relevant parameters to the click `ctx`. """ if config_file is None: config_file = find_pyproject_toml(ctx.params.get("src", ())) config = read_snakefmt_config(config_file) if ctx.default_map is None: ctx.default_map = {} ctx.default_map.update(config) # type: ignore # bad types in .pyi return config_file
4d1fc2996db4c63070f67ef6b19387b2b30ac5cd
3,653,132
def sort_by_ctime(paths): """Sorts list of file paths by ctime in ascending order. Arg: paths: iterable of filepaths. Returns: list: filepaths sorted by ctime or empty list if ctime is unavailable. """ ctimes = list(map(safe_ctime, paths)) if not all(ctimes) or len(set(ctimes)) <= 1: return [] else: return sorted(paths, key=lambda fp: safe_ctime(fp))
551b7bc1d2cdc416588cbd783c9b1ac3e5914077
3,653,133
def get_ospf_metric(device, destination_address): """Get OSPF metric Args: device (obj): Device object destination_address (str): Destination address """ out = device.parse('show route') # Example dictionary # "route-table": [ # { # "active-route-count": "0", # "destination-count": "0", # "hidden-route-count": "0", # "holddown-route-count": "0", # "rt": [ # { # "metric": "101", # } # }, rt_list = Dq(out).get_values('rt') for rt_dict in rt_list: rt_destination_ = Dq(rt_dict).get_values("rt-destination", 0) if not isinstance(rt_destination_, list): if rt_destination_.startswith(str(destination_address)): metric_ = Dq(rt_dict).get_values('metric', 0) if not metric_: continue return metric_ return None
f5cd44794389a28db647e815baac4e954d59757b
3,653,134
def get_episode_url(): """エピソードの配信URLを追加 Returns: [type]: [description] """ # フォームの値を取得 episode_num = "#"+request.form['episode_num'][0] print(episode_num) # 配信先一覧を取得 podcasts = Podcast.query.all() broadcasts = Broadcast.query.all() # 配信先 url broadcast_urls = {} for br in broadcasts: broadcast_urls[br.broadcast_service] = br.broadcast_url # エピソードのurlを取得 episode_urls = get_episode_url_all(broadcast_urls, episode_num) return render_template( 'podcasts.html', podcasts=podcasts, broadcasts=broadcasts, episode_num=episode_num, episode_urls=episode_urls )
e27f0324fd8332aa0648d35630cbb88b2b36c721
3,653,135
def autofs(): """Fixture data from /proc/mounts.""" data = "flux-support -rw,tcp,hard,intr,noacl,nosuid,vers=3,retrans=5 flux-support.locker.arc-ts.umich.edu:/gpfs/locker0/ces/g/nfs/f/flux-support\numms-remills -rw,tcp,hard,intr,noacl,nosuid,vers=3,retrans=5 umms-remills.locker.arc-ts.umich.edu:/gpfs/locker0/ces/g/nfs/u/umms-remills" return data
ea53c34d863de69c15f1e1247b98599c5f365ab7
3,653,136
def flag_dims(flags): """Return flag names, dims, and initials for flags. Only flag value that correspond to searchable dimensions are returned. Scalars and non-function string values are not included in the result. """ dims = {} initials = {} for name, val in flags.items(): try: flag_dim, initial = _flag_dim(val, name) except ValueError: pass else: dims[name] = flag_dim initials[name] = initial names = sorted(dims) return (names, [dims[name] for name in names], [initials[name] for name in names])
4cafd991e21facacf36423028288e4c5bb10c8d9
3,653,137
import shutil import os def where(cmd, path=None): """ A function to wrap shutil.which for universal usage """ raw_result = shutil.which(cmd, os.X_OK, path) if raw_result: return os.path.abspath(raw_result) else: raise ValueError("Could not find '{}' in the path".format(cmd))
bbac46386ef955190898e52ee3efa57aac3fa264
3,653,138
def to_stack(df, col, by, transform=None, get_cats=False): """ Convert columns of a dataframe to a list of lists by 'by' Args: df: col: by: transform: Returns: """ g = df.groupby(by) transform = _notransform if transform is None else transform x_data = [] for gr in g.groups: x_data.append(transform(g.get_group(gr)[col].values)) cats = np.array([gg for gg in g.groups]) x_len = np.array([len(x) for x in x_data]) inds = x_len.argsort() # print(cats) # print(inds) if get_cats: return [x_data[i] for i in inds], cats[inds] return [x_data[i] for i in inds]
7bbf0ff609aaf2a6f5b49f80128ad06c04f93b5c
3,653,139
from typing import List def entries_repr(entries: List[Metadata]) -> str: """ Generates a nicely formatted string repr from a list of Dropbox metadata. :param entries: List of Dropbox metadata. :returns: String representation of the list. """ str_reps = [ f"<{e.__class__.__name__}(path_display={e.path_display})>" for e in entries ] return "[" + ",\n ".join(str_reps) + "]"
cc768a662ac6440ef7d5ca0eaddff5205a7c0a8c
3,653,140
def frequency_encode(dftrain, dftest, columnlist, output_type="include"): """ Frequency encode columns in columnlist. Parameters: dftrain: [DataFrame] train set dftest: [DataFrame] test set columnlist: [list] columns to encode. output_type: [str], default="include" will include the columns in the same dataframes. If "separate", returns separate dataframes. Returns: dftrain_freq: [DataFrame] train dftest_freq: [DataFrame] test Author: kmp """ if output_type is "include": for col in columnlist: col_freqs = dftrain.fillna({col:'NA'})[col].value_counts(normalize=True) dftrain[col+'_freq'] = dftrain.fillna({col:'NA'})[col].map(col_freqs) dftest[col+'_freq'] = dftest.fillna({col:'NA'})[col].map(col_freqs).fillna(0) dftrain_freq = dftrain dftest_freq = dftest else: dftrain_freq = pd.DataFrame(index=dftrain.index) dftest_freq = pd.DataFrame(index=dftest.index) for col in columnlist: col_freqs = dftrain.fillna({col:'NA'})[col].value_counts(normalize=True) dftrain_freq[col+'_freq'] = dftrain.fillna({col:'NA'})[col].map(col_freqs) dftest_freq[col+'_freq'] = dftest.fillna({col:'NA'})[col].map(col_freqs).fillna(0) return dftrain_freq, dftest_freq
3380853f0b5f88a6b2392a657424c4fc326876e2
3,653,141
