content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def article_markdown(text):
""" 对传入的text文本进行markdown """
renderer = ArticleRenderer()
markdown = mistune.Markdown(renderer=renderer)
return markdown(text) | 32d1edc0d5155c62b0dc0ff18dc9a44f1ec85d7a | 3,658,700 |
def tf_pywt_wavelet_decomposition(patch_vec, patch_size, name, wavelet_type, level, mode):
"""
:param patch_vec:
:param patch_size:
:param name:
:param wavelet_type:
:param level:
:param mode:
:return:
"""
# TODO: docstring
# Convert input values for pywt
wavelet_type = wavelet_type.decode('utf-8')
mode = mode.decode('utf-8')
level = int(level)
patch_size = tuple(patch_size)
name = name.decode('utf-8')
# print('wavelet_type: {}, {}'.format(wavelet_type, type(wavelet_type)))
# print('mode: {}, {}'.format(mode, type(mode)))
# print('level: {}, {}'.format(level, type(level)))
# print('patch_vec: {}, {}'.format(patch_vec, type(patch_vec)))
# print('patch_size: {}, {}'.format(patch_size, type(patch_size)))
# print('name: {}, {}'.format(name, type(name)))
# Rebuild transform_dict from unpacked inputs
transform_dict = generate_transform_dict(patch_size, name, wavelet=wavelet_type, level=level, mode=mode)
# print(transform_dict)
# Decomposition
coeffs_vec, bookkeeping_mat = wavelet_decomposition(patch_vec, transform_dict)
return coeffs_vec.astype(np.float32), bookkeeping_mat.astype(np.int32) | 4f4774189b06d5f51b6c65af7c4fc4f83b49314c | 3,658,701 |
from pycompss.api.api import compss_start, compss_stop
from importlib.machinery import SourceFileLoader # noqa
import imp # noqa
import os
import logging
import sys
def launch_pycompss_application(app,
func,
log_level="off", # type: str
o_c=False, # type: bool
debug=False, # type: bool
graph=False, # type: bool
trace=False, # type: bool
monitor=None, # type: int
project_xml=None, # type: str
resources_xml=None, # type: str
summary=False, # type: bool
task_execution="compss", # type: str
storage_impl=None, # type: str
storage_conf=None, # type: str
streaming_backend=None, # type: str
streaming_master_name=None, # type: str
streaming_master_port=None, # type: str
task_count=50, # type: int
app_name=None, # type: str
uuid=None, # type: str
base_log_dir=None, # type: str
specific_log_dir=None, # type: str
extrae_cfg=None, # type: str
comm="NIO", # type: str
conn=DEFAULT_CONN, # type: str
master_name="", # type: str
master_port="", # type: str
scheduler=DEFAULT_SCHED, # type: str
jvm_workers=DEFAULT_JVM_WORKERS, # type: str
cpu_affinity="automatic", # type: str
gpu_affinity="automatic", # type: str
fpga_affinity="automatic", # type: str
fpga_reprogram="", # type: str
profile_input="", # type: str
profile_output="", # type: str
scheduler_config="", # type: str
external_adaptation=False, # type: bool
propagate_virtual_environment=True, # noqa type: bool
mpi_worker=False, # type: bool
worker_cache=False, # type: bool or str
shutdown_in_node_failure=False, # type: bool
io_executors=0, # type: int
env_script="", # type: str
reuse_on_block=True, # type: bool
nested_enabled=False, # type: bool
tracing_task_dependencies=False, # type: bool
trace_label=None, # type: str
extrae_cfg_python=None, # type: str
wcl=0, # type: int
cache_profiler=False, # type: bool
*args, **kwargs
): # NOSONAR
# type: (...) -> None
""" Launch PyCOMPSs application from function.
:param app: Application path
:param func: Function
:param log_level: Logging level [ "trace"|"debug"|"info"|"api"|"off" ]
(default: "off")
:param o_c: Objects to string conversion [ True | False ] (default: False)
:param debug: Debug mode [ True | False ] (default: False)
(overrides log_level)
:param graph: Generate graph [ True | False ] (default: False)
:param trace: Generate trace
[ True | False | "scorep" | "arm-map" | "arm-ddt"]
(default: False)
:param monitor: Monitor refresh rate (default: None)
:param project_xml: Project xml file path
:param resources_xml: Resources xml file path
:param summary: Execution summary [ True | False ] (default: False)
:param task_execution: Task execution (default: "compss")
:param storage_impl: Storage implementation path
:param storage_conf: Storage configuration file path
:param streaming_backend: Streaming backend (default: None)
:param streaming_master_name: Streaming master name (default: None)
:param streaming_master_port: Streaming master port (default: None)
:param task_count: Task count (default: 50)
:param app_name: Application name (default: Interactive_date)
:param uuid: UUId
:param base_log_dir: Base logging directory
:param specific_log_dir: Specific logging directory
:param extrae_cfg: Extrae configuration file path
:param comm: Communication library (default: NIO)
:param conn: Connector (default: DefaultSSHConnector)
:param master_name: Master Name (default: "")
:param master_port: Master port (default: "")
:param scheduler: Scheduler (default:
es.bsc.compss.scheduler.loadbalancing.LoadBalancingScheduler)
:param jvm_workers: Java VM parameters
(default: "-Xms1024m,-Xmx1024m,-Xmn400m")
:param cpu_affinity: CPU Core affinity (default: "automatic")
:param gpu_affinity: GPU Core affinity (default: "automatic")
:param fpga_affinity: FPA Core affinity (default: "automatic")
:param fpga_reprogram: FPGA reprogram command (default: "")
:param profile_input: Input profile (default: "")
:param profile_output: Output profile (default: "")
:param scheduler_config: Scheduler configuration (default: "")
:param external_adaptation: External adaptation [ True | False ]
(default: False)
:param propagate_virtual_environment: Propagate virtual environment
[ True | False ] (default: False)
:param mpi_worker: Use the MPI worker [ True | False ] (default: False)
:param worker_cache: Use the worker cache [ True | int(size) | False]
(default: False)
:param shutdown_in_node_failure: Shutdown in node failure [ True | False]
(default: False)
:param io_executors: <Integer> Number of IO executors
:param env_script: <String> Environment script to be sourced in workers
:param reuse_on_block: Reuse on block [ True | False] (default: True)
:param nested_enabled: Nested enabled [ True | False] (default: False)
:param tracing_task_dependencies: Include task dependencies in trace
[ True | False] (default: False)
:param trace_label: <String> Add trace label
:param extrae_cfg_python: <String> Extrae configuration file for the
workers
:param wcl: <Integer> Wallclock limit. Stops the runtime if reached.
0 means forever.
:param cache_profiler: Use the cache profiler [ True | False]
(default: False)
:param args: Positional arguments
:param kwargs: Named arguments
:return: Execution result
"""
# Check that COMPSs is available
if "COMPSS_HOME" not in os.environ:
# Do not allow to continue if COMPSS_HOME is not defined
raise PyCOMPSsException("ERROR: COMPSS_HOME is not defined in the environment") # noqa: E501
# Let the Python binding know we are at master
context.set_pycompss_context(context.MASTER)
# Then we can import the appropriate start and stop functions from the API
##############################################################
# INITIALIZATION
##############################################################
if debug:
log_level = "debug"
# Initial dictionary with the user defined parameters
all_vars = parameters_to_dict(log_level,
debug,
o_c,
graph,
trace,
monitor,
project_xml,
resources_xml,
summary,
task_execution,
storage_impl,
storage_conf,
streaming_backend,
streaming_master_name,
streaming_master_port,
task_count,
app_name,
uuid,
base_log_dir,
specific_log_dir,
extrae_cfg,
comm,
conn,
master_name,
master_port,
scheduler,
jvm_workers,
cpu_affinity,
gpu_affinity,
fpga_affinity,
fpga_reprogram,
profile_input,
profile_output,
scheduler_config,
external_adaptation,
propagate_virtual_environment,
mpi_worker,
worker_cache,
shutdown_in_node_failure,
io_executors,
env_script,
reuse_on_block,
nested_enabled,
tracing_task_dependencies,
trace_label,
extrae_cfg_python,
wcl,
cache_profiler)
# Save all vars in global current flags so that events.py can restart
# the notebook with the same flags
export_current_flags(all_vars)
# Check the provided flags
flags, issues = check_flags(all_vars)
if not flags:
print_flag_issues(issues)
return None
# Prepare the environment
env_vars = prepare_environment(False, o_c, storage_impl, app,
debug, trace, mpi_worker)
all_vars.update(env_vars)
monitoring_vars = prepare_loglevel_graph_for_monitoring(monitor,
graph,
debug,
log_level)
all_vars.update(monitoring_vars)
if RUNNING_IN_SUPERCOMPUTER:
updated_vars = updated_variables_in_sc()
all_vars.update(updated_vars)
to_update = prepare_tracing_environment(all_vars["trace"],
all_vars["extrae_lib"],
all_vars["ld_library_path"])
all_vars["trace"], all_vars["ld_library_path"] = to_update
inf_vars = check_infrastructure_variables(all_vars["project_xml"],
all_vars["resources_xml"],
all_vars["compss_home"],
all_vars["app_name"],
all_vars["file_name"],
all_vars["external_adaptation"])
all_vars.update(inf_vars)
create_init_config_file(**all_vars)
##############################################################
# RUNTIME START
##############################################################
# Runtime start
compss_start(log_level, all_vars["trace"], True)
# Setup logging
binding_log_path = get_log_path()
log_path = os.path.join(all_vars["compss_home"],
"Bindings",
"python",
str(all_vars["major_version"]),
"log")
set_temporary_directory(binding_log_path)
logging_cfg_file = get_logging_cfg_file(log_level)
init_logging(os.path.join(log_path, logging_cfg_file), binding_log_path)
logger = logging.getLogger("pycompss.runtime.launch")
logger.debug("--- START ---")
logger.debug("PyCOMPSs Log path: %s" % log_path)
if storage_impl and storage_conf:
logger.debug("Starting storage")
persistent_storage = master_init_storage(all_vars["storage_conf"], logger)
else:
persistent_storage = False
logger.debug("Starting streaming")
streaming = init_streaming(all_vars["streaming_backend"],
all_vars["streaming_master_name"],
all_vars["streaming_master_port"])
saved_argv = sys.argv
sys.argv = args
# Execution:
with event(APPLICATION_RUNNING_EVENT, master=True):
if func is None or func == "__main__":
if IS_PYTHON3:
exec(open(app).read())
else:
execfile(app) # noqa
result = None
else:
if IS_PYTHON3:
imported_module = SourceFileLoader(all_vars["file_name"], app).load_module() # noqa
else:
imported_module = imp.load_source(all_vars["file_name"], app) # noqa
method_to_call = getattr(imported_module, func)
try:
result = method_to_call(*args, **kwargs)
except TypeError:
result = method_to_call()
# Recover the system arguments
sys.argv = saved_argv
# Stop streaming
if streaming:
stop_streaming()
# Stop persistent storage
if persistent_storage:
master_stop_storage(logger)
logger.debug("--- END ---")
##############################################################
# RUNTIME STOP
##############################################################
# Stop runtime
compss_stop()
clean_log_configs()
return result | 68871a41dedf1195045b51e712c17e7e45127a4e | 3,658,702 |
def _gen_key(user_id, key_name):
""" Tuck this into UserManager """
try:
manager = users.UserManager.instance()
private_key, fingerprint = manager.generate_key_pair(user_id, key_name)
except Exception as ex:
return {'exception': ex}
return {'private_key': private_key, 'fingerprint': fingerprint} | f5babf523bded37ba624295a7435e2709488d47a | 3,658,703 |
def svhn_loader(size=None,root="./shvn",set="train",batch_size=32,mean=0.5,std=0.5,transform="default",download=True,target_transform=None,**loader_args):
"""
:param size:
:param root:
:param set:
:param batch_size:
:param mean:
:param std:
:param transform:
:param download:
:param target_transform:
:param loader_args:
:return:
"""
valid_sets = ('train', 'test', 'extra')
if set not in valid_sets: raise ValueError("set {} is invalid, valid sets include {}".format(set,valid_sets))
if size is not None:
if not isinstance(size,tuple):
size = (size,size)
if transform == "default":
t = []
if size is not None:
t.append(transformations.Resize(size))
t.append(transformations.ToTensor())
if mean is not None and std is not None:
if not isinstance(mean, tuple):
mean = (mean,)
if not isinstance(std, tuple):
std = (std,)
t.append(transformations.Normalize(mean=mean, std=std))
trans = transformations.Compose(t)
else:
trans = transform
data = SVHN(root,split=set,transform=trans,download=download,target_transform=target_transform)
shuffle_mode = True if set == "train" else False
return DataLoader(data,batch_size=batch_size,shuffle=shuffle_mode,**loader_args) | f40cd95338f4e745cbbb849ac8a9999f98245cf0 | 3,658,704 |
import pkg_resources
def get_supervisees():
"""Pull the supervisor specifications out of the entry point."""
eps = list(pkg_resources.iter_entry_points(ENTRY_POINT_GROUP))
return dict((ep.name, ep.load()) for ep in eps) | 6a812bb8422382c6e481bab8b27651786984ea66 | 3,658,705 |
async def index(request):
"""
This is the view handler for the "/" url.
**Note: returning html without a template engine like jinja2 is ugly, no way around that.**
:param request: the request object see http://aiohttp.readthedocs.io/en/stable/web_reference.html#request
:return: aiohttp.web.Response object
"""
# {% if database.is_none and example.is_message_board %}
# app.router allows us to generate urls based on their names,
# see http://aiohttp.readthedocs.io/en/stable/web.html#reverse-url-constructing-using-named-resources
message_url = request.app.router['messages'].url_for()
ctx = dict(
title=request.app['name'],
styles_css_url=request.app['static_root_url'] + '/styles.css',
content="""\
<p>Success! you've setup a basic aiohttp app.</p>
<p>To demonstrate a little of the functionality of aiohttp this app implements a very simple message board.</p>
<b>
<a href="{message_url}">View and add messages</a>
</b>""".format(message_url=message_url)
)
# {% else %}
ctx = dict(
title=request.app['name'],
styles_css_url=request.app['static_root_url'] + '/styles.css',
content="<p>Success! you've setup a basic aiohttp app.</p>",
)
# {% endif %}
# with the base web.Response type we have to manually set the content type, otherwise text/plain will be used.
return web.Response(text=BASE_PAGE.format(**ctx), content_type='text/html') | f90ba225055bf77b39942da7fc1b1b2f5b4a7286 | 3,658,706 |
def adtg(s, t, p):
"""
Calculates adiabatic temperature gradient as per UNESCO 1983 routines.
