content
stringlengths
35
762k
sha1
stringlengths
40
40
id
int64
0
3.66M
def show_user_following(user_id): """Show list of people this user is following.""" user = User.query.get_or_404(user_id) return render_template('users/following.html', user=user)
ef1d7d13e9c00c352f27cdde17d215d40ff47b76
3,658,500
def logout(): """ This API revokes all the tokens including access and refresh tokens that belong to the user. """ current_user = get_jwt_identity() logout_user(current_user.get('id')) return jsonify(message="Token revoked."), 200
d574135099dfaedcdb8d6bdef993d8f773898f63
3,658,501
def multiset_counter(mset): """ Return the sum of occurences of elements present in a token ids multiset, aka. the multiset cardinality. """ return sum(mset.values())
36885abd5bf666aa6c77a262a647c227e46d2e88
3,658,502
def get_v6_subnet(address): """derive subnet number for provided ipv6 address Args: address (str): ipv6 address in string with mask Returns: str: subnet zero == network address """ return IPv6(address).subnet_zero()
ed9158b2d2ff8a83dce1b079066ef372ffc623e5
3,658,503
import os def get_ros_package_path(env=None): """ Get the current ROS_PACKAGE_PATH. :param env: (optional) environment override, ``dict`` """ if env is None: env = os.environ return env.get(ROS_PACKAGE_PATH, None)
85a7db954919892440156af4f9218b52014575e2
3,658,504
import yaml def load_scenario(file_name: str) -> Waypoint: """ Create an object Waypoint from a Scenario file :param file_name: :return: """ # read file with open(f"{waypoint_directory_path}/{file_name}", "r") as scenario_file: scenario_data = yaml.load(scenario_file, Loader=yaml.FullLoader) waypoint = Waypoint() waypoint.build_from_json(scenario_data) return waypoint
db5e246141e014af4545468481739e9449d90a00
3,658,505
import argparse from textwrap import dedent def parseArguments(argv=None): # pragma: no cover """ I parse arguments in sys.argv and return the args object. The parser itself is available as args.parser. Adds the following members to args: parser = the parser object store_opt = the StoreOpt object """ store_opt = StoreOpt() parser = argparse.ArgumentParser( prog="green", usage="%(prog)s [options] [target [target2 ...]]", add_help=False, description=dedent( """ Green is a clean, colorful, fast test runner for Python unit tests. """.rstrip() ), epilog=dedent( """ ENABLING SHELL COMPLETION To enable bash- or zsh-completion, add the line below to the end of your .bashrc or .zshrc file (or equivalent config file): which green >& /dev/null && source "$( green --completion-file )" Warning! Generating a completion list actually discovers and loads tests -- this can be very slow if you run it in huge directories! SETUP.PY RUNNER To run green as a setup.py command, simply add green to the 'setup_requires' section in the setup.py file, and specify a target as the 'test_suite' parameter if you do not want green to load all the tests: setup( setup_requires = ['green'], install_requires = 'myproject.tests' ) Then simply run green as any other setup.py command (it accepts the same parameters as the 'green' executable): python setup.py green python setup.py green -r # to run with coverage, etc. CONFIG FILES For documentation on config files, please see https://github.com/CleanCut/green#config-files """.rstrip() ), formatter_class=argparse.RawDescriptionHelpFormatter, ) target_args = parser.add_argument_group("Target Specification") target_args.add_argument( "targets", action="store", nargs="*", metavar="target", help=( """Targets to test. Any number of targets may be specified. If blank, then discover all testcases in the current directory tree. Can be a directory (or package), file (or module), or fully-qualified 'dotted name' like proj.tests.test_things.TestStuff. If a directory (or package) is specified, then we will attempt to discover all tests under the directory (even if the directory is a package and the tests would not be accessible through the package's scope). In all other cases, only tests accessible from introspection of the object will be loaded.""" ), default=argparse.SUPPRESS, ) concurrency_args = parser.add_argument_group("Concurrency Options") store_opt( concurrency_args.add_argument( "-s", "--processes", action="store", type=int, metavar="NUM", help="Number of processes to use to run tests. Note that your " "tests need to be written to avoid using the same resources (temp " "files, sockets, ports, etc.) for the multi-process mode to work " "well (--initializer and --finalizer can help provision " "per-process resources). Default is to run the same number of " "processes as your machine has logical CPUs. Note that for a " "small number of trivial tests, running everything in a single " "process may be faster than the overhead of initializing all the " "processes.", default=argparse.SUPPRESS, ) ) store_opt( concurrency_args.add_argument( "-i", "--initializer", action="store", metavar="DOTTED_FUNCTION", help="Python function to run inside of a single worker process " "before it starts running tests. This is the way to provision " "external resources that each concurrent worker process needs to " "have exclusive access to. Specify the function in dotted " "notation in a way that will be importable from the location you " "are running green from.", default=argparse.SUPPRESS, ) ) store_opt( concurrency_args.add_argument( "-z", "--finalizer", action="store", metavar="DOTTED_FUNCTION", help="Same as --initializer, only run at the end of a worker " "process's lifetime. Used to unprovision resources provisioned by " "the initializer.", default=argparse.SUPPRESS, ) ) format_args = parser.add_argument_group("Format Options") store_opt( format_args.add_argument( "-t", "--termcolor", action="store_true", help="Force terminal colors on. Default is to autodetect.", default=argparse.SUPPRESS, ) ) store_opt( format_args.add_argument( "-T", "--notermcolor", action="store_true", help="Force terminal colors off. Default is to autodetect.", default=argparse.SUPPRESS, ) ) store_opt( format_args.add_argument( "-W", "--disable-windows", action="store_true", help="Disable Windows support by turning off Colorama", default=argparse.SUPPRESS, ) ) out_args = parser.add_argument_group("Output Options") store_opt( out_args.add_argument( "-a", "--allow-stdout", action="store_true", help=( "Instead of capturing the stdout and stderr and presenting it " "in the summary of results, let it come through. Note that " "output from sources other than tests (like module/class setup " "or teardown) is never captured." ), default=argparse.SUPPRESS, ) ) store_opt( out_args.add_argument( "-q", "--quiet-stdout", action="store_true", help=( "Instead of capturing the stdout and stderr and presenting it " "in the summary of results, discard it completly for successful " "tests. --allow-stdout option overrides it." ), default=argparse.SUPPRESS, ) ) store_opt( out_args.add_argument( "-k", "--no-skip-report", action="store_true", help=( "Don't print the report of skipped tests " "after testing is done. Skips will still show up in the progress " "report and summary count." ), default=argparse.SUPPRESS, ) ) store_opt( out_args.add_argument( "-e", "--no-tracebacks", action="store_true", help=("Don't print tracebacks for failures and " "errors."), default=argparse.SUPPRESS, ) ) store_opt( out_args.add_argument( "-h", "--help", action="store_true", help="Show this help message and exit.", default=argparse.SUPPRESS, ) ) store_opt( out_args.add_argument( "-V", "--version", action="store_true", help="Print the version of Green and Python and exit.", default=argparse.SUPPRESS, ) ) store_opt( out_args.add_argument( "-l", "--logging", action="store_true", help="Don't configure the root logger to redirect to /dev/null, " "enabling internal debugging output, as well as any output test (or " "tested) code may be sending via the root logger.", default=argparse.SUPPRESS, ) ) store_opt( out_args.add_argument( "-d", "--debug", action="count", help=( "Enable internal debugging statements. Implies --logging. Can " "be specified up to three times for more debug output." ), default=argparse.SUPPRESS, ) ) store_opt( out_args.add_argument( "-v", "--verbose", action="count", help=( "Verbose. Can be specified up to three times for more " "verbosity. Recommended levels are -v and -vv." ), default=argparse.SUPPRESS, ) ) store_opt( out_args.add_argument( "-U", "--disable-unidecode", action="store_true", help=( "Disable unidecode which converts test output from unicode to" "ascii by default on Windows to avoid hard-to-debug crashes." ), default=argparse.SUPPRESS, ) ) other_args = parser.add_argument_group("Other Options") store_opt( other_args.add_argument( "-f", "--failfast", action="store_true", help=("Stop execution at the first test that fails or errors."), default=argparse.SUPPRESS, ) ) store_opt( other_args.add_argument( "-c", "--config", action="store", metavar="FILE", help="Use this config file to override any values from " "the config file specified by environment variable GREEN_CONFIG, " "~/.green, and .green in the current working directory.", default=argparse.SUPPRESS, ) ) store_opt( other_args.add_argument( "-p", "--file-pattern", action="store", metavar="PATTERN", help="Pattern to match test files. Default is test*.py", default=argparse.SUPPRESS, ) ) store_opt( other_args.add_argument( "-n", "--test-pattern", action="store", metavar="PATTERN", help="Pattern to match test method names after " "'test'. Default is '*', meaning match methods named 'test*'.", default=argparse.SUPPRESS, ) ) store_opt( other_args.add_argument( "-j", "--junit-report", action="store", metavar="FILENAME", help=("Generate a JUnit XML report."), default=argparse.SUPPRESS, ) ) cov_args = parser.add_argument_group( "Coverage Options ({})".format(coverage_version) ) store_opt( cov_args.add_argument( "-r", "--run-coverage", action="store_true", help=("Produce coverage output."), default=argparse.SUPPRESS, ) ) store_opt( cov_args.add_argument( "-g", "--cov-config-file", action="store", metavar="FILE", help=( "Specify a coverage config file. " "Implies --run-coverage See the coverage documentation " "at https://coverage.readthedocs.io/en/v4.5.x/config.html " "for coverage config file syntax. The [run] and [report] sections " "are most relevant." ), default=argparse.SUPPRESS, ) ), store_opt( cov_args.add_argument( "-R", "--quiet-coverage", action="store_true", help=( "Do not print coverage report to stdout (coverage files will " "still be created). Implies --run-coverage" ), default=argparse.SUPPRESS, ) ) store_opt( cov_args.add_argument( "-O", "--clear-omit", action="store_true", help=( "Green tries really hard to set up a good list of patterns of " "files to omit from coverage reports. If the default list " "catches files that you DO want to cover you can specify this " "flag to leave the default list empty to start with. You can " "then add patterns back in with --omit-patterns. The default " "list is something like '*/test*,*/mock*,*(temp dir)*,*(python " "system packages)*' -- only longer." ), default=argparse.SUPPRESS, ) ) store_opt( cov_args.add_argument( "-u", "--include-patterns", action="store", metavar="PATTERN", help=( "Comma-separated file-patterns to include in coverage. This " "implies that anything that does not match the include pattern is " "omitted from coverage reporting." ), default=argparse.SUPPRESS, ) ) store_opt( cov_args.add_argument( "-o", "--omit-patterns", action="store", metavar="PATTERN", help=( "Comma-separated file-patterns to omit from coverage. For " "example, if coverage reported a file mypackage/foo/bar you could " "omit it from coverage with 'mypackage*', '*/foo/*', or '*bar'" ), default=argparse.SUPPRESS, ) ) store_opt( cov_args.add_argument( "-m", "--minimum-coverage", action="store", metavar="X", type=int, help=( "Integer. A minimum coverage value. If " "not met, then we will print a message and exit with a nonzero " "status. Implies --run-coverage" ), default=argparse.SUPPRESS, ) ) integration_args = parser.add_argument_group("Integration Options") store_opt( integration_args.add_argument( "--completion-file", action="store_true", help=( "Location of the bash- and zsh-completion " "file. To enable bash- or zsh-completion, see ENABLING SHELL " "COMPLETION below." ), default=argparse.SUPPRESS, ) ) store_opt( integration_args.add_argument( "--completions", action="store_true", help=( "Output possible completions of the given target. Used by " "bash- and zsh-completion." ), default=argparse.SUPPRESS, ) ) store_opt( integration_args.add_argument( "--options", action="store_true", help="Output all options. Used by bash- and zsh-completion.", default=argparse.SUPPRESS, ) ) args = parser.parse_args(argv) # Add additional members args.parser = parser args.store_opt = store_opt return args
