content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
from typing import List import subprocess def run_bincapture(args: List[str]) -> bytes: """run is like "subprocess.run(args, capture_out=True, text=False)", but with helpful settings and obeys "with capture_output(out)". """ if _capturing: try: return subprocess.run(args, check=True, capture_output=True).stdout except subprocess.CalledProcessError as err: raise Exception(f"{err.stderr.decode('UTF-8')}{err}") from err else: return subprocess.run(args, check=True, stdout=subprocess.PIPE).stdout
61495c2be378f81fc9165b29a0c12c8d1b6c5d6c
3,653,200
def _EnumValFromText(fdesc, enum_text_val, log): """Convert text version of enum to integer value. Args: fdesc: field descriptor containing the text -> int mapping. enum_text_val: text to convert. log: logger obj Returns: integer value of enum text. """ log.debug("converting enum val:" + enum_text_val) log.debug("possible enum vals:" + str(fdesc.enum_type.values_by_name.keys())) enum_val = fdesc.enum_type.values_by_name[enum_text_val.upper()].number log.debug("done enum vals") return enum_val
af923a2cf65a81914ebeab85de779f1502a2d943
3,653,201
def accuracy(output, target, topk=(1,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) # print('correct shape:', correct.shape) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) if len(res) == 1: return res[0] else: return (res[0], res[1], correct[0], pred[0])
a5b2c3d97c839e0ae9954ce48889d5b46966b3cb
3,653,202
def yyyydoy2jd(year,doy,hh=0,mm=0,ss=0.0): """ yyyydoy2jd Take a year, day-of-year, etc and convert it into a julian day Usage: jd = yyyydoy2jd(year,doy,hh,mm,ss) Input: year - 4 digit integer doy - 3 digit, or less integer, (1 <= doy <= 366) hh - 2 digit, or less int, (0 <= hh < 24) (not required) mm - 2 digit, or less int,(0 <= ss < 60) (not required) ss - float (not required) Output: 'jd' (float) """ # # need to split seconds into two components # sec => 2 digit, or less int, (0 <= ss < 60) # ms => int 0 <= ms < 1,000,000 # ms,sec = modf(float(ss)) ms = ms * 10e5 dto = dt.datetime(int(year),01,01,int(hh),int(mm),int(sec),int(ms)) dto = dto + dt.timedelta(days=(int(doy) - 1)) mn = dto.month dy = dto.day jd = cal2jd(int(year),int(mn),int(dy)) jd = jd + float(hh)/24. + float(mm)/60./24. + float(sec)/3600./24. return jd - 2400000.5
7e0579197146435d4c3e5031de962b758555846f
3,653,203
def lon2index(lon, coords, corr=True): """convert longitude to index for OpenDAP request""" if corr: if lon < 0: lon += 360 lons = coords.lon.values return np.argmin(np.abs(lons - lon))
3fd3571ab221533708c32c9e28293a90ee9f30cd
3,653,204
def get_dynamic_call_address(ea): """Find all dynamic calls e.g call eax""" dism_addr_list = list(FuncItems(ea)) return [addr for addr in dism_addr_list if print_insn_mnem(addr) == 'call' and get_operand_type(addr, 0)==1]
1f4d0eb3bcfdf0728d12efdfd151246f0497c8dd
3,653,205
def iwbo_nats(model, x, k, kbs=None): """Compute the IWBO in nats.""" if kbs: return - iwbo_batched(model, x, k, kbs).mean() else: return - iwbo(model, x, k).mean()
5620e60710e6c25804d66f4c668f4670e033fdbe
3,653,206
def ko_json(queryset, field_names=None, name=None, safe=False): """ Given a QuerySet, return just the serialized representation based on the knockout_fields. Useful for middleware/APIs. Convenience method around ko_data. """ return ko_data(queryset, field_names, name, safe, return_json=True)
25d3b433ffec6eb4e6bb8c0d39a9080692dee4f2
3,653,207
def map(video_features_path, audio_hypothesis, file_uri, ier=False): """Maps outputs of pyannote.audio and pyannote.video models Parameters: ----------- video_features_path: str Path to the video features (.npy) file as defined in pyannote.video audio_hypothesis: Annotation hypothesis made by the audio model file_uri: str uri of the file you're interested in (used to filter out audio_hypothesis) ier: bool If True, the mapping will be done using `optimal_mapping_ier` which may map the same label to several clusters in order to minimize IER If False (default), pyannote.metrics `optimal_mapping` will be used. """ clustering = FaceClustering() #TODO : move the preprocess (i.e. npy to pyannote) to some other place ? face_id, _ = clustering.model.preprocess(video_features_path,CLUSTERING_THRESHOLD) if ier: optimal_mapping=optimal_mapping_ier(face_id, audio_hypothesis) else: der=DiarizationErrorRate() optimal_mapping=der.optimal_mapping(face_id, audio_hypothesis) mapped_hypothesis=audio_hypothesis.rename_labels(mapping=optimal_mapping) return mapped_hypothesis, face_id
1dbccac4e27378d92f03503e6e672937bde958da
3,653,208
def delete_demo(guid): """ Delete a demo object and all its children. :param guid: The demo's guid :return: """ web_utils.check_null_input((guid, 'demo to delete')) demo_service.delete_demo_by_guid(guid) return '', 204
eb0a205e4279003a99159b2aeb4b8caefd47c2be
3,653,209
def return_json(): """ Sample function that has been given a different name """ print("Tooler should render out the JSON value returned") return {"one": 1, "deep": {"structure": ["example"]}}
bf28fab61cabfc3a4f30736e58490d5df6702dc2
3,653,210
def get(url) -> str: """Send an http GET request. :param str url: The URL to perform the GET request for. :rtype: str :returns: UTF-8 encoded string of response """ return _execute_request(url).read().decode("utf-8")
2f0b6ed542f75f83478f672ef1f39f192dddbf66
3,653,211
import logging import random def brute_force(durs, labels, labelset, train_dur, val_dur, test_dur, max_iter=5000): """finds indices that split (labels, durations) tuples into training, test, and validation sets of specified durations, with the set of unique labels in each dataset equal to the specified labelset. The durations of the datasets created using the returned indices will be *greater than* or equal to the durations specified. Must specify a positive value for one of {train_dur, test_dur}. The other value can be specified as '-1' which is interpreted as "use the remainder of the dataset for this split, after finding indices for the set with a specified duration". Parameters ---------- durs : list of durations of vocalizations labels : list of labels from vocalizations labelset : set of labels train_dur : int, float Target duration for training set, in seconds. val_dur : int, float Target duration for validation set, in seconds. test_dur : int, float Target duration for test set, in seconds. max_iter : int maximum number of iterations to attempt to find indices. Default is 5000. Returns ------- train_inds, val_inds, test_inds : list of int, the indices that will split datasets Notes ----- A 'brute force' algorithm that just randomly assigns indices to a set, and iterates until it finds some partition where each set has instances of all classes of label. Starts by ensuring that each label is represented in each set and then adds files to reach the required durations. """ logger = logging.getLogger(__name__) logger.setLevel("INFO") sum_durs = sum(durs) train_dur, val_dur, test_dur = validate_split_durations( train_dur, val_dur, test_dur, sum_durs ) target_split_durs = dict( zip(("train", "val", "test"), (train_dur, val_dur, test_dur)) ) if not len(durs) == len(labels): raise ValueError( "length of list of durations did not equal length of list of labels; " "should be same length since " "each duration of a vocalization corresponds to the labels from its annotations.\n" f"Length of durations: {len(durs)}. Length of labels: {len(labels)}" ) iter = 1 all_labels_err = ( "Did not successfully divide data into training, " "validation, and test sets of sufficient duration " f"after {max_iter} iterations. " "Try increasing the total size of the data set." ) # ---- outer loop that repeats until we successfully split our reach max number of iters --------------------------- while 1: # list of indices we use to index into both `durs` and `labels` durs_labels_inds = list( range(len(labels)) ) # we checked len(labels) == len(durs) above # when making `split_inds`, "initialize" the dict with all split names, by using target_split_durs # so we don't get an error when indexing into dict in return statement below split_inds = {split_name: [] for split_name in target_split_durs.keys()} total_split_durs = {split_name: 0 for split_name in target_split_durs.keys()} split_labelsets = {split_name: set() for split_name in target_split_durs.keys()} # list of split 'choices' we use when randomly adding indices to splits choice = [] for split_name in target_split_durs.keys(): if target_split_durs[split_name] > 0 or target_split_durs[split_name] == -1: choice.append(split_name) # ---- make sure each split has at least one instance of each label -------------------------------------------- for label_from_labelset in sorted(labelset): label_inds = [ ind for ind in durs_labels_inds if label_from_labelset in labels[ind] ] random.shuffle(label_inds) for split_name in target_split_durs.keys(): if ( target_split_durs[split_name] > 0 or target_split_durs[split_name] == -1 ) and label_from_labelset not in split_labelsets[split_name]: try: ind = label_inds.pop() split_inds[split_name].append(ind) total_split_durs[split_name] += durs[ind] split_labelsets[split_name] = split_labelsets[split_name].union( set(labels[ind]) ) durs_labels_inds.remove(ind) except IndexError: if len(label_inds) == 0: logger.debug( "Ran out of elements while dividing dataset into subsets of specified durations." f"Iteration {iter}" ) iter += 1 break # do next iteration else: # something else happened, re-raise error raise for split_name in target_split_durs.keys(): if ( target_split_durs[split_name] > 0 and total_split_durs[split_name] >= target_split_durs[split_name] ): choice.remove(split_name) if len(choice) == 0: finished = True else: finished = False # ---- inner loop that actually does split --------------------------------------------------------------------- random.shuffle(durs_labels_inds) while finished is False: # pop durations off list and append to randomly-chosen # list, either train, val, or test set. # Do this until the total duration for each data set is equal # to or greater than the target duration for each set. try: ind = durs_labels_inds.pop() except IndexError: if len(durs_labels_inds) == 0: logger.debug( "Ran out of elements while dividing dataset into subsets of specified durations." f"Iteration {iter}" ) iter += 1 break # do next iteration else: # something else happened, re-raise error raise which_set = random.randint(0, len(choice) - 1) split_name = choice[which_set] split_inds[split_name].append(ind) total_split_durs[split_name] += durs[ind] if ( target_split_durs[split_name] > 0 and total_split_durs[split_name] >= target_split_durs[split_name] ): choice.remove(split_name) elif target_split_durs[split_name] == -1: # if this split is -1 and other split is already "finished" if (split_name == "test" and "train" not in choice) or ( split_name == "train" and "test" not in choice ): # just add all remaining inds to this split split_inds[split_name].extend(durs_labels_inds) choice.remove(split_name) if len(choice) < 1: # list is empty, we popped off all the choices for split_name in target_split_durs.keys(): if target_split_durs[split_name] > 0: if total_split_durs[split_name] < target_split_durs[split_name]: raise ValueError( "Loop to find splits completed, " f"but total duration of '{split_name}' split, " f"{total_split_durs[split_name]} seconds, " f"is less than target duration specified: {target_split_durs[split_name]} seconds." ) else: finished = True break if iter > max_iter: raise ValueError( "Could not find subsets of sufficient duration in " f"less than {max_iter} iterations." ) # make sure that each split contains all unique labels in labelset if finished is True: for split_name in target_split_durs.keys(): if ( target_split_durs[split_name] > 0 or target_split_durs[split_name] == -1 ): split_labels = [ label for ind in split_inds[split_name] for label in labels[ind] ] split_labelset = set(split_labels) if split_labelset != set(labelset): iter += 1 if iter > max_iter: raise ValueError(all_labels_err) else: logger.debug( f"Set of unique labels in '{split_name}' split did not equal specified labelset. " f"Getting new '{split_name}' split. Iteration: {iter}" ) continue # successfully split break elif finished is False: continue split_inds = { split_name: (inds if inds else None) for split_name, inds in split_inds.items() } return split_inds["train"], split_inds["val"], split_inds["test"]