Parameters
----------
s(p) : array_like
salinity [psu (PSS-78)]
t(p) : array_like
temperature [℃ (ITS-90)]
p : array_like
pressure [db]
Returns
-------
adtg : array_like
adiabatic temperature gradient [℃ db :sup:`-1`]
Examples
--------
>>> # Data from UNESCO 1983 p45.
>>> import seawater as sw
>>> from seawater.library import T90conv
>>> t = T90conv([[ 0, 0, 0, 0, 0, 0],
... [10, 10, 10, 10, 10, 10],
... [20, 20, 20, 20, 20, 20],
... [30, 30, 30, 30, 30, 30],
... [40, 40, 40, 40, 40, 40]])
>>> s = [[25, 25, 25, 35, 35, 35],
... [25, 25, 25, 35, 35, 35],
... [25, 25, 25, 35, 35, 35],
... [25, 25, 25, 35, 35, 35],
... [25, 25, 25, 35, 35, 35]]
>>> p = [0, 5000, 10000, 0, 5000, 10000]
>>> sw.adtg(s, t, p)
array([[ 1.68710000e-05, 1.04700000e-04, 1.69426000e-04,
3.58030000e-05, 1.17956500e-04, 1.77007000e-04],
[ 1.00194580e-04, 1.60959050e-04, 2.06874170e-04,
1.14887280e-04, 1.71364200e-04, 2.12991770e-04],
[ 1.73819840e-04, 2.13534000e-04, 2.44483760e-04,
1.84273240e-04, 2.21087800e-04, 2.49137960e-04],
[ 2.41720460e-04, 2.64764100e-04, 2.82959590e-04,
2.47934560e-04, 2.69466550e-04, 2.86150390e-04],
[ 3.07870120e-04, 3.16988600e-04, 3.23006480e-04,
3.09844920e-04, 3.18839700e-04, 3.24733880e-04]])
References
----------
.. [1] Fofonoff, P. and Millard, R.C. Jr UNESCO 1983. Algorithms for
computation of fundamental properties of seawater. UNESCO Tech. Pap. in
Mar. Sci., No. 44, 53 pp.
http://unesdoc.unesco.org/images/0005/000598/059832eb.pdf
.. [2] Bryden, H. 1973. New Polynomials for thermal expansion, adiabatic
temperature gradient and potential temperature of sea water. Deep-Sea
Res. Vol20,401-408. doi:10.1016/0011-7471(73)90063-6
"""
s, t, p = map(np.asanyarray, (s, t, p))
T68 = T68conv(t)
a = [3.5803e-5, 8.5258e-6, -6.836e-8, 6.6228e-10]
b = [1.8932e-6, -4.2393e-8]
c = [1.8741e-8, -6.7795e-10, 8.733e-12, -5.4481e-14]
d = [-1.1351e-10, 2.7759e-12]
e = [-4.6206e-13, 1.8676e-14, -2.1687e-16]
return (a[0] + (a[1] + (a[2] + a[3] * T68) * T68) * T68 +
(b[0] + b[1] * T68) * (s - 35) +
((c[0] + (c[1] + (c[2] + c[3] * T68) * T68) * T68) +
(d[0] + d[1] * T68) * (s - 35)) * p +
(e[0] + (e[1] + e[2] * T68) * T68) * p * p) | 8d195810ad52215135db4ef8f9825a914b01522c | 3,658,707 |
import re
def calculate_ion_mz(seq: str,
ion: str = 'M',
charge: int = 0
) -> float:
"""
given a peptide sequence and ion type, count the number of atoms, accounting for ion
type and whether cysteines are measured by IAA
- ion type
M: full peptide parent ion (with H2O)
b: b ion (no addition)
y: y ion (with H2O)
:param seq: str amino acid sequence with modifications defined by []
:param ion: str ion type (default: M to return peptide mass)
:param charge: int numerical charge (default: 0 to return peptide mass)
:return: float accurate mass
"""
assert type(charge) == int, "Charge must be integer."
mass = 0
# First, strip all mass shifts and add them to the starting mass
try:
mods = [float(mod[1:-1]) for mod in re.findall('\\[.*?]', seq)]
except ValueError:
raise ValueError('Modification contains string characters.')
# 2021-11-22 exclude label mass from peptide mass calculation
mass += sum(m for m in mods if m not in params.label_mass)
# 2021-05-18 strip all N-terminal n from Comet
seq = re.sub('^n', '', seq)
# Strip all modifications
stripped = re.sub('\\[.*?]', '', seq)
res_atoms = _count_residue_atoms(stripped,
iaa=params.iaa, # add iodoacetamide to cysteine
)
# dictionary for complementary atoms to add to ion types
comp_atom_dict = {
'M': [0, 2, 1, 0, 0],
'b': [0, 0, 0, 0, 0],
'y': [0, 2, 1, 0, 0],
'b_': [0, -2, -1, 0, 0],
'y_': [0, 0, 0, 0, 0],
}
comp_atoms = comp_atom_dict[ion]
ion_atoms = [res_atoms[i] + comp_atoms[i] for i, v in enumerate(res_atoms)]
mass += _calc_atom_mass(ion_atoms)
# Return peptide mass if charge is 0
if charge > 0:
mz = (mass + constants.PROTON_MASS * charge) / charge
return mz
if charge < 0:
raise ValueError('Negative charges are not supported.')
return mass | e032ad439414314511b008d98dadb23b84012798 | 3,658,708 |
import os
def get_all_sub_folders(folder_path):
"""get all sub folders to list
Parameters
----------
folder_path : str
Returns
-------
list
"""
sub_folders = []
for path in os.listdir(folder_path):
full_path = os.path.join(folder_path, path)
if os.path.isdir(full_path):
sub_folders.append(full_path)
return sub_folders | 65afa34dadbf4cdd37ebd7feeab9aca9b03570ad | 3,658,709 |
def hhc_to_int(s):
"""Parse a number expressed in sortable hhc as an integer (or long).
>>> hhc_to_int('-')
0
>>> hhc_to_int('.')
1
>>> hhc_to_int('~')
65
>>> hhc_to_int('.-')
66
>>> hhc_to_int('..')
67
>>> hhc_to_int('.XW')
6700
>>> hhc_to_int('----..')
67
>>> print(hhc_to_int('fDpEShMz-qput'))
302231454903657293676544
Negative numbers are supported.
>>> hhc_to_int(',zST')
-6700
"""
if s == '' or s is None or s[:2] == ',,':
raise ValueError("invalid literal for hhc_to_int: {}".format(s))
if s[0] == NEGATIVE_PREFIX:
return -hhc2_to_int(s[1:], alphabet=HHC_ALPHABET[::-1])
return hhc2_to_int(s, HHC_ALPHABET) | 25f6e8097f1fbf0f6ceed08fc8ac0195fb88acb4 | 3,658,710 |
def initializeSens(P, B, idxs):
"""
This function initializes the sensitivities using the bicriteria algorithm, to be the distance between each
point to it's closest flat from the set of flats B divided by the sum of distances between self.P.P and B.
:param B: A set of flats where each flat is represented by an orthogonal matrix and a translation vector.
:param idxs: A numpy array which represents the clustering which B imposes on self.P.P
:return: None.
"""
centers_idxs = np.unique(idxs) # number of clusters imposed by B
sensitivity_additive_term = np.zeros((P.shape[0], ))
for center_idx in centers_idxs: # go over each cluster of points from self.P.P
cluster_per_center = np.where(idxs == center_idx)[0] # get all points in certain cluster
# compute the distance of each point in the cluster to its respect flat
cost_per_point_in_cluster = Utils.computeDistanceToSubspace(P[cluster_per_center, :-1],
B[center_idx][0], B[center_idx][1])
# ost_per_point_in_cluster = np.apply_along_axis(lambda x:
# Utils.computeDistanceToSubspace(x, B[center_idx][0],
# B[center_idx][1]), 1,
# self.set_P.P[cluster_per_center, :-1])
# set the sensitivity to the distance of each point from its respected flat divided by the total distance
# between cluster points and the respected flat
sensitivity_additive_term[cluster_per_center] = 2 ** Utils.J * \
np.nan_to_num(cost_per_point_in_cluster /
np.sum(cost_per_point_in_cluster))
return sensitivity_additive_term | 6726c892311d1590adea62babde6023d4b7d67a3 | 3,658,711 |
def fast_knn(data, k=3, eps=0, p=2, distance_upper_bound=np.inf, leafsize=10, idw=util_idw.shepards):
""" Impute using a variant of the nearest neighbours approach
Basic idea: Impute array with a basic mean impute and then use the resulting complete
array to construct a KDTree. Use this KDTree to compute nearest neighbours.
After finding `k` nearest neighbours, take the weighted average of them. Basically,
find the nearest row in terms of distance
This approach is much, much faster than the other implementation (fit+transform
for each subset) which is almost prohibitively expensive.
Parameters
----------
data: numpy.ndarray
2D matrix to impute.
k: int, optional
Parameter used for method querying the KDTree class object. Number of
neighbours used in the KNN query. Refer to the docs for
[`scipy.spatial.KDTree.query`]
(https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.query.html).
eps: nonnegative float, optional
Parameter used for method querying the KDTree class object. From the
SciPy docs: "Return approximate nearest neighbors; the kth returned
value is guaranteed to be no further than (1+eps) times the distance to
the real kth nearest neighbor". Refer to the docs for
[`scipy.spatial.KDTree.query`]
(https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.query.html).
p : float, 1<=p<=infinity, optional
Parameter used for method querying the KDTree class object. Straight from the
SciPy docs: "Which Minkowski p-norm to use. 1 is the
sum-of-absolute-values Manhattan distance 2 is the usual Euclidean
distance infinity is the maximum-coordinate-difference distance". Refer to
the docs for
[`scipy.spatial.KDTree.query`]
(https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.query.html).
distance_upper_bound : nonnegative float, optional
Parameter used for method querying the KDTree class object. Straight
from the SciPy docs: "Return only neighbors within this distance. This
is used to prune tree searches, so if you are doing a series of
nearest-neighbor queries, it may help to supply the distance to the
nearest neighbor of the most recent point." Refer to the docs for
[`scipy.spatial.KDTree.query`]
(https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.KDTree.query.html).
leafsize: int, optional
Parameter used for construction of the `KDTree` class object. Straight from
the SciPy docs: "The number of points at which the algorithm switches
over to brute-force. Has to be positive". Refer to the docs for
[`scipy.spatial.KDTree`](https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.spatial.KDTree.html)
for more information.
idw: fn, optional
Function that takes one argument, a list of distances, and returns weighted percentages. You can define a custom
one or bootstrap from functions defined in `impy.util.inverse_distance_weighting` which can be using
functools.partial, for example: `functools.partial(impy.util.inverse_distance_weighting.shepards, power=1)`
Returns
-------
numpy.ndarray
Imputed data.
Examples
--------
>>> data = np.arange(25).reshape((5, 5)).astype(np.float)
>>> data[0][2] = np.nan
>>> data
array([[ 0., 1., nan, 3., 4.],
[ 5., 6., 7., 8., 9.],
[10., 11., 12., 13., 14.],
[15., 16., 17., 18., 19.],
[20., 21., 22., 23., 24.]])
>> fast_knn(data, k=1) # Weighted average (by distance) of nearest 1 neighbour
array([[ 0., 1., 7., 3., 4.],
[ 5., 6., 7., 8., 9.],
[10., 11., 12., 13., 14.],
[15., 16., 17., 18., 19.],
[20., 21., 22., 23., 24.]])
>> fast_knn(data, k=2) # Weighted average of nearest 2 neighbours
array([[ 0. , 1. , 10.08608891, 3. , 4. ],
[ 5. , 6. , 7. , 8. , 9. ],
[10. , 11. , 12. , 13. , 14. ],
[15. , 16. , 17. , 18. , 19. ],
[20. , 21. , 22. , 23. , 24. ]])
>> fast_knn(data, k=3)
array([[ 0. , 1. , 13.40249283, 3. , 4. ],
[ 5. , 6. , 7. , 8. , 9. ],
[10. , 11. , 12. , 13. , 14. ],
[15. , 16. , 17. , 18. , 19. ],
[20. , 21. , 22. , 23. , 24. ]])
>> fast_knn(data, k=5) # There are at most only 4 neighbours. Raises error
...
IndexError: index 5 is out of bounds for axis 0 with size 5
"""
null_xy = find_null(data)
data_c = mean(data)
kdtree = KDTree(data_c, leafsize=leafsize)
for x_i, y_i in null_xy:
distances, indices = kdtree.query(data_c[x_i], k=k+1, eps=eps,
p=p, distance_upper_bound=distance_upper_bound)
# Will always return itself in the first index. Delete it.
distances, indices = distances[1:], indices[1:]
# Add small constant to distances to avoid division by 0
distances += 1e-3
weights = idw(distances)
# Assign missing value the weighted average of `k` nearest neighbours
data[x_i][y_i] = np.dot(weights, [data_c[ind][y_i] for ind in indices])
return data | 976e51c66878643965b099f764595629b379d440 | 3,658,712 |
def role_generator(role):
"""Closure function returning a role function."""
return lambda *args, **kwargs: role.run(*args, **kwargs) | 35dd1a54cb53a6435633c39608413c2d0b9fe841 | 3,658,713 |
def pick_slices(img, num_slices_per_view):
"""
Picks the slices to display in each dimension,
skipping any empty slices (without any segmentation at all).
"""
slices = list()
for view in range(len(img.shape)):
dim_size = img.shape[view]
non_empty_slices = np.array(
[sl for sl in range(dim_size) if np.count_nonzero(get_axis(img, view, sl)) > 0])
num_non_empty = len(non_empty_slices)
# trying to 5% slices at the tails (bottom clipping at 0)
skip_count = max(0, np.around(num_non_empty * 0.05).astype('int16'))
# only when possible
if skip_count > 0 and (num_non_empty - 2 * skip_count >= num_slices_per_view):
non_empty_slices = non_empty_slices[skip_count: -skip_count]
num_non_empty = len(non_empty_slices)
# sampling non-empty slices only
sampled_indices = np.linspace(0, num_non_empty, num=min(num_non_empty, num_slices_per_view),
endpoint=False)
slices_in_dim = non_empty_slices[np.around(sampled_indices).astype('int64')]
# ensure you do not overshoot
slices_in_dim = [sn for sn in slices_in_dim if sn >= 0 or sn <= num_non_empty]
slices.append(slices_in_dim)
return slices | ed80e4bd53e6a72c6ad7cad899d875ac320b33b7 | 3,658,714 |
import json
def cate2(request):
"""
DB에서 Cate2의 분류 이름을 반환
"""
cate1 = Cate1.objects.get(cate1_name=request.GET.get('cate1'))
cate2 = list(map(lambda cate2 : cate2['cate2_name'],
Cate2.objects.filter(cate1=cate1).values('cate2_name')))
json_data = json.dumps({'cate2': cate2})
return HttpResponse(json_data, content_type="application/json") | ebeca48bb9d6550fb34d68c453ef1fb47225fb4a | 3,658,715 |
def get_single_endpoint(name):
"""
TODO - Add docstring
"""
class EndpointWithID(Resource):
def get(self, pid):
return get_with_id(name, pid), 200
# TODO - Add `get.__doc__`
EndpointWithID.__name__ = name
return EndpointWithID | 2081935a568545545e2825eaaa6bcb2c1ac33a6c | 3,658,716 |
def dayChange():
"""
Day Change
Calculates and stores in a dictionary the total current change in position
value since yesterday, which is (current_price - lastday_price)* qty.