0f2067daacb6270ac780927e1de48684d66fb469
3,658,506
def parse_example(serialized_example): """Parse a serialized example proto.""" features = tf.io.parse_single_example( serialized_example, dict( beam_id=tf.io.FixedLenFeature(shape=[], dtype=tf.int64), image_id=tf.io.FixedLenFeature(shape=[], dtype=tf.int64), question_id=tf.io.FixedLenFeature(shape=[], dtype=tf.int64), context=tf.io.FixedLenFeature(shape=[], dtype=tf.string), question=tf.io.FixedLenFeature(shape=[], dtype=tf.string))) return features
5c3a76bc121f02ce4484a3af87104f7739db1669
3,658,507
from typing import Optional from typing import Tuple from typing import Union def _compute_bootstrap_quantiles_point_estimate_custom_bias_corrected_method( metric_values: np.ndarray, false_positive_rate: np.float64, n_resamples: int, random_seed: Optional[int] = None, ) -> Tuple[Number, Number]: """ An internal implementation of the "bootstrap" estimator method, returning a point estimate for a population parameter of interest (lower and upper quantiles in this case). See https://en.wikipedia.org/wiki/Bootstrapping_(statistics) for an introduction to "bootstrapping" in statistics. The methods implemented here can be found in: Efron, B., & Tibshirani, R. J. (1993). Estimates of bias. An Introduction to the Bootstrap (pp. 124-130). Springer Science and Business Media Dordrecht. DOI 10.1007/978-1-4899-4541-9 This implementation is sub-par compared to the one available from the "SciPy" standard library ("https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.bootstrap.html"), in that it does not handle multi-dimensional statistics. "scipy.stats.bootstrap" is vectorized, thus having the ability to accept a multi-dimensional statistic function and process all dimensions. Unfortunately, as of March 4th, 2022, the SciPy implementation has two issues: 1) it only returns a confidence interval and not a point estimate for the population parameter of interest, which is what we require for our use cases. 2) It can not handle multi-dimensional statistics and correct for bias simultaneously. You must either use one feature or the other. This implementation could only be replaced by "scipy.stats.bootstrap" if Great Expectations drops support for Python 3.6, thereby enabling us to use a more up-to-date version of the "scipy" Python package (the currently used version does not have "bootstrap"). Also, as discussed above, two contributions would need to be made to the SciPy package to enable 1) bias correction for multi-dimensional statistics and 2) a return value of a point estimate for the population parameter of interest (lower and upper quantiles in this case). Additional future direction could include developing enhancements to bootstrapped estimator based on theory presented in "http://dido.econ.yale.edu/~dwka/pub/p1001.pdf": @article{Andrews2000a, added-at = {2008-04-25T10:38:44.000+0200}, author = {Andrews, Donald W. K. and Buchinsky, Moshe}, biburl = {https://www.bibsonomy.org/bibtex/28e2f0a58cdb95e39659921f989a17bdd/smicha}, day = 01, interhash = {778746398daa9ba63bdd95391f1efd37}, intrahash = {8e2f0a58cdb95e39659921f989a17bdd}, journal = {Econometrica}, keywords = {imported}, month = Jan, note = {doi: 10.1111/1468-0262.00092}, number = 1, pages = {23--51}, timestamp = {2008-04-25T10:38:52.000+0200}, title = {A Three-step Method for Choosing the Number of Bootstrap Repetitions}, url = {http://www.blackwell-synergy.com/doi/abs/10.1111/1468-0262.00092}, volume = 68, year = 2000 } The article outlines a three-step minimax procedure that relies on the Central Limit Theorem (C.L.T.) along with the bootstrap sampling technique (see https://en.wikipedia.org/wiki/Bootstrapping_(statistics) for background) for computing the stopping criterion, expressed as the optimal number of bootstrap samples, needed to achieve a maximum probability that the value of the statistic of interest will be minimally deviating from its actual (ideal) value. """ lower_quantile_pct: float = false_positive_rate / 2 upper_quantile_pct: float = 1.0 - false_positive_rate / 2 sample_lower_quantile: np.ndarray = np.quantile(metric_values, q=lower_quantile_pct) sample_upper_quantile: np.ndarray = np.quantile(metric_values, q=upper_quantile_pct) if random_seed: random_state: np.random.Generator = np.random.Generator( np.random.PCG64(random_seed) ) bootstraps: np.ndarray = random_state.choice( metric_values, size=(n_resamples, metric_values.size) ) else: bootstraps: np.ndarray = np.random.choice( metric_values, size=(n_resamples, metric_values.size) ) bootstrap_lower_quantiles: Union[np.ndarray, Number] = np.quantile( bootstraps, q=lower_quantile_pct, axis=1, ) bootstrap_lower_quantile_point_estimate: float = np.mean(bootstrap_lower_quantiles) bootstrap_lower_quantile_standard_error: float = np.std(bootstrap_lower_quantiles) bootstrap_lower_quantile_bias: float = ( bootstrap_lower_quantile_point_estimate - sample_lower_quantile ) # Bias / Standard Error > 0.25 is a rule of thumb for when to apply bias correction. # See: # Efron, B., & Tibshirani, R. J. (1993). Estimates of bias. An Introduction to the Bootstrap (pp. 128). # Springer Science and Business Media Dordrecht. DOI 10.1007/978-1-4899-4541-9 lower_quantile_bias_corrected_point_estimate: Number if bootstrap_lower_quantile_bias / bootstrap_lower_quantile_standard_error <= 0.25: lower_quantile_bias_corrected_point_estimate = ( bootstrap_lower_quantile_point_estimate ) else: lower_quantile_bias_corrected_point_estimate = ( bootstrap_lower_quantile_point_estimate - bootstrap_lower_quantile_bias ) bootstrap_upper_quantiles: Union[np.ndarray, Number] = np.quantile( bootstraps, q=upper_quantile_pct, axis=1, ) bootstrap_upper_quantile_point_estimate: np.ndarray = np.mean( bootstrap_upper_quantiles ) bootstrap_upper_quantile_standard_error: np.ndarray = np.std( bootstrap_upper_quantiles ) bootstrap_upper_quantile_bias: float = ( bootstrap_upper_quantile_point_estimate - sample_upper_quantile ) # Bias / Standard Error > 0.25 is a rule of thumb for when to apply bias correction. # See: # Efron, B., & Tibshirani, R. J. (1993). Estimates of bias. An Introduction to the Bootstrap (pp. 128). # Springer Science and Business Media Dordrecht. DOI 10.1007/978-1-4899-4541-9 upper_quantile_bias_corrected_point_estimate: Number if bootstrap_upper_quantile_bias / bootstrap_upper_quantile_standard_error <= 0.25: upper_quantile_bias_corrected_point_estimate = ( bootstrap_upper_quantile_point_estimate ) else: upper_quantile_bias_corrected_point_estimate = ( bootstrap_upper_quantile_point_estimate - bootstrap_upper_quantile_bias ) return ( lower_quantile_bias_corrected_point_estimate, upper_quantile_bias_corrected_point_estimate, )
50494c15ded4b9cd7c54f4262f7d9b2137d2bd4f
3,658,508
def bytes_to_b64(data: bytes, remove_padding=True) -> str: """ byte string to URL safe Base64 string, with option to remove B64 LSB padding :param data: byte string :param remove_padding: remove b64 padding (``=`` char). True by default :return: base64 unicode string """ text = urlsafe_b64encode(data).decode() if remove_padding: return text.replace('=', '') else: return text
8ca495948eb72ab6bb8bf95ae62b4d370a04cbe3
3,658,509
import re def _case_sensitive_replace(string, old, new): """ Replace text, retaining exact case. Args: string (str): String in which to perform replacement. old (str): Word or substring to replace. new (str): What to replace `old` with. Returns: repl_string (str): Version of string where instances of `old` has been replaced with `new`, retaining case. """ def repl(match): current = match.group() # treat multi-word sentences word-by-word old_words = current.split(" ") new_words = new.split(" ") out = [] for old_word, new_word in zip(old_words, new_words): result = [] all_upper = True for ind, chr in enumerate(old_word): if ind >= len(new): break if chr.isupper(): result.append(new_word[ind].upper()) else: result.append(new_word[ind].lower()) all_upper = False # special cases - keep remaing case) if new_word.lower() in CASE_WORD_EXCEPTIONS: result.append(new_word[ind + 1 :]) # append any remaining characters from new elif all_upper: result.append(new_word[ind + 1 :].upper()) else: result.append(new_word[ind + 1 :].lower()) out.append("".join(result)) # if we have more new words than old ones, just add them verbatim out.extend([new_word for ind, new_word in enumerate(new_words) if ind >= len(old_words)]) return " ".join(out) if string is None: return None regex = re.compile(re.escape(old), re.I) return regex.sub(repl, string)
bf20636146b42f67ec3ad0b4a00a80a9d6cb9ce6
3,658,510
from typing import Dict from typing import Any def deserialize_transaction_from_etherscan( data: Dict[str, Any], internal: bool, ) -> EthereumTransaction: """Reads dict data of a transaction from etherscan and deserializes it Can throw DeserializationError if something is wrong """ try: # internal tx list contains no gasprice gas_price = FVal(-1) if internal else FVal(data['gasPrice']) tx_hash = read_hash(data, 'hash') input_data = read_hash(data, 'input') timestamp = deserialize_timestamp(data['timeStamp']) block_number = read_integer(data, 'blockNumber') nonce = -1 if internal else read_integer(data, 'nonce') return EthereumTransaction( timestamp=timestamp, block_number=block_number, tx_hash=tx_hash, from_address=data['from'], to_address=data['to'], value=deserialize_fval(data['value']), gas=deserialize_fval(data['gas']), gas_price=gas_price, gas_used=deserialize_fval(data['gasUsed']), input_data=input_data, nonce=nonce, ) except KeyError as e: raise DeserializationError(f'Etherscan ethereum transaction missing expected key {str(e)}')
c4184cea626b229a7c0de8848f95fb29ebdec6d3
3,658,511
def ar(p): """ Given a quaternion p, return the 4x4 matrix A_R(p) which when multiplied with a column vector q gives the quaternion product qp. Parameters ---------- p : numpy.ndarray 4 elements, represents quaternion Returns ------- numpy.ndarray 4x4 matrix describing action of quaternion multiplication """ return np.array([[p[0], -p[1], -p[2], -p[3]], [p[1], p[0], p[3], -p[2]], [p[2], -p[3], p[0], p[1]], [p[3], p[2], -p[1], p[0]]])
0ee437eec9b62c902466de4e77b541fc3cb7a64a
3,658,512
def preprocess_list(lst,tokenizer,max_len=None): """ function preprocesses a list of values returning tokenized sequences Args: lst: list of strings to be processed tokenizer: a tokenizer object max_len: if we need to ensure the same length of strings, we can provide an integer here Returns: a numpy array with tokenized sequences. Each sequence in a separate row """ return_seq = tokenizer.texts_to_sequences(lst) seq = np.array( pad_sequences(return_seq, maxlen=max_len,padding="post"), dtype="float32" ) return seq
c1ba91ae54b9869ac6dd80664b479a47c34388e2
3,658,513
from datetime import datetime import sys def get_GEOS5_as_ds_via_OPeNDAP(collection='inst3_3d_aer_Nv', fcast_start_hour=12, mode='seamless', dt=None): """ Get the GEOS-5 model product (GEOS-5) as a xr.Dataset (using OPeNDAP) Parameters ---------- mode (str): retrieve the forecast (fcast) or assimilated fields (assim) or both (seemless) dt (datetime.datetime): date to retrieve forecast from or assimilation for collection (str): data collection to access (e.g. chm_inst_1hr_g1440x721_p23) fcast_start_hour (int): hour the forcast started on a given day Returns ------- (xr.dataset) NOTES --- - default is to get the latest forecast for chemistry (via seamless route) - See documentation for details: https://geos5.org/wiki/index.php?title=GEOS-5_Earth_System_Modeling_and_Data_Assimilation - Collections include: - The forecast set going at different times are for different length. 00 - ~10 days 06 - ~1.5 days 12 - ~5 days 18 - ~1.5 days - the 5 day forecast for a given day is selected as default (fcast_start_hour) """ # Root OPeNDAP directory root_url = 'https://opendap.nccs.nasa.gov/dods/GEOS-5/fp/0.25_deg/{}/' root_url = root_url.format(mode) # Make up the complete URL for a forecast or assimilation field if (mode == 'fcast') or (mode == 'seamless'): # Which date to use? if isinstance(dt, type(None)): # Use the lastest file (default) URL = '{}/{}.latest'.format(root_url, collection) else: # Use a file specified in arguments correct_type = type(dt) == datetime.datetime assert correct_type, "'date' variable must be a datetime.datetime object" # Use the 'lastest' file (default) # NOTE: lastest 12 file is used to match up with GEOS-CF # TODO: update this. this will not give enough data dstr = dt.strftime(format='%Y%m%d') URL = '{}/{}/{}.{}_{:0>2}' URL = URL.format(root_url, collection, collection, dstr, fcast_start_hour) elif mode == 'assim': # Just retrieve an OPeNDAP pointer to the entire dataset for now URL = '{}/{}'.format(root_url, collection) else: print("WARNING: GEOS-5 mode provided ('{}') not known".format(mode)) sys.exit() # Open the dataset via OPeNDAP and return ds = xr.open_dataset(URL) return ds
