content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def _key_chord_transition_distribution(
key_chord_distribution, key_change_prob, chord_change_prob):
"""Transition distribution between key-chord pairs."""
mat = np.zeros([len(_KEY_CHORDS), len(_KEY_CHORDS)])
for i, key_chord_1 in enumerate(_KEY_CHORDS):
key_1, chord_1 = key_chord_1
chord_index_1 = i % len(_CHORDS)
for j, key_chord_2 in enumerate(_KEY_CHORDS):
key_2, chord_2 = key_chord_2
chord_index_2 = j % len(_CHORDS)
if key_1 != key_2:
# Key change. Chord probability depends only on key and not previous
# chord.
mat[i, j] = (key_change_prob / 11)
mat[i, j] *= key_chord_distribution[key_2, chord_index_2]
else:
# No key change.
mat[i, j] = 1 - key_change_prob
if chord_1 != chord_2:
# Chord probability depends on key, but we have to redistribute the
# probability mass on the previous chord since we know the chord
# changed.
mat[i, j] *= (
chord_change_prob * (
key_chord_distribution[key_2, chord_index_2] +
key_chord_distribution[key_2, chord_index_1] / (len(_CHORDS) -
1)))
else:
# No chord change.
mat[i, j] *= 1 - chord_change_prob
return mat | 0e89b1e11494237c526170f25286c3ad098a1023 | 3,658,300 |
def level_set(
current_price, standard_deviation, cloud, stop_mod, take_profit_mod,
):
"""
Calculates risk and reward levels.
Should return a stop loss and take profit levels.
For opening a new position.
Returns a stop (in the format (StopType, offset)) and a take profit level.
"""
stop = None
take_profit = None
cloud_color = cloud.status[0]
cloud_location = cloud.status[1]
direction_mod = 1
if cloud_color == CloudColor.RED:
direction_mod = -1
take_profit_mod = take_profit_mod * direction_mod
stop_mod = stop_mod * direction_mod
if cloud_location == CloudPriceLocation.INSIDE: # ie passing through long ema
stop = (StopType.EMA_LONG, (standard_deviation * stop_mod * -1))
# If price passes through short EMA from either color cloud.
if cloud_location in (CloudPriceLocation.ABOVE, CloudPriceLocation.BELOW):
stop = (StopType.EMA_LONG, 0)
# Or in case the long EMA is very far away:
if abs(cloud.long_ema - current_price) > abs(current_price -
(cloud.short_ema - (direction_mod * 2 * standard_deviation * -1))):
stop = (
StopType.EMA_SHORT,
(direction_mod * 2 * standard_deviation * -1))
# Or if the long EMA is too close:
elif abs(cloud.long_ema - current_price) < abs(current_price -
(cloud.short_ema - (direction_mod * 0.5 * standard_deviation * -1))):
stop = (
StopType.EMA_SHORT,
(direction_mod * 0.5 * standard_deviation * -1))
take_profit = cloud.short_ema + (standard_deviation * take_profit_mod)
risk_loss = abs(current_price - StopType.stop_tuple_to_level(stop, cloud))
# Enforce max_ratio:1 reward:risk if take_profit is very far away.
max_ratio = 1.5
min_ratio = 1.0
potential_profit = abs(current_price - take_profit)
if potential_profit > max_ratio * risk_loss:
take_profit = current_price + (direction_mod * max_ratio * risk_loss)
if potential_profit < max_ratio * risk_loss:
stop = (current_price, potential_profit * direction_mod * -.95)
return stop, take_profit | 541a15b22bc830db530658c10515a15def196516 | 3,658,301 |
def back(deque):
""" returns the last elemement in the que """
if length(deque) > 0:
return deque[-1]
else:
return None | 810d2135cf39af7959f6142be4b2b3abee8d6185 | 3,658,302 |
import json
import operator
def my_subs_helper(s):
"""Helper function to handle badly formed JSON stored in the database"""
try:
return {'time_created':s.time_created, 'json_obj':sorted(json.loads(s.json_data).iteritems(), key=operator.itemgetter(0)), 'plain_json_obj':json.dumps(json.loads(s.json_data)),'id':s.id, 'json_score_data':json.dumps(s.json_score_data)}
except ValueError:
return {'time_created':s.time_created, 'json_obj':"__ERROR__", 'plain_json_obj':"__ERROR__", 'id':s.id} | 4b649d865c3a99f89111baa694df4902e65243e6 | 3,658,303 |
def dynamic_features(data_dir, year, data_source, voronoi, radar_buffers, **kwargs):
"""
Load all dynamic features, including bird densities and velocities, environmental data, and derived features
such as estimated accumulation of bird on the ground due to adverse weather.
Missing data is interpolated, but marked as missing.
:param data_dir: directory containing all relevant data
:param year: year of interest
:param data_source: 'radar' or 'abm' (simulated data)
:param voronoi: Voronoi tessellation (geopandas dataframe)
:param radar_buffers: radar buffers with static features (geopandas dataframe)
:return: dynamic features (pandas dataframe)
"""
env_points = kwargs.get('env_points', 100)
season = kwargs.get('season', 'fall')
random_seed = kwargs.get('seed', 1234)
pref_dirs = kwargs.get('pref_dirs', {'spring': 58, 'fall': 223})
pref_dir = pref_dirs[season]
wp_threshold = kwargs.get('wp_threshold', -0.5)
edge_type = kwargs.get('edge_type', 'voronoi')
t_unit = kwargs.get('t_unit', '1H')
print(f'##### load data for {season} {year} #####')
if data_source in ['radar', 'nexrad']:
print(f'load radar data')
radar_dir = osp.join(data_dir, data_source)
voronoi_radars = voronoi.query('observed == True')
birds_km2, _, t_range = datahandling.load_season(radar_dir, season, year, ['vid'],
t_unit=t_unit, mask_days=False,
radar_names=voronoi_radars.radar,
interpolate_nans=False)
radar_data, _, t_range = datahandling.load_season(radar_dir, season, year, ['ff', 'dd', 'u', 'v'],
t_unit=t_unit, mask_days=False,
radar_names=voronoi_radars.radar,
interpolate_nans=True)
bird_speed = radar_data[:, 0, :]
bird_direction = radar_data[:, 1, :]
bird_u = radar_data[:, 2, :]
bird_v = radar_data[:, 3, :]
# rescale according to voronoi cell size
data = birds_km2 * voronoi_radars.area_km2.to_numpy()[:, None]
t_range = t_range.tz_localize('UTC')
elif data_source == 'abm':
print(f'load abm data')
abm_dir = osp.join(data_dir, 'abm')
voronoi_radars = voronoi.query('observed == True')
radar_buffers_radars = radar_buffers.query('observed == True')
data, t_range, bird_u, bird_v = abm.load_season(abm_dir, season, year, voronoi_radars)
buffer_data = abm.load_season(abm_dir, season, year, radar_buffers_radars, uv=False)[0]
# rescale to birds per km^2
birds_km2 = data / voronoi_radars.area_km2.to_numpy()[:, None]
birds_km2_from_buffer = buffer_data / radar_buffers_radars.area_km2.to_numpy()[:, None]
# rescale to birds per voronoi cell
birds_from_buffer = birds_km2_from_buffer * voronoi_radars.area_km2.to_numpy()[:, None]
# time range for solar positions to be able to infer dusk and dawn
solar_t_range = t_range.insert(-1, t_range[-1] + pd.Timedelta(t_range.freq))
print('load env data')
env_vars = kwargs.get('env_vars', ['u', 'v', 'u10', 'v10', 'cc', 'tp', 'sp', 't2m', 'sshf'])
env_vars = [v for v in env_vars if not v in ['night', 'dusk', 'dawn', 'dayofyear', 'solarpos', 'solarpos_dt']]
if len(env_vars) > 0:
if edge_type == 'voronoi':
env_areas = voronoi.geometry
else:
env_areas = radar_buffers.geometry
env_850 = era5interface.compute_cell_avg(osp.join(data_dir, 'env', season, year, 'pressure_level_850.nc'),
env_areas, env_points,
t_range.tz_localize(None), vars=env_vars, seed=random_seed)
env_surface = era5interface.compute_cell_avg(osp.join(data_dir, 'env', season, year, 'surface.nc'),
env_areas, env_points,
t_range.tz_localize(None), vars=env_vars, seed=random_seed)
dfs = []
for ridx, row in voronoi.iterrows():
df = {}
df['radar'] = [row.radar] * len(t_range)
print(f'preprocess radar {row.radar}')
# time related variables for radar ridx
solarpos = np.array(solarposition.get_solarposition(solar_t_range, row.lat, row.lon).elevation)
night = np.logical_or(solarpos[:-1] < -6, solarpos[1:] < -6)
df['solarpos_dt'] = solarpos[:-1] - solarpos[1:]
df['solarpos'] = solarpos[:-1]
df['night'] = night
df['dusk'] = np.logical_and(solarpos[:-1] >=6, solarpos[1:] < 6) # switching from day to night
df['dawn'] = np.logical_and(solarpos[:-1] < 6, solarpos[1:] >=6) # switching from night to day
df['datetime'] = t_range
df['dayofyear'] = pd.DatetimeIndex(t_range).dayofyear
df['tidx'] = np.arange(t_range.size)
# bird measurements for radar ridx
df['birds'] = data[ridx] if row.observed else [np.nan] * len(t_range)
df['birds_km2'] = birds_km2[ridx] if row.observed else [np.nan] * len(t_range)
cols = ['birds', 'birds_km2', 'birds_from_buffer', 'birds_km2_from_buffer', 'bird_u', 'bird_v']
df['bird_u'] = bird_u[ridx] if row.observed else [np.nan] * len(t_range)
df['bird_v'] = bird_v[ridx] if row.observed else [np.nan] * len(t_range)
if data_source == 'abm':
df['birds_from_buffer'] = birds_from_buffer[ridx] if row.observed else [np.nan] * len(t_range)
df['birds_km2_from_buffer'] = birds_km2_from_buffer[ridx] if row.observed else [np.nan] * len(t_range)
else:
df['birds_from_buffer'] = data[ridx] if row.observed else [np.nan] * len(t_range)
df['birds_km2_from_buffer'] = birds_km2[ridx] if row.observed else [np.nan] * len(t_range)
df['bird_speed'] = bird_speed[ridx] if row.observed else [np.nan] * len(t_range)
df['bird_direction'] = bird_direction[ridx] if row.observed else [np.nan] * len(t_range)
cols.extend(['bird_speed', 'bird_direction'])
if len(env_vars) > 0:
# environmental variables for radar ridx
for var in env_vars:
if var in env_850:
print(f'found {var} in env_850 dataset')
df[var] = env_850[var][ridx]
elif var in env_surface:
print(f'found {var} in surface dataset')
df[var] = env_surface[var][ridx]
df['wind_speed'] = np.sqrt(np.square(df['u']) + np.square(df['v']))
# Note that here wind direction is the direction into which the wind is blowing,
# which is the opposite of the standard meteorological wind direction
df['wind_dir'] = (abm.uv2deg(df['u'], df['v']) + 360) % 360
# compute accumulation variables (for baseline models)
groups = [list(g) for k, g in it.groupby(enumerate(df['night']), key=lambda x: x[-1])]
nights = [[item[0] for item in g] for g in groups if g[0][1]]
df['nightID'] = np.zeros(t_range.size)
df['acc_rain'] = np.zeros(t_range.size)
df['acc_wind'] = np.zeros(t_range.size)
df['wind_profit'] = np.zeros(t_range.size)
acc_rain = 0
u_rain = 0
acc_wind = 0
u_wind = 0
for nidx, night in enumerate(nights):
df['nightID'][night] = np.ones(len(night)) * (nidx + 1)
# accumulation due to rain in the past nights
acc_rain = acc_rain/3 + u_rain * 2/3
df['acc_rain'][night] = np.ones(len(night)) * acc_rain
# compute proportion of hours with rain during the night
u_rain = np.mean(df['tp'][night] > 0.01)
# accumulation due to unfavourable wind in the past nights
acc_wind = acc_wind/3 + u_wind * 2/3
df['acc_wind'][night] = np.ones(len(night)) * acc_wind
# compute wind profit for bird with speed 12 m/s and flight direction 223 degree north
v_air = np.ones(len(night)) * 12
alpha = np.ones(len(night)) * pref_dir
df['wind_profit'][night] = v_air - np.sqrt(v_air**2 + df['wind_speed'][night]**2 -
2 * v_air * df['wind_speed'][night] *
np.cos(np.deg2rad(alpha-df['wind_dir'][night])))
u_wind = np.mean(df['wind_profit'][night]) < wp_threshold
radar_df = pd.DataFrame(df)
radar_df['missing'] = 0
for col in cols:
if data_source == 'radar':
# radar quantities being exactly 0 during the night are missing,
# radar quantities during the day are set to 0
print(f'check missing data for column {col}')
radar_df[col] = radar_df.apply(lambda row: np.nan if (row.night and not row[col])
else (0 if not row.night else row[col]), axis=1)
# remember missing radar observations
radar_df['missing'] = radar_df['missing'] | radar_df[col].isna()
# fill missing bird measurements by interpolation
if col == 'bird_direction':
# use "nearest", to avoid artifacts of interpolating between e.g. 350 and 2 degree
radar_df[col].interpolate(method='nearest', inplace=True)
else:
# for all other quantities simply interpolate linearly
radar_df[col].interpolate(method='linear', inplace=True)
else:
radar_df[col] = radar_df.apply(lambda row: np.nan if (row.night and np.isnan(row[col]))
else (0 if not row.night else row[col]), axis=1)
radar_df['missing'] = radar_df['missing'] | radar_df[col].isna()
# fill missing bird measurements with 0
radar_df[col].fillna(0, inplace=True)
dfs.append(radar_df)
print(f'found {radar_df.missing.sum()} misssing time points')
dynamic_feature_df = pd.concat(dfs, ignore_index=True)
print(f'columns: {dynamic_feature_df.columns}')
return dynamic_feature_df | fd5675b127d6a20f930d8ee88366e7426c5a09b9 | 3,658,304 |
def __normalize_allele_strand(snp_dfm):
"""
Keep all the alleles on FWD strand.
If `strand` is "-", flip every base in `alleles`; otherwise do not change `alleles`.
"""
on_rev = (snp_dfm.loc[:, "strand"] == "-")
has_alleles = (snp_dfm.loc[:, "alleles"].str.len() > 0)
condition = (on_rev & has_alleles)
if not snp_dfm.loc[condition, :].empty:
snp_dfm.loc[condition, "alleles"] = snp_dfm.loc[condition, "alleles"].apply(flip_allele)
return snp_dfm | 1ebe00294eb55de96d68fc214bd5051d40a2dfa5 | 3,658,305 |
def add_to_codetree(tword,codetree,freq=1):
""" Adds one tuple-word to tree structure - one node per symbol
word end in the tree characterized by node[0]>0
"""
unique=0
for pos in range(len(tword)):
s = tword[pos]
if s not in codetree:
codetree[s] = [0,{}]
unique+=1
codetree[s][0] += freq
codetree = codetree[s][1]
return unique | e92a48f112e7a774bed3b125509f7f64dce0a7ec | 3,658,306 |
def TA_ADXm(data, period=10, smooth=10, limit=18):
"""
Moving Average ADX
ADX Smoothing Trend Color Change on Moving Average and ADX Cross. Use on Hourly Charts - Green UpTrend - Red DownTrend - Black Choppy No Trend
Source: https://www.tradingview.com/script/owwws7dM-Moving-Average-ADX/
Parameters
----------
data : (N,) array_like
传入 OHLC Kline 序列。
The OHLC Kline.
period : int or None, optional
DI 统计周期 默认值为 10
DI Length period. Default value is 10.
smooth : int or None, optional
ADX 平滑周期 默认值为 10
ADX smoothing length period. Default value is 10.
limit : int or None, optional
ADX 限制阈值 默认值为 18
ADX MA Active limit threshold. Default value is 18.