:return: dictionary
"""
daychange = dict()
for position in portfolio:
# Strings are returned from API; convert to floating point type
current = float(position.current_price)
last = float(position.lastday_price)
quant = float(position.qty)
daychange[position.symbol] = (current - last) * quant
return daychange | f33979f25ffe44a0de8ec0abc1c02284e8fe5427 | 3,658,717 |
def look_for_section(line):
"""Look for one of the sections in a line of text."""
for key in SECTIONS:
if line.startswith(key):
return key
return None | d44ad97312528c4fea856e705be8e6820695fd9a | 3,658,718 |
def SetStrucIdx(sid, index):
"""
Change structure index
@param sid: structure type ID
@param index: new index of the structure
@return: != 0 - ok
@note: See GetFirstStrucIdx() for the explanation of
structure indices and IDs.
"""
s = idaapi.get_struc(sid)
if not s:
return 0
return idaapi.set_struc_idx(s, index) | 8b246d6e2fb155bdc789536f75e20971a54ddfc3 | 3,658,719 |
import json
def extract_user_dict_from_tweet( tweet: Tweet ):
"""Takes the other_data field from a tweet object and
extracts the data for the user from it.
It returns a dictionary rather than a User model object
because we might want to try looking up whether the user
exists before creating a new user object.
:type tweet Tweet
:returns dict
"""
if tweet.other_data and len( tweet.other_data ) > 0:
# extract the json into a dict
j = json.loads( tweet.other_data )
# extract the user json from the created dict
return json.loads( j[ 'user' ] ) | 533d8795c652e5c7f1299f3dcc04fc30de644222 | 3,658,720 |
def in_scope(repository_data):
"""Return whether the given repository is in scope for the configuration.
Keyword arguments:
repository_data -- data for the repository
"""
if "scope" in repository_data["configuration"] and repository_data["configuration"]["scope"] == "all":
return True
# Determine if user has sufficient permissions in the repository to approve the workflow run
return not repository_data["object"].archived and (
repository_data["permissions"] == "write" or repository_data["permissions"] == "admin"
) | 0e521f805f69a1c6f306700680d42fbe76595c3a | 3,658,721 |
from typing import Union
from typing import Tuple
from typing import Optional
from typing import List
from typing import Any
def run_image_container_checks(
image_container: Union[AICSImage, Reader],
set_scene: str,
expected_scenes: Tuple[str, ...],
expected_current_scene: str,
expected_shape: Tuple[int, ...],
expected_dtype: np.dtype,
expected_dims_order: str,
expected_channel_names: Optional[List[str]],
expected_physical_pixel_sizes: Tuple[
Optional[float], Optional[float], Optional[float]
],
expected_metadata_type: Union[type, Tuple[Union[type, Tuple[Any, ...]], ...]],
) -> Union[AICSImage, Reader]:
"""
A general suite of tests to run against image containers (Reader and AICSImage).
"""
# Check serdes
check_can_serialize_image_container(image_container)
# Set scene
image_container.set_scene(set_scene)
# Check scene info
assert image_container.scenes == expected_scenes
assert image_container.current_scene == expected_current_scene
# Check basics
assert image_container.shape == expected_shape
assert image_container.dtype == expected_dtype
assert image_container.dims.order == expected_dims_order
assert image_container.dims.shape == expected_shape
assert image_container.channel_names == expected_channel_names
assert image_container.physical_pixel_sizes == expected_physical_pixel_sizes
assert isinstance(image_container.metadata, expected_metadata_type)
# Read different chunks
zyx_chunk_from_delayed = image_container.get_image_dask_data("ZYX").compute()
cyx_chunk_from_delayed = image_container.get_image_dask_data("CYX").compute()
# Check image still not fully in memory
assert image_container._xarray_data is None
# Read in mem then pull chunks
zyx_chunk_from_mem = image_container.get_image_data("ZYX")
cyz_chunk_from_mem = image_container.get_image_data("CYX")
# Compare chunk reads
np.testing.assert_array_equal(
zyx_chunk_from_delayed,
zyx_chunk_from_mem,
)
np.testing.assert_array_equal(
cyx_chunk_from_delayed,
cyz_chunk_from_mem,
)
# Check that the shape and dtype are expected after reading in full
assert image_container.data.shape == expected_shape
assert image_container.data.dtype == expected_dtype
# Check serdes
check_can_serialize_image_container(image_container)
return image_container | a502650fb227aa4425a2501f112603b681b41fbf | 3,658,722 |
from typing import Type
def collect_validation_helper(package_names: str) -> Type[ValidationHelper]:
"""Finds subclasses of the validate.ValidationHelper from a
list of package names.
Args:
package_names: A list of Python package names as strings.
Returns:
A validator class that are subclasses of validate.ValidationHelper.
"""
validation_cls = find_subclasses(package_names, ValidationHelper)
return validation_cls[0] | bb38b734641a025a9d7fd26d46ebfb1476879c82 | 3,658,723 |
def heartbeat(request):
"""Test that ElasticSearch is operationnal.
:param request: current request object
:type request: :class:`~pyramid:pyramid.request.Request`
:returns: ``True`` is everything is ok, ``False`` otherwise.
:rtype: bool
"""
indexer = request.registry.indexer
try:
return indexer.client.ping()
except Exception as e:
logger.exception(e)
return False | 6acf0b21b6fcc64f70ca75cb6795df0b5109f273 | 3,658,724 |
def _load_edge_data(graph, regions):
"""Load and return all relevant edges from the graph."""
has_seat = _load_edges_from_query(
graph,
'SELECT inV().@rid AS in_rid, outV().@rid AS out_rid FROM Has_Seat')
# The edges in the existing dataset point from parent to child region / settlement.
# In the desired dataset, we want the edge to be the other way, so we switch
# the "in_rid" and "out_rid" names.
has_parent_region = _load_edges_from_query(
graph, '''
SELECT inV().@rid AS out_rid, outV().@rid AS in_rid FROM E WHERE
(
@this INSTANCEOF "Has_Castles" OR
@this INSTANCEOF "Has_Cities" OR
@this INSTANCEOF "Has_Towns" OR
@this INSTANCEOF "Has_Villages" OR
@this INSTANCEOF "Has_Regional+capital" OR
@this INSTANCEOF "Has_Places"
) AND (
inV() INSTANCEOF "Region" OR inV() INSTANCEOF "Settlement"
) AND (
outV() INSTANCEOF "Region" OR outV() INSTANCEOF "Settlement"
)
''') + _load_missing_region_edges(regions)
lives_in = _load_edges_from_query(
graph, '''
SELECT inV().@rid AS in_rid, outV().@rid AS out_rid FROM Has_Place WHERE (
(inV() INSTANCEOF "Region" OR inV() INSTANCEOF "Settlement") AND
outV() INSTANCEOF "Character"
)''')
owes_allegiance_to = _load_edges_from_query(
graph, '''
SELECT inV().@rid AS in_rid, outV().@rid AS out_rid FROM Has_Allegiance WHERE (
(
inV() INSTANCEOF "Character" OR
inV() INSTANCEOF "Noblehouse" OR
inV() INSTANCEOF "Noble_house"
) AND (
outV() INSTANCEOF "Character" OR
outV() INSTANCEOF "Noblehouse" OR
outV() INSTANCEOF "Noble_house"
)
)''')
return set(has_seat), set(has_parent_region), set(lives_in), set(owes_allegiance_to) | d7a002c6214b614e95edc42d850dc9df51a26462 | 3,658,725 |
def get_story_assignee(jira_sheet, process):
""" Accessor for Story Assignee
Accessor method for retrieving the value for Story Assignee on the
JIRA Stories Sheet.
There is a check to make certain the process in question is amongst those
qualified to exist.
Args:
jira_sheet: A variable holding an Excel Workbook sheet in memory.
process: A variable holding the process of an Issue.
Returns:
A string value of the Parent
"""
if process in PROCESS_DICT:
return (jira_sheet[PROCESS_DICT.get(process) + "6"].value)
else:
print("""Error: " + process + " is an invalid process.
The following QE processes are acceptable: Complaints, Inquiry,
CAPA, Quality Event, Change Control.\n""") | 3f49c10e540b001cf0f4eebf69a1821a16ec9476 | 3,658,726 |
def predict_mhalo(obs_dsigma, mock_use, logms_mod_tot, logms_mod_inn, sig_logms=None):
"""Halo mass and its scatter in each bin.
Parameters
----------
obs_dsigma: list
List of observed DeltaSigma profiles.
mock_use: numpy array
UniverseMachine mock catalog.
logms_mod_tot : ndarray
Total stellar mass (e.g. M100) predicted by UM.
logms_mod_inn : ndarray
Inner stellar mass (e.g. M10) predicted by UM.
sig_logms: numpy array, optional
Uncertainties of stellar mass. Default: None
"""
# The mock catalog and precomputed mass files for subsamples
return [get_mean_mhalo(mock_use, obs_prof, logms_mod_tot, logms_mod_inn, sig_logms=sig_logms)
for obs_prof in obs_dsigma] | 0c68d773155f997d85361ae663bf0eaae09be258 | 3,658,727 |
def create_agent_model(env, lr=1e-4, h_size=128, epsilon=0.2, beta=1e-3, max_step=5e6, normalize=False, num_layers=2):
"""
Takes a Unity environment and model-specific hyper-parameters and returns the
appropriate PPO agent model for the environment.
:param env: a Unity environment.
:param lr: Learning rate.
:param h_size: Size of hidden layers/
:param epsilon: Value for policy-divergence threshold.
:param beta: Strength of entropy regularization.
:return: a sub-class of PPOAgent tailored to the environment.
:param max_step: Total number of training steps.
"""
if num_layers < 1: num_layers = 1
brain_name = env.brain_names[0]
brain = env.brains[brain_name]
if brain.action_space_type == "continuous":
return ContinuousControlModel(lr, brain, h_size, epsilon, max_step, normalize, num_layers)
if brain.action_space_type == "discrete":
return DiscreteControlModel(lr, brain, h_size, epsilon, beta, max_step, normalize, num_layers) | ef43219e9e12ba46c81ed3a39ecb1b82e8953585 | 3,658,728 |
from typing import List
def decode_to_sequence(encoded_sequence: Bytes) -> List[RLP]:
"""
Decodes a rlp encoded byte stream assuming that the decoded data
should be of type `Sequence` of objects.
Parameters
----------
encoded_sequence :
An RLP encoded Sequence.
Returns
-------
decoded : `Sequence[RLP]`
Sequence of objects decoded from `encoded_sequence`.
"""
if encoded_sequence[0] <= 0xF7:
len_joined_encodings = encoded_sequence[0] - 0xC0
ensure(len_joined_encodings < len(encoded_sequence))
joined_encodings = encoded_sequence[1 : 1 + len_joined_encodings]
else:
joined_encodings_start_idx = 1 + encoded_sequence[0] - 0xF7
ensure(joined_encodings_start_idx - 1 < len(encoded_sequence))
# Expectation is that the big endian bytes shouldn't start with 0
# while trying to decode using RLP, in which case is an error.
ensure(encoded_sequence[1] != 0)
len_joined_encodings = Uint.from_be_bytes(
encoded_sequence[1:joined_encodings_start_idx]
)
ensure(len_joined_encodings >= 0x38)
joined_encodings_end_idx = (
joined_encodings_start_idx + len_joined_encodings
)
ensure(joined_encodings_end_idx - 1 < len(encoded_sequence))
joined_encodings = encoded_sequence[
joined_encodings_start_idx:joined_encodings_end_idx
]
return decode_joined_encodings(joined_encodings) | cb33dd9da8deb2096ce3ad205a743c4c22c0f4c8 | 3,658,729 |
def list_field_override_choices(override_map=None, html=True):
"""
This returns either a list of allowable choices, or an HTML-formatted unordered list (default).
"""
if override_map:
if html:
choices = '<b>These are the allowable field override choices for field name:<ul>'
else:
choices = []
for item in override_map:
if html:
choices += '<li>{}</li>'.format(item['field'])
else:
choices.append(item['field'])
return choices
return None | 9b29493af651d95d67f8bd2c4283f53e737e7c5c | 3,658,730 |
import logging
def get_logger(initial_level=logging.DEBUG):
"""Gets the named logger"""
logger = logging.getLogger('ungoogled')
if logger.level == logging.NOTSET:
logger.setLevel(initial_level)
if not logger.hasHandlers():
console_handler = logging.StreamHandler()
console_handler.setLevel(initial_level)
format_string = '%(levelname)s: %(message)s'
formatter = logging.Formatter(format_string)
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
return logger | d9f9a264f1f2c3c4638ffc5c6e886182923cbf5a | 3,658,731 |
import logging
import os
import sys
def config_logger(name, log_file, file_level, console_level):
"""Configure the logger that should be used by all modules in this
package.
This method sets up a logger, such that all messages are written to console
and to an extra logging file. Both outputs will be the same, except that
a message logged to file contains the module name, where the message comes
from.
The implementation is based on an earlier implementation of a function I
used in another project:
https://git.io/fNDZJ
Args:
name: The name of the created logger.
log_file: Path of the log file. If None, no logfile will be generated.
If the logfile already exists, it will be overwritten.
file_level: Log level for logging to log file.
console_level: Log level for logging to console.
Returns:
The configured logger.
"""
file_formatter = logging.Formatter(fmt='%(asctime)s - %(levelname)s' \
+ ' - %(module)s - %(message)s', \
datefmt='%m/%d/%Y %I:%M:%S %p')
stream_formatter = logging.Formatter(fmt='%(asctime)s - %(levelname)s' \
+ ' - %(message)s', \
datefmt='%m/%d/%Y %I:%M:%S %p')
if log_file is not None:
log_dir = os.path.dirname(log_file)
if log_dir != '' and not os.path.isdir(log_dir):
os.mkdir(log_dir)
if os.path.exists(log_file):
os.remove(log_file)
file_handler = logging.FileHandler(log_file)
file_handler.setFormatter(file_formatter)
file_handler.setLevel(file_level)
stream_handler = logging.StreamHandler(sys.stdout)
stream_handler.setFormatter(stream_formatter)
stream_handler.setLevel(console_level)
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
if log_file is not None:
logger.addHandler(file_handler)
logger.addHandler(stream_handler)
return logger | 624cafebc685e10333134be28849b06c098902d1 | 3,658,732 |
import six
def _safe_resolve_url(url):
"""
Previously, resolve_url_lazy would fail if the url was a unicode object.