553463746d6c330c833189f070bd66b0c748f75a
3,653,212
from typing import Optional from typing import Dict import os def VOLUME(env: Optional[Dict] = None) -> Dict: """Get specification for the volume that is associated with the worker that is used to execute the main algorithm step. Parameters ---------- env: dict, default=None Optional environment variables that override the system-wide settings, default=None Returns ------- dict """ return read_config_obj(var=METANOME_VOLUME, env=env if env is not None else os.environ)
2ae5d5e6b0f9eb2800498ce9734f0f45dc368be3
3,653,213
def train_step(model_optimizer, game_board_log, predicted_action_log, action_result_log): """Run one training step.""" def loss_fn(model_params): logits = PolicyGradient().apply({'params': model_params}, game_board_log) loss = compute_loss(logits, predicted_action_log, action_result_log) return loss grad_fn = jax.grad(loss_fn) grads = grad_fn(model_optimizer.target) model_optimizer = model_optimizer.apply_gradient(grads) return model_optimizer
628742cb6d2fe19d25b5e283c7bec6f5189fc7b5
3,653,214
def make_static_rnn_with_control_flow_v2_tests(options): """Make a set of tests to do basic Lstm cell.""" test_parameters = [ { "dtype": [tf.float32], "num_batches": [4], "time_step_size": [4], "input_vec_size": [3], "num_cells": [4], "use_sequence_length": [True, False], }, ] def build_graph(parameters): """Build a simple graph with BasicLSTMCell.""" num_batches = parameters["num_batches"] time_step_size = parameters["time_step_size"] input_vec_size = parameters["input_vec_size"] num_cells = parameters["num_cells"] inputs_after_split = [] for i in range(time_step_size): one_timestamp_input = tf.placeholder( dtype=parameters["dtype"], name="split_{}".format(i), shape=[num_batches, input_vec_size]) inputs_after_split.append(one_timestamp_input) lstm_cell = tf.nn.rnn_cell.BasicLSTMCell( num_cells, activation=tf.nn.relu, state_is_tuple=True) sequence_length = None if parameters["use_sequence_length"]: # Using different sequence length in each bach, like [1, 2, 3, 3...]. sequence_length = [ min(i + 1, time_step_size) for i in range(num_batches) ] cell_outputs, _ = rnn.static_rnn( lstm_cell, inputs_after_split, dtype=tf.float32, sequence_length=sequence_length) out = cell_outputs[-1] return inputs_after_split, [out] def build_inputs(parameters, sess, inputs, outputs): """Feed inputs, assign variables, and freeze graph.""" with tf.variable_scope("", reuse=True): kernel = tf.get_variable("rnn/basic_lstm_cell/kernel") bias = tf.get_variable("rnn/basic_lstm_cell/bias") kernel_values = create_tensor_data(parameters["dtype"], [kernel.shape[0], kernel.shape[1]], -1, 1) bias_values = create_tensor_data(parameters["dtype"], [bias.shape[0]], 0, 1) sess.run(tf.group(kernel.assign(kernel_values), bias.assign(bias_values))) num_batches = parameters["num_batches"] time_step_size = parameters["time_step_size"] input_vec_size = parameters["input_vec_size"] input_values = [] for _ in range(time_step_size): tensor_data = create_tensor_data(parameters["dtype"], [num_batches, input_vec_size], 0, 1) input_values.append(tensor_data) out = sess.run(outputs, feed_dict=dict(zip(inputs, input_values))) return input_values, out make_zip_of_tests( options, test_parameters, build_graph, build_inputs, use_frozen_graph=True)
aa29c5eddab46624c36be29ee9ce1e6a83efbd7a
3,653,215
def jaccard(structured_phrases, phrases_to_score, partial=False, status_callback=None, status_increment=None, pmd_class=PartialMatchDict): """ calculate jaccard similarity between phrases_to_score, using structured_phrases to determine cooccurrences. For phrases `a' and `b', let A be the set of documents `a' appeared in, and B be the set of documents `b' appeared in. Then the Jaccard similarity of `a' and `b' is Similarity value of two phrases is |A intersect B| / |A union B|. Setting partial to true allows partial phrase matching: two phrases are the same if they have any common subsequence of words. Very slow. """ # indicies will index into our union and intersection arrays phrases = {} if partial: indices = pmd_class() else: indices = {} for i, phrase in enumerate(phrases_to_score): indices[phrase] = i phrases[i] = phrase N = len(phrases_to_score) phrase_count = np.zeros(N) if partial: intersection = np.zeros((N, N), dtype=np.uint32) else: intersection = dok_matrix((N, N), dtype=np.uint32) count = 0 if status_callback and not status_increment: length = len(structured_phrases) status_increment = length / 100 # take each document for doc_phrases in structured_phrases: if status_callback and status_increment > 0 and count % status_increment == 0: try: status_callback(status_format(float(count) / length)) except: status_callback("%d processed" % count) count += 1 # take all phrases within this document for i in range(len(doc_phrases)): np1 = tuple(doc_phrases[i]) if np1 in indices: # this phrase is important enough to count if partial: matches1 = indices[np1] else: matches1 = set() matches1.add(indices[np1]) for index1 in matches1: phrase_count[index1] += 1 for k in range(i + 1, len(doc_phrases)): np2 = tuple(doc_phrases[k]) if np2 in indices: # this np is important enough to count if partial: matches2 = indices[np2] else: matches2 = set() matches2.add(indices[np2]) for index1 in matches1: for index2 in matches2: if index2 != index1: intersection[index1,index2] += 1 intersection[index2,index1] += 1 # use inclusion exclusion if partial: tiled_phrase_count = np.lib.stride_tricks.as_strided(phrase_count, (N, phrase_count.size), (0, phrase_count.itemsize)) union = tiled_phrase_count + tiled_phrase_count.T - intersection jaccard = intersection / union else: jaccard = dok_matrix((N, N)) for coords, intersection_count in intersection.iteritems(): jaccard[coords] = intersection_count / (phrase_count[coords[0]] + phrase_count[coords[1]] - intersection_count) jaccard = np.asarray(jaccard.todense()) return jaccard, phrases
c7af246028f59b2375974390f337063d740d2f53
3,653,216
import ast def print_python(node: AST) -> str: """Takes an AST and produces a string containing a human-readable Python expression that builds the AST node.""" return black.format_str(ast.dump(node), mode=black.FileMode())
06281c4622d2b13008c17763bb59f93dfc44527c
3,653,217
def reg2deg(reg): """ Converts phase register values into degrees. :param cycles: Re-formatted number of degrees :type cycles: int :return: Number of degrees :rtype: float """ return reg*360/2**32
c7dbd6119ad3bce9261fb3d78a369251ade2d8af
3,653,218
from typing import Union def flag_element(uid: int, reason: Union[key_duplicate, key_optimization, ReviewDeleteReasons], db_user: User, is_argument: bool, ui_locales: str, extra_uid=None) -> dict: """ Flags an given argument based on the reason which was sent by the author. This argument will be enqueued for a review process. :param uid: Uid of the argument/statement, which should be flagged :param reason: String which describes the reason :param db_user: User :param is_argument: Boolean :param ui_locales: ui_locales :param extra_uid: Uid of the argument/statement, which should be flagged :return: success, info, error """ tn = Translator(ui_locales) argument_uid = uid if is_argument else None statement_uid = uid if not is_argument else None # was this already flagged? flag_status = QueueAdapter(db_user=db_user).element_in_queue(argument_uid=argument_uid, statement_uid=statement_uid, premisegroup_uid=None) if flag_status: LOG.debug("Already flagged by %s", flag_status) if flag_status == FlaggedBy.user: info = tn.get(_.alreadyFlaggedByYou) else: info = tn.get(_.alreadyFlaggedByOthers) return {'success': '', 'info': info} return __add_flag(reason, argument_uid, statement_uid, extra_uid, db_user, tn)
d36a36e4d4f106e6a072884da3588bad0642302b
3,653,219
import os def export_bioimageio_model(checkpoint, export_folder, input_data=None, dependencies=None, name=None, description=None, authors=None, tags=None, license=None, documentation=None, covers=None, git_repo=None, cite=None, input_optional_parameters=True, model_postprocessing=None, for_deepimagej=False, links=[], maintainers=None, checkpoint_name="best", config={}): """ """ assert input_data is not None # load trainer and model trainer = get_trainer(checkpoint, name=checkpoint_name, device="cpu") model, model_kwargs = _get_model(trainer, model_postprocessing) # create the weights os.makedirs(export_folder, exist_ok=True) weight_path = _write_weights(model, export_folder) # create the test input/output file and derive the tensor kwargs from the model and its kwargs test_in_paths, test_out_paths = _write_data(input_data, model, trainer, export_folder) tensor_kwargs = _get_tensor_kwargs(model, model_kwargs, test_in_paths, test_out_paths) # create the model source file source = _write_source(model, export_folder) # create dependency file _write_depedencies(export_folder, dependencies) # get the additional kwargs kwargs = _get_kwargs(trainer, name, description, authors, tags, license, documentation, git_repo, cite, maintainers, export_folder, input_optional_parameters) kwargs.update(tensor_kwargs) preprocessing = _get_preprocessing(trainer) # the apps to link with this model, by default ilastik links.append("ilastik/ilastik") kwargs.update({"links": links, "config": config}) zip_path = os.path.join(export_folder, f"{name}.zip") # change the working directory to the export_folder to avoid issues with relative paths cwd = os.getcwd() os.chdir(export_folder) try: build_spec.build_model( weight_uri=weight_path, weight_type="pytorch_state_dict", test_inputs=[f"./{os.path.split(test_in)[1]}" for test_in in test_in_paths], test_outputs=[f"./{os.path.split(test_out)[1]}" for test_out in test_out_paths], root=".", output_path=f"{name}.zip", dependencies="environment.yaml", preprocessing=preprocessing, architecture=source, model_kwargs=model_kwargs, add_deepimagej_config=for_deepimagej, **kwargs ) except Exception as e: raise e finally: os.chdir(cwd) # load and validate the model rdf_path = os.path.join(export_folder, "rdf.yaml") _extract_from_zip(zip_path, rdf_path, "rdf.yaml") val_success = _validate_model(rdf_path) if val_success: print(f"The model was successfully exported to '{export_folder}'.") else: warn(f"Validation of the bioimageio model exported to '{export_folder}' has failed. " + "You can use this model, but it will probably yield incorrect results.") return val_success
8dbbbe8fea06f98566c46e3eba810dbfcbcdec88
3,653,220
import pathlib def load_config_at_path(path: Pathy) -> Dynaconf: """Load config at exact path Args: path: path to config file Returns: dict: config dict """ path = pathlib.Path(path) if path.exists() and path.is_file(): options = DYNACONF_OPTIONS.copy() options.update({ 'root_path': str(path.parent), 'settings_file': str(path.name), }) return Dynaconf(**options) else: raise ConfigurationError( f'Couldn\'t find ballet.yml config file at {path!s}')
da5cc4b830ad3a50ec6713bb509d3db0862963bf
3,653,221
def _build_target(action, original_target, plugin, context): """Augment dictionary of target attributes for policy engine. This routine adds to the dictionary attributes belonging to the "parent" resource of the targeted one. """ target = original_target.copy() resource, _w = _get_resource_and_action(action) hierarchy_info = attributes.RESOURCE_HIERARCHY_MAP.get(resource, None) if hierarchy_info and plugin: # use the 'singular' version of the resource name parent_resource = hierarchy_info['parent'][:-1] parent_id = hierarchy_info['identified_by'] f = getattr(plugin, 'get_%s' % parent_resource) # f *must* exist, if not found it is better to let quantum explode # Note: we do not use admin context data = f(context, target[parent_id], fields=['tenant_id']) target['%s_tenant_id' % parent_resource] = data['tenant_id'] return target
e3c62944d7083ee96ad510fff0807db50aed9602
3,653,222
async def async_setup_entry(opp: OpenPeerPower, entry: ConfigEntry): """Configure Gammu state machine.""" device = entry.data[CONF_DEVICE] config = {"Device": device, "Connection": "at"} gateway = await create_sms_gateway(config, opp) if not gateway: return False opp.data[DOMAIN][SMS_GATEWAY] = gateway opp.config_entries.async_setup_platforms(entry, PLATFORMS) return True
c0a14f2a92d06e814728ff0ceed05bff17acb66a
3,653,223