Returns
-------
adx, ADXm : ndarray
ADXm 指标和趋势指示方向 (-1, 0, 1) 分别代表 (下跌, 无明显趋势, 上涨)
ADXm indicator and thread directions sequence. (-1, 0, 1) means for (Negatice, No Trend, Postive)
"""
up = data.high.pct_change()
down = data.low.pct_change() * -1
trur = TA_HMA(talib.TRANGE(data.high.values, data.low.values, data.close.values) , period)
plus = 100 * TA_HMA(np.where(((up > down) & (up > 0)), up, 0), period) / trur
minus = 100 * TA_HMA(np.where(((down > up) & (down > 0)), down, 0), period) / trur
# 这里是dropna的替代解决办法,因为我觉得nparray的传递方式如果随便drop了可能会跟 data.index 对不上,所以我选择补零替代dropna
plus = np.r_[np.zeros(period + 2), plus[(period + 2):]]
minus = np.r_[np.zeros(period + 2), minus[(period + 2):]]
sum = plus + minus
adx = 100 * TA_HMA(abs(plus - minus) / (np.where((sum == 0), 1, sum)), smooth)
adx = np.r_[np.zeros(smooth + 2), adx[(smooth + 2):]]
ADXm = np.where(((adx > limit) & (plus > minus)), 1, np.where(((adx > limit) & (plus < minus)), -1, 0))
return adx, ADXm | 40f41b013127b122bddf66e3dfe53f746c89b3c7 | 3,658,307 |
def remove_from_dict(obj, keys=list(), keep_keys=True):
""" Prune a class or dictionary of all but keys (keep_keys=True).
Prune a class or dictionary of specified keys.(keep_keys=False).
"""
if type(obj) == dict:
items = list(obj.items())
elif isinstance(obj, dict):
items = list(obj.items())
else:
items = list(obj.__dict__.items())
if keep_keys:
return {k: v for k, v in items if k in keys}
else:
return {k: v for k, v in items if k not in keys} | b1d9a2bd17269e079ce136cc464060fc47fe5906 | 3,658,308 |
def unify_qso_catalog_uvqs_old(qsos):
"""Unifies the name of columns that are relevant for the analysis"""
qsos.rename_column('RA','ra')
qsos.rename_column('DEC','dec')
qsos.rename_column('FUV','mag_fuv')
qsos.rename_column('Z','redshift')
qsos.add_column(Column(name='id',data=np.arange(len(qsos))+1))
return qsos | 8fe561e7d6e99c93d08efe5ff16d6e37ed66ab4e | 3,658,309 |
def get_hash_key_name(value):
"""Returns a valid entity key_name that's a hash of the supplied value."""
return 'hash_' + sha1_hash(value) | b2bba3031efccb5dab1781695fc39c993f735e71 | 3,658,310 |
import yaml
def yaml_dumps(value, indent=2):
"""
YAML dumps that supports Unicode and the ``as_raw`` property of objects if available.
"""
return yaml.dump(value, indent=indent, allow_unicode=True, Dumper=YamlAsRawDumper) | ed368fb84967190e460c1bcf51bd573323ff4f46 | 3,658,311 |
def poi_remove(poi_id: int):
"""Removes POI record
Args:
poi_id: ID of the POI to be removed
"""
poi = POI.get_by_id(poi_id)
if not poi:
abort(404)
poi.delete()
db.session.commit()
return redirect_return() | 26c1cb2524c6a19d9382e9e0d27947a0d2b2a98c | 3,658,312 |
def stringToTupleOfFloats(s):
"""
Converts s to a tuple
@param s: string
@return: tuple represented by s
"""
ans = []
for i in s.strip("()").split(","):
if i.strip() != "":
if i == "null":
ans.append(None)
else:
ans.append(float(i))
return tuple(ans) | 7eec23232f884035b12c6498f1e68616e4580878 | 3,658,313 |
import json
import requests
def create_training(training: TrainingSchema):
"""
Create an training with an TrainingSchema
:param training: training data as TrainingSchema
:return: http response
"""
endpoint_url = Config.get_api_url() + "training"
job_token = Config.get_job_token()
headers = {
'content-type': 'application/json',
'jobtoken': job_token
}
data = json.dumps(training.get_dict())
response = requests.post(endpoint_url, data=data, headers=headers)
return response | c0ce20fc68cbb3d46b00e451b85bf01991579bcc | 3,658,314 |
def respects_language(fun):
"""Decorator for tasks with respect to site's current language.
You can use this decorator on your tasks together with default @task
decorator (remember that the task decorator must be applied last).
See also the with-statement alternative :func:`respect_language`.
**Example**:
.. code-block:: python
@task
@respects_language
def my_task()
# localize something.
The task will then accept a ``language`` argument that will be
used to set the language in the task, and the task can thus be
called like:
.. code-block:: python
from django.utils import translation
from myapp.tasks import my_task
# Pass the current language on to the task
my_task.delay(language=translation.get_language())
# or set the language explicitly
my_task.delay(language='no.no')
"""
@wraps(fun)
def _inner(*args, **kwargs):
with respect_language(kwargs.pop('language', None)):
return fun(*args, **kwargs)
return _inner | 547629321d649a102a0c082b1eddcac32334432c | 3,658,315 |
def zero_one_window(data, axis=(0, 1, 2), ceiling_percentile=99, floor_percentile=1, floor=0, ceiling=1,
channels_axis=None):
"""
:param data: Numpy ndarray.
:param axis:
:param ceiling_percentile: Percentile value of the foreground to set to the ceiling.
:param floor_percentile: Percentile value of the image to set to the floor.
:param floor: New minimum value.
:param ceiling: New maximum value.
:param channels_axis:
:return:
"""
data = np.copy(data)
if len(axis) != data.ndim:
floor_threshold = np.percentile(data, floor_percentile, axis=axis)
if channels_axis is None:
channels_axis = find_channel_axis(data.ndim, axis=axis)
data = np.moveaxis(data, channels_axis, 0)
for channel in range(data.shape[0]):
channel_data = data[channel]
# find the background
bg_mask = channel_data <= floor_threshold[channel]
# use background to find foreground
fg = channel_data[bg_mask == False]
# find threshold based on foreground percentile
ceiling_threshold = np.percentile(fg, ceiling_percentile)
# normalize the data for this channel
data[channel] = window_data(channel_data, floor_threshold=floor_threshold[channel],
ceiling_threshold=ceiling_threshold, floor=floor, ceiling=ceiling)
data = np.moveaxis(data, 0, channels_axis)
else:
floor_threshold = np.percentile(data, floor_percentile)
fg_mask = data > floor_threshold
fg = data[fg_mask]
ceiling_threshold = np.percentile(fg, ceiling_percentile)
data = window_data(data, floor_threshold=floor_threshold, ceiling_threshold=ceiling_threshold, floor=floor,
ceiling=ceiling)
return data | 4056433a9f3984bebc1c99f30be4f8e9ddc31026 | 3,658,316 |
import sys
def factorial(x):
"""factorial(x) -> Integral
"Find x!. Raise a ValueError if x is negative or non-integral."""
if isinstance(x, float):
fl = int(x)
if fl != x:
raise ValueError("float arguments must be integral")
x = fl
if x > sys.maxsize:
raise OverflowError("Too large for a factorial")
if x <= 100:
if x < 0:
raise ValueError("x must be >= 0")
res = 1
for i in range(2, x + 1):
res *= i
return res
# Experimentally this gap seems good
gap = max(100, x >> 7)
def _fac_odd(low, high):
if low + gap >= high:
t = 1
for i in range(low, high, 2):
t *= i
return t
mid = ((low + high) >> 1) | 1
return _fac_odd(low, mid) * _fac_odd(mid, high)
def _fac1(x):
if x <= 2:
return 1, 1, x - 1
x2 = x >> 1
f, g, shift = _fac1(x2)
g *= _fac_odd((x2 + 1) | 1, x + 1)
return (f * g, g, shift + x2)
res, _, shift = _fac1(x)
return res << shift | 664cc8e0e215f089bbc57fec68553d788305e4c0 | 3,658,317 |
def get_event_stderr(e):
"""Return the stderr field (if any) associated with the event."""
if _API_VERSION == google_v2_versions.V2ALPHA1:
return e.get('details', {}).get('stderr')
elif _API_VERSION == google_v2_versions.V2BETA:
for event_type in ['containerStopped']:
if event_type in e:
return e[event_type].get('stderr')
else:
assert False, 'Unexpected version: {}'.format(_API_VERSION) | 89a32228d3ad0ecb92c6c0b45664903d6f4b507d | 3,658,318 |
def xA(alpha, gamma, lsa, lsd, y, xp, nv):
"""Calculate position where the beam hits the analyzer crystal.
:param alpha: the divergence angle of the neutron
:param gamma: the tilt angle of the deflector
:param lsa: the sample-analyzer distance
:param lsd: the sample deflector distance
:param y: the translation of the analyser crystal
:param xp: the point at the sample where the neutron is scattered
:param nv: neutron path: transmitted(0), reflected at the first deflector(1),
reflected at the second deflector(2),
"""
if nv == 0:
return xp + (lsa - y) * tan(radians(alpha))
return xp + lsd * tan(radians(alpha)) + \
(lsa - lsd - y) * tan(radians(2 * gamma - alpha)) | 0dfb9bd7b761fa0669893c692f3adb2a5cb079c4 | 3,658,319 |
from typing import Optional
from datetime import datetime
def find_recent_login(user_id: UserID) -> Optional[datetime]:
"""Return the time of the user's most recent login, if found."""
recent_login = db.session \
.query(DbRecentLogin) \
.filter_by(user_id=user_id) \
.one_or_none()
if recent_login is None:
return None
return recent_login.occurred_at | 153dc509e2382e8f9eb18917d9be04d171ffdee9 | 3,658,320 |
async def async_remove_config_entry_device(
hass: HomeAssistant, config_entry: ConfigEntry, device_entry: dr.DeviceEntry
) -> bool:
"""Remove ufp config entry from a device."""
unifi_macs = {
_async_unifi_mac_from_hass(connection[1])
for connection in device_entry.connections
if connection[0] == dr.CONNECTION_NETWORK_MAC
}
api = async_ufp_instance_for_config_entry_ids(hass, {config_entry.entry_id})
assert api is not None
if api.bootstrap.nvr.mac in unifi_macs:
return False
for device in async_get_devices(api.bootstrap, DEVICES_THAT_ADOPT):
if device.is_adopted_by_us and device.mac in unifi_macs:
return False
return True | f8ae37a454f5c5e3314676162ff48e1e05530396 | 3,658,321 |
def batch_unsrt_segment_sum(data, segment_ids, num_segments):
""" Performas the `tf.unsorted_segment_sum` operation batch-wise"""
# create distinct segments per batch
num_batches = tf.shape(segment_ids, out_type=tf.int64)[0]
batch_indices = tf.range(num_batches)
segment_ids_per_batch = segment_ids + num_segments * tf.expand_dims(batch_indices, axis=1)
# do the normal unsegment sum and reshape to original shape
seg_sums = tf.unsorted_segment_sum(data, segment_ids_per_batch, num_segments * num_batches)
return tf.reshape(seg_sums, tf.stack((-1, num_segments))) | 299a514e926c43564960288c706c1d535620144b | 3,658,322 |
import json
def read_json(file_name):
"""Read json from file."""
with open(file_name) as f:
return json.load(f) | 2eccab7dddb1c1038de737879c465f293a00e5de | 3,658,323 |
def get_role(request):
"""Look up the "role" query parameter in the URL."""
query = request.ws_resource.split('?', 1)
if len(query) == 1:
raise LookupError('No query string found in URL')
param = parse.parse_qs(query[1])
if 'role' not in param:
raise LookupError('No role parameter found in the query string')
return param['role'][0] | 87cc8f15a3d0aeb45a8d7ea67fb34573e41b7df7 | 3,658,324 |
def login(username: str, password: str) -> Person:
"""通过用户名和密码登录智学网
Args:
username (str): 用户名, 可以为准考证号, 手机号
password (str): 密码
Raises:
ArgError: 参数错误
UserOrPassError: 用户名或密码错误
UserNotFoundError: 未找到用户
LoginError: 登录错误
RoleError: 账号角色未知
Returns:
Person
"""
session = get_session(username, password)
if check_is_student(session):
return StudentAccount(session).set_base_info()
return TeacherAccount(session).set_base_info() | a982cddb107cc8ccf8c9d1868e91299cd6ac07f3 | 3,658,325 |
def _decode_end(_fp):
"""Decode the end tag, which has no data in the file, returning 0.
:type _fp: A binary `file object`
:rtype: int
"""
return 0 | 5e8da3585dda0b9c3c7cd428b7e1606e585e15c6 | 3,658,326 |
def make_dqn_agent(q_agent_type,
arch,
n_actions,
lr=2.5e-4,
noisy_net_sigma=None,
buffer_length=10 ** 6,
final_epsilon=0.01,
final_exploration_frames=10 ** 6,
use_gpu=0,
replay_start_size=5 * 10 **4,
target_update_interval=3 * 10**4,
update_interval=4,
):
"""
given an architecture and an specific dqn
return the agent
args:
q_agent_type: choices=["DQN", "DoubleDQN", "PAL"]
arch: choices=["nature", "nips", "dueling", "doubledqn"]
final_epsilon: Final value of epsilon during training
final_exploration_frames: Timesteps after which we stop annealing exploration rate
replay_start_size: Minimum replay buffer size before performing gradient updates.
target_update_interval: Frequency (in timesteps) at which the target network is updated
update_interval: Frequency (in timesteps) of network updates.
"""
# q function
q_func = parse_arch(arch, n_actions)
# explorer
if noisy_net_sigma is not None:
pnn.to_factorized_noisy(q_func, sigma_scale=noisy_net_sigma)
# turn off explorer
explorer = explorers.Greedy()
else:
# deafult option
explorer = explorers.LinearDecayEpsilonGreedy(
1.0,
final_epsilon,
final_exploration_frames,
lambda: np.random.randint(n_actions),
)
# optimizer
# Use the Nature paper's hyperparameters
opt = pfrl.optimizers.RMSpropEpsInsideSqrt(
q_func.parameters(),
lr=lr,
alpha=0.95,
momentum=0.0,
eps=1e-2,
centered=True,
)
# replay_buffer
rbuf = replay_buffers.ReplayBuffer(buffer_length)
# Feature extractor
def phi(x):
return np.asarray(x, dtype=np.float32) / 255
Agent = parse_agent(q_agent_type)
agent = Agent(
q_func,
opt,
rbuf,
gpu=use_gpu, # 0 or -1
gamma=0.99,
explorer=explorer,
replay_start_size=replay_start_size,
target_update_interval=target_update_interval,
clip_delta=True,
update_interval=update_interval,
batch_accumulator="sum",
phi=phi,
)
return agent | 0b5974e30a12ef760a424d8d229319ccfee3119a | 3,658,327 |
def build_consensus_from_haplotypes(haplotypes):
"""
# ========================================================================
BUILD CONSENSUS FROM HAPLOTYPES
PURPOSE
-------
Builds a consensus from a list of Haplotype objects.
INPUT
-----
[HAPLOTYPE LIST] [haplotypes]
The list of haplotypes.
RETURN
------
[String] consensus
The consensus sequence.
# ========================================================================
"""
pileup = build_pileup_from_haplotypes(haplotypes)
consensus = pileup.build_consensus()
return consensus | 977e59e77e45cb4ccce95875f4802a43028af060 | 3,658,328 |
from typing import List
from typing import Dict
from typing import Tuple
def convert_data_for_rotation_averaging(
wTi_list: List[Pose3], i2Ti1_dict: Dict[Tuple[int, int], Pose3]
) -> Tuple[Dict[Tuple[int, int], Rot3], List[Rot3]]:
"""Converts the poses to inputs and expected outputs for a rotation averaging algorithm.