See <https://github.com/fusionbox/django-authtools/issues/13> for more
information.
Thanks to GitHub user alanwj for pointing out the problem and providing
this solution.
"""
return six.text_type(resolve_url(url)) | 9b06bc346ebe03b1e5209aa8c108b76aae895089 | 3,658,733 |
def get_metrics(
reset: bool = False, include_custom: bool = True, raise_errors: bool = True,
) -> pd.DataFrame:
"""
Returns table of available metrics used for CV.
Example
-------
>>> from pycaret.datasets import get_data
>>> boston = get_data('boston')
>>> from pycaret.regression import *
>>> exp_name = setup(data = boston, target = 'medv')
>>> all_metrics = get_metrics()
reset: bool, default = False
When True, will reset all changes made using the ``add_metric``
and ``remove_metric`` function.
include_custom: bool, default = True
Whether to include user added (custom) metrics or not.
raise_errors: bool, default = True
If False, will suppress all exceptions, ignoring models that
couldn't be created.
Returns:
pandas.DataFrame
"""
return pycaret.internal.tabular.get_metrics(
reset=reset, include_custom=include_custom, raise_errors=raise_errors,
) | 1d2ed9372aa6f26cd740e6987a2e94baaef647dc | 3,658,734 |
def get_unique_wikilinks(filepath):
"""Get UNIQUE wikilinks from a md file.
The links' order of appearance in the file IS preserved in the output.
This accounts for:
- Aliases / alt text, so [[Lorem ipsum|L.I.]]
will be represented as 'Lorem ipsum'.
- Header text links, so [[Lorem ipsum#Dummy text]]
will be represented as 'Lorem ipsum'.
Args:
filepath (pathlib Path): Path object representing the file from
which info will be extracted.
Returns:
list of strings
"""
plaintext = _get_ascii_plaintext_from_md_file(filepath, remove_code=True)
wikilinks = _get_unique_wikilinks(plaintext, remove_aliases=True)
return wikilinks | ca02428942d8a555d606a5c4b8190859917c22c7 | 3,658,735 |
def parse_single_example(serialized_example, params):
"""Parses a singel serialized TFExample string."""
decoder = tf_example_decoder.TfExampleDecoder()
data = decoder.decode(serialized_example)
image = data['image']
source_id = data['source_id']
source_id = dataloader_utils.process_source_id(source_id)
height = data['height']
width = data['width']
boxes = data['groundtruth_boxes']
boxes = box_utils.denormalize_boxes(boxes, tf.shape(image)[:2])
classes = data['groundtruth_classes']
is_crowds = data['groundtruth_is_crowd']
areas = data['groundtruth_area']
image = input_utils.normalize_image(image)
image, image_info = input_utils.resize_and_crop_image(
image,
params.retinanet_parser.output_size,
padded_size=input_utils.compute_padded_size(
params.retinanet_parser.output_size, 2 ** params.anchor.max_level),
aug_scale_min=1.0,
aug_scale_max=1.0)
anchors = anchor.Anchor(
params.anchor.min_level,
params.anchor.max_level,
params.anchor.num_scales,
params.anchor.aspect_ratios,
params.anchor.anchor_size,
image.get_shape().as_list()[:2])
labels = {
'anchor_boxes': anchors.multilevel_boxes,
'image_info': image_info,
}
groundtruths = {
'source_id': source_id,
'height': height,
'width': width,
'num_detections': tf.shape(classes),
'boxes': boxes,
'classes': classes,
'areas': areas,
'is_crowds': tf.cast(is_crowds, tf.int32),
}
return image, labels, groundtruths | e274a6ebfe7e7aa51dc7bc6b779ef222081a7e47 | 3,658,736 |
def eval_blocking(lamb, mu, k):
"""Finds the blocking probability of a queue.
Args:
lamb (float): The rate into the queue.
mu (float): The rate out of the queue.
k (int): Maximum number of customers able to be in the queue.
"""
rho = lamb/mu
return rho**k*((1-rho)/(1-rho**(k+1))) | 4c1ea7f5f7984fb24c85a5c1c6c77cdbc2e1e76a | 3,658,737 |
def get_dependent_columns(covar):
"""
Get the list of dependent columns
:param covar: The covariance matrix
:return: Dependent columns
"""
ind_columns = (np.where(~covar.any(axis=1))[0]).tolist()
dep_columns_z = []
for i in range(0, covar.shape[0]):
if i not in ind_columns:
dep_columns_z.append(i)
return exclude_linear_combination_variables(covar, dep_columns_z) | d0145649ce685a4d609809a57d374b1e362c303e | 3,658,738 |
def results_to_answers(guess_hints, answers):
"""Provide remaining valid answers matching a list of guesses and
corresponding hints
"""
gh_stack = guess_hints.copy()
new_ans = answers.copy()
while len(gh_stack) > 0:
gh = gh_stack.pop()
guess = gh[0]
hint = gh[1]
new_ans = answers_guess_hint_to_answers(new_ans, guess, hint)
return new_ans | 243cbaeb2d36c66e49cd570c1487bbca7636cd2c | 3,658,739 |
from typing import Optional
def get_archive_map(data: DataFrame, row_col: Optional[str] = "ROW") -> Series:
"""
Get a series mapping object names to archive names
:param data: Dataset with archive names as ARCHIVE column and object names
in index
:type data: DataFrame
:param row_col: column with rol index, defaults to "ROW". Set to None if
not applicable
:type row_col: str, optional
:return: Series mapping object names to archive names
:rtype: Series
"""
archive_map = data.ARCHIVE.drop_duplicates()
if row_col is not None:
archive_map = archive_map.droplevel(row_col)
return archive_map | 2d66c55c64dab89e7523778411a7bf70ac784bf6 | 3,658,740 |
from typing import Iterable
import math
def gain_ratio(x_mat: ndarray, y_row: ndarray, prop: int, prop_values: Iterable, gain_value: float = None) -> float:
"""
计算使用属性 prop 对样本集进行划分的信息增益率,值越大表示使用属性 prop 进行划分
所获得的纯度提升越大。此方法对可取值数目较少的属性有所偏好
:param x_mat: 特征向量组,行数 m 表示样本数,列数 n 表示特征数
:param y_row: 输出向量。是一个只有一个维度的行向量,要和 x_mat 匹配
:param prop: 进行划分的属性
:param prop_values: 属性的取值
:param gain_value: 信息增益。给出该值是为了避免重复计算。
:return: 信息增益率
"""
prop_x = x_mat[:, prop]
prop_y_num = []
for v in prop_values:
prop_y_num.append(len(y_row[prop_x == v]))
m = y_row.shape[0]
intrinsic_value = 0
for num in prop_y_num:
tmp = num / m
intrinsic_value = intrinsic_value - tmp * (0 if math.isclose(tmp, 0) else math.log2(tmp))
if gain_value is None:
gain_value = gain(x_mat, y_row, prop, prop_values)
return gain_value / intrinsic_value | 08a26ba4c3dc7712ca515f128f7e3039f005b993 | 3,658,741 |
def _LengthError(e: ByteList):
"""Check if the length of the EDID is a multiple of 128.
Args:
e: The list form of the EDID to be checked.
Returns:
A list of error.Error objects, or None.
"""
if not len(e) % 128:
return None
else:
return [
error.Error(
"Overall EDID",
"Invalid length",
"Length % 128 = 0",
"Length %% 128 = %d" % (len(e) % 128),
)
] | 940b6f4b2648eefe79afe69f623b0f1e02583ce1 | 3,658,742 |
def __single_auc_score__(feature_i,
clf,
cv_indices,
X,
y,
sample_weight=None):
"""Method determining the 'area under curve' for a single test set.
This function is intended for internal use.
Parameters
----------
feature_i: int
Index of the tested feature.
clf: object
Classifier that should be used for the classification.
It needs a fit and a predict_proba function.
cv_indices: list of tuples
Indices for all the cross validation steps. They are explicit
pass, so all test sets use the same splitting.
X : numpy.float32array, shape=(n_samples, n_obs)
Values describing the samples.
y : numpy.float32array, shape=(n_samples)
Array of the true labels.
sample_weight : None or numpy.float32array, shape=(n_samples)
If weights are used this has to contain the sample weights.
None in the case of no weights.
Returns
-------
feature_i: int
Index of the tested feature. It is need as a return value for
asynchronous parallel processing
auc_score: float
Returns calculated auc score.
"""
y_pred = np.zeros_like(y, dtype=float)
for i, [train_idx, test_idx] in enumerate(cv_indices):
X_train = X[train_idx]
X_test = X[test_idx]
y_train = y[train_idx]
if sample_weight is None:
sample_weight_train = None
sample_weight_test = None
else:
sample_weight_train = sample_weight[train_idx]
sample_weight_test = sample_weight[test_idx]
clf = clf.fit(X=X_train,
y=y_train,
sample_weight=sample_weight_train)
y_pred[test_idx] = clf.predict_proba(X_test)[:, 1]
auc_score = roc_auc_score(y, y_pred, sample_weight=sample_weight_test)
return feature_i, auc_score | 51738218bde23aeb3633bcfa47dff918af29c4cd | 3,658,743 |
def IntCurveSurface_ThePolygonToolOfHInter_Bounding(*args):
"""
:param thePolygon:
:type thePolygon: IntCurveSurface_ThePolygonOfHInter &
:rtype: Bnd_Box
"""
return _IntCurveSurface.IntCurveSurface_ThePolygonToolOfHInter_Bounding(*args) | 294da704fcc9a59a8e7fc2042d050255aa45accb | 3,658,744 |
def identity_show(client, resource_group_name, account_name):
"""
Show the identity for Azure Cognitive Services account.
"""
sa = client.get(resource_group_name, account_name)
return sa.identity if sa.identity else {} | 19018c895f3fdf0b2b79788547bf80a400724336 | 3,658,745 |
import os
import sys
def parsing_input(program_parameters):
"""
Parses apart the command line or qsub submission file to get all user input parameters
for analyzing the data. Function also prints all user parameters to
command line, so a user can monitor the inputs. Also, default settings are
set in this function and are overwritten if a user provides the parameter
instead.
: Param program_parameters: Name of the parameter file being parsed
: Return dictionary: Returns a dictionary of all paramters for later parts of the
program (lots of variables)
"""
# Default parameters (will be overridden by user---input)
# Variant Level Default Paramters
quality_score_min= 20
# Default parameter for indel distance
indel_exclusion_region_length = 1
# Sample level default parameters
min_total_read_count=20
# Meta-Analysis Cutoff Values
meta_BH_adj_p_value_cutoff = 0.05
meta_sample_p_value_cutoff = 0.05
# Multi-Dimensional P-Value Cutoff Value
multi_dim_adjust_pvalue_cutoff = 0.05
# Currenting working directory default parameters (same directory as program)
working_directory= os.getcwd()
input_file_location = working_directory+'\\'
# Global Output_File_Location
output_file_location = working_directory+'/' #for UNIX environment this symbol is required and it works fine in PC submission
# binomial probability value (50/50 Test)
binomial_probability_value = 0.5
###LEGACY VARIABLE KEPT FOR LATER DEVELOPMENT######
# Variables originally created to be modified, but later
# in development realized obsolete
min_numb_of_samples = 1
numb_ref_alleles_allowed = 1
numb_alt_alleles_allowed = 1
parsed_parameters=program_parameters.split("--")
# print (parsed_parameters)
for x in range(1, len(parsed_parameters)):
inputs = parsed_parameters[x].split(" ")
if inputs[0] == "File_Name":
file_name = inputs[1]
elif inputs[0] == "Indel_Exclusion_Region_Length":
indel_exclusion_region_length = inputs[1]
#Testing user input (verify numeric value)
result = test_Number_Input(indel_exclusion_region_length)
#If the result passes do this or if the result fails do something else
if result =='Pass':
pass
else:
print ("")
print ("ERROR Alert!")
print ("Please check Indel_Exclusion_Region_Length- incorrect input")
print ("Incorrect input was: ", indel_exclusion_region_length)
sys.exit()
elif inputs[0] == "Minimum_Number_of_Samples_for_ASE":
min_numb_of_samples = inputs[1]
#Testing user input (verify numeric value)
result = test_Number_Input(min_numb_of_samples)
#If the result passes do this or if the result fails do something else
if result =='Pass':
pass
else:
print ("")
print ("ERROR Alert!")
print ("Please check Minimum_Number_of_Samples_for_ASE- incorrect input")
print ("Incorrect input was: ", min_numb_of_samples)
sys.exit()
elif inputs[0] == "Number_of_Reference_Alleles_Allowed":
numb_ref_alleles_allowed = inputs[1]
#Testing user input (verify numeric value)
result = test_Number_Input(numb_ref_alleles_allowed)
#If the result passes do this or if the result fails do something else
if result =='Pass':
pass
else:
print ("")
print ("ERROR Alert!")
print ("Please check Number_of_Reference_Alleles_Allowed- incorrect input")
print ("Incorrect input was: ", numb_ref_alleles_allowed)
sys.exit()
elif inputs[0] == "Number_of_Alternative_Alleles_Allowed":
numb_alt_alleles_allowed = inputs[1]
#Testing user input (verify numeric value)
result = test_Number_Input(numb_alt_alleles_allowed)
#If the result passes do this or if the result fails do something else
if result =='Pass':
pass
else:
print ("")
print ("ERROR Alert!")
print ("Please check Number_of_Alternative_Alleles_Allowed- incorrect input")
print ("Incorrect input was: ", numb_alt_alleles_allowed)
sys.exit()
elif inputs[0] == "Quality_Score_Minimum_for_Variants":
quality_score_min = inputs[1]
#Testing user input (verify numeric value)
result = test_Number_Input(quality_score_min)
#If the result passes do this or if the result fails do something else
if result =='Pass':
pass
else:
print ("")
print ("ERROR Alert!")
print ("Please check Quality_Score_Minimum_for_Variants- incorrect input")
print ("Incorrect input was: ", quality_score_min)
sys.exit()
elif inputs[0] == "Minimum_Read_Counts":
min_total_read_count = inputs[1]
#Testing user input (verify numeric value)
result = test_Number_Input(min_total_read_count)
#If the result passes do this or if the result fails do something else
if result =='Pass':
pass
else:
print ("")
print ("ERROR Alert!")
