content
stringlengths 35
762k
| sha1
stringlengths 40
40
| id
int64 0
3.66M
|
---|---|---|
def new_token():
"""
Generate an access token for the user.
This endpoint requires basic auth with nickname and password.
"""
return jsonify({'token': generate_token(g.current_user['id'])}) | 07497cebfd29a133ab986c86b72b603975378ed8 | 3,658,800 |
def get_room_info(room_real_id: int, verify: utils.Verify = None, cookies = None):
"""
获取直播间信息(标题,简介等)
:param room_real_id: 真实房间ID
:param verify:
:return:
"""
if verify is None:
verify = utils.Verify()
api = API["live"]["info"]["room_info"]
if cookies is None:
resp = utils.get(api["url"], {"room_id": room_real_id}, cookies=verify.get_cookies())
else:
resp = utils.get(api["url"], {"room_id": room_real_id}, cookies=cookies)
return resp | a6aa07886034a5f8c539026f8afacaa149860252 | 3,658,801 |
def parse_raw(setup, id=None, first_line_is_header=(-1,0,1)):
"""Used in conjunction with lazy_import and parse_setup in order to make alterations
before parsing.
Parameters
----------
setup : dict
Result of h2o.parse_setup
id : str, optional
An id for the frame.
first_line_is_header : int, optional
-1,0,1 if the first line is to be used as the header
Returns
-------
H2OFrame
"""
if id: setup["destination_frame"] = _quoted(id).replace("%",".").replace("&",".")
if first_line_is_header != (-1,0,1):
if first_line_is_header not in (-1, 0, 1): raise ValueError("first_line_is_header should be -1, 0, or 1")
setup["check_header"] = first_line_is_header
fr = H2OFrame()
fr._parse_raw(setup)
return fr | 56d490eeaa28258ee668ed5efcc0f8a869acaa2b | 3,658,802 |
from datetime import datetime
def import_year(year: int = None) -> bool:
"""Downloads, extracts and imports the Losungen of a given year.
The year defaults to the next year."""
session: Session = SessionMaker()
repo = TagesLosungRepository(session)
year = datetime.date.today().year + 1 if year is None else year
losungen = repo.get_by_year(year)
session.close()
if losungen:
return True # Already imported
if download_zip(year):
extract_zip()
import_xml()
logger.info("Successfully imported Losungen for %i", year)
return True
logger.warning("Failed to download zip archive for %i", year)
return False | a0e5933178f5d18332f0b231f7a6ec43c0651714 | 3,658,803 |
import re
def isURL(url: str) -> bool:
""" Check whether a given string is a URL. """
return url is not None and re.match(urlregex, url) is not None | 6d32fee1fa374c07214d2a75cc39b868338ffa1c | 3,658,804 |
def rmse(Y_true, Y_hat):
"""
returns root mean squared error
Args:
Y_true : true outputs [N,(1)]
Y_hat : predicted outputs [N, (1)]
"""
if Y_true.ndim == 2:
Y_true = Y_true[:, 0]
if Y_hat.ndim == 2:
Y_hat = Y_hat[:, 0]
return np.sqrt(np.mean((Y_true - Y_hat)**2)) | 676d14a5058632fbf1cd40e4d60d5cfb4c46e137 | 3,658,805 |
def getAllDescWords(itemList):
"""Returns a list of "description words" for each item named in itemList."""
itemList = list(set(itemList)) # make itemList unique
descWords = []
for item in itemList:
descWords.extend(NYCitems[item][DESCWORDS])
return list(set(descWords)) | fb7ea77fac5aae3abc2e6dbcc1c3af7ac404b5c2 | 3,658,806 |
from one.api import ONE
import ibllib.atlas as atlas
from ibllib.atlas import Insertion
import atlaselectrophysiology.load_histology as hist
import numpy as np
import matplotlib.pyplot as plt
def plot_probe_trajectory_histology(
x, y, subject_ID, axc, axs,
provenance = 'Planned',
project = 'ibl_neuropixel_brainwide_01',
gr_percentile_min=0.2, rd_percentile_min=1, rd_percentile_max=99.99,
font_size = 8, label_size = 8 ):
"""Plot slices of Histology data along the insertion at [x,y] for subject ID.
Slices made in coronal and sagittal planes.