Args:
wTi_list: List of global poses.
i2Ti1_dict: Dictionary of (i1, i2) -> i2Ti1 relative poses.
Returns:
i2Ti1_dict's values mapped to relative rotations i2Ri1.
wTi_list mapped to global rotations.
"""
wRi_list = [x.rotation() for x in wTi_list]
i2Ri1_dict = {k: v.rotation() for k, v in i2Ti1_dict.items()}
return i2Ri1_dict, wRi_list | 1f058ae1925f5392416ec4711b55e849e277a24c | 3,658,329 |
def all_arrays_to_gpu(f):
"""Decorator to copy all the numpy arrays to the gpu before function
invokation"""
def inner(*args, **kwargs):
args = list(args)
for i in range(len(args)):
if isinstance(args[i], np.ndarray):
args[i] = to_gpu(args[i])
return f(*args, **kwargs)
return inner | 25ea43a611ac8a63aa1246aaaf810cec71be4c3f | 3,658,330 |
def create_intersect_mask(num_v, max_v):
"""
Creates intersect mask as needed by polygon_intersection_new
in batch_poly_utils (for a single example)
"""
intersect_mask = np.zeros((max_v, max_v), dtype=np.float32)
for i in range(num_v - 2):
for j in range((i + 2) % num_v, num_v - int(i == 0)):
intersect_mask[i, j] = 1.
return intersect_mask | 32d2758e704901aa57b70e0edca2b9292df2583a | 3,658,331 |
def gdi_abuse_tagwnd_technique_bitmap():
"""
Technique to be used on Win 10 v1703 or earlier. Locate the pvscan0 address with the help of tagWND structures
@return: pvscan0 address of the manager and worker bitmap and the handles
"""
window_address = alloc_free_windows(0)
manager_bitmap_handle = create_bitmap(0x100, 0x6D, 1)
manager_bitmap_pvscan0 = window_address + 0x50
window_address = alloc_free_windows(0)
worker_bitmap_handle = create_bitmap(0x100, 0x6D, 1)
worker_bitmap_pvscan0 = window_address + 0x50
return (manager_bitmap_pvscan0, worker_bitmap_pvscan0, manager_bitmap_handle, worker_bitmap_handle) | e77253d082b9aaaa083c84ffdbe8a74ae0b84b0b | 3,658,332 |
import os
import argparse
import sys
import array
def main():
"""CLI entrypoint"""
parser = Parser(
prog='unwad',
description='Default action is to convert files to png format and extract to xdir.',
epilog='example: unwad gfx.wad -d ./out => extract all files to ./out'
)
parser.add_argument(
'file',
metavar='file.wad',
action=ResolvePathAction
)
parser.add_argument(
'-l', '--list',
action='store_true',
help='list files'
)
parser.add_argument(
'-d',
metavar='xdir',
default=os.getcwd(),
dest='dest',
action=ResolvePathAction,
help='extract files into xdir'
)
parser.add_argument(
'-q',
dest='quiet',
action='store_true',
help='quiet mode'
)
parser.add_argument(
'-f',
dest='format',
default='png',
choices=['bmp','gif','png','tga'],
help='image format to convert to'
)
parser.add_argument(
'-v', '--version',
dest='version',
action='version',
help=argparse.SUPPRESS,
version=f'{parser.prog} version {qcli.__version__}'
)
args = parser.parse_args()
archive_name = os.path.basename(args.file)
if not wad.is_wadfile(args.file):
print(f'{parser.prog}: cannot find or open {args.file}', file=sys.stderr)
sys.exit(1)
if args.list:
with wad.WadFile(args.file) as wad_file:
info_list = sorted(wad_file.infolist(), key=lambda i: i.filename)
lump_types = {
0: 'NONE',
1: 'LABEL',
64: 'LUMP',
65: 'QTEX',
66: 'QPIC',
67: 'SOUND',
68: 'MIPTEX'
}
def lump_type(num):
if num in lump_types:
return lump_types[num]
return num
headers = ['Length', 'Type', 'Name']
table = [[i.file_size, lump_type(i.type), i.filename] for i in info_list]
length = sum([i.file_size for i in info_list])
count = len(info_list)
table.append([length, '', f'{count} file{"s" if count > 1 else ""}'])
separator = []
for i in range(len(headers)):
t = max(len(str(length)), len(headers[i]) + 2)
separator.append('-' * t)
table.insert(-1, separator)
print(f'Archive: {archive_name}')
print(tabulate(table, headers=headers))
sys.exit(0)
if not os.path.exists(args.dest):
os.makedirs(args.dest)
with wad.WadFile(args.file) as wad_file:
if not args.quiet:
print(f'Archive: {archive_name}')
# Flatten out palette
palette = []
for p in quake.palette:
palette += p
for item in wad_file.infolist():
filename = item.filename
fullpath = os.path.join(args.dest, filename)
fullpath_ext = '{0}.{1}'.format(fullpath, args.format)
data = None
size = None
# Pictures
if item.type == wad.LumpType.QPIC:
with wad_file.open(filename) as lmp_file:
lump = lmp.Lmp.open(lmp_file)
size = lump.width, lump.height
data = array.array('B', lump.pixels)
# Special cases
elif item.type == wad.LumpType.MIPTEX:
# Console characters
if item.file_size == 128 * 128:
size = 128, 128
with wad_file.open(filename) as lump:
data = lump.read(item.file_size)
else:
# Miptextures
try:
with wad_file.open(filename) as mip_file:
mip = wad.Miptexture.read(mip_file)
data = mip.pixels[:mip.width * mip.height]
data = array.array('B', data)
size = mip.width, mip.height
except:
print(f' failed to extract resource: {item.filename}', file=sys.stderr)
continue
try:
# Convert to image file
if data is not None and size is not None:
img = Image.frombuffer('P', size, data, 'raw', 'P', 0, 1)
img.putpalette(palette)
img.save(fullpath_ext)
if not args.quiet:
print(f' extracting: {fullpath_ext}')
# Extract as raw file
else:
wad_file.extract(filename, args.dest)
if not args.quiet:
print(f' extracting: {fullpath}')
except:
print(f'{parser.prog}: error: {sys.exc_info()[1]}', file=sys.stderr)
sys.exit(0) | eee25c0b6d6481ff5e169f36a53daa5bdf3bbd52 | 3,658,333 |
def check_stop() -> list:
"""Checks for entries in the stopper table in base db.
Returns:
list:
Returns the flag, caller from the stopper table.
"""
with db.connection:
cursor = db.connection.cursor()
flag = cursor.execute("SELECT flag, caller FROM stopper").fetchone()
return flag | b2694938541704508d5304bae9abff25da2e0fc9 | 3,658,334 |
from TorCtl import SQLSupport
import socket
def open_controller(filename,ncircuits,use_sql):
""" starts stat gathering thread """
s = socket.socket(socket.AF_INET,socket.SOCK_STREAM)
s.connect((control_host,control_port))
c = PathSupport.Connection(s)
c.authenticate(control_pass) # also launches thread...
c.debug(file(filename+".log", "w", buffering=0))
h = CircStatsGatherer(c,__selmgr,filename,ncircuits)
c.set_event_handler(h)
if use_sql:
SQLSupport.setup_db("sqlite:///"+filename+".sqlite", drop=True)
c.add_event_listener(SQLSupport.ConsensusTrackerListener())
c.add_event_listener(SQLSupport.CircuitListener())
global FUDValue
if not FUDValue:
FUDValue = c.get_option("FetchUselessDescriptors")[0][1]
c.set_option("FetchUselessDescriptors", "1")
c.set_events([TorCtl.EVENT_TYPE.STREAM,
TorCtl.EVENT_TYPE.BW,
TorCtl.EVENT_TYPE.NEWCONSENSUS,
TorCtl.EVENT_TYPE.NEWDESC,
TorCtl.EVENT_TYPE.CIRC,
TorCtl.EVENT_TYPE.STREAM_BW], True)
return c | 8686a60dc27d486aac3e6622cd82f94983eda74c | 3,658,335 |
def get_camelcase_name_chunks(name):
"""
Given a name, get its parts.
E.g: maxCount -> ["max", "count"]
"""
out = []
out_str = ""
for c in name:
if c.isupper():
if out_str:
out.append(out_str)
out_str = c.lower()
else:
out_str += c
out.append(out_str)
return out | 134a8b1d98af35f185b37c999fbf499d18bf76c5 | 3,658,336 |
def _GetBuildBotUrl(builder_host, builder_port):
"""Gets build bot URL for fetching build info.
Bisect builder bots are hosted on tryserver.chromium.perf, though we cannot
access this tryserver using host and port number directly, so we use another
tryserver URL for the perf tryserver.
Args:
builder_host: Hostname of the server where the builder is hosted.
builder_port: Port number of ther server where the builder is hosted.
Returns:
URL of the buildbot as a string.
"""
if (builder_host == PERF_BISECT_BUILDER_HOST and
builder_port == PERF_BISECT_BUILDER_PORT):
return PERF_TRY_SERVER_URL
else:
return 'http://%s:%s' % (builder_host, builder_port) | 551ac7ee9079009cd8b52e41aeabb2b2e4e10c21 | 3,658,337 |
def case_two_args_positional_callable_first(replace_by_foo):
""" Tests the decorator with one positional argument @my_decorator(goo) """
return replace_by_foo(goo, 'hello'), goo | fa5ca0af3d5af7076aebbb8364f29fc64b4e3c28 | 3,658,338 |
def cal_sort_key( cal ):
"""
Sort key for the list of calendars: primary calendar first,
then other selected calendars, then unselected calendars.
(" " sorts before "X", and tuples are compared piecewise)
"""
if cal["selected"]:
selected_key = " "
else:
selected_key = "X"
if cal["primary"]:
primary_key = " "
else:
primary_key = "X"
return (primary_key, selected_key, cal["summary"]) | fd1d8b32ee904d3684decba54268d926c5fd3d82 | 3,658,339 |
from datetime import datetime
def select_zip_info(sample: bytes) -> tuple:
"""Print a list of items contained within the ZIP file, along with
their last modified times, CRC32 checksums, and file sizes. Return
info on the item selected by the user as a tuple.
"""
t = []
w = 0
z = ZipFile(sample)
for i in z.infolist():
if len(i.filename) > w:
w = len(i.filename)
t.append((i.filename, datetime(*i.date_time), i.CRC, i.file_size))
for i in range(len(t)):
dt = t[i][1].strftime('%Y-%m-%d %H:%M:%S')
crc = t[i][2].to_bytes(4, 'big').hex()
print(f'{i + 1: >2}. {t[i][0]: <{w}} {dt} {crc} {t[i][3]}')
n = input('\nEnter a number corresponding to the desired entry: ')
print()
return t[int(n) - 1] | aac5b04c40552c09d07bf2db0c2d4431fc168aa2 | 3,658,340 |
import traceback
import select
def create_ionosphere_layers(base_name, fp_id, requested_timestamp):
"""
Create a layers profile.
:param None: determined from :obj:`request.args`
:return: array
:rtype: array
"""
function_str = 'ionoshere_backend.py :: create_ionosphere_layers'
trace = 'none'
fail_msg = 'none'
layers_algorithms = None
layers_added = None
value_conditions = ['<', '>', '==', '!=', '<=', '>=']
conditions = ['<', '>', '==', '!=', '<=', '>=', 'in', 'not in']
if 'd_condition' in request.args:
d_condition = request.args.get('d_condition', '==')
else:
logger.error('no d_condition argument passed')
fail_msg = 'error :: no d_condition argument passed'
return False, False, layers_algorithms, layers_added, fail_msg, trace
if not str(d_condition) in conditions:
logger.error('d_condition not a valid conditon - %s' % str(d_condition))
fail_msg = 'error :: d_condition not a valid conditon - %s' % str(d_condition)
return False, False, layers_algorithms, layers_added, fail_msg, trace
if 'd_boundary_limit' in request.args:
d_boundary_limit = request.args.get('d_boundary_limit', '0')
else:
logger.error('no d_boundary_limit argument passed')
fail_msg = 'error :: no d_boundary_limit argument passed'
return False, False, layers_algorithms, layers_added, fail_msg, trace
try:
# @modified 20170317 - Feature #1960: ionosphere_layers - allow for floats
# test_d_boundary_limit = int(d_boundary_limit) + 1
test_d_boundary_limit = float(d_boundary_limit) + 1
except:
trace = traceback.format_exc()
logger.error('%s' % trace)
fail_msg = 'error :: d_boundary_limit is not an int'
return False, False, layers_algorithms, layers_added, fail_msg, trace
# @modified 20160315 - Feature #1972: ionosphere_layers - use D layer boundary for upper limit
# Added d_boundary_times
if 'd_boundary_times' in request.args:
d_boundary_times = request.args.get('d_boundary_times', '1')
else:
logger.error('no d_boundary_times argument passed')
fail_msg = 'error :: no d_boundary_times argument passed'
return False, False, layers_algorithms, layers_added, fail_msg, trace
try:
test_d_boundary_times = int(d_boundary_times) + 1
except:
trace = traceback.format_exc()
logger.error('%s' % trace)
fail_msg = 'error :: d_boundary_times is not an int'
return False, False, layers_algorithms, layers_added, fail_msg, trace
# @added 20170616 - Feature #2048: D1 ionosphere layer
if 'd1_condition' in request.args:
d1_condition = request.args.get('d1_condition', 'none')
else:
logger.error('no d1_condition argument passed')
fail_msg = 'error :: no d1_condition argument passed'
return False, False, layers_algorithms, layers_added, fail_msg, trace
if str(d1_condition) == 'none':
d1_condition = 'none'
d1_boundary_limit = 0
d1_boundary_times = 0
else:
if not str(d1_condition) in conditions:
logger.error('d1_condition not a valid conditon - %s' % str(d1_condition))
fail_msg = 'error :: d1_condition not a valid conditon - %s' % str(d1_condition)
return False, False, layers_algorithms, layers_added, fail_msg, trace
if 'd1_boundary_limit' in request.args:
d1_boundary_limit = request.args.get('d1_boundary_limit', '0')
else:
logger.error('no d1_boundary_limit argument passed')
fail_msg = 'error :: no d1_boundary_limit argument passed'
return False, False, layers_algorithms, layers_added, fail_msg, trace
try:
test_d1_boundary_limit = float(d1_boundary_limit) + 1
except:
trace = traceback.format_exc()
logger.error('%s' % trace)
fail_msg = 'error :: d1_boundary_limit is not an int'
return False, False, layers_algorithms, layers_added, fail_msg, trace
if 'd1_boundary_times' in request.args:
d1_boundary_times = request.args.get('d1_boundary_times', '1')
else:
logger.error('no d1_boundary_times argument passed')
fail_msg = 'error :: no d1_boundary_times argument passed'
return False, False, layers_algorithms, layers_added, fail_msg, trace
try:
test_d1_boundary_times = int(d1_boundary_times) + 1
except:
trace = traceback.format_exc()
logger.error('%s' % trace)
fail_msg = 'error :: d1_boundary_times is not an int'
return False, False, layers_algorithms, layers_added, fail_msg, trace
if 'e_condition' in request.args:
e_condition = request.args.get('e_condition', None)
else:
logger.error('no e_condition argument passed')
fail_msg = 'error :: no e_condition argument passed'
return False, False, layers_algorithms, layers_added, fail_msg, trace
if not str(e_condition) in value_conditions:
logger.error('e_condition not a valid value conditon - %s' % str(e_condition))
fail_msg = 'error :: e_condition not a valid value conditon - %s' % str(e_condition)
return False, False, layers_algorithms, layers_added, fail_msg, trace
if 'e_boundary_limit' in request.args:
e_boundary_limit = request.args.get('e_boundary_limit')
else:
logger.error('no e_boundary_limit argument passed')
fail_msg = 'error :: no e_boundary_limit argument passed'
return False, False, layers_algorithms, layers_added, fail_msg, trace
try:
# @modified 20170317 - Feature #1960: ionosphere_layers - allow for floats
# test_e_boundary_limit = int(e_boundary_limit) + 1
test_e_boundary_limit = float(e_boundary_limit) + 1
except:
trace = traceback.format_exc()
logger.error('%s' % trace)