def grep_response_body(regex_name, regex, owtf_transaction): """Grep response body :param regex_name: Regex name :type regex_name: `str` :param regex: Regex :type regex: :param owtf_transaction: OWTF transaction :type owtf_transaction: :return: Output :rtype: `dict` """ return grep(regex_name, regex, owtf_transaction.get_raw_response_body)
b5e9899675a63fe9ede9a9cf612b2004d52bb364
3,653,224
def link(f, search_range, pos_columns=None, t_column='frame', verbose=True, **kwargs): """ link(f, search_range, pos_columns=None, t_column='frame', memory=0, predictor=None, adaptive_stop=None, adaptive_step=0.95, neighbor_strategy=None, link_strategy=None, dist_func=None, to_eucl=None) Link a DataFrame of coordinates into trajectories. Parameters ---------- f : DataFrame The DataFrame must include any number of column(s) for position and a column of frame numbers. By default, 'x' and 'y' are expected for position, and 'frame' is expected for frame number. See below for options to use custom column names. search_range : float or tuple the maximum distance features can move between frames, optionally per dimension pos_columns : list of str, optional Default is ['y', 'x'], or ['z', 'y', 'x'] when 'z' is present in f t_column : str, optional Default is 'frame' memory : integer, optional the maximum number of frames during which a feature can vanish, then reappear nearby, and be considered the same particle. 0 by default. predictor : function, optional Improve performance by guessing where a particle will be in the next frame. For examples of how this works, see the "predict" module. adaptive_stop : float, optional If not None, when encountering an oversize subnet, retry by progressively reducing search_range until the subnet is solvable. If search_range becomes <= adaptive_stop, give up and raise a SubnetOversizeException. adaptive_step : float, optional Reduce search_range by multiplying it by this factor. neighbor_strategy : {'KDTree', 'BTree'} algorithm used to identify nearby features. Default 'KDTree'. link_strategy : {'recursive', 'nonrecursive', 'numba', 'hybrid', 'drop', 'auto'} algorithm used to resolve subnetworks of nearby particles 'auto' uses hybrid (numba+recursive) if available 'drop' causes particles in subnetworks to go unlinked dist_func : function, optional a custom distance function that takes two 1D arrays of coordinates and returns a float. Must be used with the 'BTree' neighbor_strategy. to_eucl : function, optional function that transforms a N x ndim array of positions into coordinates in Euclidean space. Useful for instance to link by Euclidean distance starting from radial coordinates. If search_range is anisotropic, this parameter cannot be used. Returns ------- DataFrame with added column 'particle' containing trajectory labels. The t_column (by default: 'frame') will be coerced to integer. See also -------- link_iter Notes ----- This is an implementation of the Crocker-Grier linking algorithm. [1]_ References ---------- .. [1] Crocker, J.C., Grier, D.G. http://dx.doi.org/10.1006/jcis.1996.0217 """ if pos_columns is None: pos_columns = guess_pos_columns(f) # copy the dataframe f = f.copy() # coerce t_column to integer type if not np.issubdtype(f[t_column].dtype, np.integer): f[t_column] = f[t_column].astype(np.integer) # sort on the t_column pandas_sort(f, t_column, inplace=True) coords_iter = coords_from_df(f, pos_columns, t_column) ids = [] for i, _ids in link_iter(coords_iter, search_range, verbose=verbose, **kwargs): ids.extend(_ids) f['particle'] = ids return f
425f7ffe9bcda4700bc77e74c2e956f27f22d521
3,653,225
def get_classifier(opt, input_dim): """ Return a tuple with the ML classifier to be used and its hyperparameter options (in dict format).""" if opt == 'RF': ml_algo = RandomForestClassifier hyperparams = { 'n_estimators': [100], 'max_depth': [None, 10, 30, 50, 100], 'min_samples_split': [2, 10, 50, 100], 'random_state': [42], 'n_jobs': [-1], } elif opt == 'GBDT': ml_algo = LGBMClassifier hyperparams = { 'boosting_type': ['gbdt'], 'n_estimators': [100], 'max_depth': [-1, 10, 30, 50, 100], 'num_leaves': [2, 3, 5, 10, 50], 'learning_rate': [0.001, 0.01, 0.1], 'class_weight': [None, 'balanced'], 'random_state': [42], 'n_jobs': [-1], } elif opt == 'LR': ml_algo = LogisticRegression hyperparams = { 'solver': ['newton-cg', 'lbfgs', 'saga'], 'C': [0.0001, 0.001, 0.01], 'class_weight': [None, 'balanced'], 'random_state': [42], 'n_jobs': [-1], } elif opt == 'GNB': ml_algo = GaussianNB hyperparams = { 'var_smoothing': [10**-i for i in range(2, 15)], } elif opt == 'SVM': ml_algo = SVC hyperparams = { 'probability': [True], 'C': [0.01, 0.1, 1, 10], 'gamma': [0.001, 0.01, 0.1, 1], } elif opt == 'NN': ml_algo = KerasClassifier(get_nn_model(input_dim), epochs=30, verbose=0) hyperparams = {} else: raise ValueError(f'{opt} is an invalid classifier name.') return ml_algo, hyperparams
a522cab05958023dd4239e4ec2b136d2510aec1b
3,653,226
def list_spiders_endpoint(): """It returns a list of spiders available in the SPIDER_SETTINGS dict .. version 0.4.0: endpoint returns the spidername and endpoint to run the spider from """ spiders = {} for item in app.config['SPIDER_SETTINGS']: spiders[item['endpoint']] = 'URL: ' + request.url_root + 'run-spider/' + item['endpoint'] return jsonify(endpoints=spiders)
71e7448a621565b540c8ade1dae04d8ef88d5fd2
3,653,227
def plot3dOnFigure(ax, pixels, colors_rgb,axis_labels=list("RGB"), axis_limits=((0, 255), (0, 255), (0, 255))): """Plot pixels in 3D.""" # Set axis limits ax.set_xlim(*axis_limits[0]) ax.set_ylim(*axis_limits[1]) ax.set_zlim(*axis_limits[2]) # Set axis labels and sizes ax.tick_params(axis='both', which='major', labelsize=14, pad=8) ax.set_xlabel(axis_labels[0], fontsize=16, labelpad=16) ax.set_ylabel(axis_labels[1], fontsize=16, labelpad=16) ax.set_zlabel(axis_labels[2], fontsize=16, labelpad=16) # Plot pixel values with colors given in colors_rgb ax.scatter( pixels[:, :, 0].ravel(), pixels[:, :, 1].ravel(), pixels[:, :, 2].ravel(), c=colors_rgb.reshape((-1, 3)), edgecolors='none') return ax
067219abba7f77f7c4fbb4404ff16a3f5192f7cd
3,653,228
from typing import Optional from typing import Dict from typing import Any def _get_slice_predictions( model: ModelBridge, param_name: str, metric_name: str, generator_runs_dict: TNullableGeneratorRunsDict = None, relative: bool = False, density: int = 50, slice_values: Optional[Dict[str, Any]] = None, fixed_features: Optional[ObservationFeatures] = None, trial_index: Optional[int] = None, ) -> SlicePredictions: """Computes slice prediction configuration values for a single metric name. Args: model: ModelBridge that contains model for predictions param_name: Name of parameter that will be sliced metric_name: Name of metric to plot generator_runs_dict: A dictionary {name: generator run} of generator runs whose arms will be plotted, if they lie in the slice. relative: Predictions relative to status quo density: Number of points along slice to evaluate predictions. slice_values: A dictionary {name: val} for the fixed values of the other parameters. If not provided, then the status quo values will be used if there is a status quo, otherwise the mean of numeric parameters or the mode of choice parameters. Ignored if fixed_features is specified. fixed_features: An ObservationFeatures object containing the values of features (including non-parameter features like context) to be set in the slice. Returns: Configruation values for AxPlotConfig. """ if generator_runs_dict is None: generator_runs_dict = {} parameter = get_range_parameter(model, param_name) grid = get_grid_for_parameter(parameter, density) plot_data, raw_data, cond_name_to_parameters = get_plot_data( model=model, generator_runs_dict=generator_runs_dict, metric_names={metric_name}, fixed_features=fixed_features, ) if fixed_features is not None: slice_values = fixed_features.parameters else: fixed_features = ObservationFeatures(parameters={}) fixed_values = get_fixed_values(model, slice_values, trial_index) prediction_features = [] for x in grid: predf = deepcopy(fixed_features) predf.parameters = fixed_values.copy() predf.parameters[param_name] = x prediction_features.append(predf) f, cov = model.predict(prediction_features) f_plt = f[metric_name] sd_plt = np.sqrt(cov[metric_name][metric_name]) # pyre-fixme[7]: Expected `Tuple[PlotData, List[Dict[str, Union[float, str]]], # List[float], np.ndarray, np.ndarray, str, str, bool, Dict[str, Union[None, bool, # float, int, str]], np.ndarray, bool]` but got `Tuple[PlotData, Dict[str, # Dict[str, Union[None, bool, float, int, str]]], List[float], List[Dict[str, # Union[float, str]]], np.ndarray, str, str, bool, Dict[str, Union[None, bool, # float, int, str]], typing.Any, bool]`. return ( plot_data, cond_name_to_parameters, f_plt, raw_data, grid, metric_name, param_name, relative, fixed_values, sd_plt, parameter.log_scale, )
2c985b824b298ddaa29b44574b8399ad07746997
3,653,229
import numpy def ellipse(a, b, center=(0.0, 0.0), num=50): """Return the coordinates of an ellipse. Parameters ---------- a : float The semi-major axis of the ellipse. b : float The semi-minor axis of the ellipse. center : 2-tuple of floats, optional The position of the center of the ellipse; default: (0.0, 0.0) num : integer, optional The number of points on the upper side of the ellipse. The number includes the leading and trailing edges. Thus, the total number of points will be 2 * (num - 1); default: 50. Returns ------- x : numpy.ndarray The x-coordinates of the ellipse as a 1D array of floats. y: numpy.ndarray The y-coordinates of the ellipse as a 1D array of floats. """ xc, yc = center x_upper = numpy.linspace(xc + a, xc - a, num=num) y_upper = b / a * numpy.sqrt(a**2 - x_upper**2) x_lower = numpy.linspace(xc - a, xc + a, num=num)[1:-1] y_lower = -b / a * numpy.sqrt(a**2 - x_lower**2) x = numpy.concatenate((x_upper, x_lower)) y = numpy.concatenate((y_upper, y_lower)) return x, y
bd4d4663981a0431e40b20d38cc48a7f2476c13b
3,653,230
from typing import List import os import shutil def _copy_inputs(test_inputs: List[str], project_path: str) -> bool: """Copies all the test files into the test project directory.""" # The files are assumed to reside in the repo's 'data' directory. print(f'# Copying inputs (from "${{PWD}}/{_DATA_DIRECTORY}")...') expected_prefix: str = f"{_DATA_DIRECTORY}/" for test_input in test_inputs: print(f"# + {test_input}") if not test_input.startswith(expected_prefix): print("! FAILURE") print(f'! Input file {test_input} must start with "{expected_prefix}"') return False if not os.path.isfile(test_input): print("! FAILURE") print(f"! Missing input file {test_input} ({test_input})") return False # Looks OK, copy it shutil.copy(test_input, project_path) print("# Copied") return True
b801c4a7f42b16b8e6428aaf0889df906d3692a2
3,653,231
import os def pinghost(host): """ Ping target with a 1-second timeout limit :param str host: Destination to reach. IP address or domain name :returns: True if reached, otherwise False """ host = str(host).split(':')[0] # leave off the port if exists # print "Pinging" if os.name == 'posix': target = "ping -W1 -c 1 " + host + " > /dev/null 2>&1 " else: target = "ping " + host + " -w 1000 -n 1 > nul 2>&1" response = os.system(target) # Note:original response is 1 for fail; 0 for success; so we flip it return not response
f0e6d84edf1093580159d08359bfd61adeb3b987
3,653,232
from typing import List def get_trade_factors(name: str, mp: float, allow_zero: bool, long_open_values: List, long_close_values: List, short_open_values: List = None, short_close_values: List = None) -> dict: """获取指定 name 下的交易因子 :param allow_zero: 是否使用基础型 :param name: 因子系统的名称 :param mp: 单个标的最大允许持仓,小于0表示仓位百分比,大于0表示手数 :param long_open_values: 开多因子值 :param long_close_values: 平多因子值 :param short_open_values: 开空因子值 :param short_close_values: 平空因子值 :return: 因子交易系统 example: =================== >>> factors = get_trade_factors(name="日线笔结束", long_open_values=['BDE'], long_close_values=['BUE']) """ if not short_close_values: short_close_values = [] if not short_open_values: short_open_values = [] def __is_match(v, x): if allow_zero: if v in x.name: return 1 else: return 0 else: if v in x.name and "0" not in x.name: return 1 else: return 0 long_open_factors = ["{}@{}".format(name, x.value) for x in Factors.__members__.values() if sum([__is_match(v, x) for v in long_open_values]) > 0] long_close_factors = ["{}@{}".format(name, x.value) for x in Factors.__members__.values() if sum([__is_match(v, x) for v in long_close_values]) > 0] short_open_factors = ["{}@{}".format(name, x.value) for x in Factors.__members__.values() if sum([__is_match(v, x) for v in short_open_values]) > 0] short_close_factors = ["{}@{}".format(name, x.value) for x in Factors.__members__.values() if sum([__is_match(v, x) for v in short_close_values]) > 0] factors_ = { "name": name, "version": factors_all[name].__name__, "mp": mp, "long_open_factors": long_open_factors, "long_close_factors": long_close_factors, "short_open_factors": short_open_factors, "short_close_factors": short_close_factors, } return factors_