The slices through the Histology data can be made along any of the
provenances of the probe at [x,y] for subject ID - Planned,
Micro-manipulator, Histology track, Ephys aligned histology track.
axc : AxesSubplot, None
MUST pass an AxesSubplot object for plotting to! For coronal plot.
axs : AxesSubplot, None
MUST pass an AxesSubplot object for plotting to! For sagittal plot.
"""
# connect to ONE
one = ONE()
# get list of all trajectories at [x,y], for project
trajs = one.alyx.rest('trajectories', 'list', x=x, y=y, project=project)
# keeping subjs and labs for look-up later if needed..
subjs = [sess['session']['subject'] for sess in trajs]
labs = [sess['session']['lab'] for sess in trajs]
#aidx = subjs.index(atlas_ID)
sidx = subjs.index(subject_ID)
# Fetch trajectory metadata for traj:
traj = one.alyx.rest('trajectories', 'list', session=trajs[sidx]['session']['id'],
probe=trajs[sidx]['probe_name'], provenance=provenance)
if traj == []:
raise Exception("No trajectory found with provenance: " + provenance)
# get insertion object from ANY (the first) trajectory
ins = Insertion.from_dict(traj[0])
axis_labels = np.array(['ml (µm)', 'dv (µm)', 'ap (µm)'])
#fig1, ax1 = plt.subplots() # new figure and axes objects - CORONAL
#fig2, ax2 = plt.subplots() # new figure and axes objects - SAGITTAL
# set axes to local variables
ax1 = axc
ax2 = axs
lab = labs[ sidx ] # this returns index in labs where subject_ID is in subjs
hist_paths = hist.download_histology_data(subject_ID, lab)
# create the brain atlases from the data
ba_gr = atlas.AllenAtlas(hist_path=hist_paths[0]) # green histology channel autofl.
ba_rd = atlas.AllenAtlas(hist_path=hist_paths[1]) # red histology channel cm-dii
# CORONAL
# implementing tilted slice here to modify its cmap
# get tilted slice of the green and red channel brain atlases
# using the .image data as this contains the signal
gr_tslice, width, height, depth = ba_gr.tilted_slice(ins.xyz, 1, volume = ba_gr.image)
rd_tslice, width, height, depth = ba_rd.tilted_slice(ins.xyz, 1, volume = ba_rd.image)
gr_tslice_roi = gr_tslice[120:240, 150:300] # isolate large slice over thalamus for max pixel value
rd_tslice_roi = rd_tslice[120:240, 150:300]
width = width * 1e6
height = height * 1e6
depth = depth * 1e6
cmap = plt.get_cmap('bone')
# get the transfer function from y-axis to squeezed axis for second axe
ab = np.linalg.solve(np.c_[height, height * 0 + 1], depth)
height * ab[0] + ab[1]
# linearly scale the values in 2d numpy arrays to between 0-255 (8bit)
# Using gr_tslice min and gr_tslice_roi max to scale autofl.
# using rd_tslice min and percentile (99.99 default) to scale CM-DiI
gr_in = np.interp(gr_tslice, (np.percentile(gr_tslice, gr_percentile_min), gr_tslice_roi.max()), (0, 255))
rd_in = np.interp(rd_tslice, (np.percentile(rd_tslice, rd_percentile_min), np.percentile(rd_tslice, rd_percentile_max)), (0, 255))
# join together red, green, blue numpy arrays to form a RGB image ALONG A NEW DIMENSION
# NOTE need a blue component, have added a set of zeros as blue channel should be BLANK
# NOTE2: converted to unit8 bit, as pyplot imshow() method only reads this format
Z = np.stack([ rd_in.astype(dtype=np.uint8),
gr_in.astype(dtype=np.uint8),
np.zeros(np.shape(gr_tslice)).astype(dtype=np.uint8) ])
# transpose the columns to the FIRST one is LAST
# i.e the NEW DIMENSION [3] is the LAST DIMENSION
Zt = np.transpose(Z, axes=[1,2,0])
# can now add the RGB array to imshow()
ax1.imshow(Zt, interpolation='none', aspect='auto', extent=np.r_[width, height], cmap=cmap, vmin=np.min(gr_in), vmax=np.max(gr_in) )
sec_ax = ax1.secondary_yaxis('right', functions=(