def get_ranked_results(completed_rounds): """ For the rounds given in completed_rounds, calculate the total score for each team. Then all teams are sorted on total score and are given a ranking to allow for ex aequo scores. """ results = [] for team in QTeam.objects.all(): teamtotal = 0 for a in team.qanswer_set.all(): # Only add results for complete rounds if a.rnd in completed_rounds: teamtotal += a.score results.append((team.team_name, teamtotal)) # Sort the results sorted_results = sorted(results, reverse=True, key=lambda tup: tup[1]) rank, count, previous, ranking = 0, 0, None, [] for key, num in sorted_results: count += 1 if num != previous: rank += count previous = num count = 0 ranking.append((rank, key, num)) return ranking
cea2afa2bb8de1db82450f323274af94ad3b633f
3,653,142
def get_subgraphs(): """ Returns a list of lists. Each list is a subgraph (represented as a list of dictionaries). :return: A list of lists of dictionaries. """ subgraph_list = [c.get("color") for c in classes if c.get("color") is not None] subgraphs = [] # Add to subgraphs all the lists of actual subgraphs for c in subgraph_list: sub = [cl for cl in classes if cl.get("color") == c and cl] if sub not in subgraphs: subgraphs.append(sub) # Now add to subgraphs all the items (as lists) that don't belong to a subsystem for c in classes: if c.get("color") is None: sub = [c] subgraphs.append(sub) return subgraphs
5e9b766b2c7f58d71eac62d88be64096272d2511
3,653,143
def score(self, features): """ return score from ML models""" assert len(self._models) > 0, 'No valid prediction model' scores = list() for feature in features: # when feature list extraction fails if not feature: scores.append(-float('inf')) continue item = list() for ins in self._models: item.append(ins.inference(feature)) pred = [i for i in item if i] scores.append(float(sum(pred)/len(pred))) return scores
413eb4a0ecdcf0ac4b8f9cf9643b08a839c78b9a
3,653,144
def fromRGB(rgb): """Convert tuple or list to red, green and blue values that can be accessed as follows: a = fromRGB((255, 255, 255)) a["red"] a["green"] a["blue"] """ return {"red":rgb[0], "green":rgb[1], "blue":rgb[2]}
205a8f189d177e7af5cdc686e7c52fd2053a3c87
3,653,145
import math def computeTelescopeTransmission(pars, offAxis): """ Compute tel. transmission (0 < T < 1) for a given set of parameters as defined by the MC model and for a given off-axis angle. Parameters ---------- pars: list of float Parameters of the telescope transmission. Len(pars) should be 4. offAxis: float Off-axis angle in deg. Returns ------- float Telescope transmission. """ _degToRad = math.pi / 180.0 if pars[1] == 0: return pars[0] else: t = math.sin(offAxis * _degToRad) / (pars[3] * _degToRad) return pars[0] / (1.0 + pars[2] * t ** pars[4])
50b2e2908726b8a77bc83a2821cf760b7475300b
3,653,146
def mean_iou( results, gt_seg_maps, num_classes, ignore_index, nan_to_num=None, label_map=dict(), reduce_zero_label=False, ): """Calculate Mean Intersection and Union (mIoU) Args: results (list[ndarray]): List of prediction segmentation maps. gt_seg_maps (list[ndarray]): list of ground truth segmentation maps. num_classes (int): Number of categories. ignore_index (int): Index that will be ignored in evaluation. nan_to_num (int, optional): If specified, NaN values will be replaced by the numbers defined by the user. Default: None. label_map (dict): Mapping old labels to new labels. Default: dict(). reduce_zero_label (bool): Wether ignore zero label. Default: False. Returns: float: Overall accuracy on all images. ndarray: Per category accuracy, shape (num_classes, ). ndarray: Per category IoU, shape (num_classes, ). """ all_acc, acc, iou = eval_seg_metrics( results=results, gt_seg_maps=gt_seg_maps, num_classes=num_classes, ignore_index=ignore_index, metrics=["mIoU"], nan_to_num=nan_to_num, label_map=label_map, reduce_zero_label=reduce_zero_label, ) return all_acc, acc, iou
a6d90cb4028c831db82b4dddb6a4c52a8fa4e1f0
3,653,147
def as_date_or_none(date_str): """ Casts a date string as a datetime.date, or None if it is blank. >>> as_date_or_none('2020-11-04') datetime.date(2020, 11, 4) >>> as_date_or_none('') None >>> as_date_or_none(None) None """ if not date_str: return None return dateutil_parser.parse(date_str).date()
bf01bd280526e7962e1b08aa0400d6ebadf8053f
3,653,148
def guarantee_trailing_slash(directory_name: str) -> str: """Adds a trailling slash when missing Params: :directory_name: str, required A directory name to add trailling slash if missing Returns: A post processed directory name with trailling slash """ if not directory_name.endswith('/'): return directory_name + '/' return directory_name
38cfdf971262fceb4888277522b22ba7276fa9b7
3,653,149
def bc32encode(data: bytes) -> str: """ bc32 encoding see https://github.com/BlockchainCommons/Research/blob/master/papers/bcr-2020-004-bc32.md """ dd = convertbits(data, 8, 5) polymod = bech32_polymod([0] + dd + [0, 0, 0, 0, 0, 0]) ^ 0x3FFFFFFF chk = [(polymod >> 5 * (5 - i)) & 31 for i in range(6)] return "".join([BECH32_ALPHABET[d] for d in dd + chk])
46feb2b744089f5f4bf84cae6ff9d29623b3bba5
3,653,150
def read_all_reviews(current_user): """Reads all Reviews""" reviews = Review.query.all() if reviews: return jsonify({'Reviews': [ { 'id': review.id, 'title': review.title, 'desc': review.desc, 'reviewer': review.reviewer.username, 'business': review.business.name, 'created_at': review.created_at, 'updated_at': review.updated_at } for review in reviews ]}), 200 return jsonify({'warning': 'No Review, create one first'}), 200
78642f38dab8328c11445e67848b7f6d9583d892
3,653,151