2e31229d8fdbdd1cfb38d52fb2160bdc86d56453
3,658,514
def to_dataframe(ticks: list) -> pd.DataFrame: """Convert list to Series compatible with the library.""" df = pd.DataFrame(ticks) df['time'] = pd.to_datetime(df['time'], unit='s') df.set_index("time", inplace=True) return df
6f312e9e8f401d21cebc1404a24ba37738a2819d
3,658,515
def keysCode(code): """ Download user's keys from an email link GET: If the code is valid, download user keys Else abort with a 404 """ #Check if code exists and for the correct purpose. Else abort if (hl.checkCode(code,"Keys")): user = hl.getUserFromCode(code) else: abort(404) #Mark code as used hl.flagCode(code) #return return getKeys(user["Name"])
533f17cd4a2fb999f6ffd135a1e647f48266a04c
3,658,516
def lengthenFEN(fen): """Lengthen FEN to 71-character form (ex. '3p2Q' becomes '111p11Q')""" return fen.replace('8','11111111').replace('7','1111111') \ .replace('6','111111').replace('5','11111') \ .replace('4','1111').replace('3','111').replace('2','11')
f49cdf8ad6919fbaaad1abc83e24b1a33a3ed3f8
3,658,517
def keyboard_mapping(display): """Generates a mapping from *keysyms* to *key codes* and required modifier shift states. :param Xlib.display.Display display: The display for which to retrieve the keyboard mapping. :return: the keyboard mapping """ mapping = {} shift_mask = 1 << 0 group_mask = alt_gr_mask(display) # Iterate over all keysym lists in the keyboard mapping min_keycode = display.display.info.min_keycode keycode_count = display.display.info.max_keycode - min_keycode + 1 for index, keysyms in enumerate(display.get_keyboard_mapping( min_keycode, keycode_count)): key_code = index + min_keycode # Normalise the keysym list to yield a tuple containing the two groups normalized = keysym_normalize(keysyms) if not normalized: continue # Iterate over the groups to extract the shift and modifier state for groups, group in zip(normalized, (False, True)): for keysym, shift in zip(groups, (False, True)): if not keysym: continue shift_state = 0 \ | (shift_mask if shift else 0) \ | (group_mask if group else 0) # Prefer already known lesser shift states if keysym in mapping and mapping[keysym][1] < shift_state: continue mapping[keysym] = (key_code, shift_state) return mapping
c9d2e0caea532ab66b00744d17ff6274f42844e9
3,658,518
def convertPeaks(peaksfile, bedfile): """Convert a MACS output file `peaksfile' to a BED file. Also works if the input is already in BED format.""" regnum = 1 with open(bedfile, "w") as out: with open(peaksfile, "r") as f: tot = 0 chrom = "" start = 0 end = 0 c = CSVreader(f) for line in c: if len(line) == 0 or line[0][0] == '#' or line[0] == 'chr': continue bchrom = line[0] if "_" in bchrom: # get rid of weird chromosomes continue # New chromosome? if bchrom != chrom: if end > 0: out.write("{}\t{}\t{}\treg{}\t{}\t+\n".format(chrom, start, end, regnum, regnum)) regnum += 1 chrom = bchrom start = 0 end = 0 # Unwanted chromosome? if bchrom == 'chrM' or "random" in bchrom: start = 0 end = 0 continue # Good line bstart = int(line[1]) bend = int(line[2]) if start <= bstart <= end: # Extend current region end = bend else: # Start new region tot += (end - start) if end > 0: out.write("{}\t{}\t{}\treg{}\t{}\t+\n".format(chrom, start, end, regnum, regnum)) regnum += 1 start = bstart end = bend out.write("{}\t{}\t{}\treg{}\t{}\t+\n".format(chrom, start, end, regnum, regnum)) tot += (end - start) return (tot, regnum)
6c9af82254efb98d35c9182ebe53c4f3802cdb7f
3,658,519
def create_freud_box(box: np.ndarray, is_2D=True) -> Box: """Convert an array of box values to a box for use with freud functions The freud package has a special type for the description of the simulation cell, the Box class. This is a function to take an array of lengths and tilts to simplify the creation of the Box class for use with freud. """ # pylint: disable=invalid-name Lx, Ly, Lz = box[:3] xy = xz = yz = 0 if len(box) == 6: xy, xz, yz = box[3:6] if is_2D: return Box(Lx=Lx, Ly=Ly, xy=xy, is2D=is_2D) return Box(Lx=Lx, Ly=Ly, Lz=Lz, xy=xy, xz=xz, yz=yz) # pylint: enable=invalid-name
94ea3769d8138907bf29a30fc8afcf6b990264f1
3,658,520
def hrrr_snotel_pixel(file, x_pixel_index, y_pixel_index): """ Read GRIB file surface values, remove unsed dimensions, and set the time dimension. Required to be able to concatenate all GRIB file to a time series """ hrrr_file = xr.open_dataset( file.as_posix(), engine='cfgrib', backend_kwargs={ 'errors': 'ignore', 'indexpath': '', 'filter_by_keys': { 'level': 0, 'typeOfLevel': 'surface', } }, ).isel(x=[x_pixel_index], y=[y_pixel_index]) del hrrr_file.coords['valid_time'] del hrrr_file.coords['surface'] del hrrr_file.coords['step'] return hrrr_file.expand_dims(time=[hrrr_file.time.values])
22a66317d672874b9ababfd0a7daa364d06ea87e
3,658,521
def convert_to_diact_uttseg_interactive_tag(previous, tag): """Returns the dialogue act but with the fact it is keeping or taking the turn. """ if not previous: previous = "" trp_tag = uttseg_pattern(tag) return trp_tag.format(convert_to_diact_interactive_tag(previous, tag))
06950132147d374002495d92e456fe52a6d9546f
3,658,522
from mne.chpi import compute_chpi_amplitudes, compute_chpi_locs from mne.chpi import _get_hpi_initial_fit def compute_good_coils(raw, t_step=0.01, t_window=0.2, dist_limit=0.005, prefix='', gof_limit=0.98, verbose=None): """Comute time-varying coil distances.""" try: except ImportError: chpi_locs = _old_chpi_locs(raw, t_step, t_window, prefix) else: chpi_amps = compute_chpi_amplitudes( raw, t_step_min=t_step, t_window=t_window) chpi_locs = compute_chpi_locs(raw.info, chpi_amps) hpi_dig_head_rrs = _get_hpi_initial_fit(raw.info, verbose=False) hpi_coil_dists = cdist(hpi_dig_head_rrs, hpi_dig_head_rrs) counts = np.empty(len(chpi_locs['times']), int) for ii, (t, coil_dev_rrs, gof) in enumerate(zip( chpi_locs['times'], chpi_locs['rrs'], chpi_locs['gofs'])): these_dists = cdist(coil_dev_rrs, coil_dev_rrs) these_dists = np.abs(hpi_coil_dists - these_dists) # there is probably a better algorithm for finding the bad ones... use_mask = gof >= gof_limit good = False while not good: d = these_dists[use_mask][:, use_mask] d_bad = d > dist_limit good = not d_bad.any() if not good: if use_mask.sum() == 2: use_mask[:] = False break # failure # exclude next worst point badness = (d * d_bad).sum(axis=0) exclude_coils = np.where(use_mask)[0][np.argmax(badness)] use_mask[exclude_coils] = False counts[ii] = use_mask.sum() t = chpi_locs['times'] - raw.first_samp / raw.info['sfreq'] return t, counts, len(hpi_dig_head_rrs), chpi_locs
060658dfae82768a5dff31a365f1c200d6f5d223
3,658,523
def prep_request(items, local_id="id"): """ Process the incoming items into an AMR request. <map name="cite_1"> <val name="{id_type}">{value}</val> </map> """ map_items = ET.Element("map") for idx, pub in enumerate(items): if pub is None: continue local_id_value = pub.get(local_id) or pub.get(local_id.upper()) if local_id_value is None: local_id_value = str(idx) this_item = ET.Element("map", name=local_id_value) for k, v in pub.items(): if v is None: continue de = ET.Element("val", name=k.lower()) de.text = v.strip() this_item.append(de) map_items.append(this_item) request_items = ET.tostring(map_items) xml = id_request_template.format(user=client.USER, password=client.PASSWORD, items=request_items) return xml
46f1f7a94ffccc4eec2192fe100664c3d9e2d829
3,658,524
from averages_module import VariableType from lrc_module import potential_lrc, pressure_lrc def calc_variables ( ): """Calculates all variables of interest. They are collected and returned as a list, for use in the main program. """ # In this example we simulate using the cut (but not shifted) potential # but we only report results which have had the long-range corrections applied # The value of the cut-and-shifted potential is not used, in this example # Preliminary calculations (n,r,total are taken from the calling program) vol = box**3 # Volume rho = n / vol # Density kin = 1.5 * n * p * temperature # Average kinetic energy for NP-atom system kin_q = kin - total_spr # Quantum estimator for kinetic energy rad_g = rad_gyr ( r ) # Variables of interest, of class VariableType, containing three attributes: # .val: the instantaneous value # .nam: used for headings # .method: indicating averaging method # If not set below, .method adopts its default value of avg # The .nam and some other attributes need only be defined once, at the start of the program, # but for clarity and readability we assign all the values together below # Acceptance ratio of atomic moves r_r = VariableType ( nam = 'Atomic move ratio', val = r_ratio, instant = False ) # Acceptance ratio of centre-of-mass moves c_r = VariableType ( nam = 'COM move ratio', val = c_ratio, instant = False ) # Internal energy per atom for full potential with LRC # LRC plus cut (but not shifted) PE already divided by factor P # plus KE estimator: total classical KE for NP-atom system MINUS total spring potential # all divided by N e_f = VariableType ( nam = 'E/N full', val = potential_lrc(rho,r_cut) + (kin_q+total.pot)/n ) # Kinetic energy per atom, just for interest's sake k_q = VariableType ( nam = 'KE/N', val = kin_q/n ) # Pressure for full potential with LRC # LRC plus ideal gas contribution plus total virial divided by V kin_q = kin_q / 1.5 # Convert KE estimator to kinetic energy part of pressure p_f = VariableType ( nam = 'P full', val = pressure_lrc(rho,r_cut) + (kin_q+total.vir)/vol ) # Quantum spring energy per atom, just for interest's sake e_q = VariableType ( nam = 'Espring/N', val = total_spr/n ) # Quantum polymer radius of gyration, just for interest's sake r_g = VariableType ( nam = 'Radius of gyration', val = rad_g ) # Collect together into a list for averaging return [ r_r, c_r, e_f, p_f, e_q, k_q, r_g ]
4d0c066ccf4da82955a60d22c0ec27efc975df6d
3,658,525
import matplotlib.pyplot as plt import pandas as pd import logging import pandas as pd import xarray as xr def analyse_results_ds_one_station(dss, field='WetZ', verbose=None, plot=False): """analyse and find an overlapping signal to fields 'WetZ' or 'WetZ_error' in dss""" # algorithm for zwd stitching of 30hrs gipsyx runs: # just take the mean of the two overlapping signals # and then smooth is with savgol_filter using 3 hours more data in each # direction... def select_two_ds_from_gipsyx_results(ds, names=['WetZ_0', 'WetZ_1'], hours_offset=None): """selects two dataarrays from the raw gipsyx results dataset""" time0 = list(set(ds[names[0]].dims))[0] time1 = list(set(ds[names[1]].dims))[0] time = list(set(ds[names[0]][time0].values).intersection(set(ds[names[1]][time1].values))) # time = dim_intersection([ds[names[0]], ds[names[1]]], dim='time') if not time: return None time = sorted(pd.to_datetime(time)) if hours_offset is not None: # freq = pd.infer_freq(time) start = time[0] - pd.DateOffset(hours=hours_offset) end = time[-1] + pd.DateOffset(hours=hours_offset) # time = pd.date_range(start, end, freq=freq) first = ds[names[0]].sel({time0: slice(start, end)}) second = ds[names[1]].sel({time1: slice(start, end)}) else: first = ds[names[0]].sel({time0: time}) second = ds[names[1]].sel({time1: time}) first = first.rename({time0: 'time'}) second = second.rename({time1: 'time'}) two = xr.Dataset() two[first.name] = first two[second.name] = second df = two.to_dataframe() return df logger = logging.getLogger('gipsyx_post_proccesser') if verbose == 0: logger.info('analysing {} field.'