14a7a8c0968e85f996e9c1e8f473be142c66759b
3,653,233
def mbstrlen(src): """Return the 'src' string (Multibytes ASCII string) length. :param src: the source string """ try: return len(src.decode("utf8", errors = "replace")) except Exception, err: LOG.error("String convert issue %s", err) return len(src)
8b2f64b2791eebf898d3bf8104d93d86dcdd53a3
3,653,234
def adapted_border_postprocessing(border_prediction, cell_prediction): """ :param border_prediction: :param cell_prediction: :return: """ prediction_border_bin = np.argmax(border_prediction, axis=-1) cell_prediction = cell_prediction > 0.5 seeds = border_prediction[:, :, 1] * (1 - border_prediction[:, :, 2]) > 0.5 # Substract borders from cell seed seeds = measure.label(seeds, background=0) prediction_instance = watershed(image=cell_prediction, markers=seeds, mask=cell_prediction, watershed_line=False, ) prediction_instance = measure.label(prediction_instance, background=0) colors = get_colors() prediction_instance_rgb = label2rgb(prediction_instance, colors=colors, kind='overlay', bg_label=0) prediction_instance = np.expand_dims(prediction_instance, axis=-1) prediction_border_bin = np.expand_dims(prediction_border_bin, axis=-1) return prediction_instance.astype(np.uint16), prediction_instance_rgb.astype(np.uint8), prediction_border_bin.astype(np.uint8)
4e74c1a71fb5c5f90d54735fa3af241461b48ebb
3,653,235
def calc_bonding_volume(rc_klab, dij_bar, rd_klab=None, reduction_ratio=0.25): """ Calculate the association site bonding volume matrix Dimensions of (ncomp, ncomp, nbeads, nbeads, nsite, nsite) Parameters ---------- rc_klab : numpy.ndarray This matrix of cutoff distances for association sites for each site type in each group type dij_bar : numpy.ndarray Component averaged hard sphere diameter rd_klab : numpy.ndarray, Optional, default=None Position of association site in each group (nbead, nbead, nsite, nsite) reduction_ratio : float, Optional, default=0.25 Reduced distance of the sites from the center of the sphere of interaction. This value is used when site position, rd_klab is None Returns ------- Kijklab : numpy.ndarray Matrix of binding volumes """ ncomp = len(dij_bar) nbead, _, nsite, _ = np.shape(rc_klab) Kijklab = np.zeros((ncomp, ncomp, nbead, nbead, nsite, nsite)) for i in range(ncomp): for j in range(ncomp): for k in range(nbead): for l in range(nbead): for a in range(nsite): for b in range(nsite): if rc_klab[k, l, a, b] != 0: if rd_klab == None: rd = reduction_ratio * dij_bar[i, j] else: rd = rd_klab[k, l, a, b] tmp0 = np.pi * dij_bar[i, j] ** 2 / (18 * rd ** 2) tmp11 = np.log( (rc_klab[k, l, a, b] + 2 * rd) / dij_bar[i, j] ) tmp12 = ( 6 * rc_klab[k, l, a, b] ** 3 + 18 * rc_klab[k, l, a, b] ** 2 * rd - 24 * rd ** 3 ) tmp21 = rc_klab[k, l, a, b] + 2 * rd - dij_bar[i, j] tmp22 = ( 22 * rd ** 2 - 5 * rd * rc_klab[k, l, a, b] - 7 * rd * dij_bar[i, j] - 8 * rc_klab[k, l, a, b] ** 2 + rc_klab[k, l, a, b] * dij_bar[i, j] + dij_bar[i, j] ** 2 ) Kijklab[i, j, k, l, a, b] = tmp0 * ( tmp11 * tmp12 + tmp21 * tmp22 ) return Kijklab
cf154af6287286c19d606a2324c548f70f90121b
3,653,236
def scale_enum(anchor, scales): """Enumerate a set of anchors for each scale wrt an anchor. """ w_w, h_h, x_ctr, y_ctr = genwhctrs(anchor) w_s = w_w * scales h_s = h_h * scales anchors = makeanchors(w_s, h_s, x_ctr, y_ctr) return anchors
8de95fc6966133a74f10318f23e97babcb36d5cd
3,653,237
def L1(): """ Graph for computing 'L1'. """ graph = beamline(scatter=True) for node in ['scattered_beam', 'two_theta', 'L2', 'Ltotal']: del graph[node] return graph
1bd17365107740a41d88ac3825ef2aca412bb616
3,653,238
def _highlight_scoring( original_example, subset_adversarial_result, adversarial_span_dict ): """ Calculate the highlighting score using classification results of adversarial examples :param original_example: :param subset_adversarial_result: :param adversarial_span_dict: """ original_utterance = " ".join(nltk.word_tokenize(original_example[1])) original_idx = original_example[0] original_intent = original_example[3] original_confidence = original_example[4] original_position = original_example[6] tokens = original_utterance.split(" ") highlight = np.zeros(len(tokens), dtype="float32") for idx in range(len(subset_adversarial_result)): adversarial_example = subset_adversarial_result.iloc[idx] if not adversarial_example["top_predicts"]: continue predict_dict = dict() predict_intent_list = list() for prediction in adversarial_example["top_predicts"]: predict_dict[prediction["intent"]] = prediction["confidence"] predict_intent_list.append(prediction["intent"]) if original_intent in predict_dict: adversarial_position = list(predict_dict.keys()).index(original_intent) adversarial_confidence = predict_dict[original_intent] else: adversarial_position = len(list(predict_dict.keys())) adversarial_confidence = 0 start, end = adversarial_span_dict[ adversarial_example["utterance"] + "_" + str(original_idx) ] highlight = _scoring_function( highlight, original_position, adversarial_position, original_confidence, adversarial_confidence, start, end, ) return highlight
788f903fe471ef539fe337c79858c04468ae3137
3,653,239
def server_hello(cmd, response): """Test command """ return response
7e0cc03d1b64afb1a4fc44264096e6888ddb5df2
3,653,240
import os def applyRigidAlignment(outDir, refFile, inDataListSeg, inDataListImg=[], icp_iterations=200): """ This function takes in a filelists(binary and raw) and makes the size and spacing the same as the reference """ isoValue = 1e-20 antialias_iterations = 30 print("\n############# Rigidly Align #############") # create output dirs segoutDir = os.path.join(outDir, 'segmentations') if inDataListImg else outDir if not os.path.exists(segoutDir): os.makedirs(segoutDir) if inDataListImg: rawoutDir = os.path.join(outDir, 'images') if not os.path.exists(rawoutDir): os.makedirs(rawoutDir) # apply rigid alignment outSegDataList = [] outRawDataList = [] # get reference image refImg = Image(refFile) refImg.antialias(antialias_iterations) for i in range(len(inDataListSeg)): segoutname = rename(inDataListSeg[i], segoutDir, 'aligned') outSegDataList.append(segoutname) if inDataListImg: rawoutname = rename(inDataListImg[i], rawoutDir, 'aligned') outRawDataList.append(rawoutname) # resize images to reference images img = Image(inDataListSeg[i]) img.antialias(antialias_iterations) rigidTransform = img.createTransform(refImg, TransformType.IterativeClosestPoint, isoValue, icp_iterations) img.applyTransform(rigidTransform, refImg.origin(), refImg.dims(), refImg.spacing(), refImg.coordsys(), InterpolationType.Linear).binarize().write(segoutname) if inDataListImg: img = Image(inDataListImg[i]) img.applyTransform(rigidTransform, refImg.origin(), refImg.dims(), refImg.spacing(), refImg.coordsys(), InterpolationType.Linear).write(rawoutname) return [outSegDataList, outRawDataList] if inDataListImg else outSegDataList
9f76afc4acad994aaa3f2ee57304401abfe27eaf
3,653,241
def test_vectorised_likelihood_not_vectorised_error(model, error): """ Assert the value is False if the likelihood is not vectorised and raises an error. """ def dummy_likelihood(x): if hasattr(x, '__len__'): raise error else: return np.log(np.random.rand()) model._vectorised_likelihood = None model.log_likelihood = MagicMock(side_effect=dummy_likelihood) model.new_point = MagicMock(return_value=np.random.rand(10)) out = Model.vectorised_likelihood.__get__(model) assert model._vectorised_likelihood is False assert out is False
1968be0c2ba147147e2ea5d4443c8bc87050d218
3,653,242
def display_timestamps_pair(time_m_2): """Takes a list of the following form: [(a1, b1), (a2, b2), ...] and returns a string (a_mean+/-a_error, b_mean+/-b_error). """ if len(time_m_2) == 0: return '(empty)' time_m_2 = np.array(time_m_2) return '({}, {})'.format( display_timestamps(time_m_2[:, 0]), display_timestamps(time_m_2[:, 1]), )
b8bb0fa727c087a6bc1761d55e55143a12693d1e
3,653,243
def get_legendre(degree, length): """ Producesthe Legendre polynomials of order `degree`. Parameters ---------- degree : int Highest order desired. length : int Number of samples of the polynomials. Returns ------- legendre : np.ndarray A `degree`*`length` array with all the polynomials up to order `degree` """ def _bonnet(d, x): if(d == 0): return np.ones_like(x) elif(d == 1): return x else: return ((2*d-1)*x*_bonnet(d-1, x)-(d-1)*_bonnet(d-2, x))/d x = np.linspace(-1, 1, length) legendre = np.empty([length, degree+1]) for n in range(degree+1): legendre[:, n] = _bonnet(n, x) return legendre
5f939c7d759678f6c686c84b074c4ac973df8255
3,653,244
import os def _get_table_names(): """Gets an alphabetically ordered list of table names from facet_fields.csv. Table names are fully qualified: <project id>:<dataset id>:<table name> """ config_path = os.path.join(app.app.config['DATASET_CONFIG_DIR'], 'bigquery.json') table_names = _parse_json_file(config_path)['table_names'] table_names.sort() return table_names
3684fa80f52aa3a2d61c6843992976870ae2bd59
3,653,245
def _get_controller_of(pod): """Get a pod's controller's reference. This uses the pod's metadata, so there is no guarantee that the controller object reference returned actually corresponds to a controller object in the Kubernetes API. Args: - pod: kubernetes pod object Returns: the reference to a controller object """ if pod["metadata"].get("ownerReferences"): for owner_ref in pod["metadata"]["ownerReferences"]: if owner_ref.get("controller"): return owner_ref return None
9c9e58e2fc49729c618af2c5bb9b4d033d90a831
3,653,246
from typing import Any from typing import Dict from typing import List def proxify_device_objects( obj: Any, proxied_id_to_proxy: Dict[int, ProxyObject], found_proxies: List[ProxyObject], ): """ Wrap device objects in ProxyObject Search through `obj` and wraps all CUDA device objects in ProxyObject. It uses `proxied_id_to_proxy` to make sure that identical CUDA device objects found in `obj` are wrapped by the same ProxyObject. Parameters ---------- obj: Any Object to search through or wrap in a ProxyObject. proxied_id_to_proxy: Dict[int, ProxyObject] Dict mapping the id() of proxied objects (CUDA device objects) to their proxy and is updated with all new proxied objects found in `obj`. found_proxies: List[ProxyObject] List of found proxies in `obj`. Notice, this includes all proxies found, including those already in `proxied_id_to_proxy`. Returns ------- ret: Any A copy of `obj` where all CUDA device objects are wrapped in ProxyObject """ return dispatch(obj, proxied_id_to_proxy, found_proxies)
6d410245624d2992e37b5bce1832d7326caf4fe2
3,653,247
def monotonicity(x, rounding_precision = 3): """Calculates monotonicity metric of a value of[0-1] for a given array.\nFor an array of length n, monotonicity is calculated as follows:\nmonotonicity=abs[(num. positive gradients)/(n-1)-(num. negative gradients)/(n-1)].""" n = x.shape[0] grad = np.gradient(x) pos_grad = np.sum(grad>0) neg_grad = np.sum(grad<0) monotonicity = np.abs( pos_grad/(n-1) - neg_grad/(n-1) ) return np.round(monotonicity, rounding_precision)
3ff9c37975502cb12b9e2839a5f5580412084f8c
3,653,248
import subprocess def get_cluster_cids(): """return list of CIDs with pin types""" output = subprocess.check_output([ 'docker-compose', 'exec', '-T', 'cluster', 'ipfs-cluster-ctl', 'pin', 'ls' ]) return [ '-'.join([l.split()[0], l.split()[-1].lower()]) for l in output.decode('utf-8').splitlines() ]
c38e2742fa0476e2240d9759c6d8525a3add083b
3,653,249