lambda x: x * ab[0] + ab[1],
lambda y: (y - ab[1]) / ab[0]))
ax1.set_xlabel(axis_labels[0], fontsize=font_size)
ax1.set_ylabel(axis_labels[1], fontsize=font_size)
sec_ax.set_ylabel(axis_labels[2], fontsize=font_size)
ax1.tick_params(axis='x', labelrotation = 90)
ax1.tick_params(axis='x', labelsize = label_size)
ax1.tick_params(axis='y', labelsize = label_size)
sec_ax.tick_params(axis='y', labelsize = label_size)
# SAGITTAL
# implementing tilted slice here to modify its cmap
# get tilted slice of the green and red channel brain atlases
# using the .image data as this contains the signal
gr_tslice, width, height, depth = ba_gr.tilted_slice(ins.xyz, 0, volume = ba_gr.image)
rd_tslice, width, height, depth = ba_rd.tilted_slice(ins.xyz, 0, volume = ba_rd.image)
width = width * 1e6
height = height * 1e6
depth = depth * 1e6
cmap = plt.get_cmap('bone')
# get the transfer function from y-axis to squeezed axis for second axe
ab = np.linalg.solve(np.c_[height, height * 0 + 1], depth)
height * ab[0] + ab[1]
# linearly scale the values in 2d numpy arrays to between 0-255 (8bit)
# Using gr_tslice min and max to scale the image
# weirdly rd_in has very large min and max (problem with the original data acquisition?) so best to scale whole RGB with gr_in/1.5!
gr_in = np.interp(gr_tslice, (gr_tslice.min(), gr_tslice.max()), (0, 255))
rd_in = np.interp(rd_tslice, (gr_tslice.min(), gr_tslice.max()/1.5), (0, 255))
# join together red, green, blue numpy arrays to form a RGB image ALONG A NEW DIMENSION
# NOTE need a blue component, have added a set of zeros as blue channel should be BLANK
# NOTE2: converted to unit8 bit, as pyplot imshow() method only reads this format
Z = np.stack([ rd_in.astype(dtype=np.uint8),
gr_in.astype(dtype=np.uint8),
np.zeros(np.shape(gr_tslice)).astype(dtype=np.uint8) ])
# transpose the columns to the FIRST one is LAST
# i.e the NEW DIMENSION [3] is the LAST DIMENSION
Zt = np.transpose(Z, axes=[1,2,0])
# can now add the RGB array to ax2 via imshow()
ax2.imshow(Zt, interpolation='none', aspect='auto', extent=np.r_[width, height], cmap=cmap, vmin=np.min(gr_in), vmax=np.max(gr_in) )
#start = ins.xyz[:, 1] * 1e6
#end = ins.xyz[:, 2] * 1e6
#xCoords = np.array([start[0], end[0]])
sec_ax = ax2.secondary_yaxis('right', functions=(
lambda x: x * ab[0] + ab[1],
lambda y: (y - ab[1]) / ab[0]))
ax2.set_xlabel(axis_labels[2], fontsize=font_size)
ax2.set_ylabel(axis_labels[1], fontsize=font_size)
sec_ax.set_ylabel(axis_labels[0], fontsize=font_size)
ax2.tick_params(axis='x', labelrotation = 90)
ax2.tick_params(axis='x', labelsize = label_size)
ax2.tick_params(axis='y', labelsize = label_size)
sec_ax.tick_params(axis='y', labelsize = label_size)
plt.tight_layout() # tighten layout around xlabel & ylabel
# add a line of the Insertion object onto ax1 (cax - coronal)
# plotting PLANNED insertion
#ax1.plot(ins.xyz[:, 0] * 1e6, ins.xyz[:, 2] * 1e6, colour, linewidth=linewidth)
#ax2.plot(ins.xyz[:, 1] * 1e6, ins.xyz[:, 2] * 1e6, colour, linewidth=linewidth)
return {'coronal-slice': ax1, 'sagittal-slice': ax2, 'x': x, 'y': y,
'provenance': provenance, 'subject_id': subject_ID } | a1f7722d0907ca3e11e0ea86a1927e08a92d1c84 | 3,658,807 |
def create_constrained_mechanical_system_from_component(structural_component, constant_mass=False,
constant_damping=False, constraint_formulation='boolean',
**formulation_options):
"""
Create a mechanical system from a component where the constraints are applied by a constraint formulation
Parameters
----------
structural_component : amfe.component.StructuralComponent
Structural component describing the mechanical system
constant_mass : bool