.format(field)) # first, group different vars for different stitching schemes: to_smooth = ['GradEast', 'GradNorth', 'WetZ'] to_simple_mean = ['X', 'Y', 'Z'] to_error_mean = [x + '_error' for x in to_smooth] + [x + '_error' for x in to_simple_mean] # second, select the field to work on: nums = sorted(list(set([int(x.split('-')[1]) for x in dss if x.split('-')[0] == field]))) ds = dss[['{}-{}'.format(field, i) for i in nums]] df_list = [] for i, _ in enumerate(ds): if i == len(ds) - 1: break first = ds['{}-{}'.format(field, i)] second = ds['{}-{}'.format(field, i + 1)] if verbose == 1: print('proccesing {} and {}'.format(first.name, second.name)) # 3 hours addition to each side: df = select_two_ds_from_gipsyx_results(ds, [first.name, second.name], 3) if df is not None: if field in to_smooth: wn = 25 order = 3 stitched = stitch_two_cols(df, wn, order, method='smooth_mean') action = 'stitched and replaced daily discontinuities '\ 'with smooth(savgol filter, window:{}, order:{}) mean'.format(wn, order) elif field in to_simple_mean: stitched = stitch_two_cols(df, method='simple_mean') action = 'stitched and replaced daily discontinuities '\ 'with simple mean' elif field in to_error_mean: stitched = stitch_two_cols(df, method='error_mean') action = 'stitched and replaced daily discontinuities '\ 'with error mean (sqrt(errorA^2 + errorB^2))' df_list.append(stitched) # df_list.append(find_cross_points(df, None)) elif df is None: if verbose: logger.warning('skipping {} and {}...'.format(first.name, second.name)) da = pd.concat([x['stitched_signal'] for x in df_list]).to_xarray() attrs_list = [(x, y) for x, y in dss.attrs.items() if field == x.split('>')[0]] attrs_list.append(('{}>action'.format(field), action)) for items in attrs_list: da.attrs[items[0]] = items[1] da.attrs['station'] = dss.attrs['station'] if plot: fig, ax = plt.subplots(figsize=(16, 5)) da.plot.line(marker='.', linewidth=0., ax=ax, color='k') for i, ppp in enumerate(ds): ds['{}-{}'.format(field, i)].plot(ax=ax) units = dss.attrs['{}>units'.format(field)] sta = da.attrs['station'] desc = da.attrs['{}>desc'.format(field)] ax.set_ylabel('{} [{}]'.format(field, units)) ax.set_xlabel('') fig.suptitle('30 hours stitched {} for GNSS station {}'.format(desc, sta), fontweight='bold') fig.tight_layout() fig.subplots_adjust(top=0.95) ax.grid() # dfs = [] # for df in df_list: # # check if there is an offset: # A = df.columns.values[0] # B = df.columns.values[1] # if all([x is None for x in df.Cross]): # offset = df.Diff.median() # df['{}_new'.format(B)] = df[B] + offset # dfs.append(df) return da
15f0248af152c31231af9e5a6a586d61e3e3ed9a
3,658,526
def findDocument_MergeFields(document): """this function creates a new docx document based on a template with Merge fields and a JSON content""" the_document = MailMerge(document) all_fields = the_document.get_merge_fields() res = {element:'' for element in all_fields} return res
9822f40e5f57bbc72f9292da9bd2a1c134776c2f
3,658,527
def load_mushroom(data_home=None, return_dataset=False): """ Loads the mushroom multivariate dataset that is well suited to binary classification tasks. The dataset contains 8123 instances with 3 categorical attributes and a discrete target. The Yellowbrick datasets are hosted online and when requested, the dataset is downloaded to your local computer for use. Note that if the dataset hasn't been downloaded before, an Internet connection is required. However, if the data is cached locally, no data will be downloaded. Yellowbrick checks the known signature of the dataset with the data downloaded to ensure the download completes successfully. Datasets are stored alongside the code, but the location can be specified with the ``data_home`` parameter or the $YELLOWBRICK_DATA envvar. Parameters ---------- data_home : str, optional The path on disk where data is stored. If not passed in, it is looked up from YELLOWBRICK_DATA or the default returned by ``get_data_home``. return_dataset : bool, default=False Return the raw dataset object instead of X and y numpy arrays to get access to alternative targets, extra features, content and meta. Returns ------- X : array-like with shape (n_instances, n_features) if return_dataset=False A pandas DataFrame or numpy array describing the instance features. y : array-like with shape (n_instances,) if return_dataset=False A pandas Series or numpy array describing the target vector. dataset : Dataset instance if return_dataset=True The Yellowbrick Dataset object provides an interface to accessing the data in a variety of formats as well as associated metadata and content. """ return _load_dataset('mushroom', data_home, return_dataset)
e300a1cade8532d18ebea1f5175d9c3001112855
3,658,528
def get_current_project(user_id): """Return from database user current project""" try: current = CurrentProject.objects.get(user_id=user_id) except CurrentProject.DoesNotExist: return None keystone = KeystoneNoRequest() return keystone.project_get(current.project)
dc8b1cf44ccd4c51bf58615657520007f2eca5db
3,658,529
def get_random_successful_answer(intent: str) -> str: """ Get a random successful answer for this intent * `intent`: name-parameter of the yml-section with which the successful answers were imported **Returns:** None if no successful answers are known for this intent, otherwise a random element of the successful answers for this intent """ return random_or_none(get_successful_answer_list(intent))
e8106adff5f5a45c5b5e0ff12130d828fa2f4a55
3,658,530
from typing import Any def formatter( source: str, language: str, css_class: str, options: dict[str, Any], md: Markdown, classes: list[str] | None = None, id_value: str = "", attrs: dict[str, Any] | None = None, **kwargs: Any, ) -> str: """Execute code and return HTML. Parameters: source: The code to execute. language: The code language, like python or bash. css_class: The CSS class to add to the HTML element. options: The container for options. attrs: The container for attrs: md: The Markdown instance. classes: Additional CSS classes. id_value: An optional HTML id. attrs: Additional attributes **kwargs: Additional arguments passed to SuperFences default formatters. Returns: HTML contents. """ fmt = _formatters.get(language, lambda source, *args, **kwargs: source) return fmt(source, md, **options)
f141732ff6bd5d3bd7cc1a83895b0e2c020bf8cf
3,658,531
def find_visible(vertex_candidates, edges_to_check): """ # IMPORTANT: self.translate(new_origin=query_vertex) always has to be called before! (for computing the angle representations wrt. the query vertex) query_vertex: a vertex for which the visibility to the vertices should be checked. also non extremity vertices, polygon vertices and vertices with the same coordinates are allowed. query point also might lie directly on an edge! (angle = 180deg) :param vertex_candidates: the set of all vertices which should be checked for visibility. IMPORTANT: is being manipulated, so has to be a copy! IMPORTANT: must not contain the query vertex! :param edges_to_check: the set of edges which determine visibility :return: a set of tuples of all vertices visible from the query vertex and the corresponding distance """ visible_vertices = set() if len(vertex_candidates) == 0: return visible_vertices priority_edges = set() # goal: eliminating all vertices lying 'behind' any edge # TODO improvement in combination with priority: process edges roughly in sequence, but still allow jumps # would follow closer edges more often which have a bigger chance to eliminate candidates -> speed up while len(vertex_candidates) > 0 and len(edges_to_check) > 0: # check prioritized items first try: edge = priority_edges.pop() edges_to_check.remove(edge) except KeyError: edge = edges_to_check.pop() lies_on_edge = False v1, v2 = edge.vertex1, edge.vertex2 if v1.get_distance_to_origin() == 0.0: # vertex1 has the same coordinates as the query vertex -> on the edge lies_on_edge = True # (but does not belong to the same polygon, not identical!) # mark this vertex as not visible (would otherwise add 0 distance edge in the graph) vertex_candidates.discard(v1) # its angle representation is not defined (no line segment from vertex1 to query vertex!) range_less_180 = v1.is_extremity # do not check the other neighbouring edge of vertex1 in the future e1 = v1.edge1 edges_to_check.discard(e1) priority_edges.discard(e1) # everything between its two neighbouring edges is not visible for sure v1, v2 = v1.get_neighbours() elif v2.get_distance_to_origin() == 0.0: lies_on_edge = True vertex_candidates.discard(v2) range_less_180 = v2.is_extremity e1 = v2.edge2 edges_to_check.discard(e1) priority_edges.discard(e1) v1, v2 = v2.get_neighbours() repr1 = v1.get_angle_representation() repr2 = v2.get_angle_representation() repr_diff = abs(repr1 - repr2) if repr_diff == 2.0: # angle == 180deg -> on the edge lies_on_edge = True range_less_180 = False # does actually not matter here if lies_on_edge: # when the query vertex lies on an edge (or vertex) no behind/in front checks must be performed! # the neighbouring edges are visible for sure try: vertex_candidates.remove(v1) visible_vertices.add(v1) except KeyError: pass try: vertex_candidates.remove(v2) visible_vertices.add(v2) except KeyError: pass # all the candidates between the two vertices v1 v2 are not visible for sure # candidates with the same representation should not be deleted, because they can be visible! vertex_candidates.difference_update( find_within_range(repr1, repr2, repr_diff, vertex_candidates, angle_range_less_180=range_less_180, equal_repr_allowed=False)) continue # case: a 'regular' edge # eliminate all candidates which are blocked by the edge # that means inside the angle range spanned by the edge and actually behind it vertices_to_check = vertex_candidates.copy() # the vertices belonging to the edge itself (its vertices) must not be checked. # use discard() instead of remove() to not raise an error (they might not be candidates) vertices_to_check.discard(v1) vertices_to_check.discard(v2) if len(vertices_to_check) == 0: continue # assert repr1 is not None # assert repr2 is not None # for all candidate edges check if there are any candidate vertices (besides the ones belonging to the edge) # within this angle range # the "view range" of an edge from a query point (spanned by the two vertices of the edge) # is always < 180deg when the edge is not running through the query point (=180 deg) # candidates with the same representation as v1 or v2 should be considered. # they can be visible, but should be ruled out if they lie behind any edge! vertices_to_check = find_within_range(repr1, repr2, repr_diff, vertices_to_check, angle_range_less_180=True, equal_repr_allowed=True) if len(vertices_to_check) == 0: continue # if a candidate is farther away from the query point than both vertices of the edge, # it surely lies behind the edge max_distance = max(v1.get_distance_to_origin(), v2.get_distance_to_origin()) vertices_behind = set(filter(lambda extr: extr.get_distance_to_origin() > max_distance, vertices_to_check)) # they do not have to be checked, no intersection computation necessary # TODO improvement: increase the neighbouring edges' priorities when there were extremities behind vertices_to_check.difference_update(vertices_behind) if len(vertices_to_check) == 0: # also done later, only needed if skipping this edge vertex_candidates.difference_update(vertices_behind) continue # if the candidate is closer than both edge vertices it surely lies in front ( min_distance = min(v1.get_distance_to_origin(), v2.get_distance_to_origin()) vertices_in_front = set( filter(lambda extr: extr.get_distance_to_origin() < min_distance, vertices_to_check)) # they do not have to be checked (safes computation) vertices_to_check.difference_update(vertices_in_front) # for all remaining vertices v it has to be tested if the line segment from query point (=origin) to v # has an intersection with the current edge p1---p2 # vertices directly on the edge are allowed (not eliminated)! p1 = v1.get_coordinates_translated() p2 = v2.get_coordinates_translated() for vertex in vertices_to_check: if lies_behind(p1, p2, vertex.get_coordinates_translated()): vertices_behind.add(vertex) else: vertices_in_front.add(vertex) # vertices behind any edge are not visible vertex_candidates.difference_update(vertices_behind) # if there are no more candidates left. immediately quit checking edges if len(vertex_candidates) == 0: break # check the neighbouring edges of all vertices which lie in front of the edge next first # (prioritize them) # they lie in front and hence will eliminate other vertices faster # the fewer vertex candidates remain, the faster the procedure # TODO improvement: increase priority every time and draw highest priority items # but this involves sorting (expensive for large polygons!) # idea: work with a list of sets, add new set for higher priority, no real sorting, but still managing! # TODO test speed impact for e in vertices_in_front: # only add the neighbour edges to the priority set if they still have to be checked! if type(e) == PolygonVertex: # only vertices belonging to polygons have neighbours priority_edges.update(edges_to_check.intersection({e.edge1, e.edge2})) # all edges have been checked # all remaining vertices were not concealed behind any edge and hence are visible visible_vertices.update(vertex_candidates) # return a set of tuples: (vertex, distance) return {(e, e.get_distance_to_origin()) for e in visible_vertices}