print ("Please check Minimum_Read_Counts- incorrect input")
print ("Incorrect input was: ", min_total_read_count)
sys.exit()
elif inputs[0] == "Meta_BH_adj_p_value_cutoff":
meta_BH_adj_p_value_cutoff = inputs[1]
#Testing user input (verify numeric value)
result = test_Number_Input(meta_BH_adj_p_value_cutoff)
#If the result passes do this or if the result fails do something else
if result =='Pass':
pass
else:
print ("")
print ("ERROR Alert!")
print ("Please check META_FDR_p_value- incorrect input")
print ("Incorrect input was: ", meta_BH_adj_p_value_cutoff)
sys.exit()
elif inputs[0] == "Meta_sample_p_value_cutoff":
meta_sample_p_value_cutoff = inputs[1]
#Testing user input (verify numeric value)
result = test_Number_Input(meta_sample_p_value_cutoff)
#If the result passes do this or if the result fails do something else
if result =='Pass':
pass
else:
print ("")
print ("ERROR Alert!")
print ("Please check META_binomial_p_value- incorrect input")
print ("Incorrect input was: ", meta_sample_p_value_cutoff)
sys.exit()
elif inputs[0] == "Multi_Dim_adjust_pvalue_cutoff":
multi_dim_adjust_pvalue_cutoff = inputs[1]
#Testing user input (verify numeric value)
result = test_Number_Input(multi_dim_adjust_pvalue_cutoff)
#If the result passes do this or if the result fails do something else
if result =='Pass':
pass
else:
print ("")
print ("ERROR Alert!")
print ("Please check Multi_Dim_adjust_pvalue_cutoff- incorrect input")
print ("Incorrect input was: ", multi_dim_adjust_pvalue_cutoff)
sys.exit()
elif inputs[0] == "Binomial_Probability_Value":
binomial_probability_value = inputs[1]
#Testing user input (verify numeric value)
result = test_Number_Input(binomial_probability_value)
#If the result passes do this or if the result fails do something else
if result =='Pass':
pass
else:
print ("")
print ("ERROR Alert!")
print ("Please check Binomial_Probability_Value- incorrect input")
print ("Incorrect input was: ", binomial_probability_value)
sys.exit()
elif inputs[0] == "Output_File_Location":
output_file_location = inputs[1]
# prints the help menu prompt
elif inputs[0] == "help" or inputs[0]=="h" or inputs[0]=="Help":
printing_help_menu=help_menu_prompt()
else:
print ("")
print ("ERROR Alert!")
print ("Please double check your input parameters, something was not quite right")
print ("Type: --help to see a list of options and acceptable input for the program")
sys.exit()
# Printing user settings to terminal in case program crashes out before completion
print ("")
print ("")
print ("Exact User Parameter Settings")
print ("")
print ("The input file is: ", file_name)
print ("The output directory for analysis is: ", output_file_location)
print ("")
print ("")
print ("The minimum qualtity score (phred score) for a variant is: ", quality_score_min)
print ("The indel exclusion region length from identified indels is: ", indel_exclusion_region_length)
# print ("The minimum number of samples to count a variant for ASE is: ", min_numb_of_samples)
print ("The number of allowable reference alleles is (currently program is limited to one): ", numb_ref_alleles_allowed)
print ("The number of allowable alternative alleles is (currently program is limited to one): ", numb_alt_alleles_allowed)
print ("The minimum number of total read counts for a sample per variant is: ", min_total_read_count)
print ("")
print ("")
print ("The binomial probability value for ASE testing is: ", binomial_probability_value)
print ("")
print ("")
print ("Meta-Analysis of Data")
print ("The Meta BH adjusted p-value cutoff is: ", meta_BH_adj_p_value_cutoff)
print ("The p-value cutoff used for estimated tallying of samples is: ", meta_sample_p_value_cutoff)
print ("")
print ("Multi-Dimensional P-Value Adjustment")
print ("The p-value cutoff for testing is: ", multi_dim_adjust_pvalue_cutoff)
print ("")
print ("")
# Returns a dictionary of all the variables
return{'file_name':file_name, 'indel_exclusion_region_length':indel_exclusion_region_length,
'min_numb_of_samples':min_numb_of_samples, 'numb_ref_alleles_allowed':numb_ref_alleles_allowed,
'numb_alt_alleles_allowed':numb_alt_alleles_allowed, 'quality_score_min':quality_score_min,
'min_total_read_count':min_total_read_count, 'binomial_probability_value': binomial_probability_value,
'meta_BH_adj_p_value_cutoff':meta_BH_adj_p_value_cutoff, 'meta_sample_p_value_cutoff': meta_sample_p_value_cutoff,
'multi_dim_adjust_pvalue_cutoff': multi_dim_adjust_pvalue_cutoff, 'output_file_location':output_file_location} | 761e29994ee77ffc62f0d4c4039bc82971d4fc77 | 3,658,746 |
import re
def normalize_country_code(country_code):
""" Normalize country codes a bit by making capitalization consistent and
removing trailing comments (and other words). """
if not country_code:
return country_code
country_code = re.match(r'^(\w+)', country_code).group(1)
return country_code.upper() | 37dce64b62ae4ec20cb2d9b10c66beeba73c5683 | 3,658,747 |
import math
def get_angle(p1, p2):
"""Get the angle between two points."""
return math.atan2(p2[1] - p1[1], p2[0] - p1[0]) | a29ea1ed74a6c071cf314d1c38c6e2f920bd1c3a | 3,658,748 |
def per_application():
"""
:return:
a seeder function that always returns 1, ensuring at most one delegate is ever spawned
for the entire application.
"""
return lambda msg: 1 | 7ecc568846ab484557e768ad372f4faf85238401 | 3,658,749 |
import requests
from bs4 import BeautifulSoup
def get_job_information(url):
""" Uses bs4 to grab the information from each job container based on the url.
Parameters
----------
url : str
Career builder url of any job
Returns
------
job_data : dict
Contains Job Name, Company Name, Job Location, Description, Skills and apply link.
"""
website = requests.get(url).text
job_soup = BeautifulSoup(website, 'html.parser')
job_name = "N/A"
try:
job_name = job_soup.select('h2.h3')[0].getText()
except Exception as err:
print(f"The job tile could not be selected properly")
print(err)
print(f'Skipping {url}...')
company_name = "N/A"
try:
company_name = job_soup.select('.data-details > span:nth-child(1)')[0].getText()
except Exception as err:
print(f"The company name could not be selected properly")
print(err)
print(f'Skipping {url}...')
job_location = "N/A"
try:
job_location = job_soup.select('.data-details > span:nth-child(2)')[0].getText()
except Exception as err:
print(f"The location could not be selected properly")
print(err)
print(f'Skipping {url}...')
job_description = job_soup.select('#jdp_description > div.col-2 > div.col.big.col-mobile-full > p')
job_description_2 = job_soup.select('#jdp_description > div:nth-child(1) > div:nth-child(1)')
desc = [ ]
for idx, paragraph in enumerate(job_description):
desc.append(job_description[idx].text)
if len(desc) == 0:
for idx, paragraph in enumerate(job_description_2):
desc.append(job_description_2[idx].text)
job_skills = [ ]
skills_container = job_soup.findAll("div", {"class": "check-bubble"})
for idx, skill in enumerate(skills_container):
job_skills.append(skills_container[idx].text)
job_data = {'Job Title': job_name,
'Company': company_name,
'Location': job_location,
'Description': desc,
'Skills': job_skills,
'Application Url': url}
return job_data | a5c0b53338dbacc7fe0e7c7eb91b66855968af2b | 3,658,750 |
def idiv(self, other):
"""Compute the element-wise division.
Parameters
----------
other : Union[dragon.Tensor, number]
The value to divide.
Returns
-------
dragon.Tensor
The self.
See Also
--------
`dragon.math.div(...)`_
"""
return _apply_binary_op([self, other], 'Div', [self]) | 05afbc883ec835e06cceaa9a13119fbac0df8f5c | 3,658,751 |
def getAudioMetadata(fileRef):
"""Extract metadata for audio file"""
args = [config.mediaInfoExe]
args.append("--Output=EBUCore")
args.append(fileRef)
# Command line as string (used for logging purposes only)
cmdStr = " ".join(args)
status, out, err = shared.launchSubProcess(args)
# Configure XML parser to get rid of blank lines in MediaInfo output
parser = etree.XMLParser(remove_blank_text=True)
# Parse string to element
outElt = etree.XML(out.encode('utf-8'), parser=parser)
# Main results to dictionary
dictOut = {}
dictOut["cmdStr"] = cmdStr
dictOut["status"] = status
dictOut["outElt"] = outElt
dictOut["stderr"] = err
return dictOut | 4f954d45e6b029b22001a02e49ad453a2f572bb8 | 3,658,752 |
def simulation_test(**kwargs):
"""Decorate a unit test and mark it as a simulation test.
The arguments provided to this decorator will be passed to
:py:meth:`~reviewbot.tools.testing.testcases.BaseToolTestCase
.setup_simulation_test`.
Args:
**kwargs (dict):
Keyword arguments to pass during setup.
Returns:
callable:
The new unit test function.
"""
def _dec(func):
func.simulation_setup_kwargs = kwargs
return func
return _dec | 56aa51374e66bb765bfc3d4da51e3254d06c0b55 | 3,658,753 |
def update_action_state():
""" :type action: dart.model.action.Action """
# we receive a list of {action_id, action_status, workflow_instance_id/status}
# We will update the database for each such entry
try:
action_status_updates = request.get_json()
_logger.info("AWS_Batch: extracted json from request: {0}".format(action_status_updates))
except Exception as err:
_logger.error("AWS_Batch: Failed to extract json from request")
return {'result': str(err)}, 500
try:
for action_status in action_status_updates:
# updating the action state
current_action = action_service().get_action(action_status['action_id'])
if should_update(action_status['action_status'], current_action.data.state):
_logger.info("AWS_Batch: Updating action={0} from {1} to state {2}".format(current_action.id, current_action.data.state, action_status['action_status']))
action_service().update_action_state(current_action, action_status['action_status'])
# if we receive a workflow_instance_id (not empty) then we need to set workflow_instance status.
# we may need to set workflow and datastore status if they need to be deactivated on failure.
if action_status.get('workflow_instance_id'):
wfs = action_status.get('workflow_instance_status')
wf_instance_status = WorkflowInstanceState.FAILED if (wfs == 'FAILED') else WorkflowInstanceState.COMPLETED
_logger.info("AWS_Batch: Updating workflow_instance={0} to state {1}".format(action_status.get('workflow_instance_id'), wf_instance_status))
# Updating workflow_instance with the status sent (success or failure).
wf_instance = workflow_service().get_workflow_instance(action_status.get('workflow_instance_id'))
workflow_service().update_workflow_instance_state(wf_instance, wf_instance_status)
# check if need to deactivate workflow and datastore.
if wf_instance_status == WorkflowInstanceState.FAILED:
workflow_id = wf_instance.data.workflow_id
master_workflow = workflow_service().get_workflow(workflow_id)
# Failed action with deactivate on_failure should deactivate the current workflow.
if current_action.data.on_failure == ActionOnFailure.HALT:
_logger.info("AWS_Batch: Action in workflow={0} failed. Halting on failure and remaining in state {2}".format(master_workflow.id, WorkflowState.ACTIVE))
elif current_action.data.on_failure == ActionOnFailure.DEACTIVATE:
_logger.info("AWS_Batch: Updating workflow={0} to state {2}".format(master_workflow.id, WorkflowState.INACTIVE))
workflow_service().update_workflow_state(master_workflow, WorkflowState.INACTIVE)
if master_workflow.data.on_failure == WorkflowOnFailure.DEACTIVATE:
datastore_id = master_workflow.data.datastore_id
_logger.info("AWS_Batch: Updating datastore={0} to state {2}".format(datastore_id, DatastoreState.INACTIVE))
datastore = datastore_service().get_datastore(datastore_id)
datastore_service().update_datastore_state(datastore, DatastoreState.INACTIVE)
except Exception as err:
_logger.error("AWS_Batch: Failed to update action state. err= {0}".format(err))
return {'result': str(err)}, 501
# if all pass we send success status (200) otherwise we will try again later.
return {'result': "OK"}, 200 | f89142b6877f615cce253d727c001737729394fa | 3,658,754 |
def page_not_found():
"""Directs to error page if user is not logged in.
:return: HTML file for error page.
"""
error = 'You must be logged in to view this page.'
return render_template('error.html', error=error) | ff3cc2c369154bec1303658bb3c691de448d8231 | 3,658,755 |
def mtf_toy_model_parallel():
"""Set of hyperparameters."""
hparams = mtf_toy_base()
hparams.add_hparam("layout", "hidden:0")
return hparams | 74c01e9f8c68f07d332119fd7cead21b92e4de84 | 3,658,756 |
from typing import Union
from pathlib import Path
def to_dataframe(sas7bdat_file: Union[str, Path]) -> pd.DataFrame:
"""Converts a sas7bdat and/or xpt file into a pandas dataframe.
args:
sas7bdat_file: The name, including the path, for the sas7bdat file.
return:
A pandas dataframe containing the data from the sas7bdat file.
"""
df = pd.read_sas(sas7bdat_file)
# convert binary strings to utf-8
str_df = df.select_dtypes([np.dtype(object)])
if len(str_df.columns) > 0:
str_df = str_df.stack().str.decode("utf-8").unstack()
for col in str_df:
df[col] = str_df[col]
# end conversion to utf-8
return df | 70564f16c43a6c6fdaf65841ee1d0c48d8f550f2 | 3,658,757 |
def shift_scale_rmsf(rmsf_double, phi, cellsize, ccomp, faraday_peak):
"""Shift and scale the RMSF, to the parameters of the found clean component.
Args:
rmsf_double (numpy array): double sized array of complex point spread
function values in Faraday space.
phi (numpy array): array of Faraday depths.
cellsize (float): advised cellsize in Faraday space.
ccomp (float): the complex-valued clean component.
faraday_peak (int): the index of the peak of the clean component.
Returns:
ccomp*rmsf_shifted: the shifted and scaled RMSF.
"""
# Calculate the integer number of pixels required to shift the RMSF:
faraday_shift = phi[faraday_peak]/cellsize
faraday_shift = faraday_shift.astype(int)
# Shift the RMSF and pad with zeros based upon its sign:
if faraday_shift > 0:
rmsf_shifted = np.roll(rmsf_double, faraday_shift)
rmsf_shifted[0:faraday_shift] = 0.0
elif faraday_shift < 0:
rmsf_shifted = np.roll(rmsf_double, faraday_shift)
rmsf_shifted[len(rmsf_shifted)+faraday_shift:len(rmsf_shifted)] = 0.0
elif faraday_shift == 0:
rmsf_shifted = np.copy(rmsf_double)
# The shifted RMSF is double the width of the sampled Faraday space
# to ensure the shifted beam is subtracted correctly.
# Truncate the RMSF so it has same dimension as sampled parameter space:
rmsf_len = len(rmsf_shifted)
rmsf_shifted = np.delete(rmsf_shifted, np.arange((3*((rmsf_len-1)//4))+1,
rmsf_len))
rmsf_shifted = np.delete(rmsf_shifted, np.arange(0, ((rmsf_len-1)//4)))
# Scale the RMSF by the magnitude of the clean component:
return ccomp*rmsf_shifted | d658cfece87276075b7c53b987772906908b5b80 | 3,658,758 |
def region_filter(annos, annotation):
"""filter for Region annotations.