Flag indicating if mass matrix is constant
constant_damping : bool
Flag indicating if damping matrix is constant
constraint_formulation : str {'boolean', 'lagrange', 'nullspace_elimination'}
String describing the constraint formulation that shall be used
formulation_options : dict
options passed to the set_options method of the constraint formulation
Returns
-------
system : amfe.solver.translators.MechanicalSystem
formulation : amfe.constraint.ConstraintFormulation
"""
system_unconstrained = create_mechanical_system_from_structural_component(structural_component)
constraint_formulation = _create_constraint_formulation(system_unconstrained, structural_component,
constraint_formulation, **formulation_options)
if constant_mass:
M = MemoizeConstant(constraint_formulation.M)
else:
M = constraint_formulation.M
if constant_damping:
D = MemoizeConstant(constraint_formulation.D)
else:
D = constraint_formulation.D
f_int = constraint_formulation.f_int
K = constraint_formulation.K
f_ext = constraint_formulation.f_ext
dimension = constraint_formulation.dimension
system = MechanicalSystem(dimension, M, D, K, f_ext, f_int)
return system, constraint_formulation | e661ba16a691266e60b14d4594db16e09d81c2e2 | 3,658,808 |
def parse_certificate_issuer_id(id):
"""
:param id: The resource collection type.
:type id: str
:rtype: KeyVaultId
"""
return parse_object_id('certificates/issuers', id) | 919ad42ede4081c67c38f9d44945045d3f84bf87 | 3,658,809 |
def normalize_whitespace(
text, no_line_breaks=False, strip_lines=True, keep_two_line_breaks=False
):
"""
Given ``text`` str, replace one or more spacings with a single space, and one
or more line breaks with a single newline. Also strip leading/trailing whitespace.
"""
if strip_lines:
text = "\n".join([x.strip() for x in text.splitlines()])
if no_line_breaks:
text = constants.MULTI_WHITESPACE_TO_ONE_REGEX.sub(" ", text)
else:
if keep_two_line_breaks:
text = constants.NONBREAKING_SPACE_REGEX.sub(
" ", constants.TWO_LINEBREAK_REGEX.sub(r"\n\n", text)
)
else:
text = constants.NONBREAKING_SPACE_REGEX.sub(
" ", constants.LINEBREAK_REGEX.sub(r"\n", text)
)
return text.strip() | 46d60967f48cb2b14ee44eaa4979592b87e8d811 | 3,658,810 |
import numpy
def nancumprod(x1, **kwargs):
"""
Return the cumulative product of array elements over a given axis treating Not a Numbers (NaNs) as one.
For full documentation refer to :obj:`numpy.nancumprod`.
Limitations
-----------
Parameter ``x`` is supported as :obj:`dpnp.ndarray`.
Keyword arguments ``kwargs`` are currently unsupported.
Otherwise the functions will be executed sequentially on CPU.
Input array data types are limited by supported DPNP :ref:`Data types`.
.. seealso:: :obj:`dpnp.cumprod` : Return the cumulative product of elements along a given axis.
Examples
--------
>>> import dpnp as np
>>> a = np.array([1., np.nan])
>>> result = np.nancumprod(a)
>>> [x for x in result]
[1.0, 1.0]
>>> b = np.array([[1., 2., np.nan], [4., np.nan, 6.]])
>>> result = np.nancumprod(b)
>>> [x for x in result]
[1.0, 2.0, 2.0, 8.0, 8.0, 48.0]
"""
if not use_origin_backend(x1) and not kwargs:
if not isinstance(x1, dparray):
pass
else:
return dpnp_nancumprod(x1)
return call_origin(numpy.nancumprod, x1, **kwargs) | e388081ca78decb8b05a6138173cb487a1c72c58 | 3,658,811 |
from typing import Dict
from typing import Any
from typing import List
import os
def _attr_manually_specified_tests_get_errors(
yaml_path: str,
yaml_entry: Dict[str, Any],
tag: str,
attr: str,
grep_tags: List[str]
) -> List[str]:
"""Report incorrect manually-specified test attributes
This function ensures that manually-specified
tests refer to files that actually exist.