import os import getpass def download(homework, version="latest", redownload=False): """Download data files for the specified datasets. Defaults to downloading latest version on server. Parameters: homework (str): The name of the dataset to download data for, or "all" to download data for all datasets version (str, optional): Which version of the data files to download. Defaults to latest on server. redownload (bool, optional): Whether to redownload the data files, even if that version of the data is already downloaded. Default False. Returns: bool: Indicates whether download was successful. """ # Process the optional "all" parameter if homework == "all": homeworks = [ "bio462_hw1", "bio462_hw2", "bio462_hw3", "bio462_hw4", "bio462_hw5", "bio462_hw6" ] overall_result = True for homework in homeworks: if not download(homework, redownload=redownload): overall_result = False return overall_result # Get our dataset path homework = homework.lower() dataset_path = get_dataset_path(homework) # Update the index update_index(homework) # Load the index index = get_index(homework) # Validate the version number, including parsing if it's "latest" version = validate_version(version, homework, use_context="download") # Construct the path to the directory for this version version_path = os.path.join(dataset_path, f"{homework}_v{version}") # See if they've downloaded this version before. Get list of files to download. version_index = index.get(version) if os.path.isdir(version_path): if redownload: files_to_download = list(version_index.keys()) else: files_to_download = [] for data_file in version_index.keys(): # Compare the server and local hashes, to make sure there was no data corruption file_path = os.path.join(version_path, data_file) if os.path.isfile(file_path): file_index = version_index.get(data_file) server_hash = file_index.get("hash") local_hash = hash_file(file_path) if local_hash == server_hash: continue files_to_download.append(data_file) if len(files_to_download) == 0: return True else: os.mkdir(version_path) files_to_download = list(version_index.keys()) # Download the files password_protected_datasets = [ "gbm", "lscc" ] password = None total_files = len(files_to_download) for data_file in files_to_download: if (homework in password_protected_datasets) and (password is None): password = getpass.getpass(prompt=f'Password for {homework} homework: ') # We manually specify the prompt parameter so it shows up in Jupyter Notebooks print("\033[F", end='\r') # Use an ANSI escape sequence to move cursor back up to the beginning of the last line, so in the next line we can clear the password prompt print("\033[K", end='\r') # Use an ANSI escape sequence to print a blank line, to clear the password prompt file_index = version_index.get(data_file) server_hash = file_index.get("hash") file_url = file_index.get("url") file_path = os.path.join(version_path, data_file) file_number = files_to_download.index(data_file) + 1 downloaded_path = download_file(file_url, file_path, server_hash, password=password, file_message=f"{homework} v{version} data files", file_number=file_number, total_files=total_files) while downloaded_path == "wrong_password": password = getpass.getpass(prompt="Wrong password. Try again: ") print("\033[F", end='\r') # Use an ANSI escape sequence to move cursor back up to the beginning of the last line, so in the next line we can clear the password prompt print("\033[K", end='\r') # Use an ANSI escape sequence to print a blank line, to clear the password prompt downloaded_path = download_file(file_url, file_path, server_hash, password=password, file_message=f"{homework} v{version} data files", file_number=file_number, total_files=total_files) return True
a866e80848caa53c7abee7a3074b28d8d56e32bf
3,653,250
import attrs def parse_value_namedobject(tt): """ <!ELEMENT VALUE.NAMEDOBJECT (CLASS | (INSTANCENAME, INSTANCE))> """ check_node(tt, 'VALUE.NAMEDOBJECT') k = kids(tt) if len(k) == 1: object = parse_class(k[0]) elif len(k) == 2: path = parse_instancename(kids(tt)[0]) object = parse_instance(kids(tt)[1]) object.path = path else: raise ParseError('Expecting one or two elements, got %s' % repr(kids(tt))) return (name(tt), attrs(tt), object)
ecb507ac9b0c3fdfbec19f807fba06236e21d7c5
3,653,251
async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry) -> bool: """Unload Dyson cloud.""" # Nothing needs clean up return True
38a274e90c5fadc277e640cd6cc5442d5070dfd6
3,653,252
def quat_correct(quat): """ Converts quaternion to minimize Euclidean distance from previous quaternion (wxyz order) """ for q in range(1, quat.shape[0]): if np.linalg.norm(quat[q-1] - quat[q], axis=0) > np.linalg.norm(quat[q-1] + quat[q], axis=0): quat[q] = -quat[q] return quat
fc492998c5bdf2cf3b1aacbd42de72618bd74c01
3,653,253
def vis_bbox(im, dets): """Visual debugging of detections.""" for i in range(dets.shape[0]): bbox = tuple(int(np.round(x)) for x in dets[i, :4]) # class_name = CLASS_NAME[int(dets[i, 4]) - 1] class_name = ' ' score = 0.99 cv2.rectangle(im, bbox[0:2], bbox[2:4], (0, 204, 0), 2) cv2.putText(im, '%s: %.3f' % (class_name, score), (bbox[0], bbox[1] + 15), cv2.FONT_HERSHEY_PLAIN, 1.0, (0, 0, 255), thickness=1) return im
c9bd2edb899d2a476eaff9bbbf91f1008e9d1c33
3,653,254
def parse_record1(raw_record): """Parse raw record and return it as a set of unique symbols without \n""" return set(raw_record) - {"\n"}
4ffd3ebd0aaa17ddd42baf3b9d44614784c8ff33
3,653,255
def execute_contract_creation( laser_evm, contract_initialization_code, contract_name=None ) -> Account: """ Executes a contract creation transaction from all open states""" # TODO: Resolve circular import between .transaction and ..svm to import LaserEVM here open_states = laser_evm.open_states[:] del laser_evm.open_states[:] new_account = laser_evm.world_state.create_account( 0, concrete_storage=True, dynamic_loader=None ) if contract_name: new_account.contract_name = contract_name for open_world_state in open_states: next_transaction_id = get_next_transaction_id() transaction = ContractCreationTransaction( open_world_state, BitVec("creator{}".format(next_transaction_id), 256), next_transaction_id, new_account, Disassembly(contract_initialization_code), [], BitVec("gas_price{}".format(next_transaction_id), 256), BitVec("call_value{}".format(next_transaction_id), 256), BitVec("origin{}".format(next_transaction_id), 256), CalldataType.SYMBOLIC, ) _setup_global_state_for_execution(laser_evm, transaction) laser_evm.exec(True) return new_account
ef1f0db204554c874c3aeea1ca6aa89ef7454d89
3,653,256
import re def isValid(text): """ Returns True if the input is related to the meaning of life. Arguments: text -- user-input, typically transcribed speech """ return bool(re.search(r'\byour awesome\b', text, re.IGNORECASE))
c6e4275d53cd632b4f5e255aa62b69c80fd37794
3,653,257
def list_shared_with(uri, async_req=False): """Return array sharing policies""" (namespace, array_name) = split_uri(uri) api_instance = client.client.array_api try: return api_instance.get_array_sharing_policies( namespace=namespace, array=array_name, async_req=async_req ) except GenApiException as exc: raise tiledb_cloud_error.check_exc(exc) from None
2a9eb78c14e5bdc31a3ae5bfc077219bd06c768f
3,653,258
import html def format_html_data_table(dataframe, list_of_malformed, addLineBreak=False): """ Returns the predicted values as the data table """ if list_of_malformed: list_of_malformed = str(list_of_malformed) else: list_of_malformed = "None" # format numeric data into string format for column_name in dataframe.select_dtypes(include=[np.float]).columns: dataframe[column_name] = dataframe[column_name].apply(lambda x: "{0:.2f}%".format(x)) return html.Div([html.P("Total Number of Audio Clips : "+ str(dataframe.shape[0]), style={"color":"white", 'text-decoration':'underline'}), html.P("Error while prediction: " + list_of_malformed, style={"color":"white"})] + \ ([html.Br()] if addLineBreak else []) + \ [html.Hr(), dash_table.DataTable(id='datatable-interactivity-predictions', columns=[{"name": format_label_name(i), "id": i, "deletable": True} for i in dataframe.columns], data=dataframe.to_dict("rows"), style_header={'backgroundColor': 'rgb(30, 30, 30)', "fontWeight": "bold", 'border': '1px solid white'}, style_cell={'backgroundColor': 'rgb(50, 50, 50)', 'color': 'white', 'whiteSpace':'normal', 'maxWidth': '240px'}, style_table={"maxHeight":"350px", "overflowY":"scroll", "overflowX":"auto"}), html.Hr()] + \ ([html.Br()] if addLineBreak else []))
cc345d2cb87ddf7905d0d9a62cc6cd61b92ddc51
3,653,259
import math def colorDistance(col1, col2): """Returns a number between 0 and root(3) stating how similar two colours are - distance in r,g,b, space. Only used to find names for things.""" return math.sqrt( (col1.red - col2.red)**2 + (col1.green - col2.green)**2 + (col1.blue - col2.blue)**2 )
ef18dede8312f78b4ba4258e87d4630863f1243c
3,653,260
from typing import Iterable def combine_from_streaming(stream: Iterable[runtime_pb2.Tensor]) -> runtime_pb2.Tensor: """ Restore a result of split_into_chunks into a single serialized tensor """ stream = iter(stream) first_chunk = next(stream) serialized_tensor = runtime_pb2.Tensor() serialized_tensor.CopyFrom(first_chunk) buffer_chunks = [first_chunk.buffer] for tensor_part in stream: buffer_chunks.append(tensor_part.buffer) serialized_tensor.buffer = b''.join(buffer_chunks) return serialized_tensor
af88c9eeec99c1d3d7ca9e5753b72cf09a0c6c85
3,653,261
def portageq_envvar(options, out, err): """ return configuration defined variables. Use envvar2 instead, this will be removed. """ return env_var.function(options, out, err)
8406985ac5f5d5d4bc93ded8c1392b1fe49e9ff7
3,653,262
def create_hash_factory(hashfun, complex_types=False, universe_size=None): """Create a function to make hash functions :param hashfun: hash function to use :type hashfun: callable :param complex_types: whether hash function supports hashing of complex types, either through native support or through repr :type complex_types: bool :param universe_size: upper limit to hash value :type universe_size: int, long :returns: a hash factory :rtype: callable """ def hash_factory(seed): if complex_types: if universe_size is None: fun = lambda x: hashfun(x, seed) else: fun = lambda x: hashfun(x, seed) % universe_size else: if universe_size is None: fun = lambda x: hashfun(hashable(x), seed) else: fun = lambda x: hashfun(hashable(x), seed) % universe_size return fun return hash_factory
23dee13f06f754caa9f7de5a89b855adbe7313a4
3,653,263
def estimate_key(note_info, method="krumhansl", *args, **kwargs): """ Estimate key of a piece by comparing the pitch statistics of the note array to key profiles [2]_, [3]_. Parameters ---------- note_info : structured array, `Part` or `PerformedPart` Note information as a `Part` or `PerformedPart` instances or as a structured array. If it is a structured array, it has to contain the fields generated by the `note_array` properties of `Part` or `PerformedPart` objects. If the array contains onset and duration information of both score and performance, (e.g., containing both `onset_beat` and `onset_sec`), the score information will be preferred. method : {'krumhansl'} Method for estimating the key. For now 'krumhansl' is the only supported method. args, kwargs Positional and Keyword arguments for the key estimation method Returns ------- str String representing the key name (i.e., Root(alteration)(m if minor)). See `partitura.utils.key_name_to_fifths_mode` and `partitura.utils.fifths_mode_to_key_name`. References ---------- .. [2] Krumhansl, Carol L. (1990) "Cognitive foundations of musical pitch", Oxford University Press, New York. .. [3] Temperley, D. (1999) "What's key for key? The Krumhansl-Schmuckler key-finding algorithm reconsidered". Music Perception. 17(1), pp. 65--100. """ if method not in ("krumhansl",): raise ValueError('For now the only valid method is "krumhansl"') if method == "krumhansl": kid = ks_kid if "key_profiles" not in kwargs: kwargs["key_profiles"] = "krumhansl_kessler" else: if kwargs["key_profiles"] not in VALID_KEY_PROFILES: raise ValueError( "Invalid key_profiles. " 'Valid options are "ks", "cmbs" or "kp"' ) note_array = ensure_notearray(note_info) return kid(note_array, *args, **kwargs)
af2383ab2a94cf49a93a1f00d5bf575f19e0daa0
3,653,264