fail_msg = 'error :: e_boundary_limit is not an int'
return False, False, layers_algorithms, layers_added, fail_msg, trace
if 'e_boundary_times' in request.args:
e_boundary_times = request.args.get('e_boundary_times')
else:
logger.error('no e_boundary_times argument passed')
fail_msg = 'error :: no e_boundary_times argument passed'
return False, False, layers_algorithms, layers_added, fail_msg, trace
try:
test_e_boundary_times = int(e_boundary_times) + 1
except:
trace = traceback.format_exc()
logger.error('%s' % trace)
fail_msg = 'error :: e_boundary_times is not an int'
return False, False, layers_algorithms, layers_added, fail_msg, trace
es_layer = False
if 'es_layer' in request.args:
es_layer_arg = request.args.get('es_layer')
if es_layer_arg == 'true':
es_layer = True
if es_layer:
es_day = None
if 'es_day' in request.args:
es_day = request.args.get('es_day')
else:
logger.error('no es_day argument passed')
fail_msg = 'error :: no es_day argument passed'
return False, False, layers_algorithms, layers_added, fail_msg, trace
f1_layer = False
if 'f1_layer' in request.args:
f1_layer_arg = request.args.get('f1_layer')
if f1_layer_arg == 'true':
f1_layer = True
if f1_layer:
from_time = None
valid_f1_from_time = False
if 'from_time' in request.args:
from_time = request.args.get('from_time')
if from_time:
values_valid = True
if len(from_time) == 4:
for digit in from_time:
try:
int(digit) + 1
except:
values_valid = False
if values_valid:
if int(from_time) < 2400:
valid_f1_from_time = True
if not valid_f1_from_time:
logger.error('no valid f1_layer from_time argument passed - %s' % str(from_time))
fail_msg = 'error :: no valid f1_layer from_time argument passed - %s' % str(from_time)
return False, False, layers_algorithms, layers_added, fail_msg, trace
f2_layer = False
if 'f2_layer' in request.args:
f2_layer_arg = request.args.get('f2_layer')
if f2_layer_arg == 'true':
f2_layer = True
if f2_layer:
until_time = None
valid_f2_until_time = False
if 'until_time' in request.args:
until_time = request.args.get('until_time')
if until_time:
values_valid = True
if len(until_time) == 4:
for digit in until_time:
try:
int(digit) + 1
except:
values_valid = False
if values_valid:
if int(until_time) < 2400:
valid_f2_until_time = True
if not valid_f2_until_time:
logger.error('no valid f2_layer until_time argument passed - %s' % str(until_time))
fail_msg = 'error :: no valid f2_layer until_time argument passed - %s' % str(until_time)
return False, False, layers_algorithms, layers_added, fail_msg, trace
label = False
if 'fp_layer_label' in request.args:
label_arg = request.args.get('fp_layer_label')
label = label_arg[:255]
engine_needed = True
engine = None
if engine_needed:
logger.info('%s :: getting MySQL engine' % function_str)
try:
engine, fail_msg, trace = get_an_engine()
logger.info(fail_msg)
except:
trace = traceback.format_exc()
logger.error(trace)
fail_msg = 'error :: could not get a MySQL engine'
logger.error('%s' % fail_msg)
raise
if not engine:
trace = 'none'
fail_msg = 'error :: engine not obtained'
logger.error(fail_msg)
raise
try:
metrics_table, log_msg, trace = metrics_table_meta(skyline_app, engine)
logger.info(log_msg)
logger.info('metrics_table OK')
except:
logger.error(traceback.format_exc())
logger.error('error :: failed to get metrics_table meta')
if engine:
engine_disposal(engine)
raise # to webapp to return in the UI
metrics_id = 0
try:
connection = engine.connect()
stmt = select([metrics_table]).where(metrics_table.c.metric == base_name)
result = connection.execute(stmt)
for row in result:
metrics_id = int(row['id'])
connection.close()
except:
trace = traceback.format_exc()
logger.error(trace)
fail_msg = 'error :: could not determine metric id from metrics table'
if engine:
engine_disposal(engine)
raise
# Create layer profile
ionosphere_layers_table = None
try:
ionosphere_layers_table, fail_msg, trace = ionosphere_layers_table_meta(skyline_app, engine)
logger.info(fail_msg)
except:
trace = traceback.format_exc()
logger.error('%s' % trace)
fail_msg = 'error :: ionosphere_backend :: failed to get ionosphere_layers_table meta for %s' % base_name
logger.error('%s' % fail_msg)
if engine:
engine_disposal(engine)
raise
layer_id = 0
try:
connection = engine.connect()
stmt = select([ionosphere_layers_table]).where(ionosphere_layers_table.c.fp_id == fp_id)
result = connection.execute(stmt)
for row in result:
layer_id = int(row['id'])
connection.close()
except:
trace = traceback.format_exc()
logger.error(trace)
fail_msg = 'error :: could not determine id from ionosphere_layers_table'
if engine:
engine_disposal(engine)
raise
if layer_id > 0:
return layer_id, True, None, None, fail_msg, trace
new_layer_id = False
try:
connection = engine.connect()
ins = ionosphere_layers_table.insert().values(
fp_id=fp_id, metric_id=int(metrics_id), enabled=1, label=label)
result = connection.execute(ins)
connection.close()
new_layer_id = result.inserted_primary_key[0]
logger.info('new ionosphere layer_id: %s' % str(new_layer_id))
except:
trace = traceback.format_exc()
logger.error('%s' % trace)
fail_msg = 'error :: failed to insert a new record into the ionosphere_layers table for %s' % base_name
logger.error('%s' % fail_msg)
if engine:
engine_disposal(engine)
raise
# Create layer profile
layers_algorithms_table = None
try:
layers_algorithms_table, fail_msg, trace = layers_algorithms_table_meta(skyline_app, engine)
logger.info(fail_msg)
except:
trace = traceback.format_exc()
logger.error('%s' % trace)
fail_msg = 'error :: ionosphere_backend :: failed to get layers_algorithms_table meta for %s' % base_name
logger.error('%s' % fail_msg)
if engine:
engine_disposal(engine)
raise
new_layer_algorithm_ids = []
layers_added = []
# D layer
try:
connection = engine.connect()
ins = layers_algorithms_table.insert().values(
layer_id=new_layer_id, fp_id=fp_id, metric_id=int(metrics_id),
layer='D', type='value', condition=d_condition,
# @modified 20170317 - Feature #1960: ionosphere_layers - allow for floats
# layer_boundary=int(d_boundary_limit),
layer_boundary=str(d_boundary_limit),
# @modified 20160315 - Feature #1972: ionosphere_layers - use D layer boundary for upper limit
# Added d_boundary_times
times_in_row=int(d_boundary_times))
result = connection.execute(ins)
connection.close()
new_layer_algorithm_id = result.inserted_primary_key[0]
logger.info('new ionosphere_algorithms D layer id: %s' % str(new_layer_algorithm_id))
new_layer_algorithm_ids.append(new_layer_algorithm_id)
layers_added.append('D')
except:
trace = traceback.format_exc()
logger.error('%s' % trace)
fail_msg = 'error :: failed to insert a new D layer record into the layers_algorithms table for %s' % base_name
logger.error('%s' % fail_msg)
if engine:
engine_disposal(engine)
raise
# E layer
try:
connection = engine.connect()
ins = layers_algorithms_table.insert().values(
layer_id=new_layer_id, fp_id=fp_id, metric_id=int(metrics_id),
layer='E', type='value', condition=e_condition,
# @modified 20170317 - Feature #1960: ionosphere_layers - allow for floats
# layer_boundary=int(e_boundary_limit),
layer_boundary=str(e_boundary_limit),
times_in_row=int(e_boundary_times))
result = connection.execute(ins)
connection.close()
new_layer_algorithm_id = result.inserted_primary_key[0]
logger.info('new ionosphere_algorithms E layer id: %s' % str(new_layer_algorithm_id))
new_layer_algorithm_ids.append(new_layer_algorithm_id)
layers_added.append('E')
except:
trace = traceback.format_exc()
logger.error('%s' % trace)
fail_msg = 'error :: failed to insert a new E layer record into the layers_algorithms table for %s' % base_name
logger.error('%s' % fail_msg)
if engine:
engine_disposal(engine)
raise
# @added 20170616 - Feature #2048: D1 ionosphere layer
# This must be the third created algorithm layer as in the frontend list
# D is [0], E is [1], so D1 has to be [2]
if d1_condition:
try:
connection = engine.connect()
ins = layers_algorithms_table.insert().values(
layer_id=new_layer_id, fp_id=fp_id, metric_id=int(metrics_id),
layer='D1', type='value', condition=d1_condition,
layer_boundary=str(d1_boundary_limit),
times_in_row=int(d1_boundary_times))
result = connection.execute(ins)
connection.close()
new_layer_algorithm_id = result.inserted_primary_key[0]
logger.info('new ionosphere_algorithms D1 layer id: %s' % str(new_layer_algorithm_id))
new_layer_algorithm_ids.append(new_layer_algorithm_id)
layers_added.append('D1')
except:
trace = traceback.format_exc()
logger.error('%s' % trace)
fail_msg = 'error :: failed to insert a new D1 layer record into the layers_algorithms table for %s' % base_name
logger.error('%s' % fail_msg)
if engine:
engine_disposal(engine)
raise
# Es layer
if es_layer:
try:
connection = engine.connect()
ins = layers_algorithms_table.insert().values(
layer_id=new_layer_id, fp_id=fp_id, metric_id=int(metrics_id),
layer='Es', type='day', condition='in', layer_boundary=es_day)
result = connection.execute(ins)
connection.close()
new_layer_algorithm_id = result.inserted_primary_key[0]
logger.info('new ionosphere_algorithms Es layer id: %s' % str(new_layer_algorithm_id))
new_layer_algorithm_ids.append(new_layer_algorithm_id)
layers_added.append('Es')
except:
trace = traceback.format_exc()
logger.error('%s' % trace)
fail_msg = 'error :: failed to insert a new Es layer record into the layers_algorithms table for %s' % base_name
logger.error('%s' % fail_msg)
if engine:
engine_disposal(engine)
raise
# F1 layer
if f1_layer:
try:
connection = engine.connect()
ins = layers_algorithms_table.insert().values(
layer_id=new_layer_id, fp_id=fp_id, metric_id=int(metrics_id),
layer='F1', type='time', condition='>',
layer_boundary=str(from_time))
result = connection.execute(ins)
connection.close()
new_layer_algorithm_id = result.inserted_primary_key[0]
logger.info('new ionosphere_algorithms F1 layer id: %s' % str(new_layer_algorithm_id))
new_layer_algorithm_ids.append(new_layer_algorithm_id)
layers_added.append('F1')
except:
trace = traceback.format_exc()
logger.error('%s' % trace)
fail_msg = 'error :: failed to insert a new F1 layer record into the layers_algorithms table for %s' % base_name
logger.error('%s' % fail_msg)
if engine:
engine_disposal(engine)
raise
# F2 layer
if f2_layer:
try:
connection = engine.connect()
ins = layers_algorithms_table.insert().values(
layer_id=new_layer_id, fp_id=fp_id, metric_id=int(metrics_id),
layer='F2', type='time', condition='<',
layer_boundary=str(until_time))
result = connection.execute(ins)
connection.close()
new_layer_algorithm_id = result.inserted_primary_key[0]
logger.info('new ionosphere_algorithms F2 layer id: %s' % str(new_layer_algorithm_id))
new_layer_algorithm_ids.append(new_layer_algorithm_id)
layers_added.append('F2')
except:
trace = traceback.format_exc()
logger.error('%s' % trace)
fail_msg = 'error :: failed to insert a new F2 layer record into the layers_algorithms table for %s' % base_name
logger.error('%s' % fail_msg)
if engine:
engine_disposal(engine)
raise
ionosphere_table = None
try:
ionosphere_table, fail_msg, trace = ionosphere_table_meta(skyline_app, engine)
logger.info(fail_msg)
except:
trace = traceback.format_exc()
logger.error('%s' % trace)
fail_msg = 'error :: failed to get ionosphere_table meta for options'
logger.error('%s' % fail_msg)
if engine:
engine_disposal(engine)
raise
logger.info('%s :: ionosphere_table OK' % function_str)
try:
connection = engine.connect()
connection.execute(
ionosphere_table.update(
ionosphere_table.c.id == fp_id).
values(layers_id=new_layer_id))
connection.close()
logger.info('updated layers_id for %s' % str(fp_id))
except:
trace = traceback.format_exc()
logger.error('%s' % trace)
fail_msg = 'error :: could not update layers_id for %s ' % str(fp_id)
logger.error(fail_msg)
# @added 20170806 - Bug #2130: MySQL - Aborted_clients
# Added missing disposal
if engine:
engine_disposal(engine)
raise
if engine:
engine_disposal(engine)
return new_layer_id, True, layers_added, new_layer_algorithm_ids, fail_msg, trace | 3aa77c6d04fb24b2d8443467fbc0189e42b7dd9f | 3,658,341 |
def unitary_ifft2(y):
"""
A unitary version of the ifft2.
"""
return np.fft.ifft2(y)*np.sqrt(ni*nj) | 16dfe62cea08a72888cc3390f4d85f069aac5718 | 3,658,342 |
def orb_scf_input(sdmc):
""" find the scf inputs used to generate sdmc """
myinputs = None # this is the goal
sdep = 'dependencies' # string representation of the dependencies entry
# step 1: find the p2q simulation id
p2q_id = None
for key in sdmc[sdep].keys():
if sdmc[sdep][key].result_names[0] == 'orbitals':
p2q_id = key
# end if
# end for dep
# step 2: find the nscf simulation
nscf_id_list = sdmc[sdep][p2q_id]['sim'][sdep].keys()
assert len(nscf_id_list) == 1
nscf_id = nscf_id_list[0]
nscf = sdmc[sdep][p2q_id]['sim'][sdep][nscf_id]
myinputs = nscf['sim']['input']
# step 3: find the scf simulation
calc = myinputs['control']['calculation']
if (calc=='scf'): # scf may actually be the scf simulation
pass # myinputs is already set
elif (calc=='nscf'): # if nscf is not the scf, then we need to go deeper
scf_id = nscf['sim'][sdep].keys()[0]
scf = nscf['sim'][sdep][scf_id]
myinputs = scf['sim']['input'] # this is it!
scalc = myinputs['control']['calculation']
if scalc != 'scf':
RuntimeError('nscf depends on %s instead of scf'%scalc)
# end if
else:
raise RuntimeError('unknown simulation type %s'%calc)
# end if
return myinputs.to_dict() | c319693e9673edf540615025baf5b5199c5e27a3 | 3,658,343 |
def is_success(code):
""" Returns the expected response codes for HTTP GET requests
:param code: HTTP response codes
:type code: int
"""
if (200 <= code < 300) or code in [404, 500]:
return True
return False | fa502b4989d80edc6e1c6c717b6fe1347f99990d | 3,658,344 |
from typing import Optional
from typing import Union
async def asyncio(
*,
client: AuthenticatedClient,
json_body: SearchEventIn,
) -> Optional[Union[ErrorResponse, SearchEventOut]]:
"""Search Event
Dado um Trecho, uma lista de Grupos que resultam da pesquisa
por esse Trecho e um price token, atualiza os preços dos Grupos e o token.
Contabiliza visita (se passar na validação).
Args:
json_body (SearchEventIn):
Returns:
Response[Union[ErrorResponse, SearchEventOut]]
"""
return (
await asyncio_detailed(
client=client,
json_body=json_body,
)
).parsed | 6bf2a312d41cf77776e0c333ed72080c030a7170 | 3,658,345 |
def get_symmtrafo(newstruct_sub):
"""???