def matches_filters(row, field_to_index, transformed_filters): """ Validate field name in transformed filter_expressions, return TRUE for rows matching all filters Parameters ------------ row : str row in `list` registry table (manager.show()) field_to_index : dict key = column names, val = column index, in registry table (or manager.show()) transformed_filters : list transformed/formatted fields for filtering rows Returns -------- bool return TRUE for rows matching all filters """ field_to_index_lower = dict( (k.lower(), v) for k, v in field_to_index.items() ) # to accept case-insensitive comparison for tfilter in transformed_filters: [field, op, value] = tfilter if field not in field_to_index_lower: raise DSGInvalidParameter( f"field='{field}' is not a valid column name, valid fields: {list(field_to_index.keys())}" ) obj_val = row[field_to_index_lower[field]].lower() # to accept case-insensitive comparison if not matches_filter(val=obj_val, op=op, required_value=value): return False return True
119b5e7d7f7dfb72e1a66525d5bf84665cbbced0
3,653,152
def div(f, other): """Element-wise division applied to the `Functional` objects. # Arguments f: Functional object. other: A python number or a tensor or a functional object. # Returns A Functional. """ validate_functional(f) inputs = f.inputs.copy() if is_functional(other): inputs += to_list(other.inputs) lmbd = [Lambda(lambda x: x[0]/x[1], name=graph_unique_name("div")) for X in f.outputs] else: _warn_for_ndarray(other) lmbd = [Lambda(lambda x: x/other, name=graph_unique_name("div")) for X in f.outputs] Functional = f.get_class() res = Functional( inputs = unique_tensors(inputs), outputs = _apply_operation(lmbd, f, other), layers = lmbd ) return res
abfc7df85946cfcd5196dff58bec22ee237b590b
3,653,153
import itertools def select_latest_versions(files): """Select only the latest version of files.""" result = [] def same_file(file): """Return a versionless identifier for a file.""" # Dataset without the version number dataset = file.dataset.rsplit('.', 1)[0] return (dataset, file.name) files = sorted(files, key=same_file) for _, versions in itertools.groupby(files, key=same_file): versions = sorted(versions, reverse=True) latest_version = versions[0] result.append(latest_version) if len(versions) > 1: logger.debug("Only using the latest version %s, not %s", latest_version, versions[1:]) return result
81862d64ea44d0b0d9621bb198e5590c7f7ef0c7
3,653,154
def _gen_input(storyline, nsims, mode, site, chunks, current_c, nperc, simlen, swg_dir, fix_leap): """ :param storyline: loaded storyline :param SWG_path: path to the directory with contining the files from the SWG :param nsims: number of sims to run :param mode: one of ['irrigated', 'dryland'] :param site: one of ['eyrewell', 'oxford'] :param chunks: the number of chunks :param current_c: the current chunk (from range(chunks) :param nperc: number of simulations that can be run per chunk :return: """ # manage chunks if chunks == 1: num_to_pull = nsims elif chunks > 1: num_to_pull = nperc if current_c + 1 == chunks: # manage last chunk num_to_pull = nsims - (current_c * nperc) else: raise ValueError('shouldnt get here') params, doy_irr = get_params_doy_irr(mode, site) matrix_weathers = [] days_harvests = [] # get restriction data if mode == 'dryland': rest_data = np.repeat([None], num_to_pull) elif mode == 'irrigated': rest_data = get_irr_data(num_to_pull, storyline, simlen) else: raise ValueError('weird arg for mode: {}'.format(mode)) # get weather data weather_data = _get_weather_data(storyline=storyline, nsims=num_to_pull, simlen=simlen, swg_dir=swg_dir, site=site, fix_leap=fix_leap) # make all the other data for rest, weather in zip(rest_data, weather_data): if rest is None: rest_temp = None else: rest_temp = pd.DataFrame(data=rest, index=weather.index, columns=['frest']) matrix_weather = create_matrix_weather(mode, weather_data=weather, restriction_data=rest_temp, rest_key='frest', fix_leap=fix_leap) matrix_weathers.append(matrix_weather) days_harvests.append(create_days_harvest(mode, matrix_weather, site, fix_leap=fix_leap)) return params, doy_irr, matrix_weathers, days_harvests
d0594a3b986c1415202db5f894101537464355a8
3,653,155
def guess_mime_mimedb (filename): """Guess MIME type from given filename. @return: tuple (mime, encoding) """ mime, encoding = None, None if mimedb is not None: mime, encoding = mimedb.guess_type(filename, strict=False) if mime not in ArchiveMimetypes and encoding in ArchiveCompressions: # Files like 't.txt.gz' are recognized with encoding as format, and # an unsupported mime-type like 'text/plain'. Fix this. mime = Encoding2Mime[encoding] encoding = None return mime, encoding
8202551c81b25e9bb104ec82114a750a16556b23
3,653,156
def get_paths(uast_file, max_length, max_width, token_extractor, split_leaves=True): """ Creates a list of all the paths given the max_length and max_width restrictions. :param uast_file: file containing a bblfsh UAST as string and binary-coded :param max_length: :param max_width: :param token_extractor: function to transform a node into a single string token :param split_leaves: get leaves token as a different node :return: list(list(str)) list of paths (which are list of strings) """ print("Processing file: {}".format(uast_file)) uast = Node.FromString(open(uast_file, 'rb').read()) tree, leaves = extend_tree(uast) paths = [] if len(leaves) > 1: for i in range(len(leaves)): for j in range(i + 1, min(i + max_width, len(leaves))): u, v = leaves[i], leaves[j] # TODO decide where to filter comments and decouple bblfsh if not is_noop_line(u) and not is_noop_line(v): ancestor = lca(u, v) d = distance(u, v, ancestor) if d <= max_length: node_path = get_path(u, v, ancestor, split_leaves=split_leaves) # convert nodes to its desired representation paths.append([token_extractor(p) for p in node_path]) return paths
cd2ec58f6d960317ac56a6992373f6aa311f9672
3,653,157
def get_members(): """ Get a list of all members in FreeIPA """ members = [] ldap_conn = ldap.get_con() res = ldap_conn.search_s( "cn=users,cn=accounts,dc=csh,dc=rit,dc=edu", pyldap.SCOPE_SUBTREE, "(uid=*)", ["uid", "displayName"], ) for member in res: members.append( { "value": member[1]["uid"][0].decode("utf-8"), "display": member[1] .get("displayName", member[1]["uid"])[0] .decode("utf-8"), } ) return members