The 'time' parameter can match either 'time' or 'timeEnd' parameters.
"""
result = []
for anno in annos:
time = annotation.get("time")
timeEnd = annotation.get("timeEnd")
for key in ['text', 'tags']:
if anno.get(key) != annotation.get(key):
continue
if anno.get("regionId") == 0:
continue
if anno.get("time") not in [time, timeEnd]:
continue
result.append(anno)
return result | 3ca4c6ba39d44370b3022f5eb17a25e0e1c9f056 | 3,658,759 |
def estimator_mixt_default(sample):
"""Default estimator of mixture distribution
This estimator returns tuple with two non-overlaping parts of `sample`
which are estimated to come from continuous and discrete parts of mixture
distribution. Estimation is done by deciding sample element to be from
discrete part if it is present at least twice in input `sample`.
If some part of estimation has no elements, it is represented as `None` in
output.
Parameters
----------
sample : array_like
This should be a valid input to `np.asarray()` so that its output is
numeric.
Returns
-------
sample_cont, sample_disc : tuple with two elements
Elements can be `None` if estimation showed no elements from
corresponding mixture part.
"""
# Detect sample from discrete part
sample = np.asarray(sample)
vals, inverse, counts = np.unique(sample, return_inverse=True, return_counts=True)
disc_inds = np.nonzero(counts >= 2)[0]
sample_is_disc = np.isin(inverse, disc_inds)
# Return separation
if np.all(sample_is_disc):
return (None, sample)
elif np.all(~sample_is_disc):
return (sample, None)
else:
return (sample[~sample_is_disc], sample[sample_is_disc]) | 31394305d9da7afe553f0dab9753d919b6aa7c73 | 3,658,760 |
def modularity_clustering(graph, size_cutoff=10, deg_cutoff=0.5,
callback=None):
"""
Use the Clauset-Newman-Moore greedy modularity maximization
algorithm to partition the TN93 pairwise graph into communities.
Modularity quantifies the density of edges at the periphery of
a community relative to the density within it.
TODO: try other methods like Louvain algorithm
:param graph: networkx.Graph object from import_graph()
:param size_cutoff: int, minimum component size to consider
applying modularity community detection
:param deg_cutoff: float, maximum edge density at which use
community detection.
:param callback: optional, write verbose messages
:return: list, lists of node labels
"""
if callback:
callback("Modularity clustering...")
result = []
count = 0
for component in nx.connected_components(graph):
count += 1
if len(component) > size_cutoff:
sg = graph.subgraph(component)
# retrieve list of degree sizes
deg = [d for _, d in sg.degree()]
mean_deg = sum(deg) / float(len(deg))
if mean_deg / len(deg) < deg_cutoff:
communities = list(greedy_modularity_communities(sg))
if callback:
callback(
' partitioning component of size {} into {} '
'communities'.format(len(component), len(communities))
)
result.extend(communities)
else:
# component has sufficient edge density
result.append(component)
else:
result.append(component)
if callback:
callback("Partitioned graph from {} to {} components".format(
count, len(result))
)
return result | e64e383eaf4895244aab1f32e39fae5af92769b5 | 3,658,761 |
import inspect
def get_post_processors():
"""
Loads post processors by inspecting members of the 'post_processors' package.
"""
post_processor_classes = []
for _, member in inspect.getmembers(post_processors):
if inspect.isclass(member):
post_processor_classes.append(member)
return post_processor_classes | 6b65c438657230661b189c8851ca5b662714c4df | 3,658,762 |
def vulcanize(name: str) -> str:
"""Add prefixes to names that are similar to the prefixes seen
in Vulcan characters in the Star Trek™ franchise.
:param name: The name to modify.
:return: A :class:str object.
:rtype: str
Usage:
>>> # Seed the RNG to make the example predictable. Don't do
>>> # this if you want the modification to be random.
>>> seed('spam')
>>>
>>> name = 'Bacon'
>>> vulcanize(name)
"T'Bacon"
"""
letter = 't'
if roll('1d6') > 5:
letters = 'd k l m n p s su v'.split()
index = roll(f'1d{len(letters)}') - 1
letter = letters[index]
letter = letter.title()
name = name.title()
return f"{letter}'{name}" | 00cd22427ab873852af519a6657bf9504b945fb3 | 3,658,763 |
def B(j, p, x, knots):
""" Compute B-splines using recursive definition. """
if p == 0:
if knots[j] <= x < knots[j+1]:
return 1.0
else:
return 0.0
else:
left = special_div((x-knots[j])*B(j,p-1,x,knots), knots[j+p]-knots[j])
right = special_div((knots[j+1+p]-x)*B(j+1,p-1,x,knots), knots[j+1+p]-knots[j+1])
return left + right | 1c578e317a3e2ff00f31b8e0b31b4f184e9bd338 | 3,658,764 |
from re import T
def not_falsy(item: T, item_name: str) -> T:
"""
Check if a value is falsy and throw an exception if so.
:param item: the item to check for falsiness.
:param item_name: the name of the item to include in any exception.
:raises ValueError: if the item is falsy.
:returns: the item.
"""
if not item:
raise ValueError(f"{item_name} cannot be a value that evaluates to false")
return item | b758d3ffe8f4c30086248fc9df2a9e82e05553d3 | 3,658,765 |
def _apply_limit_abs_unit(x, lim, unit):
"""Return one limit with applied unit(abs(x)). See get_limits."""
if unit is None:
return lim
unit = unit.lower()
if unit == 'near':
return lim * np.nanmin(np.abs(x))
if unit == 'far':
return lim * np.nanmax(np.abs(x))
elif unit == 'median':
return lim * np.nanmedian(np.abs(x))
elif unit == 'mean':
return lim * np.nanmean(np.abs(x))
else:
raise ValueError("Unknown unit %s"%unit) | e3c77192b90b04b4c488ca8bac41f79024517a6b | 3,658,766 |
def load_fits(name):
""" Open a fits file image
Inputs:
name: name of the .fits file (str).
Output:
image:
"""
while True:
try:
file = fits.open(name)
image = file.copy()
return image, name
except FileNotFoundError:
print(f"File {name} not found")
name = input('Please enter a different file name: ') | 24a348239e89cc9e565238e9f124875090ffe92b | 3,658,767 |
import os
import subprocess
import json
def run_flow(command, contents):
"""Run Flow command on a given contents."""
read, write = os.pipe()
os.write(write, str.encode(contents))
os.close(write)
try:
output = subprocess.check_output(
command, stderr=subprocess.STDOUT, stdin=read
)
decoded_output = output.decode("utf-8")
clean_output = decoded_output[decoded_output.find('{"') :]
result = json.loads(clean_output)
os.close(read)
return result
except subprocess.CalledProcessError as err:
raise err | 5621c321d0fb35518aabfb04f0f1b088be2bfa79 | 3,658,768 |
def cleanup():
"""Clean up resoruces in use by implementation.
Clean up any resources that have been allocated by the RPC implementation.
This is typically open connections to a messaging service. This function
would get called before an application using this API exits to allow
connections to get torn down cleanly.
:returns: None
"""
return _get_impl().cleanup() | 984d2c3b297c47c1ffaec43302cfb741cfe369e4 | 3,658,769 |
def social_bonus_count(user, count):
"""Returns True if the number of social bonus the user received equals to count."""
return user.actionmember_set.filter(social_bonus_awarded=True).count() >= count | b2469833f315410df266cd0a9b36933edb1f9ac6 | 3,658,770 |
def del_category_tag_lib(self,c_uuid,t_uuid):
"""04删除便签或分类"""
if c_uuid:
category = Category.by_uuid(c_uuid)
if category is None:
flash(self, '分类不存在', 'error')
return {'status':False}
if category.articles:
flash(self,'分类下面有文章,请先删除文章','error')
return {'status': False}
self.db.delete(category)
self.db.commit()
flash(self, '分类删除成功', 'success')
return {'status':True}
if t_uuid:
tag = Tag.by_uuid(t_uuid)
if tag is None:
flash(self, '标签不存在', 'error')
return {'status':False}
if tag.articles:
flash(self, '标签下面有文章,请先删除文章', 'error')
return {'status': False}
self.db.delete(tag)
self.db.commit()
flash(self, '标签删除成功', 'success')
return {'status':True}
flash(self, '请输入标签或分类', 'error')
return {'status': False} | db915fe29943d9bb63122d73d59a052715798818 | 3,658,771 |
import math
def get_distance_metres(aLocation1, aLocation2):
"""
Returns the ground distance in metres between two `LocationGlobal` or `LocationGlobalRelative` objects.
This method is an approximation, and will not be accurate over large distances and close to the
earth's poles. It comes from the ArduPilot test code:
https://github.com/diydrones/ardupilot/blob/master/Tools/autotest/common.py
"""
dlat = aLocation2.lat - aLocation1.lat
dlong = aLocation2.lon - aLocation1.lon
return math.sqrt((dlat*dlat) + (dlong*dlong)) * 1.113195e5 | 57a56fac2d0a3a83083b769b5f896cb82d55dc56 | 3,658,772 |
import types
def pd_series_overload(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False):
"""
Intel Scalable Dataframe Compiler User Guide
********************************************
Pandas API: pandas.Series
Limitations
-----------
- Parameters ``dtype`` and ``copy`` are currently unsupported.
- Types iterable and dict as ``data`` parameter are currently unsupported.
- Categorical types (i.e. 'category' and ``CategoricalDtype``) are supported in ``dtype``
only if they are provided as constants in jitted code.
Examples
--------
Create Series with data [1, 2, 3] and index ['A', 'B', 'C'].
>>> pd.Series([1, 2, 3], ['A', 'B', 'C'])
Create Series with categorical data:
>>> pd.Series([1, 2, 3], dtype='category')
>>> pd.Series([1, 2, 3], dtype=CategoricalDtype([1, 2, 3]))
.. seealso::
:ref:`DataFrame <pandas.DataFrame>`
DataFrame constructor.
"""
is_index_none = isinstance(index, types.NoneType) or index is None
if is_categoricaldtype(dtype):
return _Series_category(data, index, dtype, name, copy, fastpath)
def hpat_pandas_series_ctor_impl(data=None, index=None, dtype=None, name=None, copy=False, fastpath=False):
'''' use binop here as otherwise Numba's dead branch pruning doesn't work
TODO: replace with 'if not is_index_none' when resolved '''
if is_index_none == False: # noqa
fix_index = sdc.hiframes.api.fix_df_array(index)
else:
fix_index = index
return sdc.hiframes.api.init_series(sdc.hiframes.api.fix_df_array(data), fix_index, name)
return hpat_pandas_series_ctor_impl | bc5302cbbb30215d8257ad44ee60a5990948f94a | 3,658,773 |
import copy
def get_export_summary(results):
"""Prints to screen the exporting results of example programs.
Args:
results - results of the compilation stage. which is the output of and export_repos()
Returns: Numbers of failed results
"""
pass_table = PrettyTable()
pass_table.field_names = ["EXAMPLE NAME", "TARGET", "IDE", "EXPORT RESULT", "BUILD RESULT"]
pass_table.align["EXAMPLE NAME"] = "l"
fail_table = copy.deepcopy(pass_table)
failure_counter = 0
for exp, status in list(results.items()):
for summary in status[2]:
pass_table.add_row([summary["name"], summary["target"], summary["ide"], "PASSED", "PASSED"])
for summary in status[3]:
fail_table.add_row([summary["name"], summary["target"], summary["ide"], "FAILED", ""])
failure_counter+=1
for summary in status[4]:
fail_table.add_row([summary["name"], summary["target"], summary["ide"], "PASSED", "FAILED"])
failure_counter+=1
for summary in status[5]:
pass_table.add_row([summary["name"], summary["target"], summary["ide"], "PASSED", "SKIPPED"])
print("\n\nPassed Example Exporting:")
print(pass_table)
if (failure_counter > 0):
print("\n\nFailed Example Exporting:")
print(fail_table)
print("Number of failures = %d" % failure_counter)
return failure_counter | 0f68e8da955a73c401536f83e18faa223d603d15 | 3,658,774 |
import numpy
def _misfitfunc(data, predicted):
"""
Calculate the total data misfit function between the observed and predicted
data.
"""
result = 0.
for d, p, in zip(data, predicted):
residuals = d.observed - p
result += sqrt(numpy.dot(d.weights*residuals, residuals))/d.norm
return result | c21fb4c8d68a2abe20ca155e5776124c69ce2eff | 3,658,775 |
def stream_doi(app, doi):
"""Returns tuple of URL string and a urlopen() return value."""
apikey = app.cfg.get_or_die('api-keys', 'crossref')
url = ('http://crossref.org/openurl/?id=%s&noredirect=true&pid=%s&'
'format=unixref' % (wu.urlquote(doi), wu.urlquote(apikey)))
return url, wu.urlopen(url) | 7c3569c4492b52c68ed13bcaac9dae0b6805bdb6 | 3,658,776 |
from typing import Optional
import getpass
from datetime import datetime
import json
def do_evaluation(
*,
input_path,
training_path: Optional[str] = None,
testing_path: Optional[str] = None,
method,
prediction_task,
dimensions: int = 300,
number_walks: int = 8,
walk_length: int = 8,
window_size: int = 4,
p: float = 1.5,
q: float = 2.1,
alpha: float = 0.1,
beta: float = 4,
epochs: int = 5,
kstep: int = 4,
order: int = 3,
embeddings_path: Optional[str] = None,
predictive_model_path: Optional[str] = None,
training_model_path: Optional[str] = None,
evaluation_file: Optional[str] = None,
classifier_type: Optional[str] = None,
weighted: bool = False,
labels_file: Optional[str] = None,
):
"""Train and evaluate an NRL model."""
if prediction_task == 'link_prediction':
node_list = None
labels = None
graph, graph_train, testing_pos_edges, train_graph_filename = create_graphs(
input_path=input_path,
training_path=training_path,
testing_path=testing_path,
weighted=weighted,
)
else:
if not labels_file:
raise ValueError("No input label file. Exit.")
node_list, labels = read_node_labels(labels_file)
train_graph_filename = input_path
graph, graph_train, testing_pos_edges = None, None, None
model = embedding_training(
train_graph_filename=train_graph_filename,
method=method,
dimensions=dimensions,
number_walks=number_walks,
walk_length=walk_length,
window_size=window_size,
p=p,
q=q,
alpha=alpha,
beta=beta,
epochs=epochs,
kstep=kstep,
order=order,
weighted=weighted,
)
if training_model_path is not None:
model.save_model(training_model_path)
if embeddings_path is not None:
model.save_embeddings(embeddings_path)
if method == 'LINE':
embeddings = model.get_embeddings_train()
else:
embeddings = model.get_embeddings()
_results = dict(
input=input_path,
method=method,
dimension=dimensions,
user=getpass.getuser(),
date=datetime.datetime.now().strftime('%Y-%m-%d-%H%M%S'),
)
if prediction_task == 'link_prediction':
auc_roc, auc_pr, accuracy, f1, mcc = do_link_prediction(
embeddings=embeddings,
original_graph=graph,
train_graph=graph_train,
test_pos_edges=testing_pos_edges,
save_model=predictive_model_path,
classifier_type=classifier_type,
)
_results['results'] = dict(
auc_roc=auc_roc,
auc_pr=auc_pr,
accuracy=accuracy,
f1=f1,
mcc=mcc,
)
else:
accuracy, macro_f1, micro_f1, mcc = do_node_classification(
embeddings=embeddings,
node_list=node_list,
labels=labels,
save_model=predictive_model_path,
classifier_type=classifier_type,
)
_results['results'] = dict(
accuracy=accuracy,
macro_f1=macro_f1,
micro_f1=micro_f1,
mcc=mcc,
)
if evaluation_file is not None:
json.dump(_results, evaluation_file, sort_keys=True, indent=2)
return _results | ab5939065d9cf70c6e5ddba8530f91cb2577a31c | 3,658,777 |
import re
def test_structure_fatal_deformities(good_structure, deformity):
"""Make specific checks upon performing single invalidating deformations
of the data of a good structure.