Parameters
----------
newstruct_sub : pymatgen structure
pymatgen structure of the bulk material
Returns
-------
trafo : ???
???
"""
sg = SpacegroupAnalyzer(newstruct_sub)
trr = sg.get_symmetry_dataset()
trafo = []
for index, op in enumerate(trr['rotations']):
if np.linalg.norm(np.array([0,0,-1]) - op[2]) < 0.0000001 and np.linalg.det(op) > 0 :
#print('transformation found' ,op, index, trr['translations'][index])
trafo ={'rot_frac': op.tolist(), 'trans_frac': trr['translations'][index].tolist() }
break
# Now we have the trafo (to be used on fractional coordinates)
if trafo == []:
for index, op in enumerate(trr['rotations']):
if np.linalg.norm(np.array([0,0,-1]) - op[2]) < 0.0000001:
#print('transformation found' ,op, index, trr['translations'][index])
trafo ={'rot_frac': op.tolist(), 'trans_frac': trr['translations'][index].tolist() }
break
return trafo | 9a346b4d0761de467baae1ee5f4cb0c623929180 | 3,658,346 |
def convert_sentence_into_byte_sequence(words, tags, space_idx=32, other='O'):
""" Convert a list of words and their tags into a sequence of bytes, and
the corresponding tag of each byte.
"""
byte_list = []
tag_list = []
for word_index, (word, tag) in enumerate(zip(words, tags)):
tag_type = get_tag_type(tag)
if is_inside_tag(tag) and word_index > 0:
byte_list += [space_idx]
tag_list += [tag_type]
elif word_index > 0:
byte_list += [space_idx]
tag_list += [other]
b_seq = bytes(word, encoding='utf-8')
nbytes = len(b_seq)
byte_list += b_seq
tag_list += [tag_type] * nbytes
assert len(byte_list) == len(tag_list)
return byte_list, tag_list | 2288d22e44d99ee147c9684befd3d31836a66a9d | 3,658,347 |
import os
def corr_cov(data, sample, xdata, xlabel='x', plabels=None, interpolation=None,
fname=None):
"""Correlation and covariance matrices.
Compute the covariance regarding YY and XY as well as the correlation
regarding YY.
:param array_like data: function evaluations (n_samples, n_features).
:param array_like sample: sample (n_samples, n_featrues).
:param array_like xdata: 1D discretization of the function (n_features,).
:param str xlabel: label of the discretization parameter.
:param list(str) plabels: parameters' labels.
:param str interpolation: If None, does not interpolate correlation and
covariance matrices (YY). Otherwize use Matplotlib methods from
`imshow` such as `['bilinear', 'lanczos', 'spline16', 'hermite', ...]`.
:param str fname: whether to export to filename or display the figures.
:returns: figure.
:rtype: Matplotlib figure instances, Matplotlib AxesSubplot instances.
"""
p_len = np.asarray(sample).shape[1]
data = ot.Sample(data)
corr_yy = np.array(data.computePearsonCorrelation())
cov_yy = np.array(data.computeCovariance())
cov_matrix_xy = np.dot((np.mean(sample) - sample).T,
np.mean(data, axis=0) - data) / (len(sample) - 1)
x_2d_yy, y_2d_yy = np.meshgrid(xdata, xdata)
x_2d_xy, y_2d_xy = np.meshgrid(xdata, np.arange(p_len))
c_map = cm.viridis
figures, axs = [], []
# Covariance matrix YY
fig, ax = plt.subplots()
figures.append(fig)
axs.append(ax)
cax = ax.imshow(cov_yy, cmap=c_map, interpolation=interpolation, origin='lower')
cbar = fig.colorbar(cax)
cbar.set_label(r"Covariance", size=26)
cbar.ax.tick_params(labelsize=23)
ax.set_xlabel(xlabel, fontsize=26)
ax.set_ylabel(xlabel, fontsize=26)
ax.tick_params(axis='x', labelsize=23)
ax.tick_params(axis='y', labelsize=23)
# Correlation matrix YY
fig, ax = plt.subplots()
figures.append(fig)
cax = ax.imshow(corr_yy, cmap=c_map, interpolation=interpolation, origin='lower')
cbar = fig.colorbar(cax)
cbar.set_label(r"Correlation", size=26)
cbar.ax.tick_params(labelsize=23)
ax.set_xlabel(xlabel, fontsize=26)
ax.set_ylabel(xlabel, fontsize=26)
ax.tick_params(axis='x', labelsize=23)
ax.tick_params(axis='y', labelsize=23)
if plabels is None:
plabels = ['x' + str(i) for i in range(p_len + 1)]
else:
plabels.insert(0, 0)
# Covariance matrix XY
fig, ax = plt.subplots()
figures.append(fig)
axs.append(ax)
cax = ax.imshow(cov_matrix_xy, cmap=c_map, interpolation='nearest')
ax.set_yticklabels(plabels, fontsize=6)
cbar = fig.colorbar(cax)
cbar.set_label(r"Covariance", size=26)
cbar.ax.tick_params(labelsize=23)
ax.set_xlabel(xlabel, fontsize=26)
ax.set_ylabel('Input parameters', fontsize=26)
ax.tick_params(axis='x', labelsize=23)
ax.tick_params(axis='y', labelsize=23)
if fname is not None:
io = formater('json')
filename, _ = os.path.splitext(fname)
data = np.append(x_2d_yy, [y_2d_yy, corr_yy, cov_yy])
names = ['x', 'y', 'Correlation-YY', 'Covariance']
sizes = [np.size(x_2d_yy), np.size(y_2d_yy), np.size(corr_yy), np.size(cov_yy)]
io.write(filename + '-correlation_covariance.json', data, names, sizes)
data = np.append(x_2d_xy, [y_2d_xy, cov_matrix_xy])
names = ['x', 'y', 'Correlation-XY']
sizes = [np.size(x_2d_xy), np.size(y_2d_xy), np.size(cov_matrix_xy)]
io.write(filename + '-correlation_XY.json', data, names, sizes)
bat.visualization.save_show(fname, figures)
return figures, axs | a999c5c53db3ca738665631ada721188efc333d5 | 3,658,348 |
def get_number_rows(ai_settings, ship_height, alien_height):
"""Determina o numero de linhas com alienigenas que cabem na tela."""
available_space_y = (ai_settings.screen_height -
(3 * alien_height) - ship_height)
number_rows = int(available_space_y / (2 * alien_height))
return number_rows | 473f73bc5fb4d6e86acb90f01d861d4d8561d494 | 3,658,349 |
def generate_trial_betas(bc, bh, bcrange, bhrange, step_multiplier, random_state_debug_value=None):
"""Generate trial beta values for an MC move. Move sizes are scaled by the 'step_multiplier' argument,
and individually by the 'bcrange' or 'bhrange' arguments for the beta_c and beta_h values respectively.
Negative beta values are not allowed; moves resulting in negative values will be resampled.
Requires current values of beta_c and beta_h, bcrange, bhrange, and step_multiplier.
Usage: generate_trial_betas(bc, bh, bcrange, bhrange, step_multiplier)
Returns: trial_bc, trial_bh
"""
# Data cleanup, just in case
try:
assert bc >= 0
except AssertionError:
print("Warning: Negative value of beta_C detected in MC sampling. Resetting to 0")
bc = 0
try:
assert bh >= 0
except AssertionError:
print("Warning: Negative value of beta_H detected in MC sampling. Resetting to 0")
bh = 0
# Make move in betas scaled by step size and desired 'range' of sampling. -ve beta values are not allowed
trial_bv_bh, trial_bv_bc = -1, -1
# Note that this regenerates the numpy random state from /dev/urandom
# or the clock if random_state_debug_value is not set
state = np.random.RandomState(random_state_debug_value)
while trial_bv_bh < 0:
trial_bv_bh = bh + ((state.random_sample()) - 0.5) \
* step_multiplier * bhrange
while trial_bv_bc < 0:
trial_bv_bc = bc + ((state.random_sample()) - 0.5) \
* step_multiplier * bcrange
return trial_bv_bc, trial_bv_bh | bacc11ac74076c827c609664d3d56e5e58f47df4 | 3,658,350 |
def map_ref_sites(routed: xr.Dataset, gauge_reference: xr.Dataset,
gauge_sites=None, route_var='IRFroutedRunoff',
fill_method='r2', min_kge=-0.41):
"""
Assigns segs within routed boolean 'is_gauge' "identifiers" and
what each seg's upstream and downstream reference seg designations are.
Parameters
----------
routed: xr.Dataset
Contains the input flow timeseries data.
gauge_reference: xr.Dataset
Contains reference flow timeseries data for the same watershed
as the routed dataset.
gauge_sites: list, optional
If None, gauge_sites will be taken as all those listed in
gauge_reference.
route_var: str
Variable name of flows used for fill_method purposes within routed.
This is defaulted as 'IRFroutedRunoff'.
fill_method: str
While finding some upstream/downstream reference segs may be simple,
(segs with 'is_gauge' = True are their own reference segs, others
may be easy to find looking directly up or downstream), some river
networks may have multiple options to select gauge sites and may fail
to have upstream/downstream reference segs designated. 'fill_method'
specifies how segs should be assigned upstream/downstream reference
segs for bias correction if they are missed walking upstream or downstream.
Currently supported methods:
'leave_null'
nothing is done to fill missing reference segs, np.nan values are
replaced with a -1 seg designation and that's it
'forward_fill'
xarray's ffill method is used to fill in any np.nan values
'r2'
reference segs are selected based on which reference site that
seg's flows has the greatest r2 value with
'kldiv'
reference segs are selected based on which reference site that
seg's flows has the smallest KL Divergence value with
'kge'
reference segs are selected based on which reference site that
seg's flows has the greatest KGE value with
Returns
-------
routed: xr.Dataset
Routed timeseries with reference gauge site river segments assigned to
each river segement in the original routed.
"""
if isinstance(gauge_sites, type(None)):
gauge_sites = gauge_reference['site'].values
else:
# need to typecheck since we do a for loop later and don't
# want to end up iterating through a string by accident
assert isinstance(gauge_sites, list)
gauge_segs = gauge_reference.sel(site=gauge_sites)['seg'].values
routed['is_gauge'] = False * routed['seg']
routed['down_ref_seg'] = np.nan * routed['seg']
routed['up_ref_seg'] = np.nan * routed['seg']
routed['up_seg'] = 0 * routed['is_headwaters']
routed['up_seg'].values = [find_up(routed, s, sel_method=fill_method) for s in routed['seg'].values]
for s in routed['seg']:
if s in list(gauge_segs):
routed['is_gauge'].loc[{'seg':s}] = True
routed['down_ref_seg'].loc[{'seg': s}] = s
routed['up_ref_seg'].loc[{'seg': s}] = s
for seg in routed['seg']:
cur_seg = seg.values[()]
while cur_seg in routed['seg'].values and np.isnan(routed['down_ref_seg'].sel(seg=cur_seg)):
cur_seg = routed['down_seg'].sel(seg=cur_seg).values[()]
if cur_seg in routed['seg'].values:
routed['down_ref_seg'].loc[{'seg':seg}] = routed['down_ref_seg'].sel(seg=cur_seg).values[()]
for seg in routed['seg']:
cur_seg = seg.values[()]
while cur_seg in routed['seg'].values and np.isnan(routed['up_ref_seg'].sel(seg=cur_seg)):
cur_seg = routed['up_seg'].sel(seg=cur_seg).values[()]
if cur_seg in routed['seg'].values:
routed['up_ref_seg'].loc[{'seg':seg}] = routed['up_ref_seg'].sel(seg=cur_seg).values[()]
# Fill in any remaining nulls (head/tailwaters)
if fill_method == 'leave_null':
# since there should be no -1 segs from mizuroute, we can set nan's to -1 to acknowledge
# that they have been addressed and still set them apart from the rest of the data
routed['up_ref_seg'] = (routed['up_ref_seg'].where(~np.isnan(routed['up_ref_seg']), other=-1))
routed['down_ref_seg'] = (routed['down_ref_seg'].where(~np.isnan(routed['down_ref_seg']), other=-1))
elif fill_method == 'forward_fill':
routed['up_ref_seg'] = (routed['up_ref_seg'].where(
~np.isnan(routed['up_ref_seg']), other=routed['down_ref_seg'])).ffill('seg')
routed['down_ref_seg'] = (routed['down_ref_seg'].where(
~np.isnan(routed['down_ref_seg']), other=routed['up_ref_seg'])).ffill('seg')
elif fill_method == 'r2':
fill_up_isegs = np.where(np.isnan(routed['up_ref_seg'].values))[0]
fill_down_isegs = np.where(np.isnan(routed['down_ref_seg'].values))[0]
routed['r2_up_gauge'] = 0 * routed['is_gauge']
routed['r2_down_gauge'] = 0 * routed['is_gauge']
for curr_seg in routed['seg'].values:
up_ref_seg = np.nan
curr_seg_flow = routed[route_var].sel(seg=curr_seg).values
if np.isnan(routed['up_ref_seg'].sel(seg=curr_seg).values):
up_ref_r2, up_ref_seg = find_max_r2(routed[route_var].sel(seg=gauge_segs), curr_seg_flow)
routed['r2_up_gauge'].loc[{'seg':curr_seg}] = up_ref_r2
routed['up_ref_seg'].loc[{'seg':curr_seg}] = up_ref_seg
else:
# this seg has already been filled in, but r2 still needs to be calculated
ref_flow = routed[route_var].sel(seg=routed['up_ref_seg'].sel(seg=curr_seg)).values
up_ref_r2 = np.corrcoef(curr_seg_flow, ref_flow)[0, 1]**2
routed['r2_up_gauge'].loc[{'seg':curr_seg}] = up_ref_r2
for curr_seg in routed['seg'].values:
down_ref_seg = np.nan
curr_seg_flow = routed[route_var].sel(seg=curr_seg).values
if np.isnan(routed['down_ref_seg'].sel(seg=curr_seg).values):
down_ref_r2, down_ref_seg = find_max_r2(routed[route_var].sel(seg=gauge_segs), curr_seg_flow)
routed['r2_down_gauge'].loc[{'seg':curr_seg}] = down_ref_r2
routed['down_ref_seg'].loc[{'seg':curr_seg}] = down_ref_seg
else:
# this seg has already been filled in, but r2 still needs to be calculated
ref_flow = routed[route_var].sel(seg=routed['down_ref_seg'].sel(seg=curr_seg)).values
down_ref_r2 = np.corrcoef(curr_seg_flow, ref_flow)[0, 1]**2
routed['r2_down_gauge'].loc[{'seg':curr_seg}] = down_ref_r2
elif fill_method == 'kldiv':
fill_up_isegs = np.where(np.isnan(routed['up_ref_seg'].values))[0]
fill_down_isegs = np.where(np.isnan(routed['down_ref_seg'].values))[0]
routed['kldiv_up_gauge'] = 0 * routed['is_gauge']
routed['kldiv_down_gauge'] = 0 * routed['is_gauge']
for curr_seg in routed['seg'].values:
curr_seg_flow = routed[route_var].sel(seg=curr_seg).values
if np.isnan(routed['up_ref_seg'].sel(seg=curr_seg).values):
up_ref_kldiv, up_ref_seg = find_min_kldiv(routed[route_var].sel(seg=gauge_segs), curr_seg_flow)
routed['kldiv_up_gauge'].loc[{'seg':curr_seg}] = up_ref_kldiv
routed['up_ref_seg'].loc[{'seg':curr_seg}] = up_ref_seg
else:
# this seg has already been filled in, but kldiv still needs to be calculated
# kldiv computation could probably be gutted in the furture ...
TINY_VAL = 1e-6
total_bins = int(np.sqrt(len(curr_seg_flow)))
curr_seg_flow_pdf, curr_seg_flow_edges = np.histogram(
curr_seg_flow, bins=total_bins, density=True)
curr_seg_flow_pdf[curr_seg_flow_pdf == 0] = TINY_VAL
ref_flow = routed[route_var].sel(seg=routed['up_ref_seg'].sel(seg=curr_seg).values).values
ref_flow_pdf = np.histogram(ref_flow, bins=curr_seg_flow_edges, density=True)[0]
ref_flow_pdf[ref_flow_pdf == 0] = TINY_VAL
up_ref_kldiv = entropy(pk=ref_flow_pdf, qk=curr_seg_flow_pdf)
routed['kldiv_up_gauge'].loc[{'seg':curr_seg}] = up_ref_kldiv
for curr_seg in routed['seg'].values:
curr_seg_flow = routed[route_var].sel(seg=curr_seg).values
if np.isnan(routed['down_ref_seg'].sel(seg=curr_seg).values):
down_ref_kldiv, down_ref_seg = find_min_kldiv(routed[route_var].sel(seg=gauge_segs), curr_seg_flow)
routed['kldiv_down_gauge'].loc[{'seg':curr_seg}] = down_ref_kldiv
routed['down_ref_seg'].loc[{'seg':curr_seg}] = down_ref_seg
else:
# this seg has already been filled in, but kldiv still needs to be calculated
# kldiv computation could probably be gutted in the furture ...
TINY_VAL = 1e-6
total_bins = int(np.sqrt(len(curr_seg_flow)))
curr_seg_flow_pdf, curr_seg_flow_edges = np.histogram(
curr_seg_flow, bins=total_bins, density=True)
curr_seg_flow_pdf[curr_seg_flow_pdf == 0] = TINY_VAL
ref_flow = routed[route_var].sel(seg=routed['down_ref_seg'].sel(seg=curr_seg).values).values
ref_flow_pdf = np.histogram(ref_flow, bins=curr_seg_flow_edges, density=True)[0]
ref_flow_pdf[ref_flow_pdf == 0] = TINY_VAL
down_ref_kldiv = entropy(pk=ref_flow_pdf, qk=curr_seg_flow_pdf)
routed['kldiv_down_gauge'].loc[{'seg':curr_seg}] = down_ref_kldiv
elif fill_method == 'kge':
fill_up_isegs = np.where(np.isnan(routed['up_ref_seg'].values))[0]
fill_down_isegs = np.where(np.isnan(routed['down_ref_seg'].values))[0]
routed['kge_up_gauge'] = min_kge + 0.0 * routed['is_gauge']
routed['kge_down_gauge'] = min_kge + 0.0 * routed['is_gauge']
for curr_seg in routed['seg'].values:
up_ref_seg = np.nan
curr_seg_flow = routed[route_var].sel(seg=curr_seg).values
if np.isnan(routed['up_ref_seg'].sel(seg=curr_seg).values):
up_ref_kge, up_ref_seg = find_max_kge(routed[route_var].sel(seg=gauge_segs), curr_seg_flow)
routed['kge_up_gauge'].loc[{'seg':curr_seg}] = up_ref_kge
routed['up_ref_seg'].loc[{'seg':curr_seg}] = up_ref_seg
else:
# this seg has already been filled in, but kge still needs to be calculated
ref_flow = routed[route_var].sel(seg=routed['up_ref_seg'].sel(seg=curr_seg)).values
up_ref_kge = kling_gupta_efficiency(curr_seg_flow, ref_flow)
routed['kge_up_gauge'].loc[{'seg':curr_seg}] = up_ref_kge
for curr_seg in routed['seg'].values:
down_ref_seg = np.nan
curr_seg_flow = routed[route_var].sel(seg=curr_seg).values
if np.isnan(routed['down_ref_seg'].sel(seg=curr_seg).values):
down_ref_kge, down_ref_seg = find_max_kge(routed[route_var].sel(seg=gauge_segs), curr_seg_flow)
routed['kge_down_gauge'].loc[{'seg':curr_seg}] = down_ref_kge
routed['down_ref_seg'].loc[{'seg':curr_seg}] = down_ref_seg
else:
# this seg has already been filled in, but kge still needs to be calculated
ref_flow = routed[route_var].sel(seg=routed['down_ref_seg'].sel(seg=curr_seg)).values
down_ref_kge = kling_gupta_efficiency(curr_seg_flow, ref_flow)
if down_ref_kge < min_kge:
down_ref_kge, down_ref_seg = find_max_kge(routed[route_var].sel(seg=gauge_segs), curr_seg_flow)
routed['kge_down_gauge'].loc[{'seg':curr_seg}] = down_ref_kge
else:
raise ValueError('Invalid method provided for "fill_method"')
return routed | a2146e532a7aa95ba0753aaddc6d6da2cc4f1c67 | 3,658,351 |
def get_error(est_track, true_track):
"""
"""
if est_track.ndim > 1:
true_track = true_track.reshape((true_track.shape[0],1))
error = np.recarray(shape=est_track.shape,
dtype=[('position', float),
('orientation', float),
('orientation_weighted', float)])
# Position error
pos_err = (true_track.x - est_track.x)**2 + (true_track.y - est_track.y)**2
error.position = np.sqrt(pos_err)
# Orientation error
error.orientation = anglediff(true_track.angle, est_track.angle, units='deg')
error.orientation_weighted = anglediff(true_track.angle, est_track.angle_w, units='deg')
descr = {}
bix = np.logical_not(np.isnan(error.orientation))
descr['orientation_median'] = np.median(np.abs(error.orientation[bix]))
descr['orientation_mean'] = np.mean(np.abs(error.orientation[bix]))
bix = np.logical_not(np.isnan(error.orientation_weighted))
descr['orientation_weighted_median'] = np.nanmedian(np.abs(error.orientation_weighted[bix]))
descr['orientation_weighted_mean'] = np.nanmean(np.abs(error.orientation_weighted[bix]))
# no angle
true_no_angle = np.isnan(true_track.angle)
est_no_angle = np.isnan(est_track.angle)
agree = np.logical_and(true_no_angle, est_no_angle)
disagree = np.logical_xor(true_no_angle, est_no_angle)
both = np.logical_or(true_no_angle, est_no_angle)
#ipdb.set_trace()
descr['no_angle_auc'] = roc_auc_score(true_no_angle, est_no_angle)
descr['no_angle_mcc'] = matthews_corrcoef(true_no_angle, est_no_angle)
descr['no_angle_brier'] = brier_score_loss(true_no_angle, est_no_angle)
descr['no_angle_acc'] = agree.sum()/both.sum()
descr['no_angle_p_per_frame'] = disagree.sum()/disagree.shape[0]
descr['position_median'] = np.median(error.position)
descr['position_mean'] = np.mean(error.position)
#print('True frequency of angle-does-not-apply:',
# true_no_angle.sum()/true_no_angle.shape[0])
#print('Estimated frequency of angle-does-not-apply:',
# est_no_angle.sum()/est_no_angle.shape[0])
return error, descr | 5ccdb12b844de9b454f62375358d4a1e1b91e6f7 | 3,658,352 |
from typing import Any
def test_conflict():
"""
Tiles that have extras that conflict with indices should produce an error.
"""
def tile_extras_provider(hyb: int, ch: int, z: int) -> Any:
return {
Indices.HYB: hyb,
Indices.CH: ch,
Indices.Z: z,
}
stack = synthetic_stack(
tile_extras_provider=tile_extras_provider,
)
with pytest.raises(ValueError):
stack.tile_metadata | 2d2e86f5d60762d509e7c27f5a74715c868abbc4 | 3,658,353 |
import json
def get_node_to_srn_mapping(match_config_filename):
"""
Returns the node-to-srn map from match_conf.json
"""
with open(match_config_filename) as config_file:
config_json = json.loads(config_file.read())
if "node_to_srn_mapping" in config_json:
return config_json["node_to_srn_mapping"]
else:
node_to_srn = {}
for node_info in config_json["NodeData"]:
node_id = node_info["TrafficNode"]
srn_num = node_info["srn_number"]
node_to_srn[node_id] = srn_num
return node_to_srn | 37bf2f266f4e5163cc4d6e9290a8eaf17e220cd3 | 3,658,354 |
from matplotlib.pyplot import get_cmap
def interpolate(values, color_map=None, dtype=np.uint8):
"""
Given a 1D list of values, return interpolated colors
for the range.
Parameters
---------------
values : (n, ) float
Values to be interpolated over
color_map : None, or str
Key to a colormap contained in:
matplotlib.pyplot.colormaps()
e.g: 'viridis'
Returns
-------------
interpolated : (n, 4) dtype
Interpolated RGBA colors
"""
# get a color interpolation function
if color_map is None:
cmap = linear_color_map
else:
cmap = get_cmap(color_map)
# make input always float
values = np.asanyarray(values, dtype=np.float64).ravel()
# scale values to 0.0 - 1.0 and get colors
colors = cmap((values - values.min()) / values.ptp())
# convert to 0-255 RGBA
rgba = to_rgba(colors, dtype=dtype)
return rgba | dfb9e58ef8d07c5e3455297270e36332ef9385df | 3,658,355 |
def nest_dictionary(flat_dict, separator):
""" Nests a given flat dictionary.
Nested keys are created by splitting given keys around the `separator`.
"""
nested_dict = {}
for key, val in flat_dict.items():
split_key = key.split(separator)
act_dict = nested_dict
final_key = split_key.pop()
for new_key in split_key:
if not new_key in act_dict:
act_dict[new_key] = {}
act_dict = act_dict[new_key]
act_dict[final_key] = val
return nested_dict | f5b8649d916055fa5911fd1f80a8532e5dbee274 | 3,658,356 |
def write(path_, *write_):
"""Overwrites file with passed data. Data can be a string, number or boolean type. Returns True, None if writing operation was successful, False and reason message otherwise."""
return _writeOrAppend(False, path_, *write_) | 3bd5db2d833c5ff97568489596d3dcea47c1a9f4 | 3,658,357 |
import json
def prepare_saab_data(sequence):
"""
Processing data after anarci parsing.
Preparing data for SAAB+
------------
Parameters
sequence - sequence object ( OAS database format )
------------
Return
sequence.Sequence - full (not-numbered) antibody sequence
oas_output_parser(Numbered) - antibody sequence that is imgt numbered
to comply with SAAB+ input format
sequence_info_dict - Dictionary that contains sequence metadata
which is requeired for SAAB+ to run
"""
cdr3sequence = sequence.CDRH3
VGene = sequence.VGene[:5]
Numbered = json.loads( sequence.Numbered )
CDRs = [ loop for loop in Numbered.keys() if "cdr" in loop ]
sequence_info_dict = { formatLoops[loop] : Numbered[loop] if "3" not in loop else cdr3sequence
for loop in CDRs }
sequence_info_dict["V"] = VGene
sequence_info_dict["Redundancy"] = find_redundancy( sequence.Redundancy )
return sequence_obj( sequence.Sequence, oas_output_parser(Numbered), sequence_info_dict ) | f88ba3f2badb951f456678e33f3371d80934754e | 3,658,358 |
def covariance_align(data):
"""Covariance align continuous or windowed data in-place.
Parameters
----------
data: np.ndarray (n_channels, n_times) or (n_windows, n_channels, n_times)
continuous or windowed signal
Returns
-------
aligned: np.ndarray (n_channels x n_times) or (n_windows x n_channels x
n_times)
aligned continuous or windowed data
..note:
If this function is supposed to preprocess continuous data, it should be
given to raw.apply_function().
"""
aligned = data.copy()
if len(data.shape)==3:
for i_window in range(aligned.shape[0]):
covar = np.cov(aligned[i_window])
proj = pinv(sqrtm(covar))
aligned[i_window] = np.matmul(proj, aligned[i_window])
elif len(data.shape)==2:
covar = np.cov(aligned)
proj = pinv(sqrtm(covar))
aligned = np.matmul(proj, aligned)
# TODO: the overriding of protected '_data' should be implemented in the
# TODO: dataset when transforms are applied to windows
if hasattr(data, '_data'):
data._data = aligned
return aligned | 82b99b43202097670de8af52f96ef156218921fb | 3,658,359 |
import math
def _is_equidistant(array: np.ndarray) -> bool:
"""
Check if the given 1D array is equidistant. E.g. the
distance between all elements of the array should be equal.
:param array: The array that should be equidistant
"""
step = abs(array[1] - array[0])
for i in range(0, len(array) - 1):
curr_step = abs(array[i + 1] - array[i])
if not math.isclose(curr_step, step, rel_tol=1e-3):
return False
return True | d12c12e48545697bdf337c8d20e45a27fb444beb | 3,658,360 |
def list_a_minus_b(list1, list2):
"""Given two lists, A and B, returns A-B."""
return filter(lambda x: x not in list2, list1) | 8fbac6452077ef7cf73e0625303822a35d0869c3 | 3,658,361 |
def is_equivalent(a, b):
"""Compares two strings and returns whether they are the same R code
This is unable to determine if a and b are different code, however. If this returns True you may assume that they
are the same, but if this returns False you must not assume that they are different.
is_equivalent("0 + 1", "1") is False, for example, even though those two commands do the same thing.
"""
# String pointers
ap = 0
bp = 0
ps = 0
an_comp = False
while ap < len(a) and bp < len(b):
# If none of the current chars are alphanumeric or the last character match is not alphanumeric then skip
# whitespace forward
if (a[ap] not in _an and b[bp] not in _an) or not an_comp:
while ap < len(a) and a[ap] in _ws and not _is_a_number(a, ap):
ap += 1
while bp < len(b) and b[bp] in _ws and not _is_a_number(b, bp):
bp += 1
if ap >= len(a) or bp >= len(b):
# Reached end of string
break
an_comp = False
if a[ap] != b[bp]:
# They must be equal
# print("Failed {}:{} / {}:{}".format(a, ap, b, bp))
return False
if a[ap] in _an:
# This is comparing two alphanumeric values
an_comp = True
if a[ap] in _quotes:
opener = a[ap]
# String; must match exactly
ap += 1
bp += 1
while ap < len(a) and bp < len(b) and a[ap] == b[bp]:
if a[ap] == opener and a[ap-1] not in _esc:
break
ap += 1
bp += 1
else:
# print("Failed {}:{} / {}:{} in string".format(a, ap, b, bp))
return False
ap += 1
bp += 1
# Clean up ending whitespace
while ap < len(a) and a[ap] in _ws:
ap += 1
while bp < len(b) and b[bp] in _ws:
bp += 1
if ap >= len(a) and bp >= len(b):
return True
else:
return False | c37ea6e8684c1d2fcd5d549836c9115da98c7b2f | 3,658,362 |
def solve(lines, n):
"""Solve the problem."""
grid = Grid(lines)
for _ in range(n):
grid.step()
return grid.new_infections | 2db532a911e088dd58ee17bdc036ea017e979c8d | 3,658,363 |
import requests
def get_ingredient_id():
"""Need to get ingredient ID in order to access all attributes"""
query = request.args["text"]
resp = requests.get(f"{BASE_URL_SP}/food/ingredients/search?", params={"apiKey":APP_KEY,"query":query})
res = resp.json()
lst = {res['results'][i]["name"]:res['results'][i]["id"] for i in range(len(res['results']))}
return jsonify(lst) | 8c58232f48883a4b1e2d76ca1504b3dccabdb954 | 3,658,364 |
def xticks(ticks=None, labels=None, **kwargs):
"""
Get or set the current tick locations and labels of the x-axis.
Call signatures::
locs, labels = xticks() # Get locations and labels
xticks(ticks, [labels], **kwargs) # Set locations and labels
Parameters
----------
ticks : array_like
A list of positions at which ticks should be placed. You can pass an
empty list to disable xticks.
labels : array_like, optional
A list of explicit labels to place at the given *locs*.
**kwargs
:class:`.Text` properties can be used to control the appearance of
the labels.
Returns
-------
locs
An array of label locations.
labels
A list of `.Text` objects.