2714bddf7554884fa638066f91aa489b497f6c15
3,653,158
def _unicode_decode_extracted_tb(extracted_tb): """Return a traceback with the string elements translated into Unicode.""" return [(_decode(file), line_number, _decode(function), _decode(text)) for file, line_number, function, text in extracted_tb]
bbe020daecf6dc7021ff38dfac6869646120be5d
3,653,159
def load_table(source, version): """Load synth table from file """ filepath = get_table_filepath(source, version=version) return pd.read_table(filepath, delim_whitespace=True)
b95d35a6f297e0f73fee3652a0c9c6942b792451
3,653,160
def single_spaces(string: str) -> str: """Replaces all instances of whitespace-like chars with single spaces Args: string (str): The string to modify Returns: str: The cleaned string """ return UGLY_SPACES_RE.sub(" ", string)
eb37ae691f7fb54b6a23a5fd6d2cdd3edf8ebf57
3,653,161
import socket def snmp_count( address, oid, port=161, community="public", version=SNMP_v2c, timeout=10, bulk=False, filter=None, max_repetitions=BULK_MAX_REPETITIONS, tos=None, ioloop=None, udp_socket=None, ): """ Perform SNMP get request and returns Future to be used inside @tornado.gen.coroutine """ def true(x, y): return true logger.debug("[%s] SNMP COUNT %s", address, oid) if not filter: filter = true poid = oid + "." result = 0 if udp_socket: sock = udp_socket prev_timeout = sock.get_timeout() else: sock = UDPSocket(ioloop=ioloop, tos=tos) sock.settimeout(timeout) while True: # Get PDU if bulk: pdu = getbulk_pdu(community, oid, max_repetitions=max_repetitions, version=version) else: pdu = getnext_pdu(community, oid, version=version) # Send request and wait for response try: yield sock.sendto(pdu, (address, port)) data, addr = yield sock.recvfrom(4096) except socket.timeout: raise SNMPError(code=TIMED_OUT, oid=oid) except socket.gaierror as e: logger.debug("[%s] Cannot resolve address: %s", address, e) raise SNMPError(code=UNREACHABLE, oid=oid) except socket.error as e: logger.debug("[%s] Socket error: %s", address, e) raise SNMPError(code=UNREACHABLE, oid=oid) finally: if udp_socket: sock.settimeout(prev_timeout) else: sock.close() # Parse response try: resp = parse_get_response(data) except ValueError: raise SNMPError(code=BER_ERROR, oid=oid) if resp.error_status == NO_SUCH_NAME: # NULL result break elif resp.error_status != NO_ERROR: # Error raise SNMPError(code=resp.error_status, oid=oid) else: # Success value for oid, v in resp.varbinds: if oid.startswith(poid): # Next value if filter(oid, v): result += 1 else: logger.debug("[%s] COUNT result: %s", address, result) sock.close() raise Return(result)
0ddf236abeb1bca4d9a8584b7714225b1bc93166
3,653,162
def create_group(api_key: str, board_id: str, group_name: str, *args, **kwargs): """Creates a new group in a specific board. __________ Parameters api_key : `str` The monday.com v2 API user key. board_id : `str` The board's unique identifier. group_name : `str` The name of the new group. args : `tuple` The list of group return fields. kwargs : `dict` Optional arguments for querying assets. _______ Returns data : `dict` A monday.com group in item form. _____________ Return Fields archived : `bool` Is the group archived or not. color : `str` The group's color. deleted : `bool` Is the group deleted or not. id : `str` The group's unique identifier. items : `list[moncli.entities.Item]` The items in the group. position : `str` The group's position in the board. title : `str` The group's title. """ args = get_field_list(constants.DEFAULT_GROUP_QUERY_FIELDS, *args) kwargs = get_method_arguments(constants.CREATE_GROUP_OPTIONAL_PARAMS, **kwargs) kwargs['board_id'] = util.IntValue(board_id) kwargs['group_name'] = util.StringValue(group_name) return execute_mutation(api_key, constants.CREATE_GROUP, *args, **kwargs)
b591fe000718615f44954e488d4e3c46b9cf0123
3,653,163
import cvxopt def _solve_qp_ik_vel(vel, jac, joint_pos, joint_lims=None, duration=None, margin=0.2): """ Solves the IK for a given pusher velocity using a QP solver, imposing joint limits. If the solution is optimal, it is guaranteed that the resulting joint velocities will not cause the joints to reach their limits (minus the margin) in the specified duration of time :param vel: desired EE velocity (6 values) :param jac: jacobian :param joint_pos: current joint positions :param joint_lims: matrix of joint limits; if None, limits are not imposed :param duration: how long the specified velocity will be kept (in seconds); if None, 2.0 is used :param margin: maximum absolute distance to be kept from the joint limits :return: tuple with the solution (as a numpy array) and with a boolean indincating if the result is optimal or not :type vel: np.ndarray :type jac: np.ndarray :type joint_pos: np.ndarray :type joint_lims: np.ndarray :type duration: float :type margin: float :rtype: (np.ndarray, bool) """ x_len = len(joint_pos) P = cvxopt.matrix(np.identity(x_len)) A = cvxopt.matrix(jac) b = cvxopt.matrix(vel) q = cvxopt.matrix(np.zeros(x_len)) if duration is None: duration = 2. if joint_lims is None: G, h = None, None else: G = duration * np.identity(x_len) h = np.zeros(x_len) for i in range(x_len): dist_up = abs(joint_lims[i, 1] - joint_pos[i]) dist_lo = abs(joint_lims[i, 0] - joint_pos[i]) if dist_up > dist_lo: # we are closer to the lower limit # => must bound negative angular velocity, i.e. G_ii < 0 h[i] = dist_lo G[i, i] *= -1 else: # we are closer to the upper limit # => must bound positive angular velocity, i.e. G_ii > 0 h[i] = dist_up h = cvxopt.matrix(h - margin) G = cvxopt.matrix(G) # sol = cvxopt.solvers.qp(P, q, A=A, b=b, G=G, h=h, options={'show_progress': False, 'kktreg': 1e-9}, kktsolver='ldl') sol = cvxopt.solvers.qp(P, q, A=A, b=b, G=G, h=h, options={'show_progress': False, 'refinement': 5}) x = np.array(sol['x']).reshape(-1) optimal = sol['status'] == 'optimal' return x, optimal