Arguments:
yaml_path: A path to a .drift-data.yml file
yaml_entry: The YAML entry to validate
tag: The region tag corresponding to the specified YAML entry
attr: The attribute of the YAML entry to validate
grep_tags: A list of tags existing (not necessarily parsed out of)
the source code
Returns:
An error message if the manually-specified tests are invalid; None
otherwise
"""
errors = []
yaml_dirname = os.path.dirname(yaml_path)
for test_path in yaml_entry.keys():
if test_path in constants.RESERVED_YAML_KEYS:
continue # Skip non-filepaths
if not os.path.isabs(test_path):
test_path = os.path.join(yaml_dirname, test_path)
if not os.path.exists(test_path):
errors.append(
cli_yaml_errors.MissingTestFileViolation(
test_path, yaml_path))
return errors | 4bce9ecd8987cb300cefddc664c5f49a0ba1d8af | 3,658,812 |
def error(data, mn, mx, confidence):
"""
Compute the error components.
:param data: the collected data.
:param mn: the critical value (minimum).
:param mx: the critical value (maximum).
:param confidence: the confidence level.
:return: (Dict) the dictionary of errors.
"""
return errutils.error_two_tails(data, mn, mx, confidence) | 31ba96b58a5017a3bd3a5166b460878a886f2bb3 | 3,658,813 |
def retry_connection(f):
"""Decorator. Recconect on failure.
"""
def retry(*args, **kwargs):
seconds_to_retry = 5
success = False
while (not success):
try:
result = f(*args, **kwargs)
success = True
return result
except:
print "{0}: {1} --> connection problems . retry in {2} seconds.".format(curr_date(), f.__name__, seconds_to_retry)
time.sleep(seconds_to_retry)
# return None
return retry | d9ccbe725f50a6061f77ac76d02e11c52dd91cb1 | 3,658,814 |
def shift_mean(x_mod, x_org):
"""
Shift the mean value of `x_mod` such that it equals the mean of `x_org`.
Parameters
----------
x_org : ndarray
The array which hold the "true" mean value.
x_mod : ndarray
The modified copy of `x_org` which must have its mean value shifted.
Returns
-------
shifted_x_mod : ndarray
A copy of `x_mod` with the same mean value as `x_org`.
Examples
--------
For example,
>>> import numpy as np
>>> from magni.imaging.visualisation import shift_mean
>>> x_org = np.arange(4).reshape(2, 2)
>>> x_mod = np.ones((2, 2))
>>> print('{:.1f}'.format(x_org.mean()))
1.5
>>> print('{:.1f}'.format(x_mod.mean()))
1.0
>>> shifted_x_mod = shift_mean(x_mod, x_org)
>>> print('{:.1f}'.format(shifted_x_mod.mean()))
1.5
>>> np.set_printoptions(suppress=True)
>>> shifted_x_mod
array([[ 1.5, 1.5],
[ 1.5, 1.5]])
"""
@_decorate_validation
def validate_input():
_numeric('x_mod', ('integer', 'floating', 'complex'), shape=(-1, -1))
_numeric('x_org', ('integer', 'floating', 'complex'),
shape=x_mod.shape)
validate_input()
return x_mod + (x_org.mean() - x_mod.mean()) | 0f04e37a9434548cff77a1c92d7540595ee5a1cf | 3,658,815 |
def conversation_detail(request, pk):
"""
Retrieve, update or delete a conversation.
"""
try:
conversation = Conversation.objects.get(pk=pk)
except Conversation.DoesNotExist:
return Response(status=status.HTTP_404_NOT_FOUND)
if request.method == 'GET':
serializer = Conv_Serializer(conversation)
return Response("serializer.data")
elif request.method == 'PUT':
serializer = Conv_Serializer(conversation, data=request.data)
if serializer.is_valid():
serializer.save()
return Response(serializer.data)
return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)
elif request.method == 'DELETE':
conversation.delete()
return Response(status=status.HTTP_204_NO_CONTENT) | 5c4a0b20f38ca7b75415ecb88f25e9992e2a3e57 | 3,658,816 |
def purchase_products(product_id):
"""Purchase a product"""
app.logger.info("Request to purchase product with id %s", product_id)
check_content_type("application/json")
product = Product.find(product_id)
if not product:
abort(
status.HTTP_404_NOT_FOUND, "product with id '{}' was not found.".format(product_id)
)
return make_response(jsonify(product.serialize()), status.HTTP_200_OK) | c6681110ffaa25cab1ea2fd649c845c513b7b178 | 3,658,817 |
def process_alerts(data):
"""
Returns a Pandas DataFrame from the API call.