Notes
-----
Calling this function with no arguments (e.g. ``xticks()``) is the pyplot
equivalent of calling `~.Axes.get_xticks` and `~.Axes.get_xticklabels` on
the current axes.
Calling this function with arguments is the pyplot equivalent of calling
`~.Axes.set_xticks` and `~.Axes.set_xticklabels` on the current axes.
Examples
--------
Get the current locations and labels:
>>> locs, labels = xticks()
Set label locations:
>>> xticks(np.arange(0, 1, step=0.2))
Set text labels:
>>> xticks(np.arange(5), ('Tom', 'Dick', 'Harry', 'Sally', 'Sue'))
Set text labels and properties:
>>> xticks(np.arange(12), calendar.month_name[1:13], rotation=20)
Disable xticks:
>>> xticks([])
"""
ax = gca()
if ticks is None and labels is None:
locs = ax.get_xticks()
labels = ax.get_xticklabels()
elif labels is None:
locs = ax.set_xticks(ticks)
labels = ax.get_xticklabels()
else:
locs = ax.set_xticks(ticks)
labels = ax.set_xticklabels(labels, **kwargs)
for l in labels:
l.update(kwargs)
return locs, silent_list('Text xticklabel', labels) | a6b044ffc9efdc279495c25735745006de9d7a8c | 3,658,365 |
def main() -> None:
"""
Program entry point.
:return: Nothing
"""
try:
connection = connect_to_db2()
kwargs = {'year_to_schedule': 2018}
start = timer()
result = run(connection, **kwargs)
output_results(result, connection)
end = timer()
print(f'time elapsed: {end - start}')
connection.close()
except Exception as e:
print(f'Something broke ...\n\tReason:{str(e)}')
connection.close()
exit(1)
return None | 53727547a16c8b203ca89d54f55ddbd8b2f2645b | 3,658,366 |
from pathlib import Path
from datetime import datetime
def _generate_cfg_dir(cfg_dir: Path = None) -> Path:
"""Make sure there is a working directory.
Args:
cfg_dir: If cfg dir is None or does not exist then create sub-directory
in CFG['output_dir']
"""
if cfg_dir is None:
scratch_dir = CFG["output_dir"]
# TODO this timestamp isnot safe for parallel processing
timestamp = datetime.datetime.now(datetime.timezone.utc).strftime(
"%Y%m%d_%H%M%S"
)
cfg_dir = to_absolute_path(f"marrmot_{timestamp}", parent=Path(scratch_dir))
cfg_dir.mkdir(parents=True, exist_ok=True)
return cfg_dir | 1c6653f43dc53b5cd8c2ac4f5cdcc084ef4c13ad | 3,658,367 |
def delete(home_id):
"""
Delete A About
---
"""
try:
return custom_response({"message":"deleted", "id":home_id}, 200)
except Exception as error:
return custom_response(str(error), 500) | 408fe8db0a728b33d7a9c065944d706d6502b8b5 | 3,658,368 |
def round_to_sigfigs(x, sigfigs=1):
"""
>>> round_to_sigfigs(12345.6789, 7) # doctest: +ELLIPSIS
12345.68
>>> round_to_sigfigs(12345.6789, 1) # doctest: +ELLIPSIS
10000.0
>>> round_to_sigfigs(12345.6789, 0) # doctest: +ELLIPSIS
100000.0
>>> round_to_sigfigs(12345.6789, -1) # doctest: +ELLIPSIS
1000000.0
"""
place = int(log(x, 10))
if sigfigs <= 0:
additional_place = x > 10. ** place
return 10. ** (-sigfigs + place + additional_place)
return round_to_place(x, sigfigs - 1 - place) | a5191f3c60e85d50a47a43aee38d7d1f14d3fdc6 | 3,658,369 |
import urllib
import json
def load_api_data (API_URL):
"""
Download data from API_URL
return: json
"""
#actual download
with urllib.request.urlopen(API_URL) as url:
api_data = json.loads(url.read().decode())
#testing data
##with open('nrw.json', 'r') as testing_set:
## api_data = json.load(testing_set)
return api_data | 61832a798ac616f3d1612ce69411d4f43ed85699 | 3,658,370 |
def test_parsing(monkeypatch, capfd, configuration, expected_record_keys):
"""Verifies the feed is parsed as expected"""
def mock_get(*args, **kwargs):
return MockResponse()
test_tap: Tap = TapFeed(config=configuration)
monkeypatch.setattr(test_tap.streams["feed"]._requests_session, "send", mock_get)
test_tap.sync_all()
out, err = capfd.readouterr()
tap_records = get_parsed_records(out)
assert len(tap_records) == 10
for record in tap_records:
print(record)
assert record["type"] == "RECORD"
assert record["stream"] == "feed"
assert record["record"]["feed_url"] == MockResponse.url
assert list(record["record"].keys()) == expected_record_keys | 25a79966eba641e4b857c80e12fb123e8fc3477f | 3,658,371 |
def hsl(h, s, l):
"""Converts an Hsl(h, s, l) triplet into a color."""
return Color.from_hsl(h, s, l) | 081fb4b7e7fc730525d0d18182c951ad92fab895 | 3,658,372 |
import sys
def factor(afunc):
"""decompose the string m.f or m.f(parms) and return function and parameter dictionaries
afunc has the form xxx or xxx(p1=value, p2=value,...)
create a dictionary from the parameters consisting of at least _first:True.
parameter must have the form name=value, name=value,...
"""
firstparen = afunc.find("(")
if firstparen >0: # parameters found, make a dictionary of them
try:
f = afunc[:firstparen]
afunc = "_customfunction" + afunc[firstparen:]
co = compile(afunc, "<string>", "eval")
spssparams = set(co.co_names)
except :
raise ValueError(_("The formula syntax given is invalid:\n") + str(sys.exc_info()[1]))
else:
spssparams = set()
f = afunc
co = compile("_customfunction()", "<string>", "eval")
return f, co, spssparams | 10447db5728df2ff45846997dfb7fc52cf471080 | 3,658,373 |
def spline(xyz, s=3, k=2, nest=-1):
""" Generate B-splines as documented in
http://www.scipy.org/Cookbook/Interpolation
The scipy.interpolate packages wraps the netlib FITPACK routines
(Dierckx) for calculating smoothing splines for various kinds of
data and geometries. Although the data is evenly spaced in this
example, it need not be so to use this routine.
Parameters
---------------
xyz : array, shape (N,3)
array representing x,y,z of N points in 3d space
s : float, optional
A smoothing condition. The amount of smoothness is determined by
satisfying the conditions: sum((w * (y - g))**2,axis=0) <= s
where g(x) is the smoothed interpolation of (x,y). The user can
use s to control the tradeoff between closeness and smoothness of
fit. Larger satisfying the conditions: sum((w * (y -
g))**2,axis=0) <= s where g(x) is the smoothed interpolation of
(x,y). The user can use s to control the tradeoff between
closeness and smoothness of fit. Larger s means more smoothing
while smaller values of s indicate less smoothing. Recommended
values of s depend on the weights, w. If the weights represent
the inverse of the standard-deviation of y, then a: good s value
should be found in the range (m-sqrt(2*m),m+sqrt(2*m)) where m is
the number of datapoints in x, y, and w.
k : int, optional
Degree of the spline. Cubic splines are recommended. Even
values of k should be avoided especially with a small s-value.
for the same set of data. If task=-1 find the weighted least
square spline for a given set of knots, t.
nest : None or int, optional
An over-estimate of the total number of knots of the spline to
help in determining the storage space. None results in value
m+2*k. -1 results in m+k+1. Always large enough is nest=m+k+1.
Default is -1.
Returns
----------
xyzn : array, shape (M,3)
array representing x,y,z of the M points inside the sphere
Examples
----------
>>> import numpy as np
>>> t=np.linspace(0,1.75*2*np.pi,100)# make ascending spiral in 3-space
>>> x = np.sin(t)
>>> y = np.cos(t)
>>> z = t
>>> x+= np.random.normal(scale=0.1, size=x.shape) # add noise
>>> y+= np.random.normal(scale=0.1, size=y.shape)
>>> z+= np.random.normal(scale=0.1, size=z.shape)
>>> xyz=np.vstack((x,y,z)).T
>>> xyzn=spline(xyz,3,2,-1)
>>> len(xyzn) > len(xyz)
True
See also
----------
scipy.interpolate.splprep
scipy.interpolate.splev
"""
# find the knot points
tckp, u = splprep([xyz[:, 0], xyz[:, 1], xyz[:, 2]], s=s, k=k, nest=nest)
# evaluate spline, including interpolated points
xnew, ynew, znew = splev(np.linspace(0, 1, 400), tckp)
return np.vstack((xnew, ynew, znew)).T | 97500c7a63bc076abd770c43fd3f6d23c30baa03 | 3,658,374 |
import time
def load_supercomputers(log_file, train_ratio=0.5, windows_size=20, step_size=0, e_type='bert', mode="balance",
no_word_piece=0):
""" Load BGL, Thunderbird, and Spirit unstructured log into train and test data
Parameters
----------
log_file: str, the file path of raw log (extension: .log).
train_ratio: float, the ratio of training data for train/test split.
windows_size: int, the window size for sliding window
step_size: int, the step size for sliding window. if step_size is equal to window_size then fixed window is applied.
e_type: str, embedding type (choose from BERT, XLM, and GPT2).
mode: str, split train/testing in balance or not
no_word_piece: bool, use split word into wordpiece or not.
Returns
-------
(x_tr, y_tr): the training data
(x_te, y_te): the testing data
"""
print("Loading", log_file)
with open(log_file, mode="r", encoding='utf8') as f:
logs = f.readlines()
logs = [x.strip() for x in logs]
E = {}
e_type = e_type.lower()
if e_type == "bert":
encoder = bert_encoder
elif e_type == "xlm":
encoder = xlm_encoder
else:
if e_type == "gpt2":
encoder = gpt2_encoder
else:
raise ValueError('Embedding type {0} is not in BERT, XLM, and GPT2'.format(e_type.upper()))
print("Loaded", len(logs), "lines!")
x_tr, y_tr = [], []
i = 0
failure_count = 0
n_train = int(len(logs) * train_ratio)
c = 0
t0 = time.time()
while i < n_train - windows_size:
c += 1
if c % 1000 == 0:
print("\rLoading {0:.2f}% - {1} unique logs".format(i * 100 / n_train, len(E.keys())), end="")
if logs[i][0] != "-":
failure_count += 1
seq = []
label = 0
for j in range(i, i + windows_size):
if logs[j][0] != "-":
label = 1
content = logs[j]
# remove label from log messages
content = content[content.find(' ') + 1:]
content = clean(content.lower())
if content not in E.keys():
try:
E[content] = encoder(content, no_word_piece)
except Exception as _:
print(content)
emb = E[content]
seq.append(emb)
x_tr.append(seq.copy())
y_tr.append(label)
i = i + step_size
print("\nlast train index:", i)
x_te = []
y_te = []
#
for i in range(n_train, len(logs) - windows_size, step_size):
if i % 1000 == 0:
print("Loading {:.2f}".format(i * 100 / n_train))
if logs[i][0] != "-":
failure_count += 1
seq = []
label = 0
for j in range(i, i + windows_size):
if logs[j][0] != "-":
label = 1
content = logs[j]
# remove label from log messages
content = content[content.find(' ') + 1:]
content = clean(content.lower())
if content not in E.keys():
E[content] = encoder(content, no_word_piece)
emb = E[content]
seq.append(emb)
x_te.append(seq.copy())
y_te.append(label)
(x_tr, y_tr) = shuffle(x_tr, y_tr)
print("Total failure logs: {0}".format(failure_count))
if mode == 'balance':
x_tr, y_tr = balancing(x_tr, y_tr)
num_train = len(x_tr)
num_test = len(x_te)
num_total = num_train + num_test
num_train_pos = sum(y_tr)
num_test_pos = sum(y_te)
num_pos = num_train_pos + num_test_pos
print('Total: {} instances, {} anomaly, {} normal' \
.format(num_total, num_pos, num_total - num_pos))
print('Train: {} instances, {} anomaly, {} normal' \
.format(num_train, num_train_pos, num_train - num_train_pos))
print('Test: {} instances, {} anomaly, {} normal\n' \
.format(num_test, num_test_pos, num_test - num_test_pos))
return (x_tr, y_tr), (x_te, y_te) | 2282b8cbd975160e57ff62106a7e0bad3f337e5a | 3,658,375 |
def is_running(service: Service) -> bool:
"""Is the given pyodine daemon currently running?
:raises ValueError: Unknown `service`.
"""
try:
return bool(TASKS[service]) and not TASKS[service].done()
except KeyError:
raise ValueError("Unknown service type.") | 160c7c8da0635c9c11ebdaf711b794fc0a09adff | 3,658,376 |
def PropertyWrapper(prop):
"""Wrapper for db.Property to make it look like a Django model Property"""
if isinstance(prop, db.Reference):
prop.rel = Relation(prop.reference_class)
else:
prop.rel = None
prop.serialize = True
return prop | 9f93a37dffd433fd87ffa4bfdb65680a9ad1d02d | 3,658,377 |
def drowLine(cord,orient,size):
"""
The function provides the coordinates of the line.
Arguments:
starting x or y coordinate of the line, orientation
(string. "vert" or "hor") and length of the line
Return:
list of two points (start and end of the line)
"""
global cv2
if orient == "vert":
x1 = cord
x2 = cord
y1 = 0
y2 = size
elif orient == "hor":
x1 = 0
x2 = size
y1 = cord
y2 = cord
else:
print("not hor not vert")
return 0
return [(x1, y1), (x2, y2)] | bc688cfe33dcf42ddac6770bbdf91ccc19c1b427 | 3,658,378 |
def bluetoothRead():
""" Returns the bluetooth address of the robot (if it has been previously stored)
arguments:
none
returns:
string - the bluetooth address of the robot, if it has been previously stored; None otherwise
"""
global EEPROM_BLUETOOTH_ADDRESS
bt = EEPROMread(EEPROM_BLUETOOTH_ADDRESS, 17)
if bluetoothValidate(bt):
return bt
else:
return None | c4e08d438b91b3651f27b374c0b38069ddd1eaaf | 3,658,379 |
def is_step_done(client, step_name):
"""Query the trail status using the client and return True if step_name has completed.
Arguments:
client -- A TrailClient or similar object.
step_name -- The 'name' tag of the step to check for completion.
Returns:
True -- if the step has succeeded.
False -- otherwise.
"""
# To understand the structure of the result returned by the API calls, please see the documentation of the
# TrailClient class.
statuses = client.status(fields=[StatusField.STATE], name=step_name)
# In this case, the status call returns a list of step statuses.
# Since we have exactly one step with each name and we are querying the status of steps with the given name,
# there will be only one element in the result list. Hence we refer to the zeroth element of results.
if statuses and statuses[0][StatusField.STATE] == Step.SUCCESS:
return True
return False | a5373d7e00f0c8526f573356b5d71a2ac08aa516 | 3,658,380 |
def on_chat_send(message):
"""Broadcast chat message to a watch room"""
# Check if params are correct
if 'roomId' not in message:
return {'status_code': 400}, request.sid
room_token = message['roomId']
# Check if room exist
if not db.hexists('rooms', room_token):
{'status_code': 404}, request.sid
# Check if user wasnt in the room
if not room_token in rooms(sid=request.sid):
return {'status_code': 403}, request.sid
# Add current sever timestamp to the state
message = add_current_time_to_state(message)
# Send message to everybody in the room
emit('message_update', message, room=room_token)
# Response
return {'status_code': 200}, 200 | 01c7f15602653848c9310e90c0a353648fafbb52 | 3,658,381 |
from typing import Union
def arima(size: int = 100,
phi: Union[float, ndarray] = 0,
theta: Union[float, ndarray] = 0,
d: int = 0,
var: float = 0.01,
random_state: float = None) -> ndarray:
# inherit from arima_with_seasonality
"""Simulate a realization from an ARIMA characteristic.