25bd82403421f936d81d1a5c3090c1fbb1a964c1
3,653,164
def channel_will_be_next(crontab: str): """Checks if the given notification channel will be activated on the next channel, in an hour.""" return pycron.is_now(crontab, now + timedelta(hours=1))
b5505d7e27d70377cfb58acab8a38d9bd12d9351
3,653,165
def hospital_resident(residents, hospitals, optimal="resident"): """Solve an instance of HR using an adapted Gale-Shapley algorithm :cite:`Rot84`. A unique, stable and optimal matching is found for the given set of residents and hospitals. The optimality of the matching is found with respect to one party and is subsequently the worst stable matching for the other. Parameters ---------- residents : list of Player The residents in the game. Each resident must rank a non-empty subset of the elements of ``hospitals``. hospitals : list of Hospital The hospitals in the game. Each hospital must rank all the residents that have ranked them. optimal : str, optional Which party the matching should be optimised for. Must be one of ``"resident"`` and ``"hospital"``. Defaults to the former. Returns ------- matching : Matching A dictionary-like object where the keys are the members of ``hospitals``, and the values are their matches ranked by preference. """ if optimal == "resident": return resident_optimal(residents, hospitals) if optimal == "hospital": return hospital_optimal(hospitals)
e666b502a2e74f5c4628108397a82977b7da5b7f
3,653,166
def log_request(response): """Log request. :param response: :return: """ ip = request.headers.get('X-Forwarded-For', request.remote_addr) host = request.host.split(':', 1)[0] app.logger.info(f"method={request.method}, path={request.path}, " f"status={response.status_code}, " f"ip={ip}, host={host}, params={dict(request.args)}," f"headers={request.headers}, " f"body={request.data}") return response
838df023329b8b49c2349e58d02b44ef51ef7213
3,653,167
def reduce(path, n_procs, column, function): """ Calculate an aggregate value from IMB output. Args: path: str, path to file n_procs: int, number of processes column: str, column name function: callable to apply to specified `column` of table for `n_procs` in `path` """ tables = read_imb_out(path) table = tables[n_procs] # separate lines here for more useful KeyError if missing: col = table[column] result = function(col) return result
e2892b862f02ca11acaa180e24d390804441f0db
3,653,168
from pathlib import Path def output_file_path(status_id, phase): """ """ BASE_DIR = Path(__file__).resolve().parent.parent return f"%s/logs/stage/{status_id}-{phase}.txt" %str(BASE_DIR)
3bcbd80ad95389b9cf37fa66923bacb819ede710
3,653,169
def clean(some_string, uppercase=False): """ helper to clean up an input string """ if uppercase: return some_string.strip().upper() else: return some_string.strip().lower()
cdc4587b762625e00c91189950bd45840861c93f
3,653,170
import re def to_title(value): """Converts a string into titlecase.""" t = re.sub("\s+", ".", value) t = filter(LETTER_SET.__contains__, t) t = re.sub("([a-z])'\W([A-Z])", lambda m: m.group(0).lower(), t.title()) return re.sub("\d([A-Z])", lambda m: m.group(0).lower(), t)
a88c9559abeab7426fa874e66c9e81a75138c0cd
3,653,171
import yaml def parse_config_or_kwargs(config_file, **kwargs): """parse_config_or_kwargs :param config_file: Config file that has parameters, yaml format :param **kwargs: Other alternative parameters or overwrites for config """ with open(config_file) as con_read: yaml_config = yaml.load(con_read, Loader=yaml.FullLoader) # values from config file are all possible params arguments = dict(yaml_config, **kwargs) # In case some arguments were not passed, replace with default ones for key, value in DEFAULT_ARGS.items(): arguments.setdefault(key, value) return arguments
f36946ed3a05f32057786ddf8e4194b935b4c129
3,653,172
def sig_generacion(m): """Devuelve la matriz resultante de aplicar las reglas del juego a cada celda""" FILAS = len(m) COLUMNAS = len(m[0]) if len(m) else 0 new_m = [] # matriz resultado for i in range(FILAS): l = [] # Una lista para ir generando una fila for j in range(COLUMNAS): vec = num_vecinos(m, j, i) if vec < 2 or vec > 3: l.append(0) # muere elif vec == 3: l.append(1) # nace else: l.append(m[i][j]) # sobrevive si estaba viva new_m.append(l) return new_m
09da2baede2eef22179218f267bc2325d72822ee
3,653,173
import hmac import hashlib import base64 def calc_file_signature(data: str, password: str = None) -> str: """ Função que calcula o has da assinatura de um arquivo @param data: string assinada @param password: senha da assinatura @return: hash da assinatura """ if (password): digest = hmac.new(bytes(password), msg=bytes(data), digestmod=hashlib.sha256).digest() res_hash = base64.b64encode(digest).decode() else: hash = hashlib.sha256() hash.update(bytes(data)) res_hash = hash.hexdigest() return res_hash
1422b8058a6eb7995558b3e0a7fa5f33f6cfd134
3,653,174
def get_angle_from_coordinate(lat1, long1, lat2, long2): """https://stackoverflow.com/questions/3932502/calculate-angle-between-two-latitude-longitude-points""" dLon = (long2 - long1) y = np.sin(dLon) * np.cos(lat2) x = np.cos(lat1) * np.sin(lat2) - np.sin(lat1) * np.cos(lat2) * np.cos(dLon) brng = np.arctan2(y, x) brng = np.degrees(brng) brng = (brng + 360) % 360 brng = 360 - brng return brng
a1ad7ffe1e63197cc5f70b2ce2f343078fd9b5e7
3,653,175
import json def get_predictions(): """Return the list of predications as a json object""" results = [] conn = None columns = ("pid", "name", "location", "latitude", "longitude", "type", "modtime") try: conn = psycopg2.connect(db_conn) # create a cursor cur = conn.cursor() cur.execute( "SELECT pid, name, location, latitude, longitude, type, modtime FROM predictions" ) for row in cur.fetchall(): results.append(dict(zip(columns, row))) cur.close() except (Exception, psycopg2.DatabaseError) as error: print(error) finally: if conn is not None: conn.close() print("Database connection closed.") json_str = json.dumps(results, indent=2, sort_keys=True, default=json_serial) return Response(json_str, mimetype="application/json")