:return: A pandas DataFrame.
"""
data_dicts = data.get("data", [])
lines = []
for data_dict in data_dicts:
data_dict["alertDescription"] = helper.extract_json_field(
data_dict.get("alertProps", {}), "description.descriptionId")
description_dict = helper.extract_json_field(
data_dict.get("alertProps", {}), "description.descriptionObj")
data_dict.update(description_dict)
alert_context = helper.extract_json_field(
data_dict.get("keys", {}), "src.keys.alert")
if alert_context:
data_dict.update(alert_context)
lines.append(data_dict)
return pd.DataFrame(lines) | 64a06486ebfde2610f11110b55a73a359fe8d0c0 | 3,658,818 |
def validate(df):
"""Validate the timeseries dataframe
"""
err_msgs = []
warn_msgs = []
# check column names
for col in EXP_COLS:
if col not in df:
err_msgs.append(f"**{col}** column missing")
msgs = {
"errors": err_msgs,
"warnings": warn_msgs
}
is_valid_file = len(err_msgs) == 0
return msgs, is_valid_file | 74480413646d1f7480c7915cdd1d28116ace83c6 | 3,658,819 |
def _gcs_uri_rewriter(raw_uri):
"""Rewrite GCS file paths as required by the rewrite_uris method.
The GCS rewriter performs no operations on the raw_path and simply returns
it as the normalized URI. The docker path has the gs:// prefix replaced
with gs/ so that it can be mounted inside a docker image.
Args:
raw_uri: (str) the raw GCS URI, prefix, or pattern.
Returns:
normalized: a cleaned version of the uri provided by command line.
docker_path: the uri rewritten in the format required for mounting inside
a docker worker.
"""
docker_path = raw_uri.replace('gs://', 'gs/', 1)
return raw_uri, docker_path | 6e476860cb175dd2936cc0c080d3be1d09e04b77 | 3,658,820 |
def remove_apostrophe(text):
"""Remove apostrophes from text"""
return text.replace("'", " ") | c7d918e56646a247564a639462c4f4d26bb27fc4 | 3,658,821 |
def generate_initials(text):
"""
Extract initials from a string
Args:
text(str): The string to extract initials from
Returns:
str: The initials extracted from the string
"""
if not text:
return None
text = text.strip()
if text:
split_text = text.split(" ")
if len(split_text) > 1:
return (split_text[0][0] + split_text[-1][0]).upper()
else:
return split_text[0][0].upper()
return None | 709e53392c790585588da25290a80ab2d19309f8 | 3,658,822 |
def nmf_manifold_vec_update(X, U, V, k_to_W, k_to_D, k_to_L, k_to_feat_inds, n_steps=10, gamma=1.0, delta=1.0, i=0, verbose=False, norm_X=None):
"""
Perform <n_steps> update steps with a fixed Laplacian matrix for each latent factor
Parameters
----------
X : np.array
data to factor
U : np.array
previous setting of U to update
V : np.array
previous setting of V to update
k_to_W : dict
mapping of latent factor to weighted adjacency matrix
k_to_D : dict
mapping of latent factor to diagonal matrix that is the sum of W along a row (or column)
k_to_L : dict
mapping of latent factor to L = D - W
n_steps : int
number of update steps to perform
gamma : float
relative importance of manifold regularization term
delta : float
relative importance of ignoring manifold penalty
i : int
number of previous iterations
verbose : bool
if True, print objective function value after each iteration
norm_X : float or None
stored value of the norm of X
"""
obj_data = None
m, k_latent = U.shape
n, k_latent = V.shape
for n_step in range(n_steps):
U_up_num = X.dot(V)
U_up_denom = U.dot((V.transpose().dot(V))) + U
U = np.multiply(U, np.divide(U_up_num, U_up_denom, out=np.ones_like(U_up_num), where=U_up_denom!=0)) # 0 / 0 := 1