07c1087fd603a1bccf18fe145706d7ea4491081c
3,658,532
from typing import Iterable from typing import Dict import logging def gather_data( network_stats: Iterable, start_time: int, end_time: int, step: int ) -> Dict: """This function takes Prometheus data and reshapes it into a multi-level dictionary of network name to link name to link dir to list of values.""" label_val_map: defaultdict = defaultdict( lambda: defaultdict(lambda: defaultdict(list)) ) for network, prom_results in network_stats: if prom_results is None: continue for query, values in prom_results.items(): logging.info(f"Processing data for network {network} and metric {query}") if not values: logging.debug(f"Found no {query} results for {network}") continue for result in values: link_name = result["metric"][consts.link_name] link_dir = result["metric"][consts.link_direction] val_array = label_val_map[network][link_name][link_dir] if len(val_array) == 0: # Create empty array of length equal to duration_s sampled at step_s val_array = [np.nan] * int((end_time - start_time) / step) label_val_map[network][link_name][link_dir] = val_array for timestamp, metric_value in result["values"]: # Put values at the approporate index of array based on timestamp val_array[int((int(timestamp) - start_time) / step - 1)] = int( metric_value ) return label_val_map
9871c2f15f6c82b9af538393da40006977ced356
3,658,533
import requests def get_balance_sheet(ticker, limit, key, period): """Get the Balance sheet.""" URL = 'https://financialmodelingprep.com/api/v3/balance-sheet-statement/' try: r = requests.get( '{}{}?period={}&?limit={}&apikey={}'.format(URL, ticker, period, limit, key)) balanceSheet = pd.DataFrame.from_dict(r.json()).transpose() balanceSheet.columns = balanceSheet.iloc[0] return balanceSheet[1:] except requests.exceptions.HTTPError as e: # We want a 200 value print('Requesting Balance sheet statement ERROR: ', str(e))
ae31a9d97715e1bc8818f64df48c18c3a7c806a3
3,658,534
def softmax_loss(scores, y): """ Computes the loss and gradient for softmax classification. Inputs: - scores: Input data, of shape (N, C) where x[i, j] is the score for the jth class for the ith input. - y: Vector of labels, of shape (N,) where y[i] is the label for x[i] and 0 <= y[i] < C Returns a tuple of: - loss: Scalar giving the loss - dscores: Gradient of the loss with respect to x """ N, C = scores.shape scores = scores - np.max(scores, 1, keepdims=True) loss = np.sum(-1 * scores[np.arange(N), y]) + np.sum(np.log(np.sum(np.exp(scores), 1))) loss /= N scores_e = np.exp(scores) dscores = scores_e / np.sum(scores_e, 1).reshape(N, 1) dscores[np.arange(N), y] = dscores[np.arange(N), y] - 1 dscores /= N return loss, dscores
7cc0e4fc070ab0a8cdc32c75aec342dac34179ab
3,658,535
import os import pickle def load_flags(save_dir, save_file="flags.obj"): """ This function inflate the pickled object to flags object for reuse, typically during evaluation (after training) :param save_dir: The place where the obj is located :param save_file: The file name of the file, usually flags.obj :return: flags """ with open(os.path.join(save_dir, save_file), 'rb') as f: # Open the file flags = pickle.load(f) # Use pickle to inflate the obj back to RAM return flags
44cc70f185645799fdfd81c8806f3d3f8585fef4
3,658,536
def text_to_lines(path): """ Parse a text file into lines. Parameters ---------- path : str Fully specified path to text file Returns ------- list Non-empty lines in the text file """ delimiter = None with open(path, encoding='utf-8-sig', mode='r') as f: text = f.read() if delimiter is not None and delimiter not in text: e = DelimiterError( 'The delimiter specified does not create multiple words. Please specify another delimiter.') raise (e) lines = [x.strip().split(delimiter) for x in text.splitlines() if x.strip() != ''] return lines
df723ee40a490c084301584bd9374445ef73a5ae
3,658,537
def measure_hemijunctions_timelapse(ims_labels, ims_labels_hjs): """ Measure the hemijunction traits from a timelapse of a live-imaged epithelium. Parameters ---------- ims_labels : 3D ndarray (t,y,x) Each timepoint is a 2D array with labeled regions. ims_labels_hjs : 3D ndarray (t,y,x) Each timepoint is a 2D array with hemijunctions labeled such that each one has the same label as its "sending cell". Each "interface" spans a cell-cell junction and is composed of two hemijunctions. Returns ------- df_hjs : pandas DataFrame Each row is a single hemijunction from a single time step. """ # Total number of frames total_t = np.shape(ims_labels)[0] dfs = [] for t in range(total_t): print(f"Measuring hemijunctions for timepoint {t} out of {total_t - 1}") df_tmp = measure_hemijunctions(ims_labels[t], ims_labels_hjs[t]) # Add a column for t_step df_tmp["t_step"] = [t] * len(df_tmp.index) dfs.append(df_tmp) df_hjs = pd.concat(dfs, ignore_index=True) return df_hjs
c26779cd310a849843b20c8fc02539f972965c1a
3,658,538
def get_compare_tables_checks_tasks(): """Get list of tasks that will compare tables checks between databases. Args: Returns: list: list of tasks to be executed in a process pool. Each item is a dict instance with following strucutre: { 'function' (function): the function to be executed. 'kwds': keyworded args to be passed to the function. } """ return [{ 'function': compare_tables_checks, 'kwds': {} }]
9c210b1ebf43bffa6e2e9db0c53ebab5ba76c6bf
3,658,539
from typing import Union from typing import Set def label_pr_failures(pull: Union[PullRequest, ShortPullRequest]) -> Set[str]: """ Labels the given pull request to indicate which checks are failing. :param pull: :return: The new labels set for the pull request. """ pr_checks = get_checks_for_pr(pull) failure_labels: Set[str] = set() success_labels: Set[str] = set() def determine_labels(from_, to): for check in from_: if _python_dev_re.match(check): continue if check in {"Flake8", "docs"}: to.add(f"failure: {check.lower()}") elif check.startswith("mypy"): to.add("failure: mypy") elif check.startswith("ubuntu"): to.add("failure: Linux") elif check.startswith("windows"): to.add("failure: Windows") determine_labels(pr_checks.failing, failure_labels) determine_labels(pr_checks.successful, success_labels) issue: Issue = pull.issue() current_labels = {label.name for label in issue.labels()} for label in success_labels: if label in current_labels and label not in failure_labels: issue.remove_label(label) new_labels = current_labels - success_labels new_labels.update(failure_labels) if new_labels != current_labels: issue.add_labels(*new_labels) return new_labels
ad36f23aa9e3d695e0ddab5a165e5665fdccf91c
3,658,540
from typing import Optional import logging import os def _replace_folder_path(path: str, from_folder: str, to_folder: str) -> Optional[str]: """Changes the path from the source ('from') folder to the destination ('to') folder Arguments: path: the path to adjust from_folder: the folder to change from to_folder: the folder to change the path to Return: A copy of the path with the folder changed when 'path' starts with 'from_folder', othwerwise None is returned Notes: Only fully qualified partial paths are considered valid. Thus, '/a/b/c' is NOT considered the start of path '/a/b/concord', but is the considered the start of '/a/b/c' and '/a/b/c/dogs.csv' """ # Make sure we have a legitimate 'from' path if not path.startswith(from_folder): logging.debug('Replace folder path: original path "%s" doesn\'t start with expected folder "%s"', path, from_folder) return None check_idx = len(from_folder) if from_folder[-1:] == '/' or from_folder[-1:] == '\\': check_idx -= 1 if not path[check_idx] =='/' and not path[check_idx] =='\\': return None # Return the new path rem = path[len(from_folder):] if rem[0] == '/' or rem[0] == '\\': rem = rem[1:] return os.path.join(to_folder, rem)
dcbec19de1b1783a44ea7ec21c5cb46afeb44cba
3,658,541
def arrange_images(total_width, total_height, *images_positions): """Return a composited image based on the (image, pos) arguments.""" result = mel.lib.common.new_image(total_height, total_width) for image, pos in images_positions: mel.lib.common.copy_image_into_image(image, result, pos[1], pos[0]) return result
49e167b9b6eb1a8e76c8e2d65bc3fa419d91a8a1
3,658,542
from typing import Tuple import importlib def import_core_utilities() -> Tuple[ModuleType, ModuleType, ModuleType]: """Dynamically imports and return Tracing, Logging, and Metrics modules""" return ( importlib.import_module(TRACING_PACKAGE), importlib.import_module(LOGGING_PACKAGE), importlib.import_module(METRICS_PACKAGE), )
d627c1405b08975aeb02839f2da9d363f385d8b5
3,658,543
def pancakeSort(self, A): # ! 这个方法实际上是在每轮循环中寻找最大的那个数,使其在正确的位置 """ :type A: List[int] :rtype: List[int] """ bucket = sorted(A) ans = [] for k in range(len(A),0,-1): i = A.index(bucket.pop())+1 ans += [i, k] A = A[i:k][::-1] + A[:i] + A[k:] print(A) return ans
35d358c6631f5cc708232f67a3e55d685116dff8
3,658,544
def getOrc(orcName): """Get an orchestra stored in the user namespace. One can store an orchestra in the user name space with the %%orc magic. """ ip = get_ipython() return ip.user_ns["__orc"][orcName]
7fed637d4ab653579b4ad78e1b047e236ca46377
3,658,545
def get_prompt_data_from_batse(grb: str, **kwargs: None) -> pd.DataFrame: """Get prompt emission data from BATSE. Creates a directory structure and saves the data. Returns the data, though no further action needs to be taken by the user. :param grb: Telephone number of GRB, e.g., 'GRB140903A' or '140903A' are valid inputs. :type grb: str :param kwargs: Placeholder to prevent TypeErrors. :type kwargs: None :return: The processed data. :rtype: pandas.DataFrame """ getter = BATSEDataGetter(grb=grb) return getter.get_data()
1bd7848f455401be89466c88efd9e4d44b3b72e9
3,658,546
def angular_error(a, b): """Calculate angular error (via cosine similarity).""" a = pitchyaw_to_vector(a) if a.shape[1] == 2 else a b = pitchyaw_to_vector(b) if b.shape[1] == 2 else b ab = np.sum(np.multiply(a, b), axis=1) a_norm = np.linalg.norm(a, axis=1) b_norm = np.linalg.norm(b, axis=1) # Avoid zero-values (to avoid NaNs) a_norm = np.clip(a_norm, a_min=1e-8, a_max=None) b_norm = np.clip(b_norm, a_min=1e-8, a_max=None) similarity = np.divide(ab, np.multiply(a_norm, b_norm)) similarity = np.clip(similarity, a_min=-1.+1e-8, a_max=1.-1e-8) return np.degrees(np.arccos(similarity))
89f7a51fc95a55349fc79e58b8f644a1ee6bd8a0
3,658,547
def includeme(config): """ Get build Git repository directory and make it accessible to all requests generated via Cornice """ # Make DB connection accessible as a request property def _get_repos(request): _settings = request.registry.settings repo_dir = _settings['repo_basedir'] return repo_dir config.add_request_method(_get_repos, 'repo_dir', reify=True)
f2d73eb01b616f79059f4001c7b3faad67f48cd2
3,658,548
from typing import Union from pathlib import Path def add_dot_csv(filename: Union[Path, str]) -> str: """Adds a .csv extension to filename.""" return add_extension(filename, '.csv')
b0e89ca231675048ddb65b11856179db140a15fb
3,658,549
from typing import Dict from typing import Any def load_settings_from_file(filename: str) -> Dict[str, Any]: """Load amset configuration settings from a yaml file. If the settings file does not contain a required parameter, the default value will be added to the configuration. An example file is given in *amset/examples/example_settings.yaml*. Args: filename: Path to settings file. Returns: The settings, with any missing values set according to the amset defaults. """ logger.info("Loading settings from: {}".format(filename)) settings = loadfn(filename) return validate_settings(settings)
8f857ede65c455b51f030edc58577a87cc6159a6
3,658,550
def execute_query(query, *arguments): """Execute a query on the DB with given arguments.""" _db = labpals.model.get_db() cursor = _db.execute(query, arguments) rows = cursor.fetchall() return rows