6afb9d703f4dbeff81d4369f9096d577dcafc993
3,653,176
def parse_packageset(packageset): """ Get "input" or "output" packages and their repositories from each PES event. :return: set of Package tuples """ return {parse_package(p) for p in packageset.get('package', packageset.get('packages', []))}
ff8af3423c0fda993cfa88be16142520e29b999e
3,653,177
import urllib import zipfile def download_nyiso_csv(month, data_type, zone = None): """Downloads a NYISO csv dataset for a specific data type, month, and zone. Args: month: string denoting the first day of the month to be downloaded in yyyymmdd format data_type: string denoting the type of NYISO data to retrieve, examples include "damlbmp" which stands for "day ahead market location based marginal price" or "outSched" for "outage schedule" zone: string denoting the NYISO geographic zone of the data to be requested. This is required if data_type == "damlbmp" Returns: df: pandas dataframe of the NYISO csv file for the entire month requested """ # Build the necessary url to access the NYISO data url = build_nyiso_url(month, data_type, zone) # Download the zip folder to a temporary file location, # then open the zip folder into the object zf zip_folder_path, headers = urllib.request.urlretrieve(url) zf = zipfile.ZipFile(zip_folder_path) #TODO: increase efficiency by only reading the files from NYISO that contain the desired days # For each file contained in zf, read the csv and concatenate it with # the other csvs for this month to create a month-long csv df = pd.DataFrame() for file in zf.filelist: temp_df = pd.read_csv(zf.open(file.filename)) df = pd.concat([df,temp_df]) return df
cbe99ea482a26d5e59bf553ff143fe9895390f4e
3,653,178
def pretty_print_large_number(number): """Given a large number, it returns a string of the sort: '10.5 Thousand' or '12.3 Billion'. """ s = str(number).ljust(12) if number > 0 and number < 1e3: pass elif number >= 1e3 and number < 1e6: s = s + " (%3.1f Thousand)" % (number * 1.0 / 1e3) elif number >= 1e6 and number < 1e9: s = s + " (%3.1f Million)" % (number * 1.0 / 1e6) elif number >= 1e9 and number < 1e12: s = s + " (%3.1f Billion)" % (number * 1.0 / 1e9) elif number >= 1e12 and number < 1e15: s = s + " (%3.1f Trillion)" % (number * 1.0 / 1e12) return s
6762f34744da360b36d4a4fc0659fcf7d3fb0465
3,653,179
def find_aligning_transformation(skeleton, euler_frames_a, euler_frames_b): """ performs alignment of the point clouds based on the poses at the end of euler_frames_a and the start of euler_frames_b Returns the rotation around y axis in radians, x offset and z offset """ point_cloud_a = convert_euler_frame_to_cartesian_frame(skeleton, euler_frames_a[-1]) point_cloud_b = convert_euler_frame_to_cartesian_frame(skeleton, euler_frames_b[0]) weights = skeleton.get_joint_weights() theta, offset_x, offset_z = _align_point_clouds_2D(point_cloud_a, point_cloud_b, weights) return theta, offset_x, offset_z
1d323fcb0af73aacbc57e5cf57f0b9875375b98d
3,653,180
def find_all_visit(tx): """ Method that queries the database to find all VISIT relationships :param tx: session :return: nodes of Person , Location """ query = ( """ MATCH (p:Person)-[r:VISIT]->(l:Location) RETURN p , ID(p) , r , r.start_hour , r.end_hour , r.date , l , ID(l) """ ) result = tx.run(query).data() return result
851d790b16f9db285a6d09b5cabc4e12ad364484
3,653,181
def read_vectors(filename): """Reads measurement vectors from a space or comma delimited file. :param filename: path of the file :type filename: str :return: array of vectors :rtype: numpy.ndarray :raises: ValueError """ vectors = [] data = read_csv(filename) expected_size = len(data[0]) if expected_size % 3 != 0: raise ValueError('Column size of vector data must be a multiple of 3') for row in data: if len(row) == expected_size: vectors.append(row) else: raise ValueError('Inconsistent column size of vector data') result = np.array(vectors, np.float32) if not np.isfinite(result).all(): raise ValueError('Non-finite value present in vector data') return result
a772c4185d55543e0c641271a5af699f91e81b95
3,653,182
def get_scoring_algorithm(): """ Base scoring algorithm for index and search """ return scoring.BM25F()
78fe59d02071ce000262208f4c228566e0747857
3,653,183
def _make_augmentation_pipeline(augmentation_list): """Buids an sklearn pipeline of augmentations from a tuple of strings. Parameters ---------- augmentation_list: list of strings, A list of strings that determine the augmentations to apply, and in which order to apply them (the first string will be applied first). Possible augmentation strings are ['leadlag', 'ir', 'addtime', 'cumsum', 'basepoint'] Returns ------- sklearn.Pipeline The transforms, in order, as an sklearn pipeline. Examples -------- augementations = ('leadlag', 'ir', 'addtime') _make_augmentation_pipeline(augmentations) # Will return Pipeline([ ('leadlag', LeadLag()), ('ir', InvisibilityReset()), ('addtime', AddTime()) ]) """ # Dictionary of augmentations AUGMENTATIONS = { "leadlag": _LeadLag(), "ir": _InvisibilityReset(), "addtime": _AddTime(), "cumsum": _CumulativeSum(), "basepoint": _BasePoint(), } # Assertions, check we have a tuple/list if augmentation_list is not None: if isinstance(augmentation_list, str): augmentation_list = (augmentation_list,) assert all( [x in list(AUGMENTATIONS.keys()) for x in augmentation_list] ), "augmentation_list must only contain string elements from {}. Given: {}.".format( list(AUGMENTATIONS.keys()), augmentation_list ) # Setup pipeline if augmentation_list is not None: pipeline = Pipeline( [(tfm_str, AUGMENTATIONS[tfm_str]) for tfm_str in augmentation_list] ) else: pipeline = None return pipeline