"""
if deformity is None:
return StructureResource(**good_structure)
deformity, message = deformity
good_structure["attributes"].update(deformity)
with pytest.raises(ValidationError, match=fr".*{re.escape(message)}.*"):
StructureResource(**good_structure) | 28acc95fb29564ddbf844de70704e31212e59b9f | 3,658,778 |
def edit_user():
""" 返回待编辑用户信息 """
data = request.json
user_id = data.get('id')
_edit = User.query.filter_by(id=user_id).first()
_data = {'account': _edit.account, 'name': _edit.name, 'role_id': _edit.role_id}
return jsonify({'data': _data, 'status': 1}) | 7423eb2342dd135a219bbb6f34ba7f82740b49d0 | 3,658,779 |
def transactions(request):
"""See all transactions that have been contained in blocks."""
vote_list = Vote.objects.all().order_by('timestamp')
paginator = Paginator(vote_list, 100, orphans=20, allow_empty_first_page=True)
page = request.GET.get('page')
votes = paginator.get_page(page)
hashes = [SHA3_256.new(str(v).encode('utf-8')).hexdigest() for v in votes]
# This happens if you don't use foreign key
block_hashes = []
for i in range(0, len(votes)):
try:
b = Block.objects.get(id=votes[i].block_id)
h = b.h
except:
h = 404
block_hashes.append(h)
# zip the three iters
votes_pg = votes # for pagination
votes = zip(votes, hashes, block_hashes)
# Calculate the voting result of 3 cands, the ugly way
result = []
for i in range(0, 3):
try:
r = Vote.objects.filter(vote=i+1).count()
except:
r = 0
result.append(r)
context = {
'votes': votes,
'result': result,
'votes_pg': votes_pg,
}
return render(request, 'simulation/transactions.html', context) | 7ed0d4a8b997a41112eccfc67a19784283e65fd8 | 3,658,780 |
import pandas
def elections_vote_places_geo(source="xd", folder=".", fLOG=noLOG):
"""
Retrieves data vote places (bureaux de vote in French)
with geocodes.
@param source should be None unless you want to use the backup plan ("xd")
@param folder where to download
@param fLOG logging function
@return list of dataframe
"""
if source is None:
raise NotImplementedError("use source='xd'")
url = source
file = "bureauxvotegeo.zip"
data = download_data(file, website=url, whereTo=folder, fLOG=fLOG)
for d in data:
if d.endswith(".txt"):
df = pandas.read_csv(d, sep="\t", encoding="utf-8")
return df
raise DataNotAvailableError(
"Unable to find any csv file in '{0}'".format(file)) | b81abbeeed1968e01477cb71897a373a113ffafb | 3,658,781 |
from typing import Optional
def erfc(
x: oneflow._oneflow_internal.BlobDesc, name: Optional[str] = None
) -> oneflow._oneflow_internal.BlobDesc:
"""This operator computes the :math:`1-erf(x)`, for more details of `erf` function
please refer to `math.erf`.
Args:
x (oneflow._oneflow_internal.BlobDesc): A Blob
name (Optional[str], optional): The name for the operation. Defaults to None.
Returns:
oneflow._oneflow_internal.BlobDesc: The result Blob
For example:
.. code-block:: python
import oneflow.compatible.single_client as flow
import numpy as np
import oneflow.compatible.single_client.typing as tp
@flow.global_function()
def erfc_Job(x: tp.Numpy.Placeholder((3,))
) -> tp.Numpy:
return flow.math.erfc(x)
x = np.array([1, 2, 3]).astype(np.float32)
out = erfc_Job(x)
# out [1.5729921e-01 4.6777353e-03 2.2090495e-05]
"""
return build_unary_elemwise_math_op("erfc", x, name) | 0fd6f01b0d6dbbdf7449a5a7dc2ac9ee3f0bce0e | 3,658,782 |
from typing import Union
from typing import Iterable
from typing import Optional
from typing import List
from typing import Dict
from typing import Any
def ner_manual_tokenizers_bert(
dataset: str,
source: Union[str, Iterable[dict]],
loader: Optional[str] = None,
label: Optional[List[str]] = None,
tokenizer_vocab: Optional[str] = None,
lowercase: bool = False,
hide_special: bool = False,
hide_wp_prefix: bool = False,
) -> Dict[str, Any]:
"""Example recipe that shows how to use model-specific tokenizers like the
BERT word piece tokenizer to preprocess your incoming text for fast and
efficient NER annotation and to make sure that all annotations you collect
always map to tokens and can be used to train and fine-tune your model
(even if the tokenization isn't that intuitive, because word pieces). The
selection automatically snaps to the token boundaries and you can double-click
single tokens to select them.
Setting "honor_token_whitespace": true will ensure that whitespace between
tokens is only shown if whitespace is present in the original text. This
keeps the text readable.
Requires Prodigy v1.10+ and usese the HuggingFace tokenizers library."""
stream = get_stream(source, loader=loader, input_key="text")
# You can replace this with other tokenizers if needed
tokenizer = BertWordPieceTokenizer(tokenizer_vocab, lowercase=lowercase)
sep_token = tokenizer._parameters.get("sep_token")
cls_token = tokenizer._parameters.get("cls_token")
special_tokens = (sep_token, cls_token)
wp_prefix = tokenizer._parameters.get("wordpieces_prefix")
def add_tokens(stream):
for eg in stream:
tokens = tokenizer.encode(eg["text"])
eg_tokens = []
idx = 0
for (text, (start, end), tid) in zip(
tokens.tokens, tokens.offsets, tokens.ids
):
# If we don't want to see special tokens, don't add them
if hide_special and text in special_tokens:
continue
# If we want to strip out word piece prefix, remove it from text
if hide_wp_prefix and wp_prefix is not None:
if text.startswith(wp_prefix):
text = text[len(wp_prefix) :]
token = {
"text": text,
"id": idx,
"start": start,
"end": end,
# This is the encoded ID returned by the tokenizer
"tokenizer_id": tid,
# Don't allow selecting spacial SEP/CLS tokens
"disabled": text in special_tokens,
}
eg_tokens.append(token)
idx += 1
for i, token in enumerate(eg_tokens):
# If the next start offset != the current end offset, we
# assume there's whitespace in between
if i < len(eg_tokens) - 1 and token["text"] not in special_tokens:
next_token = eg_tokens[i + 1]
token["ws"] = (
next_token["start"] > token["end"]
or next_token["text"] in special_tokens
)
else:
token["ws"] = True
eg["tokens"] = eg_tokens
yield eg
stream = add_tokens(stream)
return {
"dataset": dataset,
"stream": stream,
"view_id": "ner_manual",
"config": {
"honor_token_whitespace": True,
"labels": label,
"exclude_by": "input",
"force_stream_order": True,
},
} | 982ddc4ab2e574870a5790dc37854ff5ffec648a | 3,658,783 |
def test_nested_simple_condition() -> None:
"""
Iterates and maps expressions over a complex Condition:
(A=B OR A=B) AND (A=B OR A=B)
"""
c1 = Column(None, "t1", "c1")
c2 = Column(None, "t1", "c2")
co1 = binary_condition(None, ConditionFunctions.EQ, c1, c2)
c3 = Column(None, "t1", "c1")
c4 = Column(None, "t1", "c2")
co2 = binary_condition(None, ConditionFunctions.EQ, c3, c4)
or1 = binary_condition(None, BooleanFunctions.OR, co1, co2)
c5 = Column(None, "t1", "c1")
c6 = Column(None, "t1", "c2")
co4 = binary_condition(None, ConditionFunctions.EQ, c5, c6)
c7 = Column(None, "t1", "c1")
c8 = Column(None, "t1", "c2")
co5 = binary_condition(None, ConditionFunctions.EQ, c7, c8)
or2 = binary_condition(None, BooleanFunctions.OR, co4, co5)
and1 = binary_condition(None, BooleanFunctions.AND, or1, or2)
ret = list(and1)
expected = [c1, c2, co1, c3, c4, co2, or1, c5, c6, co4, c7, c8, co5, or2, and1]
assert ret == expected
cX = Column(None, "t1", "cX")
co1_b = binary_condition(None, ConditionFunctions.EQ, c1, cX)
co2_b = binary_condition(None, ConditionFunctions.EQ, c3, cX)
or1_b = binary_condition(None, BooleanFunctions.OR, co1_b, co2_b)
co4_b = binary_condition(None, ConditionFunctions.EQ, c5, cX)
co5_b = binary_condition(None, ConditionFunctions.EQ, c7, cX)
or2_b = binary_condition(None, BooleanFunctions.OR, co4_b, co5_b)
and1_b = binary_condition(None, BooleanFunctions.AND, or1_b, or2_b)
def replace_col(e: Expression) -> Expression:
if isinstance(e, Column) and e.column_name == "c2":
return cX
return e
and1 = and1.transform(replace_col)
ret = list(and1)
expected = [
c1,
cX,
co1_b,
c3,
cX,
co2_b,
or1_b,
c5,
cX,
co4_b,
c7,
cX,
co5_b,
or2_b,
and1_b,
]
assert ret == expected | f047f916f3ace9142e8940a39fd47d36d43dc108 | 3,658,784 |
import functools
def _deep_setattr(obj, key, val):
"""
Set an attribute `key` on the object. If any of the prefix attributes do
not exist, they are set to :class:`~pyro.nn.PyroModule`.
"""
def _getattr(obj, attr):
obj_next = getattr(obj, attr, None)
if obj_next is not None:
return obj_next
setattr(obj, attr, PyroModule())
return getattr(obj, attr)
lpart, _, rpart = key.rpartition(".")
# Recursive getattr while setting any prefix attributes to PyroModule
if lpart:
obj = functools.reduce(_getattr, [obj] + lpart.split("."))
setattr(obj, rpart, val) | a28b01484de71dc486c73fe9ad01238675b15a04 | 3,658,785 |
def inverse_max_dcg(labels,
gain_fn=lambda labels: tf.pow(2.0, labels) - 1.,
rank_discount_fn=lambda rank: 1. / tf.math.log1p(rank),
topn=None):
"""Computes the inverse of max DCG.
Args:
labels: A `Tensor` with shape [batch_size, list_size]. Each value is the
graded relevance of the corresponding item.
gain_fn: A gain function. By default this is set to: 2^label - 1.
rank_discount_fn: A discount function. By default this is set to:
1/log(1+rank).
topn: An integer as the cutoff of examples in the sorted list.
Returns:
A `Tensor` with shape [batch_size, 1].
"""
ideal_sorted_labels, = sort_by_scores(labels, [labels], topn=topn)
rank = tf.range(tf.shape(input=ideal_sorted_labels)[1]) + 1
discounted_gain = gain_fn(ideal_sorted_labels) * rank_discount_fn(
tf.cast(rank, dtype=tf.float32))
discounted_gain = tf.reduce_sum(
input_tensor=discounted_gain, axis=1, keepdims=True)
return tf.compat.v1.where(
tf.greater(discounted_gain, 0.), 1. / discounted_gain,
tf.zeros_like(discounted_gain)) | 60e5b05af91fbd8e51a58894f9f19a5a8f92d1b5 | 3,658,786 |
def get(url):
"""
用 GET 请求 url 并返回响应,对301进行了处理
:param url:
:return:status_code, headers, body
"""
protocol, host, port, path = parsed_url(url)
s = socket_by_protocol(protocol)
s.connect((host, port))
request = 'GET {} HTTP/1.1\r\nhost: {}\r\nConnection: close\r\n\r\n'.format(path, host)
encoding = 'utf-8'
s.send(request.encode(encoding))
response = response_by_socket(s)
r = response.decode(encoding)
status_code, headers, body = parsed_response(r)
if status_code == 301:
url = headers['Location']
return get(url)
else:
return status_code, headers, body | 3ef816149e8b4953e119c807726112feeacc6eed | 3,658,787 |
import re
def make_rule(frontier_pair, amr, tree, align, next_index):
"""
Creates a new rule with the given parts, and collapses these parts in the
original graph and tree.
"""
constituent, amr_fragment = frontier_pair
outside_edges = [e for e in amr.triples() if e not in amr_fragment.triples()]
root_label = amr_fragment.root_edges()[0][1]
if isinstance(root_label, NonterminalLabel):
symbol = root_label.label
m = re.match(r'(.+)_(.+)_(\d+)', symbol)
role = m.group(1)
else:
if ':' in root_label:
role, concept = root_label.split(':')
else:
role = root_label
external_nodes = amr.find_external_nodes(amr_fragment)
if len(external_nodes) == 0:
external_nodes = [amr_fragment.find_leaves()[0]]
# WARNING: destructive. Unfortunately we can't make the change any earlier.
# TODO why?
amr_fragment.external_nodes = external_nodes
symbol = '%s_%s_%d' % (role, constituent.node, len(external_nodes))
label = NonterminalLabel(symbol, next_index)
new_triple = (amr_fragment.roots[0], label, tuple(external_nodes))
new_amr = amr.collapse_fragment(amr_fragment, label)
assert new_triple in new_amr.triples()
new_tree = collapse_constituent(tree, constituent, label)
new_alignments = collapse_alignments(align, amr_fragment, new_triple)
rule = Rule(0, symbol, 1, amr_fragment, constituent, original_index =
next_index)
return rule, new_amr, new_tree, new_alignments, next_index+1 | 4b7cd9af8534688e8c30b88f4e5fa4da3c85f180 | 3,658,788 |
def NotEqual(data1, data2, target=utils.CCE):
"""
check whether data1 notequals to data2.