def print_parsable_dstip(data, srcip, dstip): """Returns a parsable data line for the destination data. :param data: the data source :type data: dictionary :param scrip: the source ip :type srcip: string :param dstip: the destination ip :type dstip: string :return: a line of urls and their hitcount """ line = [] for item in header_order: if item in data[srcip]['targets'][dstip]: value = data[srcip]['targets'][dstip][item] elif item == "src": value = srcip elif item == "dst": value = dstip.replace(":", "|") else: value = "" if value != "": line.append(str(value)) if 'url' in data[srcip]['targets'][dstip]: line.append(print_parsable_urls(data[srcip]['targets'][dstip]['url'])) line = "|".join(line) return line
9e27733a9821e184e53f21ca38af9cdb61192743
3,653,265
def OrListSelector(*selectors) -> pyrosetta.rosetta.core.select.residue_selector.OrResidueSelector: """ OrResidueSelector but 2+ (not a class, but returns a Or :param selectors: :return: """ sele = pyrosetta.rosetta.core.select.residue_selector.FalseResidueSelector() for subsele in selectors: sele = pyrosetta.rosetta.core.select.residue_selector.OrResidueSelector(subsele, sele) return sele
8f4443a6ee1bbcd2e76133e6a08eea2737e01383
3,653,266
def plot_regress_exog(res, exog_idx, exog_name='', fig=None): """Plot regression results against one regressor. This plots four graphs in a 2 by 2 figure: 'endog versus exog', 'residuals versus exog', 'fitted versus exog' and 'fitted plus residual versus exog' Parameters ---------- res : result instance result instance with resid, model.endog and model.exog as attributes exog_idx : int index of regressor in exog matrix fig : Matplotlib figure instance, optional If given, this figure is simply returned. Otherwise a new figure is created. Returns ------- fig : matplotlib figure instance Notes ----- This is currently very simple, no options or varnames yet. """ fig = utils.create_mpl_fig(fig) if exog_name == '': exog_name = 'variable %d' % exog_idx #maybe add option for wendog, wexog #y = res.endog x1 = res.model.exog[:,exog_idx] ax = fig.add_subplot(2,2,1) #namestr = ' for %s' % self.name if self.name else '' ax.plot(x1, res.model.endog, 'o') ax.set_title('endog versus exog', fontsize='small')# + namestr) ax = fig.add_subplot(2,2,2) #namestr = ' for %s' % self.name if self.name else '' ax.plot(x1, res.resid, 'o') ax.axhline(y=0) ax.set_title('residuals versus exog', fontsize='small')# + namestr) ax = fig.add_subplot(2,2,3) #namestr = ' for %s' % self.name if self.name else '' ax.plot(x1, res.fittedvalues, 'o') ax.set_title('Fitted versus exog', fontsize='small')# + namestr) ax = fig.add_subplot(2,2,4) #namestr = ' for %s' % self.name if self.name else '' ax.plot(x1, res.fittedvalues + res.resid, 'o') ax.set_title('Fitted plus residuals versus exog', fontsize='small')# + namestr) fig.suptitle('Regression Plots for %s' % exog_name) return fig
e4c7859c32892d2d8e94ff884652846f5f15f513
3,653,267
from typing import List def get_circles_with_admin_access(account_id: int) -> List[Circle]: """ SELECT management_style, c_name FROM ( SELECT 'SELF_ADMIN' AS management_style, c.management_style AS c_management_style, c.admin_circle AS c_admin_circle, c.created_by AS c_created_by, c.updated_by AS c_updated_by, c.id AS c_id, c.created_at AS c_created_at, c.updated_at AS c_updated_at, c.name AS c_name, c.description AS c_description FROM circle AS c JOIN circle_member ON c.id = circle_member.circle WHERE C.management_style = 'SELF_ADMIN' AND circle_member.account = 5 UNION SELECT 'ADMIN_CIRCLE' AS management_style, c.management_style AS c_management_style, c.admin_circle AS c_admin_circle, c.created_by AS c_created_by, c.updated_by AS c_updated_by, c.id AS c_id, c.created_at AS c_created_at, c.updated_at AS c_updated_at, c.name AS c_name, c.description AS c_description FROM circle AS ac JOIN circle AS C ON c.admin_circle = ac.id JOIN circle_member ON ac.id = circle_member.circle WHERE c.management_style = 'ADMIN_CIRCLE' AND circle_member.account = 5 ) AS anon_1 """ ac = aliased(Circle, name="ac") c = aliased(Circle, name="c") self_admin = db.session.query(c). \ join(c.members). \ filter(CircleMember.account_id == account_id). \ filter(c._management_style == CircleManagementStyle.SELF_ADMIN.name) admin_circle = db.session.query(c). \ join(ac, c.admin_circle_id == ac.id). \ join(ac.members). \ filter(c._management_style == CircleManagementStyle.ADMIN_CIRCLE.name). \ filter(CircleMember.account_id == account_id) return self_admin.union(admin_circle).all()
ef0a24d299bdad549f9b0220e4a34499097eb19d
3,653,268
def combine(arr): """ makes overlapping sequences 1 sequence """ def first(item): return item[0] def second(item): return item[1] if len(arr) == 0 or len(arr) == 1: return arr sarr = [] for c, val in enumerate(arr): sarr.append((val[0], val[1], c)) sarr = sorted(sarr, key = second) sarr = sorted(sarr, key = first) chains = [[sarr[0][0], sarr[0][1], [sarr[0][2]]]] for s, e, c in sarr[1:]: #start, end, counter if s <= chains[-1][1] +1: chains[-1][1] = max(e, chains[-1][1]) chains[-1][2].append(c) else: chains.append([s, e, [c]]) return chains
b46bb7f73fa6857ed4c980bdbdff77acde64b18d
3,653,269
from operator import sub def sub_fft(f_fft, g_fft): """Substraction of two polynomials (FFT representation).""" return sub(f_fft, g_fft)
a559429a4d10889be3ffa776153854248ac7a496
3,653,270
def recursive_fill_fields(input, output): """ Fills fields from output with fields from input, with support for nested structures. Parameters ---------- input : ndarray Input array. output : ndarray Output array. Notes ----- * `output` should be at least the same size as `input` Examples -------- >>> from numpy_demo.lib import recfunctions as rfn >>> a = np.array([(1, 10.), (2, 20.)], dtype=[('A', np.int64), ('B', np.float64)]) >>> b = np.zeros((3,), dtype=a.dtype) >>> rfn.recursive_fill_fields(a, b) array([(1, 10.), (2, 20.), (0, 0.)], dtype=[('A', '<i8'), ('B', '<f8')]) """ newdtype = output.dtype for field in newdtype.names: try: current = input[field] except ValueError: continue if current.dtype.names is not None: recursive_fill_fields(current, output[field]) else: output[field][:len(current)] = current return output
5508f1681eaa3f2c5ccb44b6329ad012f85c42e8
3,653,271
import sys def load_parameters(model_type, parameter_file): """ Loads in all parameter values given in a parameter file. Parameters: model_type (str): sets the type of model, which determines the exact parameter set that is needed. Possible values for the parameter model_type are: 'full model', 'density model' and 'constant force model'. parameter_file (str): the path to the parameter file. Returns: list: the values of the parameters in the order as specified in the <model_type>_parameter_names lists. """ if model_type == 'full model': parameters = [0.]*len(full_model_parameter_names) parameters_found = [0]*len(full_model_parameter_names) parameter_names = full_model_parameter_names elif model_type == 'density model': parameters = [0.]*len(density_model_parameter_names) parameters_found = [0]*len(density_model_parameter_names) parameter_names = density_model_parameter_names else: print("ERROR: the parameter <model_type> has to be given one of the three values: " "'full model' or 'density model'.") sys.exit(1) f = open(parameter_file) for line in f.readlines(): line_split = line.split() try: idx = parameter_names.index(line_split[0]) parameters_found[idx] = 1 if line_split[0] == 'N_h' or line_split[0] == 'N_max': parameters[idx] = int(line_split[2]) else: parameters[idx] = float(line_split[2]) except ValueError: print("WARNING: Parameter {} cannot be interpreted for the model type " "'{}'!".format(line_split[0], model_type)) f.close() if 0 in parameters_found: print("ERROR: Not all necessary parameters for the model type '{}' were defined in the given " "file!".format(model_type)) sys.exit(1) return parameters
6fe50dcb668104e0dfd9e7b9c483564b9c9e36cf
3,653,272
def handle_dat_edge(data_all): """ 把dat_edge个每一条记录的info拆开,然后输出,方便后续的计算 为了简化计算,忽略时间信息,把所有的月份的联系记录汇总起来 """ def cal_multi_3(string): s = string.split(',') month_times = len(s) df = list(map(lambda x: list(map(eval, x.split(':')[1].split('_'))), s)) times_sum, weight_sum = pd.DataFrame(df).sum().values return month_times, times_sum, weight_sum def cal_single_3(string): times_sum, weight_sum = list(map(eval, string.split(':')[1].split('_'))) return 1, times_sum, weight_sum length = list(map(len, map(lambda x: x.split(','), data_all['info']))) dat_edge_single = data_all[np.array(length) == 1] dat_edge_multi = data_all[np.array(length) > 1] multi_pre_df = map(cal_multi_3, dat_edge_multi['info']) multi_feature_3 = pd.DataFrame(list(multi_pre_df), columns=['month_times', 'times_sum', 'weight_sum']) id_part = dat_edge_multi[['from_id', 'to_id']].reset_index(drop=True) multi_result = pd.concat([id_part, multi_feature_3], axis=1) single_pre_df = map(cal_single_3, dat_edge_single['info']) single_feature_3 = pd.DataFrame(list(single_pre_df), columns=['month_times', 'times_sum', 'weight_sum']) id_part = dat_edge_single[['from_id', 'to_id']].reset_index(drop=True) single_result = pd.concat([id_part, single_feature_3], axis=1) both_result = pd.concat([multi_result, single_result], ignore_index=True) return both_result
4ae92d337a70326bae87399809b920b1ad2cce1e
3,653,273
def quadraric_distortion_scale(distortion_coefficient, r_squared): """Calculates a quadratic distortion factor given squared radii. The distortion factor is 1.0 + `distortion_coefficient` * `r_squared`. When `distortion_coefficient` is negative (barrel distortion), the distorted radius is only monotonically increasing only when `r_squared` < r_squared_max = -1 / (3 * distortion_coefficient). Args: distortion_coefficient: A tf.Tensor of a floating point type. The rank can be from zero (scalar) to r_squared's rank. The shape of distortion_coefficient will be appended by ones until the rank equals that of r_squared. r_squared: A tf.Tensor of a floating point type, containing (x/z)^2 + (y/z)^2. We use r_squared rather than r to avoid an unnecessary sqrt, which may introduce gradient singularities. The non-negativity of r_squared only enforced in debug mode. Returns: A tf.Tensor of r_squared's shape, the correction factor that should multiply the projective coordinates (x/z) and (y/z) to apply the distortion. """ return 1 + distortion_coefficient * r_squared
b8a910e4de3a6c0a3793131503ed6ede8836bc89
3,653,274
import subprocess import os def run(executable: str, *args: str): """ Run executable using core.process configuration, replacing bin with configured one, appending and prepending args. """ command_list = effective_command(executable, *args) process = subprocess.run(command_list, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) if os.name == "nt": # On windows, there's ANSI code after output that has to be dropped... try: eof_index = process.stdout.index(b"\x1b[0m") process.stdout = process.stdout[:eof_index] except ValueError: pass return process.stdout
4255a831d7d617a4f34e77c628b34b4851c8c58a
3,653,275
def open_path(path, **kwargs): """ Parameters ---------- path: str window: tuple e.g. ('1990-01-01','2030-01-01') kwargs: all other kwargs the particular file might take, see the module for details Returns ------- """ info = _tools.path2info(path) module = arm_products[info['product']]['module'] out = module.open_path(path, **kwargs) return out
c4e87d0649dfde2139a4ecac797775309eb6a72e
3,653,276
import uuid def generate_code() -> str: """Generates password reset code :return: Password reset code :rtype: str """ return str(uuid.uuid4())
bcd8377afd5598e71f8bb8eb217c3f3fd53fc5c7
3,653,277
import os def process_file(name, files, url): """ Save file to shared folder on server, and return the name of the file. """ def allowed_file(filename): if "." not in filename: return False ext = filename.rsplit(".", 1)[1].lower() return ext in config.ALLOWED_EXTENSIONS if name not in files: flash("No file part found") return redirect(url) file = files[name] if not file.filename: flash("No file selected") return redirect(url) if not allowed_file(file.filename): flash("File is not allowed") return redirect(url) filename = secure_filename(file.filename) filepath = os.path.join(config.INPUTS_FOLDER, filename) file.save(filepath) return filename
0c054c53cb8b24b1e2ff5e684453000fbd11a5a2
3,653,278
def decode_auth_token(auth_token): """ Decodes the auth token :param auth_token: :return: integer|string """ try: payload = jwt.decode(auth_token, app.config.get('SECRET_KEY')) return payload['sub'] except jwt.ExpiredSignatureError: return 'Signature expired. Please log in again.' except jwt.InvalidTokenError: return 'Invalid token. Please log in again.'