V_up_num_recon = X.transpose().dot(U)
V_up_denom_recon = V.dot((U.transpose().dot(U)))
# update each column vector of V separately to accomodate different Laplacians
V_up_num_man = np.zeros((n, k_latent))
V_up_denom_man = np.zeros((n, k_latent))
V_up_num_ign = np.zeros((n, k_latent))
for k in range(k_latent):
W = k_to_W[k]
D = k_to_D[k]
V_up_num_man[:,k] = gamma * W.dot(V[:,k])
V_up_denom_man[:,k] = gamma * D.dot(V[:,k])
nz_inds = k_to_feat_inds[k]
V_up_num_ign[nz_inds,k] = delta * np.power(V[nz_inds,k] + 1, -2)
V_up_num = V_up_num_recon + (V_up_num_man + V_up_num_ign)
V_up_denom = V_up_denom_recon + V_up_denom_man
V_up_denom[V_up_denom < EPSILON] = EPSILON
V = np.multiply(V, np.divide(V_up_num, V_up_denom, out=np.ones_like(V_up_num), where=V_up_denom!=0))
V[V < EPSILON] = EPSILON
obj_data = nmf_manifold_vec_obj(X, U, V, k_to_L, k_to_feat_inds, gamma=gamma, delta=delta)
print(i+n_step+1, obj_data['obj'])
if(verbose):
print(obj_data)
return U, V, obj_data | f1998d8ccd000892f441341240216ada5fd46a70 | 3,658,823 |
def check_xyz_species_for_drawing(xyz, species):
"""A helper function to avoid repetative code"""
if species is not None and xyz is None:
xyz = xyz if xyz is not None else species.final_xyz
if species is not None and not isinstance(species, ARCSpecies):
raise InputError('Species must be an ARCSpecies instance. Got {0}.'.format(type(species)))
if species is not None and not species.final_xyz:
raise InputError('Species {0} has an empty final_xyz attribute.'.format(species.label))
return xyz | 26caa32c55eee43dab53f85e442775095da92580 | 3,658,824 |
def GetUDPStreamSample(command_out, sending_vm, receiving_vm, request_bandwidth,
network_type, iteration):
"""Get a sample from the nuttcp string results.
Args:
command_out: the nuttcp output.
sending_vm: vm sending the UDP packets.
receiving_vm: vm receiving the UDP packets.
request_bandwidth: the requested bandwidth in the nuttcp sample.
network_type: the type of the network, external or internal.
iteration: the run number of the test.
Returns:
sample from the results of the nuttcp tests.
"""
data_line = command_out.split('\n')[0].split(' ')
data_line = [val for val in data_line if val]
actual_bandwidth = float(data_line[6])
units = data_line[7]
packet_loss = data_line[16]
metadata = {
'receiving_machine_type': receiving_vm.machine_type,
'receiving_zone': receiving_vm.zone,
'sending_machine_type': sending_vm.machine_type,
'sending_zone': sending_vm.zone,
'packet_loss': packet_loss,
'bandwidth_requested': request_bandwidth,
'network_type': network_type,
'iteration': iteration
}
return sample.Sample('bandwidth', actual_bandwidth, units, metadata) | d9f0e75602768ee574d280215ebc78ebd67a520b | 3,658,825 |
def setSwaggerParamDesc(swagger,searchParams):
"""
Set the Swagger GET Parameter Description to what is stored in the search Parameters using helper function
"""
for id in range(len(swagger['tags'])):
# Paths are prefaced with forward slash
idName = '/'+swagger['tags'][id]['name']
# Filter out Capability statement
if idName != '/CapabilityStatement':
for paramId in range(len(swagger['paths'][idName]['get']['parameters'])):
# Get the parameter name to use getParamDesc function
paramName = swagger['paths'][idName]['get']['parameters'][paramId]['name']
# Set description to what is returned from search Parameters
swagger['paths'][idName]['get']['parameters'][paramId]['description'] = getParamDesc(searchParams,idName,paramName)
swagger = removeFormatParam(swagger)