Acts like `tswge::gen.arima.wge()`
Parameters
----------
size: scalar int
Number of samples to generate.
phi: scalar float or list-like
AR process order
theta: scalar float or list-like
MA process order
d: scalar int
ARIMA process difference order
var: scalar float, optional
Nosie variance level.
random_state: scalar int, optional
Seed the random number generator.
Returns
-------
signal: np.ndarray
Simulated ARIMA.
"""
return arima_with_seasonality(size = size,
phi = phi,
theta = theta,
d = d,
s = 0,
var = var,
random_state = random_state) | 24c3ac8af295d25facf0e65a4fc0925b22db9444 | 3,658,382 |
def gt_dosage(gt):
"""Convert unphased genotype to dosage"""
x = gt.split(b'/')
return int(x[0])+int(x[1]) | 819fc9beb834f57e44bcb0ac3e1d3c664c7efd42 | 3,658,383 |
from typing import Optional
from typing import Dict
from typing import Any
def create_key_pair_in_ssm(
ec2: EC2Client,
ssm: SSMClient,
keypair_name: str,
parameter_name: str,
kms_key_id: Optional[str] = None,
) -> Optional[KeyPairInfo]:
"""Create keypair in SSM."""
keypair = create_key_pair(ec2, keypair_name)
try:
kms_key_label = "default"
kms_args: Dict[str, Any] = {}
if kms_key_id:
kms_key_label = kms_key_id
kms_args = {"KeyId": kms_key_id}
LOGGER.info(
'storing generated key in SSM parameter "%s" using KMS key "%s"',
parameter_name,
kms_key_label,
)
ssm.put_parameter(
Name=parameter_name,
Description='SSH private key for KeyPair "{}" '
"(generated by Runway)".format(keypair_name),
Value=keypair["KeyMaterial"],
Type="SecureString",
Overwrite=False,
**kms_args,
)
except ClientError:
# Erase the key pair if we failed to store it in SSM, since the
# private key will be lost anyway
LOGGER.exception(
"failed to store generated key in SSM; deleting "
"created key pair as private key will be lost"
)
ec2.delete_key_pair(KeyName=keypair_name, DryRun=False)
return None
return {
"status": "created",
"key_name": keypair.get("KeyName", ""),
"fingerprint": keypair.get("KeyFingerprint", ""),
} | 40cca5fd938aa6709a4d844c912b294c6aaba552 | 3,658,384 |
def sumofsq(im, axis=0):
"""Compute square root of sum of squares.
Args:
im: Raw image.
axis: Channel axis.
Returns:
Square root of sum of squares of input image.
"""
out = np.sqrt(np.sum(im.real * im.real + im.imag * im.imag, axis=axis))
return out | 6aa791d3c6a2e8e6fff0dbe0a364350d48fb4794 | 3,658,385 |
import os
def get_airflow_home():
"""Get path to Airflow Home"""
return expand_env_var(os.environ.get('AIRFLOW_HOME', '~/airflow')) | 19af0ce78204b0c640e4e13fd56605bbcd395422 | 3,658,386 |
import csv
import re
import sys
def read_mapping_file(map_file):
"""
Mappings are simply a CSV file with three columns.
The first is a string to be matched against an entry description.
The second is the payee against which such entries should be posted.
The third is the account against which such entries should be posted.
If the match string begins and ends with '/' it is taken to be a
regular expression.
"""
mappings = []
with open(map_file, "r", encoding='utf-8', newline='') as f:
map_reader = csv.reader(f)
for row in map_reader:
if len(row) > 1:
pattern = row[0].strip()
payee = row[1].strip()
account = row[2].strip()
tags = row[3:]
if pattern.startswith('/') and pattern.endswith('/'):
try:
pattern = re.compile(pattern[1:-1])
except re.error as e:
print("Invalid regex '{0}' in '{1}': {2}"
.format(pattern, map_file, e),
file=sys.stderr)
sys.exit(1)
mappings.append((pattern, payee, account, tags))
return mappings | e72ceb08daac0a12a426062f95cfa06776cfdedd | 3,658,387 |
def biquad_bp2nd(fm, q, fs, q_warp_method="cos"):
"""Calc coeff for bandpass 2nd order.
input:
fm...mid frequency in Hz
q...bandpass quality
fs...sampling frequency in Hz
q_warp_method..."sin", "cos", "tan"
output:
B...numerator coefficients Laplace transfer function
A...denominator coefficients Laplace transfer function
b...numerator coefficients z-transfer function
a...denominator coefficients z-transfer function
"""
wm = 2*np.pi*fm
B = np.array([0, 1 / (q*wm), 0])
A = np.array([1 / wm**2, 1 / (q*wm), 1])
wmpre = f_prewarping(fm, fs)
qpre = q_prewarping(q, fm, fs, q_warp_method)
Bp = 0., 1 / (qpre*wmpre), 0.
Ap = 1 / wmpre**2, 1 / (qpre*wmpre), 1.
b, a = bilinear_biquad(Bp, Ap, fs)
return B, A, b, a | c7330f9bd4a1941359a54ea6e6d7e8fe7801f55e | 3,658,388 |
def pullAllData():
""" Pulls all available data from the database
Sends all analyzed data back in a json with fileNames and list of list
of all "spots" intensities and backgrounds.
Args:
db.d4Images (Mongo db collection): Mongo DB collection with processed
data
Returns:
payload (jsonify(dict)): data dictionary with filename, spots, and
background info
statusCode (int): HTTP status code
"""
pullFileNames = []
pullSpotData = []
pullBgData = []
for eachEntry in db.d4Images.find():
pullFileNames.append(eachEntry["filename"])
pullSpotData.append(eachEntry["spots"])
pullBgData.append(eachEntry["background"])
payload = {"filename": pullFileNames,
"spots": pullSpotData,
"background": pullBgData}
statusCode = 200
return jsonify(payload), statusCode | 97674c981af48f37e90667c00947673f1df34c66 | 3,658,389 |
def f2():
"""
>>> # +--------------+-----------+-----------+------------+-----------+--------------+
>>> # | Chromosome | Start | End | Name | Score | Strand |
>>> # | (category) | (int32) | (int32) | (object) | (int64) | (category) |
>>> # |--------------+-----------+-----------+------------+-----------+--------------|
>>> # | chr1 | 1 | 2 | a | 0 | + |
>>> # | chr1 | 6 | 7 | b | 0 | - |
>>> # +--------------+-----------+-----------+------------+-----------+--------------+
>>> # Stranded PyRanges object has 2 rows and 6 columns from 1 chromosomes.
>>> # For printing, the PyRanges was sorted on Chromosome and Strand.
"""
full_path = get_example_path("f2.bed")
return pr.read_bed(full_path) | 159c5167bacbeed38578a8b574b31fa2f57f9467 | 3,658,390 |
def latin(n, d):
"""
Build latin hypercube.
Parameters
----------
n : int
Number of points.
d : int
Size of space.
Returns
-------
lh : ndarray
Array of points uniformly placed in d-dimensional unit cube.
"""
# spread function
def spread(points):
return sum(1./np.linalg.norm(np.subtract(points[i], points[j])) for i in range(n) for j in range(n) if i > j)
# starting with diagonal shape
lh = [[i/(n-1.)]*d for i in range(n)]
# minimizing spread function by shuffling
minspread = spread(lh)
for i in range(1000):
point1 = np.random.randint(n)
point2 = np.random.randint(n)
dim = np.random.randint(d)
newlh = np.copy(lh)
newlh[point1, dim], newlh[point2, dim] = newlh[point2, dim], newlh[point1, dim]
newspread = spread(newlh)
if newspread < minspread:
lh = np.copy(newlh)
minspread = newspread
return lh | 416d8c8086eeeaf6e8ea0bf14c300750025455be | 3,658,391 |
def _get_valid_dtype(series_type, logical_type):
"""Return the dtype that is considered valid for a series
with the given logical_type"""
backup_dtype = logical_type.backup_dtype
if ks and series_type == ks.Series and backup_dtype:
valid_dtype = backup_dtype
else:
valid_dtype = logical_type.primary_dtype
return valid_dtype | 7b4bcd724d2d7a4029a794456882a8f59fc29006 | 3,658,392 |
def geometric_mean_longitude(t='now'):
"""
Returns the geometric mean longitude (in degrees).
Parameters
----------
t : {parse_time_types}
A time (usually the start time) specified as a parse_time-compatible
time string, number, or a datetime object.
"""
T = julian_centuries(t)
result = 279.696680 + 36000.76892 * T + 0.0003025 * T**2
result = result * u.deg
return Longitude(result) | c47f106392f507d7750f86cba6a7c16ba3270b11 | 3,658,393 |
import os
def create_feature_data_batch(im_dir,video_ids):
"""
create_feature_data_batch
Similar function to create_feature_data however utilizing the batch version of functions used in the original function
suited towards larger set of images
Input : directory of thumbnails, list of video ids
Output : dataframe containing facial features for all faces containing a face
"""
cols = ['videoId', 'numFaces', 'emotions', 'age', 'gender', 'race', 'face_locations']
#Create empty dataframe
df = pd.DataFrame(columns=cols)
#Initialize variables
batch = 0 #Current batch size
videoIds = []
face_locations_batch = []
faces_batch = []
img_obj_batch = []
img_objs = []
files = [f + ".jpg" for f in video_ids if os.path.exists(im_dir+f+".jpg")]
last_file = files[-1]
num_batch = 0
for filename in files:
#Append image objects from files into lists until batch size of 50 or last file
image = face_recognition.load_image_file(im_dir + '/' + filename)
img_obj_batch.append(image)
img_objs.append(image)
videoIds.append(filename[:-4])
batch += 1
if batch == 50 or filename == last_file:
num_batch += 1
#Extract faces from all images in batch
print("Batch {0} Facial Recognition Start!".format(num_batch))
face_locations_batch += face_recognition.batch_face_locations(img_obj_batch,
number_of_times_to_upsample=1,
batch_size=batch)
#Get index where no faces were detected in image
empty_indices = [empty_ix for empty_ix, element in enumerate(face_locations_batch) if element == []]
#Remove those entries from all our lists
for index in sorted(empty_indices, reverse=True):
del face_locations_batch[index]
del videoIds[index]
del img_objs[index]
batch = 0
img_obj_batch = []
print("Batch {0} Facial Recognition Finished!".format(num_batch))
print("Face Image Extraction Start!")
#For each image, crop out all the faces and append to faces_batch
for ix in range(len(face_locations_batch)):
im = Image.fromarray(img_objs[ix])
for f in face_locations_batch[ix]:
face = im.crop((f[3], f[0], f[1], f[2]))
face = np.asarray(face)
faces_batch.append(face)
print("Face Image Extraction Finished!")
print("Facial Analysis Begin!")
#Do analysis of all faces in faces_batch
analysis_counter = 0
"""
Note : On DSMLP servers and other computers when running DeepFace.analyze multiple times the model would get loaded
over and over causing memory issues so instead we do one large analysis job of all faces
"""
analysis = DeepFace.analyze(faces_batch)
print("Facial Analysis Finished!")
#Append all features into the dataframe
for i in range(len(face_locations_batch)):
f = face_locations_batch[i]
emotions = []
age = []
gender = []
race = []
for j in range(len(f)):
analysis_counter += 1
curr_analysis = analysis['instance_' + str(analysis_counter)]
emotions.append(curr_analysis['dominant_emotion'])
age.append(curr_analysis['age'])
gender.append(curr_analysis['gender'])
race.append(curr_analysis['dominant_race'])
df = df.append({'videoId': videoIds[i], 'numFaces': len(f), 'emotions': emotions, 'age': age,
'gender': gender, 'race': race, 'face_locations': f}, ignore_index=True)
return df | 7fa672a25f55fdf004b07f0ba707987bcff26948 | 3,658,394 |
import os
def GetEnvironFallback(var_list, default):
"""Look up a key in the environment, with fallback to secondary keys
and finally falling back to a default value."""
for var in var_list:
if var in os.environ:
return os.environ[var]
return default | 1b9cad3c46264c089f250ccb19119cff8cacd0d1 | 3,658,395 |
def get_or_create(model, **kwargs):
"""Get or a create a database model."""
instance = model.query.filter_by(**kwargs)
if instance:
return instance
else:
instance = model(**kwargs)
db.session.add(instance)
return instance | 6af359ebda80b81a0d02762d576ff407f0c186c4 | 3,658,396 |
def test_class_id_cube_strategy_elliptic_paraboloid(experiment_enviroment,
renormalize,
thread_flag):
""" """
tm, dataset, experiment, dictionary = experiment_enviroment
class_id_params = {
"class_ids" + MAIN_MODALITY: list(np.arange(0, 1.0, 0.25)),
"class_ids" + NGRAM_MODALITY: list(np.arange(0, 2.05, 0.25)),
}
def retrieve_elliptic_paraboloid_score(topic_model):
""" """
model = topic_model._model
return -((model.class_ids[MAIN_MODALITY]-0.6-model.class_ids[NGRAM_MODALITY]) ** 2 +
(model.class_ids[MAIN_MODALITY]-0.6+model.class_ids[NGRAM_MODALITY]/2) ** 2)
cube = CubeCreator(
num_iter=1,
parameters=class_id_params,
reg_search="grid",
strategy=GreedyStrategy(renormalize),
tracked_score_function=retrieve_elliptic_paraboloid_score,
separate_thread=thread_flag
)
dummies = cube(tm, dataset)
tmodels_lvl2 = [dummy.restore() for dummy in dummies]
if not renormalize:
assert len(tmodels_lvl2) == sum(len(m) for m in class_id_params.values())
else:
assert len(tmodels_lvl2) == 10
if renormalize:
CLASS_IDS_FOR_CHECKING = [(1.0, 0.0), (1.0, 0.0), (0.8, 0.2), (0.667, 0.333),
(0.571, 0.429), (0.5, 0.5), (0.444, 0.556),
(0.4, 0.6), (0.364, 0.636), (0.333, 0.667)]
for i, one_model in enumerate(tmodels_lvl2):
assert np.round(one_model.class_ids[MAIN_MODALITY], 3) == CLASS_IDS_FOR_CHECKING[i][0]
assert np.round(one_model.class_ids[NGRAM_MODALITY], 3) == CLASS_IDS_FOR_CHECKING[i][1]
else:
one_model = tmodels_lvl2[len(class_id_params["class_ids" + MAIN_MODALITY])]
assert np.round(one_model.class_ids[MAIN_MODALITY], 3) == 0.5
assert np.round(one_model.class_ids[NGRAM_MODALITY], 3) == 0
assert cube.strategy.best_score >= -0.09 | fc5a17e5bf6b158ce242b4289938dec4d2d2e32b | 3,658,397 |
from typing import Dict
from typing import List
def apply_filters(filters: Dict, colnames: List, row: List) -> List:
"""
Process data based on filter chains
:param filters:
:param colnames:
:param row:
:return:
"""
if filters:
new_row = []
for col, data in zip(colnames, row):
if col in filters:
params = filters[col][:]
for f in params:
current_filter = f[:] # copy so that pop does not break next iteration
filter_name = current_filter.pop(0)
if filter_name not in FILTERS:
raise FilterError(f"Error: Invalid filter name: {filter_name}")
func, num_params = FILTERS[filter_name][:2]
if len(current_filter) != num_params:
raise FilterError(
f"Error: Incorrect number of params for {filter_name}. Expected {num_params}, got {len(current_filter)})")
data = func(data, *current_filter)
new_row.append(data)
return new_row
return row | e52e8b2773dc4e794076b8a480e5eaaab50de06e | 3,658,398 |
def kaiming(shape, dtype, partition_info=None):
"""Kaiming initialization as described in https://arxiv.org/pdf/1502.01852.pdf"""
return tf.random.truncated_normal(shape) * tf.sqrt(2 / float(shape[0])) | 153213279909bf01e9782e0e56d270632c502b27 | 3,658,399 |
Subsets and Splits