16fceb539f7aafb775b851e55f1b606a1c917cf9
3,653,279
import pickle import os def cached(path: str, validate: bool = False): """Similar to ``define``, but cache to a file. :param path: the path of the cache file to use :param validate: if `True`, always execute the function. The loaded result will be passed to the function, when the cache exists. In that case the function should return the value to use. If the returned value is not identical to the loaded value, the cache is updated with the new value. Usage:: @cached('./cache/result') def dataset(): ... return result or:: @cached('./cache/result', validate=True) def model(result=None): if result is not None: # running to validate ... return result """ def update_cache(result): print("save cache", path) with open(path, "wb") as fobj: pickle.dump(result, fobj) def load_cache(): print("load cache", path) with open(path, "rb") as fobj: return pickle.load(fobj) def decorator(func): if os.path.exists(path): result = load_cache() if not validate: return result else: print("validate") new_result = func(result) if new_result is not result: update_cache(new_result) return new_result else: print("compute") result = func() update_cache(result) return result return decorator
d4b5b861bf43294d3e5f84b57f648a2e32b6428b
3,653,280
import ast def json(*arguments): """ Transform *arguments parameters into JSON. """ return ast.Json(*arguments)
3e3333617b63dc1b5e8e4b71ea5c2f0ea08bfff8
3,653,281
def get_default_volume_size(): """ :returns int: the default volume size (in bytes) supported by the backend the acceptance tests are using. """ default_volume_size = environ.get("FLOCKER_ACCEPTANCE_DEFAULT_VOLUME_SIZE") if default_volume_size is None: raise SkipTest( "Set acceptance testing default volume size using the " + "FLOCKER_ACCEPTANCE_DEFAULT_VOLUME_SIZE environment variable.") return int(default_volume_size)
ec24bfb9c07add5d1a800a1aaf9db3efb8727b3d
3,653,282
import functools def set_global_user(**decorator_kwargs): """ Wrap a Flask blueprint view function to set the global user ``flask.g.user`` to an instance of ``CurrentUser``, according to the information from the JWT in the request headers. The validation will also set the current token. This requires a flask application and request context. """ def decorator(func): @functools.wraps(func) def wrapper(*args, **kwargs): set_current_user(**decorator_kwargs) return func(*args, **kwargs) return wrapper return decorator
f73a89d94d188b1c258cedca3439ab9c1c94180c
3,653,283
def sample_wfreq(sample): """Return the Weekly Washing Frequency as a number.""" # `sample[3:]` strips the `BB_` prefix results = session.query(Samples_Metadata.WFREQ).\ filter(Samples_Metadata.SAMPLEID == sample[3:]).all() wfreq = np.ravel(results) # Return only the first integer value for washing frequency return jsonify(int(wfreq[0]))
6cb2ee0866efc9e841143c32e10cbb8feea813bc
3,653,284
import sys import os from typing import OrderedDict import shutil import json import six def OffsiteRestore( source_dir, encryption_password=None, dir_substitution=None, display_only=False, ssd=False, output_stream=sys.stdout, preserve_ansi_escape_sequences=False, ): """\ Restores content created by previous Offsite backups. """ dir_substitutions = dir_substitution del dir_substitution with StreamDecorator.GenerateAnsiSequenceStream( output_stream, preserve_ansi_escape_sequences=preserve_ansi_escape_sequences, ) as output_stream: with output_stream.DoneManager( line_prefix="", prefix="\nResults: ", suffix="\n", ) as dm: # Get the dirs dirs = [] for item in os.listdir(source_dir): fullpath = os.path.join(source_dir, item) if not os.path.isdir(fullpath): continue dirs.append(fullpath) if not dirs: dm.stream.write( "No subdirectories were found in '{}'.\n".format(source_dir), ) dm.result = -1 return dm.result dirs = sorted(dirs) # Get the file data file_data = OrderedDict() hashed_filenames = {} dm.stream.write( "Reading file data from {}...".format(inflect.no("directory", len(dirs))), ) with dm.stream.DoneManager( suffix="\n", ) as dir_dm: for index, dir in enumerate(dirs): dir_dm.stream.write( "'{}' ({} of {})...".format(dir, index + 1, len(dirs)), ) with dir_dm.stream.DoneManager() as this_dir_dm: data_filename = os.path.join(dir, DATA_FILENAME) if not os.path.isfile(data_filename): # See if there is compressed data to decompress for zipped_ext in ["", ".001"]: potential_filename = os.path.join( dir, "{}{}".format(OFFSITE_BACKUP_FILENAME, zipped_ext), ) if not os.path.isfile(potential_filename): continue # Extract the data temp_dir = dir + ".tmp" FileSystem.RemoveTree(temp_dir) FileSystem.MakeDirs(temp_dir) this_dir_dm.stream.write("Decompressing data...") with this_dir_dm.stream.DoneManager( suffix="\n", ) as decompress_dm: command_line = '7za e -y "-o{dir}"{password} "{input}"'.format( dir=temp_dir, input=potential_filename, password=' "-p{}"'.format( encryption_password, ) if encryption_password else "", ) decompress_dm.result = Process.Execute( command_line, decompress_dm.stream, ) if decompress_dm.result != 0: return decompress_dm.result this_dir_dm.stream.write("Removing original data...") with this_dir_dm.stream.DoneManager(): FileSystem.RemoveTree(dir) this_dir_dm.stream.write("Restoring compressed data...") with this_dir_dm.stream.DoneManager(): shutil.move(temp_dir, dir) break if not os.path.isfile(data_filename): this_dir_dm.stream.write( "INFO: The file '{}' was not found in the directory '{}'.\n".format( DATA_FILENAME, dir, ), ) this_dir_dm.result = 1 continue try: with open(data_filename) as f: data = json.load(f) except: this_dir_dm.stream.write( "ERROR: The data in '{}' is corrupt.\n".format( data_filename, ), ) this_dir_dm.result = -1 continue for file_info_index, file_info in enumerate(data): operation = file_info["operation"] if operation not in ["add", "modify", "remove"]: this_dir_dm.stream.write( "ERROR: The file info operation '{}' is not valid (Index: {}).\n".format( operation, file_info_index, ), ) this_dir_dm.result = -1 continue filename = file_info["filename"] # Check if the data is in the expected state if operation == "add": if filename in file_data: this_dir_dm.stream.write( "ERROR: Information for the file '{}' has already been added and cannot be added again (Index: {}).\n".format( filename, file_info_index, ), ) this_dir_dm.result = -1 continue elif operation in ["modify", "remove"]: if filename not in file_data: this_dir_dm.stream.write( "ERROR: Information for the file '{}' was not previously provided (Index: {}).\n".format( filename, file_info_index, ), ) this_dir_dm.result = -1 continue else: assert False, operation # Add or remove the data if operation in ["add", "modify"]: hash = file_info["hash"] if hash not in hashed_filenames: hashed_filename = os.path.join(dir, hash) if not os.path.isfile(hashed_filename): this_dir_dm.stream.write( "ERROR: Contents for the file '{}' were not found at '{}' (Index: {}).\n".format( filename, hasehd_filename, file_info_index, ), ) this_dir_dm.result = -1 continue hashed_filenames[hash] = hashed_filename file_data[filename] = hashed_filenames[hash] elif operation == "remove": del file_data[filename] else: assert False, operation keys = sorted(six.iterkeys(file_data)) # Perform destination substitutions (if necessary) if dir_substitutions: for key in keys: for k, v in six.iteritems(dir_substitutions): new_key = key.replace(k, v) file_data[new_key] = file_data[key] del file_data[key] keys = sorted(six.iterkeys(file_data)) if display_only: dm.stream.write( "{} to restore...\n\n".format(inflect.no("file", len(keys))), ) for key in keys: dm.stream.write(" - {0:<100} <- {1}\n".format(key, file_data[key])) return dm.result with dm.stream.SingleLineDoneManager("Copying Files...") as copy_dm: # ---------------------------------------------------------------------- def Execute(task_index, on_status_update): dest = keys[task_index] source = file_data[dest] on_status_update(FileSystem.GetSizeDisplay(os.path.getsize(source))) dest_dir = os.path.dirname(dest) if not os.path.isdir(dest_dir): try: os.makedirs(dest_dir) except: # This can happen when attempting to create the dir from # multiple threads simultaneously. If the error is something # else, the copy statement below will raise an exception. pass shutil.copy2(source, dest) # ---------------------------------------------------------------------- copy_dm.result = TaskPool.Execute( [ TaskPool.Task("'{}' -> '{}'".format(file_data[key], key), Execute) for key in keys ], optional_output_stream=copy_dm.stream, progress_bar=True, num_concurrent_tasks=None if ssd else 1, ) if copy_dm.result != 0: return copy_dm.result return dm.result
6dbc3d047b83ba93763ee31e750e61b3400bc7d9
3,653,285
def mlp_hyperparameter_tuning(no_of_hidden_neurons, epoch, alpha, roh, n_iter_no_change, X_train, X_validation, y_train, y_validation): """ INPUT no_of_hidden_neurons: 1D int arary contains different values of no of neurons present in 1st hidden layer (hyperparameter) epoch: 1D int arary contains different values of epochs (hyperparameter) alpha: 1D float array contains different values of alphas or learning rates (hyperparameter) roh: 1D float array contains different values of tolerence or roh (hyperparameter) n_iter_no_change: 1D int array conatins different values of Number of iterations with no improvement to wait before stopping fitting (hyperparameter). X_train: 2D array of shape = (no of patterns, no of features) X_validation: 2D array of shape = (no of patterns, no of features) y_train: 2D array of shape = (no of patterns, ) y_validation: 2D array of shape = (no of patterns, ) OUTPUT best_hyperparameter: a tuple (epoch, alpha, roh, n_iter_no_change) which has best accuracy on the validation set. """ val_acc = [] for i in range(0, epoch.shape[0]): mlp_classifier = MLPClassifier(hidden_layer_sizes = (no_of_hidden_neurons[i],), activation = 'logistic', solver = 'sgd', learning_rate = 'constant',\ learning_rate_init = alpha[i], max_iter = epoch[i], shuffle = True, random_state = 100, tol = roh[i],\ verbose = False, early_stopping = True, n_iter_no_change = n_iter_no_change[i]).fit(X_train, y_train) # we are taking logloss function for error calculation predicted = mlp_classifier.predict(X_validation) val_acc.append(accuracy_score(y_validation, predicted)*100) # Get the maximum accuracy on validation max_value = max(val_acc) max_index = val_acc.index(max_value) best_hyperparameter = (no_of_hidden_neurons[max_index], epoch[max_index], alpha[max_index], roh[max_index], n_iter_no_change[max_index]) print("Best Hyperparameter:") print("No of neurons in the 1st hidden layer = ", no_of_hidden_neurons[max_index]) print("Epoch = ", epoch[max_index]) print("Alpha = ", alpha[max_index]) print("Roh = ", roh[max_index]) print("n_iter_no_change (Number of iterations with no improvement) = ", n_iter_no_change[max_index]) return best_hyperparameter
3ec079bbeae32a5e7e6b80e833336ecb8662cbf1
3,653,286
def play(p1:list[int], p2:list[int]) -> list[int]: """Gets the final hand of the winning player""" while p1 and p2: a = p1.pop(0) b = p2.pop(0) if a > b: p1 += [a, b] else: p2 += [b, a] return p1 + p2
2a2b561474b3cd0841dcbe881e74b4767b4102b1
3,653,287
def oda_update_uhf(dFs, dDs, dE): """ ODA update: lbd = 0.5 - dE / E_deriv """ if type(dFs) is not list: raise Exception("arg1 and arg2 are list of alpha/beta matrices.") E_deriv = np.sum(dFs[0] * dDs[0] + dFs[1] * dDs[1]) lbd = 0.5 * (1. - dE / E_deriv) if lbd < 0 or lbd > 1: lbd = 0.9999 if dE < 0 else 1.e-4 return lbd
fcead1536db11f80ae9eb2e912ac9857f93de669
3,653,288
def authorize(*roles): """Decorator that authorizes (or not) the current user Raises an exception if the current user does not have at least one of the listed roles. """ def wrapper(func): """wraps the protected function""" def authorize_and_call(*args, **kwargs): """checks authorization and calls function if authorized""" user = context.request.user if user.is_active: if user.is_administrator: return func(*args, **kwargs) for role in roles: if role in user.groups: return func(*args, **kwargs) raise zoom.exceptions.UnauthorizedException('Unauthorized') return authorize_and_call return wrapper