d1b7aff948ee37b223386af29bbe4a6d0939cde1
3,658,551
from typing import Dict from typing import Any import copy def format_search_events_results(response: Dict[str, Any], limit: int) -> tuple: """ Format the output of the search events results command. Args: response (Dict[str,Any]): API response from FortiSIEM. limit (int):Maximum number of results to retrieve. Returns: str: Formatted command output. """ outputs = [] events = dict_safe_get(response, ['queryResult', 'events', 'event']) if isinstance(events, dict): events = [events] total_count = arg_to_number(dict_safe_get(response, ['queryResult', '@totalCount'])) total_pages = total_count // limit + (total_count % limit != 0) if total_count else 0 if events: for event in events: formatted_event = copy.deepcopy(event) formatted_attributes = {} attributes = dict_safe_get(event, ['attributes', 'attribute']) formatted_event['receiveTime'] = FormatIso8601(arg_to_datetime(event['receiveTime'])) for attribute in attributes: formatted_attributes[attribute['@name']] = attribute['#text'] formatted_event['attributes'] = formatted_attributes outputs.append(formatted_event) return outputs, total_pages
de6b12f2009c3a7dab8093bd5842455e2bd2c84a
3,658,552
from datetime import datetime def radec_obs_vec_mpc(inds, mpc_object_data): """Compute vector of observed ra,dec values for MPC tracking data. Args: inds (int array): line numbers of data in file mpc_object_data (ndarray): MPC observation data for object Returns: rov (1xlen(inds) array): vector of ra/dec observed values """ rov = np.zeros((2*len(inds))) for i in range(0,len(inds)): indm1 = inds[i]-1 # extract observations data timeobs = Time( datetime(mpc_object_data['yr'][indm1], mpc_object_data['month'][indm1], mpc_object_data['day'][indm1]) + timedelta(days=mpc_object_data['utc'][indm1]) ) obs_t_ra_dec = SkyCoord(mpc_object_data['radec'][indm1], unit=(uts.hourangle, uts.deg), obstime=timeobs) rov[2*i-2], rov[2*i-1] = obs_t_ra_dec.ra.rad, obs_t_ra_dec.dec.rad return rov
daa0a7bfc5a1532c4a63f4543f4ea5e3db099973
3,658,553
def mod(x, y) -> ProcessBuilder: """ Modulo :param x: A number to be used as the dividend. :param y: A number to be used as the divisor. :return: The remainder after division. """ return _process('mod', x=x, y=y)
fb94d3a3e1dcd918d8405232ad11f00943895785
3,658,554
from sys import path def find_test_file_loc(test_data_dir): """ Return a new, unique and non-existing base name location suitable to create a new copyright test. """ template = "copyright_{}.txt" idx = 1 while True: test_file_loc = path.join(test_data_dir, template.format(idx)) if not path.exists(test_file_loc): return test_file_loc idx += 1
b12f5b454ddf335af800b5dd7601ba47a17cb7ed
3,658,555
def get_list_of_encodings() -> list: """ Get a list of all implemented encodings. ! Adapt if new encoding is added ! :return: List of all possible encodings """ return ['raw', '012', 'onehot', '101']
6e0749eb45f85afe4e5c7414e4d23e67335ba2b5
3,658,556
def region_to_bin(chr_start_bin, bin_size, chr, start): """Translate genomic region to Cooler bin idx. Parameters: ---------- chr_start_bin : dict Dictionary translating chromosome id to bin start index bin_size : int Size of the bin chr : str Chromosome start : int Start of the genomic region """ return chr_start_bin[chr] + start // bin_size
f17b132048b0ceb4bbf2a87b77327d0d63b3fd64
3,658,557
import os def get_img_name(img_path: str): """ Get the name from the image path. Args: img_path (str): a/b.jpg or a/b.png ... Returns: name (str): a/b.jpg -> b """ image_name = os.path.split(img_path)[-1].split('.')[0] return image_name
290bcaa133fd414874838f42c2781980954b98ef
3,658,558
def cvCalcProbDensity(*args): """ cvCalcProbDensity(CvHistogram hist1, CvHistogram hist2, CvHistogram dst_hist, double scale=255) """ return _cv.cvCalcProbDensity(*args)
dc0ce1eb33a07466d29defe0b4112e46cabe1308
3,658,559
def get_filter_para(node_element): """Return paragraph containing the used filter description""" para = nodes.paragraph() filter_text = "Used filter:" filter_text += " status(%s)" % " OR ".join(node_element["status"]) if len( node_element["status"]) > 0 else "" if len(node_element["status"]) > 0 and len(node_element["tags"]) > 0: filter_text += " AND " filter_text += " tags(%s)" % " OR ".join(node_element["tags"]) if len( node_element["tags"]) > 0 else "" if (len(node_element["status"]) > 0 or len(node_element["tags"]) > 0) and len( node_element["types"]) > 0: filter_text += " AND " filter_text += " types(%s)" % " OR ".join(node_element["types"]) if len( node_element["types"]) > 0 else "" filter_node = nodes.emphasis(filter_text, filter_text) para += filter_node return para
7b3ad6b0a9752a53bd16d9cee2a250f54f43def3
3,658,560
def mk_multi_line_figax(nrows, ncols, xlabel='time (s)', ylabel='signal (a.u.)'): """ Create the figure and axes for a multipanel 2d-line plot """ # ncols and nrows get # restricted via the plotting frontend x_size = ncols * pltConfig['mXSize'] y_size = nrows * pltConfig['mYSize'] fig, axs = ppl.subplots(nrows, ncols, figsize=(x_size, y_size), sharex=True, sharey=True, squeeze=False) # Hide the right and top spines # and remove all tick labels for ax in axs.flatten(): ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.tick_params(labelsize=0) # determine axis layout y_left = axs[:, 0] x_bottom = axs[-1, :] # write tick and axis labels only on outer axes to save space for ax in y_left: ax.tick_params(labelsize=pltConfig['mTickSize']) ax.set_ylabel(ylabel, fontsize=pltConfig['mLabelSize']) for ax in x_bottom: ax.tick_params(labelsize=pltConfig['mTickSize']) ax.set_xlabel(xlabel, fontsize=pltConfig['mLabelSize']) return fig, axs
c759b4111a8cb3015aa9896f5afd2f8831ad8665
3,658,561
def load_sizes(infile_path: str, header: bool=None): """ Load and parse a gtf file. More information on the gtf format is here: https://asia.ensembl.org/info/website/upload/gff.html Arguments: (REQUIRED) infile_path: path to gtf file (OPTIONAL) header: headers in size file (DEFAULT: None) chr1 247249719 chr2 242951149 ... """ return pd.read_csv(infile_path, sep="\t", header=None, index_col=0)
0b1737bb905b57f719c8f2369d771794dd49666b
3,658,562
import random def latent_tree_mutate(g): """Produce an offspring genome by mutation through dict manipulation. Choose a random key in the dict, and overwrite its value with a random int. Later, repair must make sure the offspring is valid, including using the mod rule to map from a (possibly) large int to the corresponding small one (ie the one giving the same production choice) in the range of possible choices.""" # FIXME We don't rely on g being a copy, in case the search # algorithm sometimes mutates individuals which are original # members of the population. # See https://github.com/PonyGE/PonyGE2/issues/89. g = g.copy() k = random.choice(list(g.keys())) g[k] = random.randrange(1000000) # there is no true maxint on py 3 return g
6bc78dd620962377e892f69a217a2ae2771e6f35
3,658,563
import string import pickle def load_model(file_path: string): """ Used to serialize an save a trained model, so it can be reused later on again. ----------------------------------------------------------------------------------- Parameters: ----------------------------------------------------------------------------------- file_path: List (ndarray, int) Path to a stored model from prior running save_model(). Returns: ----------------------------------------------------------------------------------- fcm_model: List (ndarray, float) The de-serialized model. """ fcm_model = pickle.load(open(file_path, 'rb')) return fcm_model
26278c46092dff6199a82b1425203af1883ba49d
3,658,564
import numpy as np def gfs_mos_forecast(stid, forecast_date): """ Do the data retrieval. """ # Generate a Forecast object forecast = Forecast(stid, default_model_name, forecast_date) forecast.daily.high = np.round(np.random.rand() * 100.) forecast.daily.low = np.round(np.random.rand() * 100.) forecast.daily.wind = np.round(np.random.rand() * 40.) forecast.daily.rain = np.round(np.random.rand() * 3., 2) # Create a dummy pd dataframe to test forecast.timeseries.data['DateTime'] = [forecast_date, forecast_date + timedelta(hours=3)] forecast.timeseries.data['temperature'] = [56., 55.] forecast.timeseries.data['dewpoint'] = [51., 51.] return forecast
8ba16fe350e5eef77f9eb960de4b447bcb420b5f
3,658,565
def evaluate_accuracy_score(preprocessing, prediction_binary): """ Evaluates the accuracy score :param preprocessing: prepared DataPreprocess instance :param prediction_binary: boolean expression for the predicted classes """ accuracy = [] for j in range(len(DETECTION_CLASSES)): acc = accuracy_score(preprocessing.target_classes[:, j], prediction_binary[:, j]) accuracy.append(acc) return np.mean(accuracy)
9ee9110f924a930d442d00d4c06a929ba7589e42
3,658,566
def test_domain_visualize(case, visu_case): """ test the domain visualization """ dom = pylbm.Domain(case) views = dom.visualize(**visu_case) return views.fig
a395aad44955eb0599e257ccfeb326cb08638fcd
3,658,567
import torch def create_supervised_evaluator(model, metrics, device=None): """ Factory function for creating an evaluator for supervised models Args: model (`torch.nn.Module`): the model to train metrics (dict of str - :class:`ignite.metrics.Metric`): a map of metric names to Metrics device (str, optional): device type specification (default: None). Applies to both model and batches. Returns: Engine: an evaluator engine with supervised inference function """ if device: if torch.cuda.device_count() > 1: model = nn.DataParallel(model) model.to(device) def _inference(engine, batch): model.eval() with torch.no_grad(): data, language, pids, camids = batch batchsize = language.size(0) wordclass_feed = np.zeros((batchsize, max_tokens), dtype='int64') wordclass_feed[:,0] = wordlist_final.index('<S>') outcaps = np.empty((batchsize, 0)).tolist() data = data.to(device) if torch.cuda.device_count() >= 1 else data # language = language.to(device) if torch.cuda.device_count() >= 1 else language for j in range(max_tokens-1): wordclass = Variable(torch.from_numpy(wordclass_feed)).cuda() features, wordact, _= model(data, wordclass) wordact = wordact[:,:,:-1] wordact_t = wordact.permute(0, 2, 1).contiguous().view(batchsize*(max_tokens-1), -1) wordprobs = F.softmax(wordact_t).cpu().data.numpy() wordids = np.argmax(wordprobs, axis=1) for k in range(batchsize): word = wordlist_final[wordids[j+k*(max_tokens-1)]] outcaps[k].append(word) if(j < max_tokens-1): wordclass_feed[k, j+1] = wordids[j+k*(max_tokens-1)] for j in range(batchsize): num_words = len(outcaps[j]) if 'EOS' in outcaps[j]: num_words = outcaps[j].index('EOS') outcap = ' '.join(outcaps[j][:num_words]) feat, _, _ = model(data, wordclass) print (outcap) return feat, pids, camids engine = Engine(_inference) for name, metric in metrics.items(): metric.attach(engine, name) return engine
da5c39b8a8d841181fc63ae48db0c68f9bbfe278
3,658,568
def get_available_operations(): """ Return a dict of available operations """ return True, runtime.get_available_operations()
9d0b744061c97cf10fb69ccfdbc403b8f337db3d
3,658,569
def word_distance(word1, word2): """Computes the number of differences between two words. word1, word2: strings Returns: integer """ assert len(word1) == len(word2) count = 0 for c1, c2 in zip(word1, word2): if c1 != c2: count += 1 return count
b3279744c628f3adc05a28d9ab7cc520744b540c
3,658,570
from typing import Union from typing import Tuple from typing import Any def get_parent_child(root: dict, path: str) -> Union[Tuple[Tuple[None, None], Tuple[None, None]], Tuple[Tuple[dict, None], Tuple[Any, str]], Tuple[Tuple[Any, str], Tuple[Any, str]]]: """ Get first and second level node :param root: The root node. :param path: The path to identify the leaf node. :return: ( ( parent node: The first level node in the hierarchy of the path parent path: The path based on the root node ) ( child node: The second level node in the hierarchy of the path child path: The path based on the parent node ) ) """ res = Ddict.search(root, path) if res is None: if '.' not in path: return (None, None), (None, None) else: child = Ddict.get(root, path) return (root, None), (child, path) parent_name, parent_value, child_name = res if child_name: child_value = Ddict.get(parent_value, child_name) return (parent_value, parent_name), (child_value, child_name) else: return (root, None), (parent_value, parent_name)
3e33e32af6b3f67cf41397b6da399ec9ede5491e
3,658,571