e53f4d198e6781c5eaf6ce6c0a453801f4ceb0d7
3,653,184
def ctg_path(event_name,sc_reform,path_cache,var_map,model,prev_events): """ Recursively computes the controllable and contigent events that influence the schedule of a given event. """ if event_name in path_cache:#If solution has been already computed, use it return path_cache[event_name] else: if event_name in sc_reform: #End point of uncontrollable duration if event_name in prev_events: raise RuntimeError('Contigent duration loop detected!') else: prev_events.add(event_name) path_ref = ctg_path(sc_reform[event_name]['ref'],sc_reform,path_cache,var_map,model,prev_events) path = [event_name]+path_ref else: #Controllable event if not event_name in var_map:#1-to-1 mapping between events and variables var_map[event_name]=model.addVar(vtype=GRB.CONTINUOUS,lb=0.0) model.update() path = [event_name] path_cache[event_name]=path #Caches solution for future use return path
5de8eb6fe3be991da3f4af37b6e81990aa8cb34f
3,653,185
def _setup_mock_socket_file(mock_socket_create_conn, resp): """Sets up a mock socket file from the mock connection. Args: mock_socket_create_conn: The mock method for creating a socket connection. resp: iterable, the side effect of the `readline` function of the mock socket file. Returns: The mock socket file that will be injected into the code. """ fake_file = mock.Mock() fake_file.readline.side_effect = resp fake_conn = mock.Mock() fake_conn.makefile.return_value = fake_file mock_socket_create_conn.return_value = fake_conn return fake_file
5b70c73bb948211919065298a01a48d927e64482
3,653,186
def get_defense_type(action: int, game_config) -> int: """ Utility method for getting the defense type of action-id :param action: action-id :param game_config: game configuration :return: action type """ defense_type = action % (game_config.num_attack_types+1) # +1 for detection return defense_type
68a05cf15bd833fb24aa448b8be2d08c1a949d12
3,653,187
def color_box( colors, border="#000000ff", border2=None, height=32, width=32, border_size=1, check_size=4, max_colors=5, alpha=False, border_map=0xF ): """Color box.""" return colorbox.color_box( colors, border, border2, height, width, border_size, check_size, max_colors, alpha, border_map )
6f8a98743c11985529afd5ad0c04a64c1301f85a
3,653,188
def get_performance_of_lstm_classifier(X, y, n_epochs, verbose=1, final_score=False): """ Reshapes feature matrix X, applies LSTM and returns the performance of the neural network :param X: List of non-reshaped/original feature matrices (one per logfile) :param y: labels :param n_epochs: Number of epochs the model should be trained :param verbose: verbose mode of keras_model.fit :param final_score: If final score should be printed, then don't use a validation set :return rocs, recalls, specificities, presicions, f1s """ X_list, y_list = _get_splitted_up_feature_matrix_and_labels(X, y) globals()["_maxlen"] = max(len(fm) for fm in X_list) if final_score: X_train_list, y_train_list, X_test_list, y_test_list, X_val, y_val = \ _split_into_train_test_val_data(X_list, y_list, size_test_set=3, size_val_set=0) X_lstm, y_lstm = _get_reshaped_matrices(X_train_list, y_train_list) model = _generate_lstm_classifier((X_lstm.shape[1], X_lstm.shape[2])) trained_model = _fit_lstm(model, X_lstm, y_lstm, n_epochs, verbose) else: X_train_list, y_train_list, X_test_list, y_test_list, X_val, y_val = \ _split_into_train_test_val_data(X_list, y_list, size_test_set=3, size_val_set=2) X_lstm, y_lstm = _get_reshaped_matrices(X_train_list, y_train_list) X_val, y_val = _get_reshaped_matrices(X_val, y_val) model = _generate_lstm_classifier((X_lstm.shape[1], X_lstm.shape[2])) trained_model = _fit_lstm(model, X_lstm, y_lstm, n_epochs, verbose, val_set=(X_val, y_val)) print('Performance training set: ') _calculate_performance(X_lstm, y_lstm, trained_model) print('Performance test set: ') rocs, recalls, specificities, presicions, f1s = _calculate_performance(X_test_list, y_test_list, trained_model) return rocs, recalls, specificities, presicions, f1s
13a494f9aca643ff23ce6954471ef007df96f9e8
3,653,189
def worker(data): """Thread function.""" width, column = data queen = Queen(width) queen.run(column) return queen.solutions
ef0f3c6410885ac2e20b28f009085d92b6fca22b
3,653,190
def eitem(self, key, value): """Translate included eitems.""" _eitem = self.get("_eitem", {}) urls = [] for v in force_list(value): urls.append( { "description": "E-book by EbookCentral", "value": clean_val("u", v, str), } ) _eitem.update({"urls": urls}) return _eitem
d9a5d3f9dc29baa15d9df6b4fe32c7f20151316c
3,653,191
def annotate_group(groups, ax=None, label=None, labeloffset=30): """Annotates the categories with their parent group and add x-axis label""" def annotate(ax, name, left, right, y, pad): """Draw the group annotation""" arrow = ax.annotate(name, xy=(left, y), xycoords="data", xytext=(right, y - pad), textcoords="data", annotation_clip=False, verticalalignment="top", horizontalalignment="center", linespacing=2.0, arrowprops={'arrowstyle': "-", 'shrinkA': 0, 'shrinkB': 0, 'connectionstyle': "angle,angleB=90,angleA=0,rad=5"} ) return arrow if ax is None: ax = plt.gca() level = 0 for level in range(len(groups)): grp = groups[level] for name, coord in list(grp.items()): ymin = ax.get_ylim()[0] - np.ptp(ax.get_ylim()) * 0.12 - np.ptp(ax.get_ylim()) * 0.05 * (level) ypad = 0.01 * np.ptp(ax.get_ylim()) xcenter = np.mean(coord) annotate(ax, name, coord[0], xcenter, ymin, ypad) annotate(ax, name, coord[1], xcenter, ymin, ypad) if label is not None: # Define xlabel and position it according to the number of group levels ax.annotate(label, xy=(0.5, 0), xycoords="axes fraction", xytext=(0, -labeloffset - (level + 1) * 15), textcoords="offset points", verticalalignment="top", horizontalalignment="center") return