f3fd8eb42924f8f956d0e3eae1499f64387fe96e
3,653,289
import time import math def trunked_greedy_by_size_offset_calculation(usage_recorders, show_detail=False): """ An offset calculation algorithm designed for variable-length inputs. @ params: usage_recorders : tensor usage recoders (name, start_op, end_op, size) global trunk_size_list : a list of list (name, offset) @returns: assigned_offset : a dict indicates the offset for each tensor assigned_trunk : a dict indicates the trunk for each tensor """ global gTrunkList # descend usage_recorders = sorted(usage_recorders, key=lambda tup: tup[3], reverse=False) assigned_offset = {} assigned_trunk = {} new_allocate_size = 0 time_start = time.time() for i in range(len(gTrunkList._trunks)): gTrunkList._trunks[i]._tensor_list = [] for t in usage_recorders: t_name = t[0] t_size = t[3] is_assigned = False for trunk_id, trunk in enumerate(gTrunkList._trunks): trunk, offset = try_fit_trunk(t, trunk) if offset is not None: assigned_trunk[t_name] = trunk_id assigned_offset[t_name] = offset # update gTrunkList gTrunkList._trunks[trunk_id] = trunk is_assigned = True break # init new trunk, trunk id should be assigned after delete useless trunk if is_assigned is False: trunk_size = max(DEFAULT_TRUNK_SIZE, math.ceil((t_size * K_SCALE + 31) // 32 * 32)) new_allocate_size += trunk_size trunk = Trunk(trunk_size) trunk._tensor_list.append((*t, 0)) #offset @ 0 gTrunkList.appendTrunk(trunk) # TODO trunk_id = len(gTrunkList._trunks) - 1 assigned_trunk[t_name] = trunk_id assigned_offset[t_name] = 0 time_end = time.time() core_cost = time_end - time_start used_consumption = 0 total_consumption = 0 delete_trunk_list = [] # find trunk not used -> delete_trunk_list for trunk_id, trunk in enumerate(gTrunkList._trunks): max_end_offset = 0 for elem in trunk._tensor_list: max_end_offset = max(elem[4] + elem[3], max_end_offset) # offset + size # print("trunk id", trunk_id, " usage ", # max_end_offset / gTrunkList._trunks[trunk_id]._size) used_consumption += max_end_offset if max_end_offset == 0: delete_trunk_list.insert(0, trunk_id) else: total_consumption += gTrunkList._trunks[trunk_id]._size # delete for id in delete_trunk_list: gTrunkList._trunks.pop(id) # adjust trunk ids for trunk_id, trunk in enumerate(gTrunkList._trunks): for tensor in trunk._tensor_list: tensor_name = tensor[0] assigned_trunk[tensor_name] = trunk_id if show_detail: print("=====allocation plan====") print("trunk_id \t size") for i, t in enumerate(gTrunkList._trunks): print(i, t._size) print("tensor name \t offset") for t in assigned_offset.items(): t_name = t[0] print("{", t_name, assigned_trunk[t_name], assigned_offset[t_name], "},") # print("{\"" + t_name + "\",", assigned_offset[t_name], "},") print("=====allocation plan====") used_consumption = used_consumption / 1024 / 1024 total_consumption = total_consumption / 1024 / 1024 new_allocate_size = new_allocate_size / 1024 / 1024 if show_detail: print( f"> debug total_consumption {total_consumption} MB used_consumption {used_consumption} MB percent {used_consumption/total_consumption}" ) return assigned_offset, assigned_trunk, gTrunkList.getInfo(), ( total_consumption, new_allocate_size)
87c782301a4534aaffacc6aaf47a1f9b88b4ee39
3,653,290
import base64 import itertools import six def decrypt(secret, ciphertext): """Given the first 16 bytes of splunk.secret, decrypt a Splunk password""" plaintext = None if ciphertext.startswith("$1$"): ciphertext = base64.b64decode(ciphertext[3:]) key = secret[:16] algorithm = algorithms.ARC4(key) cipher = Cipher(algorithm, mode=None, backend=default_backend()) decryptor = cipher.decryptor() plaintext = decryptor.update(ciphertext) chars = [] for char1, char2 in zip(plaintext[:-1], itertools.cycle("DEFAULTSA")): chars.append(six.byte2int([char1]) ^ ord(char2)) plaintext = "".join([six.unichr(c) for c in chars]) elif ciphertext.startswith("$7$"): ciphertext = base64.b64decode(ciphertext[3:]) kdf = PBKDF2HMAC( algorithm=hashes.SHA256(), length=32, salt=b"disk-encryption", iterations=1, backend=default_backend() ) key = kdf.derive(secret) iv = ciphertext[:16] # pylint: disable=invalid-name tag = ciphertext[-16:] ciphertext = ciphertext[16:-16] algorithm = algorithms.AES(key) cipher = Cipher(algorithm, mode=modes.GCM(iv, tag), backend=default_backend()) decryptor = cipher.decryptor() plaintext = decryptor.update(ciphertext).decode() return plaintext
d4b0caca50d649633bb973d26bb174875d23b0e0
3,653,291
from unet_core.vessel_analysis import VesselTree def load_skeleton(path): """ Load the skeleton from a pickle """ # Delayed import so script can be run with both Python 2 and 3 v = VesselTree() v.load_skeleton(path) return v.skeleton
d9632de40310dd738eb7d07966d6eb04360c3b81
3,653,292
def industries_hierarchy() -> pd.DataFrame: """Read the Dow Jones Industry hierarchy CSV file. Reads the Dow Jones Industry hierarchy CSV file and returns its content as a Pandas DataFrame. The root node has the fcode `indroot` and an empty parent. Returns ------- DataFrame : A Pandas DataFrame with the columns: * ind_fcode : string Industry Factiva Code * name : string Name of the Industry * parent : string Factiva Code of the parent Industry """ ret_ind = pd.read_csv(ind_hrchy_path) ret_ind = ret_ind.replace(np.nan, '', regex=True) return ret_ind
9d1de27e3e01572637e7afc729e0cd07d96b14e2
3,653,293
def ready(): """ A readiness endpoint, checks on DB health too. :return: a 200 OK status if this server is up, and the backing DB is ready too; otherwise, a 503 "Temporarily unavailable." """ try: # TODO: Move to a DAO class client = get_mongo_client() info = {} for key in MONGO_HEALTH_KEYS: info[key] = client.server_info().get(key, "null") if info.get("ok") == 1: info["status"] = "UP" else: info["status"] = "WARN" except pymongo.errors.ServerSelectionTimeoutError as ex: info = {"status": "DOWN", "error": str(ex)} response = make_response(jsonify({'status': 'UP', "mongo": info})) if info['status'] != "UP": response.status_code = 503 return response
526dda4fc4bffecde573b1b26cf5b33dcbd66d09
3,653,294
import typing def setup_callback(callback: typing.Awaitable): """ This function is used to setup the callback. """ callback.is_guild = False """ The guild of the callback. """ callback.has_permissions = [] """ The permissions of the callback. """ callback.has_roles = [] """ The roles of the callback. """ callback.checks = [] """ The checks of the callback. """ callback.check_any = False """ The check_any of the callback. """ return callback
4cb7849d9746166c95c96d18e27227b52160ff7a
3,653,295
def prepare_for_training(ds, ds_name, conf, cache): """ Cache -> shuffle -> repeat -> augment -> batch -> prefetch """ AUTOTUNE = tf.data.experimental.AUTOTUNE # Resample dataset. NB: dataset is cached in resamler if conf["resample"] and 'train' in ds_name: ds = oversample(ds, ds_name, conf) # Cache to SSD elif cache: cache_string = "{}/{}_{}_{}".format( conf["cache_dir"], conf["img_shape"][0], conf["ds_info"], ds_name ) ds = ds.cache(cache_string) # Shuffle if conf["shuffle_buffer_size"]>1: ds = ds.shuffle( buffer_size=conf["shuffle_buffer_size"], seed=tf.constant(conf["seed"], tf.int64) if conf["seed"] else None ) # Repeat forever ds = ds.repeat() #Augment if conf["augment"] and "train" in ds_name: ds = augment_ds(ds, conf, AUTOTUNE) # Batch ds = ds.batch(conf["batch_size"], drop_remainder=False) # Prefetch - lets the dataset fetch batches in the background while the model is training. ds = ds.prefetch(buffer_size=AUTOTUNE) return ds
b072a7ced028b1627288a3f2bbf0233c85afbab8
3,653,296
def residual3d(inp, is_training, relu_after=True, add_bn=True, name=None, reuse=None): """ 3d equivalent to 2d residual layer Args: inp (tensor[batch_size, d, h, w, channels]): is_training (tensor[bool]): relu_after (bool): add_bn (bool): add bn before every relu name (string): reuse (bool): """ if name == None: name = "residual3d" out_dim = (int)(inp.shape[-1]) with tf.variable_scope(name, reuse=reuse): out1 = tf.layers.conv3d( inp, filters=out_dim, kernel_size=[3, 3, 3], strides=[1, 1, 1], padding="same", activation=None, kernel_initializer=tf.contrib.layers.xavier_initializer(), bias_initializer=tf.zeros_initializer(), name="layer1", reuse=reuse) if add_bn: out1 = batch_norm( inp=out1, is_training=is_training, name="norm1", reuse=reuse) out1 = tf.nn.relu(out1) out2 = tf.layers.conv3d( out1, filters=out_dim, kernel_size=[3, 3, 3], strides=[1, 1, 1], padding="same", activation=None, kernel_initializer=tf.contrib.layers.xavier_initializer(), bias_initializer=tf.zeros_initializer(), name="layer2", reuse=reuse) if relu_after and add_bn: out2 = batch_norm( inp=out2, is_training=is_training, name="norm2", reuse=reuse) if relu_after: return tf.nn.relu(inp + out2) else: return inp + out2
28fb8651c9a9755e8d0636c702b2bd77e7186fd1
3,653,297
def marks(family, glyph): """ :param family: :param glyph: :return: True when glyph has at least one anchor """ has_mark_anchor = False for anchor in glyph.anchors: if anchor.name: if anchor.name.startswith("_"): has_mark_anchor = True break return has_mark_anchor
101555dcadfd78b0550606f843e32dce99de62b8
3,653,298
import re def generate_bom(pcb_modules, config, extra_data): # type: (list, Config, dict) -> dict """ Generate BOM from pcb layout. :param pcb_modules: list of modules on the pcb :param config: Config object :param extra_data: Extra fields data :return: dict of BOM tables (qty, value, footprint, refs) and dnp components """ def convert(text): return int(text) if text.isdigit() else text.lower() def alphanum_key(key): return [convert(c) for c in re.split('([0-9]+)', key)] def natural_sort(l): """ Natural sort for strings containing numbers """ return sorted(l, key=lambda r: (alphanum_key(r[0]), r[1])) # build grouped part list warning_shown = False skipped_components = [] part_groups = {} for i, m in enumerate(pcb_modules): if skip_component(m, config, extra_data): skipped_components.append(i) continue # group part refs by value and footprint norm_value = units.componentValue(m.val) extras = [] if config.extra_fields: if m.ref in extra_data: extras = [extra_data[m.ref].get(f, '') for f in config.extra_fields] else: # Some components are on pcb but not in schematic data. # Show a warning about possibly outdated netlist/xml file. log.warn( 'Component %s is missing from schematic data.' % m.ref) warning_shown = True extras = [''] * len(config.extra_fields) group_key = (norm_value, tuple(extras), m.footprint, m.attr) valrefs = part_groups.setdefault(group_key, [m.val, []]) valrefs[1].append((m.ref, i)) if warning_shown: log.warn('Netlist/xml file is likely out of date.') # build bom table, sort refs bom_table = [] for (norm_value, extras, footprint, attr), valrefs in part_groups.items(): bom_row = ( len(valrefs[1]), valrefs[0], footprint, natural_sort(valrefs[1]), extras) bom_table.append(bom_row) # sort table by reference prefix, footprint and quantity def sort_func(row): qty, _, fp, rf, e = row prefix = re.findall('^[A-Z]*', rf[0][0])[0] if prefix in config.component_sort_order: ref_ord = config.component_sort_order.index(prefix) else: ref_ord = config.component_sort_order.index('~') return ref_ord, e, fp, -qty, alphanum_key(rf[0][0]) if '~' not in config.component_sort_order: config.component_sort_order.append('~') bom_table = sorted(bom_table, key=sort_func) result = { 'both': bom_table, 'skipped': skipped_components } for layer in ['F', 'B']: filtered_table = [] for row in bom_table: filtered_refs = [ref for ref in row[3] if pcb_modules[ref[1]].layer == layer] if filtered_refs: filtered_table.append((len(filtered_refs), row[1], row[2], filtered_refs, row[4])) result[layer] = sorted(filtered_table, key=sort_func) return result
7645929bfcfd3d7447a32ae2ea3074d6da86c368
3,653,299