def get_data_loaders(personachat, tokenizer, args_num_candidates=1, args_personality_permutations=1, args_max_history=2): """ Prepare the dataset for training and evaluation """ print("Build inputs and labels") datasets = {"train": defaultdict(list), "valid": defaultdict(list)} for dataset_name, dataset in personachat.items(): num_candidates = len(dataset[0]["utterances"][0]["candidates"]) if args_num_candidates > 0 and dataset_name == 'train': num_candidates = min(args_num_candidates, num_candidates) for dialog in dataset: persona = dialog["personality"].copy() for _ in range(args_personality_permutations): for utterance in dialog["utterances"]: history = utterance["history"][-(2*args_max_history+1):] for j, candidate in enumerate(utterance["candidates"][-num_candidates:]): lm_labels = bool(j == num_candidates-1) instance, _ = build_input_from_segments(persona, history, candidate, tokenizer, lm_labels) for input_name, input_array in instance.items(): datasets[dataset_name][input_name].append(input_array) datasets[dataset_name]["mc_labels"].append(num_candidates - 1) datasets[dataset_name]["n_candidates"] = num_candidates persona = [persona[-1]] + persona[:-1] # permuted personalities print("Pad inputs and convert to Tensor") for dataset_name, dataset in datasets.items(): dataset = pad_dataset(dataset, padding=tokenizer.convert_tokens_to_ids('<pad>')) for input_name in MODEL_INPUTS: tensor = dataset[input_name] dataset[input_name] = np.array(tensor) return datasets
212e7bdcdd880b47c56b76fe2e33ce12c665c650
3,658,572
def unescape_strict(s): """ Re-implements html.unescape to use our own definition of `_charref` """ if '&' not in s: return s return _charref.sub(_replace_charref, s)
d2b9aace645af58dce1e5a5f5e5cf3be919b759b
3,658,573
def CheckVPythonSpec(input_api, output_api, file_filter=None): """Validates any changed .vpython files with vpython verification tool. Args: input_api: Bag of input related interfaces. output_api: Bag of output related interfaces. file_filter: Custom function that takes a path (relative to client root) and returns boolean, which is used to filter files for which to apply the verification to. Defaults to any path ending with .vpython, which captures both global .vpython and <script>.vpython files. Returns: A list of input_api.Command objects containing verification commands. """ file_filter = file_filter or (lambda f: f.LocalPath().endswith('.vpython')) affected_files = input_api.AffectedTestableFiles(file_filter=file_filter) affected_files = map(lambda f: f.AbsoluteLocalPath(), affected_files) commands = [] for f in affected_files: commands.append(input_api.Command( 'Verify %s' % f, ['vpython', '-vpython-spec', f, '-vpython-tool', 'verify'], {'stderr': input_api.subprocess.STDOUT}, output_api.PresubmitError)) return commands
d6e888b5ce6fec4bbdb35452b3c0572702430c06
3,658,574
import os import yaml def _read_from_file(paramfile): """ Code to load parameter data from a YAML file, moved out of check_metadata_format to allow different inputs to that function. :param paramfile: The parameter file created by 'precheck_data_format' and 'select_data_templates'. :type paramfile: str """ # Read in the parameter file. if os.path.isfile(paramfile): with open(paramfile, 'r') as istream: param_data = yaml.load(istream) else: raise OSError('Input parameter file not found. Looking for "' + paramfile + '".') return param_data
7302f6e7a86a7d8960c3f84caa47a7b5bf73602d
3,658,575
import types from typing import Tuple def test_infer_errs() -> None: """Test inference applied to functions.""" with f.Fun(MockServer()): a = f.put(b"bla bla") b = f.put(3) with pytest.raises(TypeError): f.py(lambda x, y, z: (x, y), a, a, b) # should NOT raise f.py( lambda x, y, z: (x, y), a, a, b, out=[types.Encoding.blob, types.Encoding.blob], ) def i1o2(x: bytes) -> Tuple[bytes, bytes]: return x, x def i2o1(x: bytes, y: bytes) -> bytes: return x with pytest.raises(TypeError): out = f.morph(i1o2, a) # type:ignore # noqa:F841 with pytest.raises(TypeError): out = f.reduce(i1o2, a) # type:ignore # noqa:F841 with pytest.raises(TypeError): out = f.reduce(lambda x, y: x, a, b) # type:ignore # noqa:F841 # If we pass out= then the inference is skipped out = f.morph(i1o2, a, out=types.Encoding.blob) # type:ignore # noqa:F841 out = f.reduce(i1o2, a, out=types.Encoding.blob)
434e5b19f6ad15d6644224475ddd656184593c19
3,658,576
def decode_captions(captions, idx_to_word): """ Decode text captions from index in vocabulary to words. """ if captions.ndim == 1: T = captions.shape[0] N = 1 else: N, T = captions.shape decoded = [] for i in range(N): words = [] for t in range(T): if captions.ndim == 1: word = idx_to_word[captions[t]] else: word = idx_to_word[captions[i, t]] if word == '<END>': words.append('.') break if word != '<NULL>': words.append(word) decoded.append(' '.join(words)) return decoded
a56abe824b522418480c80611505dabd0a8af6cc
3,658,577
from typing import Tuple from pathlib import Path import logging def save_kdeplot(df: DataFrame, output_plot: str, x_name: str, title: str, color: str, x_label: str = None, y_label: str = None, normalize_x: bool = True, fig_size: Tuple[int] = (24, 12), ): """This function helps for computing automated kdeplots using seaborn. It sets up somewhat standardized figure output for a harmonized rendering. :param df: the DataFrame with data to plot :param output_plot: the output plot full file name :param x_name: DF column name to use for x-axis :param x_label: the name to display on the plot for x-axis :param y_label: the name to display on the plot for y-axis :param color: color to use for bars, theoritically could also be a list of colors :param fig_size: tuple of integers defining the plot dimensions (x, y) :return: the figure in searborn format """ # detect format from file extension format = Path(output_plot).suffix[1:].lower() if format != 'svg' and format != 'png': raise ValueError(f"ERROR! UNKNOWN PLOT FORMAT! ('{format}')") logging.debug(f"FORMAT FOR PLOT: '{format}'") # delete existing file for preventing stacking of plots p = Path(output_plot) if p.exists(): p.unlink() # general style for plotting sns.set(rc={'figure.figsize': fig_size}) sns.set_style('whitegrid', {'axes.edgecolor': '0.2'}) sns.set_context("paper", font_scale=2) ax = sns.kdeplot(df[x_name], shade=True, label='', color=color) ax.set_title(title, fontsize=24, y=1.02) ax.tick_params(labelsize=20) ax.tick_params(axis='x', rotation=0) ax.set_xlim(0, 1) # ax.set_xticklabels(df[x_name]) label_format = '{:,.0%}' ticks_loc = ax.get_xticks().tolist() ax.xaxis.set_major_locator(mticker.FixedLocator(ticks_loc)) ax.set_xticklabels([label_format.format(x) for x in ticks_loc]) #ax.set_xticklabels(['{:,.0%}'.format(x) for x in ax.get_xticks()]) ax.set_xlabel(x_label, fontsize=25, labelpad=20) ax.set_ylabel(y_label, fontsize=25, labelpad=20) # save figure = ax.get_figure() figure.savefig(output_plot, dpi=600) plt.clf() plt.close() return figure
ea1b95180fb56a365b753288953950a209d87da2
3,658,578
def make_loc(caller): """ turn caller location into a string """ # return caller["file"] + ":" + caller["func"] + ":" + caller["line"] return caller["file"] + ":" + str(caller["line"])
e0db31ffd5c76636938bfe66184f9a2a6fbca496
3,658,579
import difflib import sys def diff(file1, file2): """ Compare two files, ignoring line end differences If there are differences, print them to stderr in unified diff format. @param file1 The full pathname of the first file to compare @param file2 The full pathname of the second file to compare @return True if the files are the same, o """ with open(file1, 'r') as input1: with open(file2, 'r') as input2: diffs = difflib.unified_diff( input1.read().splitlines(), input2.read().splitlines() ) no_diffs = True for diff in diffs: no_diffs = False print(diff, file=sys.stderr) return no_diffs
980090001ce265afd736e97396315a6a3b72441e
3,658,580
def run_part2(file_content): """Implmentation for Part 2.""" numbers = (int(number) for number in file_content.split()) root = _build_tree(numbers) return _node_value(root)
47171de36eacabd438f1243bddd866af6187c763
3,658,581
def get_cap_selected_frame(cap, show_frame): """ Gets a frame from an opencv video capture object to a specific frame """ cap_set_frame(cap, show_frame) ret, frame = cap.read() if not ret: return None else: return frame
4a5a939368e09faea3094335f60e782a249616ce
3,658,582
def rotate_coords_x(pos, angle): """ Rotate a set of coordinates about the x-axis :param pos: (n, 3) xyz coordinates to be rotated :param angle: angle to rotate them by w.r.t origin :type pos: numpy.ndarray :type angle: float :return: array of rotated coordinates :rtype: numpy.ndarray """ xyz = np.copy(pos) angle *= (np.pi / 180) # convert to radians R = rotate_x(angle) for i in range(np.shape(xyz)[0]): xyz[i, :] = np.dot(R, xyz[i, :]) return xyz
af0a95302c44be54e78b88b8f9851bab29556900
3,658,583
import itertools def q_learning(env, num_episodes, discount_factor=1.0, alpha=0.5, epsilon=0.1): """ Q-Learning algorithm: Off-policy TD control. Finds the optimal greedy policy while following an epsilon-greedy policy Args: env: OpenAI environment. num_episodes: Number of episodes to run for. discount_factor: Lambda time discount factor. alpha: TD learning rate. epsilon: Chance the sample a random action. Float betwen 0 and 1. Returns: A tuple (Q, episode_lengths). Q is the optimal action-value function, a dictionary mapping state -> action values. stats is an EpisodeStats object with two numpy arrays for episode_lengths and episode_rewards. """ # The final action-value function. # A nested dictionary that maps state -> (action -> action-value). Q = defaultdict(lambda: np.zeros(env.action_space.n)) # keeps track of useful statistics stats = plotting.EpisodeStats( episode_lengths=np.zeros(num_episodes), episode_rewards=np.zeros(num_episodes)) policy = make_epsilon_greedy_policy(Q, epsilon, env.action_space.n) for i_episode in range(num_episodes): current_state = env.reset() # keep track number of time-step per episode only for plotting for t in itertools.count(): # choose the action based on epsilon greedy policy action_probs = policy(current_state) action = np.random.choice(np.arange(len(action_probs)), p=action_probs) next_state, reward, done, _ = env.step(action) # sse the greedy action to evaluate Q, not the one we actually follow greedy_next_action = Q[next_state].argmax() # evaluate Q using estimated action value of (next_state, greedy_next_action) td_target = reward + discount_factor * Q[next_state][greedy_next_action] td_error = td_target - Q[current_state][action] Q[current_state][action] += alpha * td_error # improve epsilon greedy policy using new evaluate Q policy = make_epsilon_greedy_policy(Q, epsilon, env.action_space.n) # update statistics stats.episode_rewards[i_episode] += reward stats.episode_lengths[i_episode] = t if done: break else: current_state = next_state return Q, stats
380c46f9a1c35424028cbf54d905b7b3df1181ec
3,658,584
import random def find_rand_source_reg(): """Find random source register based on readAfterWrite probability""" prob=random.uniform(0,1) while len(previousIntegerSources)>numberOfPreviousRegistersToConsider: previousIntegerSources.popleft() if prob<readAfterWrite and previousIntegerDestinations: num=random.choice(previousIntegerDestinations) else: num=random.randint(1,31) previousIntegerSources.append(num) return num
678223dc137a624b670834bc2fc84d6f5481d130
3,658,585