Args:
data1 (tvm.tensor.Tensor): Tensor.
data2 (tvm.tensor.Tensor): Tensor.
Returns:
tvm.tensor.Tensor. If data1 notequal to data2 return True, else return False.
Supported Platforms:
'Ascend', 'GPU', 'CPU'
"""
utils.check_supported_target(target)
if target == utils.CCE:
return _not_equal_ascend(data1, data2)
else:
return _not_equal(data1, data2) | 88be9ea40900644a61dd3f37c0a05f9fa8c3eb76 | 3,658,789 |
def read_labels(labels_path):
"""Reads list of labels from a file"""
with open(labels_path, 'rb') as f:
return [w.strip() for w in f.readlines()] | 3ebc61c76dd1ae83b73aa8b77584661c08a51321 | 3,658,790 |
import torch
def targeted_neurogenesis(weights, n_replace, targeted_portion, is_training):
"""
Takes a weight matrix and applied targetted dropout based on weight
importance (From Gomez et al. 2019; https://for.ai/blog/targeted-dropout/)
Args:
weights - the input by ouput matrix of weights
dropout_rate - float (0,1), the proprotion of targeted neurons to dropout
targeted_portion - the proportion of neurons/weights to consider 'unimportant'
from which dropout_rate targets from
is_training - bool, whether model is training, or being evaluated
"""
# get the input vs output size
weights_shape = weights.shape
# l1-norm of neurons based on input weights to sort by importance
importance = torch.norm(weights, p=1, dim=1)
# chose number of indices to remove of the output neurons
idx = round(targeted_portion * weights_shape[0]) - 1
# when sorting the abs valued weights largest to smallest
# take the index of the targeted portion to get a threshold
importance_threshold = torch.sort(importance)[0][-idx] # TODO -idx
# only weights below threshold will be set to None
unimportance_mask = importance > importance_threshold #TODO > change < regular
# during evaluation, only use important weights, without dropout threshold
if not is_training:
weights = torch.reshape(weights, weights_shape)
return weights
# difference between dropout_rate and unimportance_mask (i.e. threshold)
idx_drop = np.random.choice(np.where(unimportance_mask)[0], size=n_replace, replace=False)
dropout_mask = torch.zeros_like(unimportance_mask)
dropout_mask[idx_drop] = 1
# delete dropped out units
weights = weights[~dropout_mask]
return weights, dropout_mask | 4b605ddcd6ef0f13822d2c7050da588b3d1d0b72 | 3,658,791 |
def calc_distance_two_points(long_from, lat_from, long_to, lat_to):
"""Calculate distance between two points
Parameters
----------
long_from : float
Longitute coordinate from point
lat_from : float
Latitute coordinate from point
long_to : float
Longitute coordinate to point
lat_to : float
Latitue coordinate to point
Return
------
distance : float
Distance
"""
distance_in_km = haversine(
(long_from, lat_from),
(long_to, lat_to),
miles=False)
return distance_in_km | 0c35c22458db165684242389470248632f2e1edb | 3,658,792 |
from typing import Counter
def modified_precision(reference_max_counts, hypothesis, n):
"""
Calculate modified ngram precision.
The normal precision method may lead to some wrong translations with
high-precision, e.g., the translation, in which a word of reference
repeats several times, has very high precision.
This function only returns the Fraction object that contains the numerator
and denominator necessary to calculate the corpus-level precision.
To calculate the modified precision for a single pair of hypothesis and
references, cast the Fraction object into a float.
The famous "the the the ... " example shows that you can get BLEU precision
by duplicating high frequency words.
>>> reference1 = 'the cat is on the mat'.split()
>>> reference2 = 'there is a cat on the mat'.split()
>>> hypothesis1 = 'the the the the the the the'.split()
>>> references = [reference1, reference2]
>>> float(modified_precision(references, hypothesis1, n=1)) # doctest: +ELLIPSIS
0.2857...
In the modified n-gram precision, a reference word will be considered
exhausted after a matching hypothesis word is identified, e.g.
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'military', 'will',
... 'forever', 'heed', 'Party', 'commands']
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'military', 'forces', 'always',
... 'being', 'under', 'the', 'command', 'of', 'the',
... 'Party']
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'army', 'always', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'party']
>>> hypothesis = 'of the'.split()
>>> references = [reference1, reference2, reference3]
>>> float(modified_precision(references, hypothesis, n=1))
1.0
>>> float(modified_precision(references, hypothesis, n=2))
1.0
An example of a normal machine translation hypothesis:
>>> hypothesis1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',
... 'ensures', 'that', 'the', 'military', 'always',
... 'obeys', 'the', 'commands', 'of', 'the', 'party']
>>> hypothesis2 = ['It', 'is', 'to', 'insure', 'the', 'troops',
... 'forever', 'hearing', 'the', 'activity', 'guidebook',
... 'that', 'party', 'direct']
>>> reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',
... 'ensures', 'that', 'the', 'military', 'will',
... 'forever', 'heed', 'Party', 'commands']
>>> reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which',
... 'guarantees', 'the', 'military', 'forces', 'always',
... 'being', 'under', 'the', 'command', 'of', 'the',
... 'Party']
>>> reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',
... 'army', 'always', 'to', 'heed', 'the', 'directions',
... 'of', 'the', 'party']
>>> references = [reference1, reference2, reference3]
>>> float(modified_precision(references, hypothesis1, n=1)) # doctest: +ELLIPSIS
0.9444...
>>> float(modified_precision(references, hypothesis2, n=1)) # doctest: +ELLIPSIS
0.5714...
>>> float(modified_precision(references, hypothesis1, n=2)) # doctest: +ELLIPSIS
0.5882352941176471
>>> float(modified_precision(references, hypothesis2, n=2)) # doctest: +ELLIPSIS
0.07692...
:param references: A list of reference translations.
:type references: list(list(str))
:param hypothesis: A hypothesis translation.
:type hypothesis: list(str)
:param n: The ngram order.
:type n: int
:return: BLEU's modified precision for the nth order ngram.
:rtype: Fraction
"""
# Extracts all ngrams in hypothesis
# Set an empty Counter if hypothesis is empty.
counts = Counter(ngrams(hypothesis, n)) if len(hypothesis) >= n else Counter()
# Extract a union of references' counts.
# max_counts = reduce(or_, [Counter(ngrams(ref, n)) for ref in references])
max_counts = reference_max_counts[n - 1]
# Assigns the intersection between hypothesis and references' counts.
clipped_counts = {
ngram: min(count, max_counts.get(ngram, 0)) for ngram, count in counts.items()
}
numerator = sum(clipped_counts.values())
# Ensures that denominator is minimum 1 to avoid ZeroDivisionError.
# Usually this happens when the ngram order is > len(reference).
denominator = max(1, sum(counts.values()))
return Fraction(numerator, denominator, _normalize=False) | cbaf2ca391a6b0ac8bfcf9e2f85aba83f4b585d0 | 3,658,793 |
def bin_spectrum(bin_width, wavelength, doppler_shift, flux, flux_uncertainty,
final_uncertainty='combine'):
"""
Args:
wavelength:
doppler_shift:
flux:
flux_uncertainty:
Returns:
"""
bw = bin_width
wv = wavelength
ds = doppler_shift
f = flux
u = flux_uncertainty
v_bins = np.arange(min(ds), max(ds) + bw, bw)
binned_data, edges, inds = binned_statistic(ds, [wv, ds, f], bins=v_bins,
statistic='mean')
wv_bin = binned_data[0]
v_bin = binned_data[1]
f_bin = binned_data[2]
# Combine uncertainties assuming Gaussian regime
if final_uncertainty == 'combine':
u_bin, edges, inds = binned_statistic(ds, u ** 2, bins=v_bins,
statistic='sum')
u_count, edges, inds = binned_statistic(ds, u ** 2, bins=v_bins,
statistic='count')
u_bin = u_bin ** 0.5 / u_count ** 0.5
elif final_uncertainty == 'poisson':
confidence_interval = poisson_conf_interval(f_bin)
u_bin = np.mean(confidence_interval, axis=0)
else:
raise ValueError('This final uncertainty type is not implemented.')
return wv_bin, v_bin, f_bin, u_bin | 3c71977ae845161156ed95b42f68d7de65b80f66 | 3,658,794 |
def scrub(old_fs: Vfs, new_fs: Vfs) -> Vfs:
"""Try to eliminate files which were previously installed but are no longer used."""
old_fs = old_fs.copy()
new_fs = new_fs.copy()
# Look for files in the old log which are no longer present in the new log
for txn in old_fs._log:
if txn[0] == "link" and txn not in new_fs._log:
new_fs.unlink(txn[2])
elif txn[0] == "mkdir" and txn not in new_fs._log:
new_fs.unlink(txn[1])
return new_fs | c1cdfad6c658e481b05658d3041458ab6fd3419c | 3,658,795 |
def get_filename(row):
"""
Assembles the name of the feature file.
Parameters
----------
row : pandas.Series
A row fom the sequence dataframe. Must have the following index values:
"sample_name", "inj_number", "batch_name", "acquisition_date_and_time".
Returns
-------
filename : str
The filename of the feature file.
"""
acquisition = row.acquisition_date_and_time
if pd.isna(acquisition):
acquisition = "1900-01-01_000000"
filename = (
"_".join(
[
str(row.sample_name),
str(row.inj_number),
str(row.batch_name),
acquisition,
]
)
+ ".featureXML"
)
return filename | 68624971527442da110734043bdbaa1c68dc4875 | 3,658,796 |
def create_plotly_trace(data_x, data_y, namexy, chosen_mode='lines', use_gl = True, swap_xy = False):
"""
Создание одного trace по данным
:param data_x: данные для оси x
:param data_y: данные для оси y
:param namexy: название для trace
:param chosen_mode: настройка отображения 'lines', 'markers'
:return: один trace
"""
if swap_xy:
data_x, data_y = data_y, data_x
hovertemplate = namexy + ": %{x}<extra></extra>"
else:
hovertemplate = namexy + ": %{y}<extra></extra>"
if use_gl == True:
one_trace = go.Scattergl(
x=data_x,
y=data_y,
name=namexy,
mode=chosen_mode,
hovertemplate=hovertemplate
)
else:
one_trace = go.Scatter(
x=data_x,
y=data_y,
name=namexy,
mode=chosen_mode,
hovertemplate=hovertemplate
)
return one_trace | dd90d370c27968053bfaf98f509868d959416d39 | 3,658,797 |
import yaml
def read_metadata() -> dict:
"""Reads and returns raw metadata."""
with open(metadata_path().resolve(), "r") as fd:
return yaml.safe_load(fd) | 0eafc0a722ac5cae69407a7e76d5bf62b7541b69 | 3,658,798 |
def plot_plaid_contrast_tuning(bf_indices, base_contrasts, mask_contrasts, base_orientations,
mask_orientations, test_responses):
"""
Plot responses to orthogonal plaid stimulus at different base and mask contrasts
Inputs:
bf_indices: [list or array] of neuron indices to use
all indices should be less than test_responsees.shape[0]
base_contrasts: [list or array] of base contrasts.
mask_contrasts: [list or array] of mask contrasts.
each plot will have one line per mask_contrast
base_orientations: [list or array] of optimal base orientations for all neurons
should be a 1-D array with size = test_responses.shape[0]
mask_orientations: [list or array] of mask orientation values
function will compute the plaid response for orthogonal orientations
test_responses: [list or array] of responses to the base+mask stimulus
should be shape [num_neurons, num_base_contrasts, num_mask_contrasts, num_orientations]
"""
bf_indices = np.asarray(bf_indices)
mask_orientations = np.asarray(mask_orientations)
mask_contrasts = np.asarray(mask_contrasts)
num_bfs = bf_indices.size
num_orientations = mask_orientations.size
num_contrasts = mask_contrasts.size
# index of value in mask_orientations that is closest to orthogonal to base_orientations[bf_idx]
orthogonal_orientations = [base_orientations[bf_indices[bf_idx]]-(np.pi/2)
for bf_idx in range(num_bfs)]
orthogonal_orientations = np.asarray([val + np.pi if val < 0 else val
for val in orthogonal_orientations])
mask_or_idx = [np.argmin(orthogonal_orientations[bf_idx] - mask_orientations)
for bf_idx in range(num_bfs)]
cmap = plt.get_cmap('Greys')
cNorm = matplotlib.colors.Normalize(vmin=0.0, vmax=1.0)
scalarMap = matplotlib.cm.ScalarMappable(norm=cNorm, cmap=cmap)
num_plots_y = np.int32(np.ceil(np.sqrt(num_bfs)))+1
num_plots_x = np.int32(np.ceil(np.sqrt(num_bfs)))
gs_widths = [1.0,]*num_plots_x
gs_heights = [1.0,]*num_plots_y
gs = gridspec.GridSpec(num_plots_y, num_plots_x, wspace=0.5, hspace=0.7,
width_ratios=gs_widths, height_ratios=gs_heights)
fig = plt.figure(figsize=(32,32)) #TODO: Adjust fig size according to num plots
bf_idx = 0
for plot_id in np.ndindex((num_plots_y, num_plots_x)):
(y_id, x_id) = plot_id
if y_id == 0 and x_id == 0:
ax = fig.add_subplot(gs[plot_id])
#ax.set_ylabel("Normalized Activation", fontsize=16)
#ax.set_xlabel("Base Contrast", fontsize=16)
#ax.set_ylim([0.0, 1.0])
ax00 = ax
else:
ax = fig.add_subplot(gs[plot_id], sharey=ax00)
if bf_idx < num_bfs:
for co_idx, mask_contrast in enumerate(mask_contrasts):
# vary base contrast for fixed mask contrast & orthogonal mask
activity = test_responses[bf_indices[bf_idx], :, co_idx, mask_or_idx[bf_idx]]
color_val = scalarMap.to_rgba(mask_contrast)
ax.plot(base_contrasts, activity, linestyle="-", color=color_val)
ax.scatter(base_contrasts, activity, s=4, c=color_val, label=str(mask_contrast))
ax.set_xticks([base_contrasts[0], base_contrasts[-1]])
bf_idx += 1
else:
ax = clear_axis(ax, spines="none")
plt.show()
return fig | 7521e7c5208f6fa9fe12772faa09106b31d1a96b | 3,658,799 |
Subsets and Splits