33f57ccf96b4b0907ea8c2ea161e19b0e6e536d2
3,653,192
def background_schwarzfischer(fluor_chan, bin_chan, div_horiz=7, div_vert=5, mem_lim=None, memmap_dir=None): """Perform background correction according to Schwarzfischer et al. Arguments: fluor_chan -- (frames x height x width) numpy array; the fluorescence channel to be corrected bin_chan -- boolean numpy array of same shape as `fluor_chan`; segmentation map (background=False, cell=True) div_horiz -- int; number of (non-overlapping) tiles in horizontal direction div_vert -- int; number of (non-overlapping) tiles in vertical direction mem_lim -- max number of bytes for temporary data before switching to memmap; if in (0,1], max percentage of free memory to be used; if non-positive, always use memory; if None, decide automatically memmap_dir -- str; directory for creating memmap Returns: Background-corrected fluorescence channel as numpy array (dtype single) of same shape as `fluor_chan` """ n_frames, height, width = fluor_chan.shape # Allocate arrays if np.can_cast(fluor_chan, np.float16): dtype_interp = np.float16 elif np.can_cast(fluor_chan, np.float32): dtype_interp = np.float32 else: dtype_interp = np.float64 dtype_interp = np.dtype(dtype_interp) bg_mean = np.empty((n_frames, 1, 1), dtype=dtype_interp) # Create large arrays in memory or as memmap if mem_lim is None or mem_lim > 0: bg_interp, arr_temp, iter_temp = _get_arr(fluor_chan.shape, dtype_interp, mem_lim, memmap_dir) else: bg_interp, arr_temp, iter_temp = np.empty(shape=fluor_chan.shape, dtype=dtype_interp) # Construct tiles for background interpolation # Each pair of neighboring tiles is overlapped by a third tile, resulting in a total tile number # of `2 * div_i - 1` tiles for each direction `i` in {`horiz`, `vert`}. # Due to integer rounding, the sizes may slightly vary between tiles. tiles_vert = _make_tiles(height, div_vert) tiles_horiz = _make_tiles(width, div_horiz) supp = np.empty((tiles_horiz.size, tiles_vert.size)) # Interpolate background as cubic spline with each tile’s median as support point at the tile center for t in range(n_frames): print(f"Interpolating background in frame {t:3d} …") masked_frame = ma.masked_array(fluor_chan[t, ...], mask=bin_chan[t, ...]) for iy, (y, sy) in enumerate(tiles_vert): for ix, (x, sx) in enumerate(tiles_horiz): supp[ix, iy] = ma.median(masked_frame[sy, sx]) bg_spline = scint.RectBivariateSpline(x=tiles_horiz['center'], y=tiles_vert['center'], z=supp) patch = bg_spline(x=range(width), y=range(height)).T bg_interp[t, ...] = patch bg_mean[t, ...] = patch.mean() # Correct for background using Schwarzfischer’s formula: # corrected_image = (raw_image - interpolated_background) / gain # wherein, in opposite to Schwarzfischer, the gain is approximated as # median(interpolated_background / mean_background) # This “simple” calculation may consume more memory than available. # Therefore, a less readable but more memory-efficient command flow is used. for st, sl in iter_temp: np.divide(bg_interp[:, sl, :], bg_mean, out=arr_temp[:, :st, :]) np.subtract(fluor_chan[:, sl, :], bg_interp[:, sl, :], out=bg_interp[:, sl, :]) np.divide(bg_interp[:, sl, :], np.median(arr_temp[:, :st, :], axis=0, keepdims=True), out=bg_interp[:, sl, :]) # `bg_interp` now holds the corrected image return bg_interp
512d1721dc14a4f7a09843603b8700360f97fd37
3,653,193
from typing import Optional import os def _get_eula_date(extract_path: str) -> Optional[str]: """Get any EULA accept date in the install script, if any. :param extract_path: The path to the extracted archive. :return: The EULA date, if any. """ install_script = os.path.join(extract_path, "houdini.install") if not os.path.exists(install_script): return None with open(install_script) as handle: for line in handle: if line.startswith("LICENSE_DATE"): return line.split("=")[1].strip() return None
044ff76dadf7c4bdcd74b1435e02d2ec29c0a877
3,653,194
def get_output_data_path(extension, suffix=None): """Return full path for data file with extension, generated by a test script""" name = get_default_test_name(suffix) return osp.join(TST_PATH[0], f"{name}.{extension}")
ce5437c23061df490a31ac11f26f72e5935f0fd7
3,653,195
def _plot(self, **kwargs) -> tp.BaseFigure: # pragma: no cover """Plot `close` and overlay it with the heatmap of `labels`.""" if self.wrapper.ndim > 1: raise TypeError("Select a column first. Use indexing.") return self.close.rename('close').vbt.overlay_with_heatmap(self.labels.rename('labels'), **kwargs)
eaa6df4f29db8d1ab6dc0ffd1b9ecf8804f6aac9
3,653,196
def _set_global_vars(metadata): """Identify files used multiple times in metadata and replace with global variables """ fnames = collections.defaultdict(list) for sample in metadata.keys(): for k, v in metadata[sample].items(): print k, v if os.path.isfile(v): v = _expand_file(v) metadata[sample][k] = v fnames[v].append(k) loc_counts = collections.defaultdict(int) global_vars = {} global_var_sub = {} for fname, locs in fnames.items(): if len(locs) > 1: loc_counts[locs[0]] += 1 name = "%s%s" % (locs[0], loc_counts[locs[0]]) global_var_sub[fname] = name global_vars[name] = fname for sample in metadata.keys(): for k, v in metadata[sample].items(): if v in global_var_sub: metadata[sample][k] = global_var_sub[v] return metadata, global_vars
23caefdf0f999a9b60649c85278edb8498b771b3
3,653,197
def user_get(context, id): """Get user by id.""" return IMPL.user_get(context, id)
b3108b4627751d5dfef1b42b8ccad0295b33cc99
3,653,198
def unpack_singleton(x): """ >>> unpack_singleton([[[[1]]]]) 1 >>> unpack_singleton(np.array(np.datetime64('2000-01-01'))) array('2000-01-01', dtype='datetime64[D]') """ while isinstance(x, (list, tuple)): try: x = x[0] except (IndexError, TypeError, KeyError): break return x
f6f55ff17ba29aab5946c682b825c72eb70324dd
3,653,199