def _get_qnode_class(device, interface, diff_method): """Returns the class for the specified QNode. Args: device (~.Device): a PennyLane-compatible device interface (str): the interface that will be used for classical backpropagation diff_method (str, None): the method of differentiation to use in the created QNode Raises: ValueError: if an unrecognized ``diff_method`` is provided Returns: ~.BaseQNode: the QNode class object that is compatible with the provided device and differentiation method """ # pylint: disable=too-many-return-statements,too-many-branches model = device.capabilities().get("model", "qubit") passthru_interface = device.capabilities().get("passthru_interface", None) device_provides_jacobian = device.capabilities().get("provides_jacobian", False) allows_passthru = passthru_interface is not None if diff_method is None: # QNode is not differentiable return BaseQNode if diff_method == "best": if allows_passthru and interface == passthru_interface: # hand off differentiation to the device without type conversion return PassthruQNode if device_provides_jacobian: # hand off differentiation to the device return DeviceJacobianQNode if model in PARAMETER_SHIFT_QNODES: # parameter-shift analytic differentiation return PARAMETER_SHIFT_QNODES[model] if diff_method == "backprop": if allows_passthru: if interface != passthru_interface: raise ValueError( "Device {} only supports diff_method='backprop' when using the " "{} interface.".format(device.short_name, passthru_interface) ) return PassthruQNode raise ValueError( "The {} device does not support native computations with " "autodifferentiation frameworks.".format(device.short_name) ) if diff_method == "device": if device_provides_jacobian: return DeviceJacobianQNode raise ValueError( "The {} device does not provide a native method " "for computing the jacobian.".format(device.short_name) ) if diff_method == "parameter-shift": if model in PARAMETER_SHIFT_QNODES: # parameter-shift analytic differentiation return PARAMETER_SHIFT_QNODES[model] raise ValueError( "The parameter shift rule is not available for devices with model {}.".format(model) ) if diff_method == "reversible": # pylint: disable=protected-access if not device.capabilities().get("reversible_diff", False): raise ValueError( "Reversible differentiation method not supported on {}".format(device.short_name) ) return ReversibleQNode if diff_method in ALLOWED_DIFF_METHODS: # finite differences return JacobianQNode raise ValueError( "Differentiation method {} not recognized. Allowed " "options are {}".format(diff_method, ALLOWED_DIFF_METHODS) )
cb87fd664e37074fbad065e7c707554c1632a0d9
3,658,586
def evaluate_and_log_bleu(model, bleu_source, bleu_ref, vocab_file): """Calculate and record the BLEU score.""" subtokenizer = tokenizer.Subtokenizer(vocab_file) uncased_score, cased_score = translate_and_compute_bleu( model, subtokenizer, bleu_source, bleu_ref) tf.compat.v1.logging.info("Bleu score (uncased): %s", uncased_score) tf.compat.v1.logging.info("Bleu score (cased): %s", cased_score) return uncased_score, cased_score
5b7665851c69e0edfe526763a76582f10eb88bf0
3,658,587
def transform_call(red_node): """ Converts Python style function calls to VHDL style: self.d(a) -> d(self, a) If function owner is not exactly 'self' then 'type' is prepended. self.next.moving_average.main(x) -> type.main(self.next.moving_average, x) self.d(a) -> d(self, a) self.next.d(a) -> d(self.next, a) local.d() -> type.d(local) self.local.d() -> type.d(self.local) If return then: b = self.a(arg) -> variable pyha_ret_0: type; a(self, arg, pyha_ret_0); b := pyha_ret_0; Handling call inside call is limited to depth 1. """ def find_line_node(red_obj): line_node = red_obj while True: if type(line_node.next) == EndlNode: break if hasattr(line_node.parent, 'value') and type(line_node.parent.value) == LineProxyList: if not (hasattr(line_node.parent, 'test') and ( line_node.parent.test == atom # if WE are the if condition, skip or line_node.parent.test == atom.parent)): # if WE are the if condition (part of condition) break line_node = line_node.parent return line_node is_hack = False # make sure each created variable is unique by appending this number and incrementing tmp_var_count = 0 # loop over all atomtrailers, call is always a member of this atomtrailers = red_node.find_all('atomtrailers') for i, atom in enumerate(atomtrailers): if is_hack: # when parsed out of order call atom = atomtrailers[i - 1] call = atom.call is_hack = False else: call = atom.call # this actually points to the stuff between () if call is None: # this atomtrailer has no function call continue wat = call.call if wat is not None: # one of the arguments is a call -> process it first (i expect it is next in the list) call_index = wat.previous.index_on_parent if call_index == 0: # input is something like x() -> len(), Sfix() .... pass else: try: atom = atomtrailers[i + 1] call = atom.call is_hack = True except: continue # no idea what is going on here... if call is None: # this atomtrailer has no function call continue call_index = call.previous.index_on_parent if call_index == 0: # input is something like x() -> len(), Sfix() .... continue # get the TARGET function object from datamodel target_func_name = atom.copy() del target_func_name[call_index + 1:] try: target_func_obj = super_getattr(convert_obj, str(target_func_name)) except: # happend for: (self.conjugate(complex_in) * complex_in).real continue if not target_func_obj.calls: # function is not simulated... line_node = find_line_node(atom) line_node.replace(f'# comment out because not called in simulation: {line_node.dumps()}') continue prefix = atom.copy() del prefix[call_index:] del atom[:call_index] tmp = prefix.copy() if isinstance(tmp[0], AtomtrailersNode): # this branch happens because of 'for transform' tmp[0][0] = 'self_const' call.insert(0, tmp) else: tmp[0] = 'self_const' call.insert(0, tmp) tmp = prefix.copy() if isinstance(tmp[0], AtomtrailersNode): tmp[0][0] = 'self_next' call.insert(0, tmp) else: tmp[0] = 'self_next' call.insert(0, tmp) tmp = prefix.copy() if isinstance(tmp[0], AtomtrailersNode): tmp[0][0] = 'self' call.insert(0, tmp) else: tmp[0] = 'self' call.insert(0, tmp) # get the SOURCE (where call is going on) function object from datamodel def_parent = atom while not isinstance(def_parent, DefNode): def_parent = def_parent.parent # def_parent = atom.parent_find('def') source_func_name = f'self.{def_parent.name}' source_func_obj = super_getattr(convert_obj, str(source_func_name)) # if call is not to local class function # self.moving_average.main(x) -> MODULE_NAME.main(self.moving_average, x) if str(prefix) != 'self': var = super_getattr(convert_obj, str(prefix)) var = init_vhdl_type('-', var, var) atom.insert(0, var._pyha_module_name()) if target_func_obj.get_output_types() is None: continue # function is not returning stuff -> this is simple else: # add return variables to function locals, so that they will be converted to VHDL variables ret_vars = [] for x in get_iterable(target_func_obj.get_output_types()): name = f'pyha_ret_{tmp_var_count}' ret_vars.append(name) source_func_obj.add_local_type(name, x) tmp_var_count += 1 # add return variable to arguments call.append(name) # call.value[-1].target = f'ret_{j}' # need to add new source line before the CURRENT line..search for the node with linenodes line_node = find_line_node(atom) # add function call BEFORE the CURRENT line if line_node != atom: # equality means that value is not assigned to anything line_node.parent.insert(line_node.index_on_parent, atom.copy()) atom.replace(','.join(ret_vars))
21091d369d75f5f51065e2a2df95956816d8b968
3,658,588
import random def delta_next_time_to_send(G, u, v): """How long to wait before U should send a message to V under diffusion spreading. Per the Bitcoin protocol, this depends on if we have an outgoing connection or an incoming connection.""" is_outgoing = G[u][v][ORIGINATOR] == u average_interval_seconds = 2 if is_outgoing else 5 delta = int(log1p(-random.random()) * average_interval_seconds * -1000000 + 0.5) return delta if delta > 0 else 0
193e847c8dfe1bf4e23bb3ed0a749c36f83c9f61
3,658,589
def processData(list_pc, imo): """ Cette fonction traite les données de getData pour écrire une seule string prête à être copié dans le csv et qui contient toutes les lignes d'un bateau """ str_pc = '' for i in range(len(list_pc)): if list_pc[i] == 'Arrival (UTC)': tab = list_pc[i-1].split(',') # [Port, Country] (good) or [Port, Region, Country] (bad) if len(tab) == 3: tab = ['"' + tab[0] + ',' + tab[1].strip() + '"', tab[2]] # [Port+(Region), Country] str_pc = str_pc + imo + ',' + tab[0] + ',' + tab[1] + ',"' + list_pc[i+1] + '","' + list_pc[i+3] + '","' + list_pc[i+5] + '"\n' return str_pc
abb9d0a8d9f3f1ed35e4f991a3ac14e51621f104
3,658,590
def wrn(num_classes): """Constructs a wideres-28-10 model without dropout. """ return Wide_ResNet(28, 10, 0, num_classes)
bcf33fdaf7081389b2c4b2e8f172684531205315
3,658,591
from typing import Dict from typing import Any from typing import Optional def run( config: Dict[str, Any], log_dir: str = "", kernel_seed: int = 0, kernel_random_state: Optional[np.random.RandomState] = None, ) -> Dict[str, Any]: """ Wrapper function that enables to run one simulation. It does the following steps: - instantiation of the kernel - running of the simulation - return the end_state object Arguments: config: configuration file for the specific simulation log_dir: directory where log files are stored kernel_seed: simulation seed kernel_random_state: simulation random state """ coloredlogs.install( level=config["stdout_log_level"], fmt="[%(process)d] %(levelname)s %(name)s %(message)s", ) kernel = Kernel( random_state=kernel_random_state or np.random.RandomState(seed=kernel_seed), log_dir=log_dir, **subdict( config, [ "start_time", "stop_time", "agents", "agent_latency_model", "default_computation_delay", "custom_properties", ], ), ) sim_start_time = dt.datetime.now() logger.info(f"Simulation Start Time: {sim_start_time}") end_state = kernel.run() sim_end_time = dt.datetime.now() logger.info(f"Simulation End Time: {sim_end_time}") logger.info(f"Time taken to run simulation: {sim_end_time - sim_start_time}") return end_state
c8bb7931c9b74064d3488bfa92fb1376b9f9f474
3,658,592
def python_to_pydict(script_contents, namespace=None): """Load a Python script with dictionaries into a dictionary.""" if namespace is None: namespace = {} exec script_contents in {}, namespace return to_lower(namespace)
7f1dcf2099b2a5b132b6f7d7355b903d4328a84d
3,658,593
def convertInt(s): """Tells if a string can be converted to int and converts it Args: s : str Returns: s : str Standardized token 'INT' if s can be turned to an int, s otherwise """ try: int(s) return "INT" except: return s
a0eae31b69d4efcf8f8595e745316ea8622e24b3
3,658,594
import torch def pairwise_distance(A, B): """ Compute distance between points in A and points in B :param A: (m,n) -m points, each of n dimension. Every row vector is a point, denoted as A(i). :param B: (k,n) -k points, each of n dimension. Every row vector is a point, denoted as B(j). :return: Matrix with (m, k). And the ele in (i,j) is the distance between A(i) and B(j) """ A_square = torch.sum(A * A, dim=1, keepdim=True) B_square = torch.sum(B * B, dim=1, keepdim=True) distance = A_square + B_square.t() - 2 * torch.matmul(A, B.t()) return distance
2142b94f91f9e762d1a8b134fdda4789c564455d
3,658,595
from typing import Tuple def _split_full_name(full_name: str) -> Tuple[str, str, str]: """Extracts the `(ds name, config, version)` from the full_name.""" if not tfds.core.registered.is_full_name(full_name): raise ValueError( f'Parsing builder name string {full_name} failed.' 'The builder name string must be of the following format:' '`dataset_name[/config_name]/version`') ds_name, *optional_config, version = full_name.split('/') assert len(optional_config) <= 1 config = next(iter(optional_config)) if optional_config else '' return ds_name, config, version
2b2ace6e0df3302c8899834be749e0ef23c8df6d
3,658,596
def query_paginate(resources, arguments): """Return the resources paginated Args: resources(list): List to paginate arguments(FormsDict): query arguments Returns: list: Paginated resource (asc or desc) """ if '_page' not in arguments: return resources page = int(arguments['_page']) limit = 10 if '_limit' not in arguments else int(arguments['_limit']) chunk_data = list(chunk_list(resources, limit)) results = chunk_data[page-1] link_header = build_link_header(request, page, len(chunk_data)) response.set_header("Link", link_header) return results
caeefb937501945be2f35792dbdec9e7eefcadef
3,658,597
def convert_grad(graph): """Remove all instances of SymbolicKeyType in the graphs. They will be replaced by globally-unique integers. """ mng = graph.manager counter = 0 key_map = {} for node in mng.all_nodes: if node.is_constant(SymbolicKeyInstance): if node.value not in key_map: key_map[node.value] = counter counter += 1 node.value = key_map[node.value] node.abstract = to_abstract(node.value) return graph
7dfec6d6319630024bfb84872fd99b55168f0028
3,658,598
def site_data(db, settings): """Simple fake site data """ if organizations_support_sites(): settings.FEATURES['FIGURES_IS_MULTISITE'] = True site_data = make_site_data() ce = site_data['enrollments'][0] lcgm = [ LearnerCourseGradeMetricsFactory(site=site_data['site'], user=ce.user, course_id=str(ce.course_id), date_for='2020-10-01'), ] site_data['lcgm'] = lcgm return site_data
395751133325b4fb6dc0ea463726c56b95c7d2a7
3,658,599