return swagger | e83c4c713718d382e5ce6f2429d029d4eb9ae588 | 3,658,826 |
def parse_args(args=[], doc=False):
"""
Handle parsing of arguments and flags. Generates docs using help from `ArgParser`
Args:
args (list): argv passed to the binary
doc (bool): If the function should generate and return manpage
Returns:
Processed args and a copy of the `ArgParser` object if not `doc` else a `string` containing the generated manpage
"""
parser = ArgParser(prog=__COMMAND__, description=f"{__COMMAND__} - {__DESCRIPTION__}")
parser.add_argument("username", help="Username of the new user to add")
parser.add_argument("-p", dest="password", help="Password for the new user")
parser.add_argument("-n", dest="noninteractive", action="store_false", help="Don't ask for user input")
parser.add_argument("--version", action="store_true", help=f"print program version")
args = parser.parse_args(args)
arg_helps_with_dups = parser._actions
arg_helps = []
[arg_helps.append(x) for x in arg_helps_with_dups if x not in arg_helps]
NAME = f"**NAME*/\n\t{__COMMAND__} - {__DESCRIPTION__}"
SYNOPSIS = f"**SYNOPSIS*/\n\t{__COMMAND__} [OPTION]... "
DESCRIPTION = f"**DESCRIPTION*/\n\t{__DESCRIPTION_LONG__}\n\n"
for item in arg_helps:
# Its a positional argument
if len(item.option_strings) == 0:
# If the argument is optional:
if item.nargs == "?":
SYNOPSIS += f"[{item.dest.upper()}] "
elif item.nargs == "+":
SYNOPSIS += f"[{item.dest.upper()}]... "
else:
SYNOPSIS += f"{item.dest.upper()} "
else:
# Boolean flag
if item.nargs == 0:
if len(item.option_strings) == 1:
DESCRIPTION += f"\t**{' '.join(item.option_strings)}*/\t{item.help}\n\n"
else:
DESCRIPTION += f"\t**{' '.join(item.option_strings)}*/\n\t\t{item.help}\n\n"
elif item.nargs == "+":
DESCRIPTION += f"\t**{' '.join(item.option_strings)}*/=[{item.dest.upper()}]...\n\t\t{item.help}\n\n"
else:
DESCRIPTION += f"\t**{' '.join(item.option_strings)}*/={item.dest.upper()}\n\t\t{item.help}\n\n"
if doc:
return f"{NAME}\n\n{SYNOPSIS}\n\n{DESCRIPTION}\n\n"
else:
return args, parser | ca77aad1d31287f1394678db90c0857dbdae6a43 | 3,658,827 |
import array
def interact(u, v):
"""Compute element-wise mean(s) from two arrays."""
return tuple(mean(array([u, v]), axis=0)) | 9dd567568d5301dd62fcf19b7b4ac0130fc5b527 | 3,658,828 |
def part_allocation_count(build, part, *args, **kwargs):
""" Return the total number of <part> allocated to <build> """
return build.getAllocatedQuantity(part) | 84c94ca4e1b1006e293851189d17f63fc992b420 | 3,658,829 |
def stat_threshold(Z,mce='fdr_bh',a_level=0.05,side='two',copy=True):
"""
Threshold z maps
Parameters
----------
mce: multiple comparison error correction method, should be
among of the options below. [defualt: 'fdr_bh'].
The options are from statsmodels packages:
`b`, `bonferroni` : one-step correction
`s`, `sidak` : one-step correction
`hs`, `holm-sidak` : step down method using Sidak adjustments
`h`, `holm` : step-down method using Bonferroni adjustments
`sh`, `simes-hochberg` : step-up method (independent)
`hommel` : closed method based on Simes tests (non-negative)
`fdr_i`, `fdr_bh` : Benjamini/Hochberg (non-negative)
`fdr_n`, `fdr_by` : Benjamini/Yekutieli (negative)
'fdr_tsbh' : two stage fdr correction (Benjamini/Hochberg)
'fdr_tsbky' : two stage fdr correction (Benjamini/Krieger/Yekutieli)
'fdr_gbs' : adaptive step-down fdr correction (Gavrilov, Benjamini, Sarkar)
"""
if copy:
Z = Z.copy()
if side=='one':
sideflag = 1
elif side=='two' or 'double':
sideflag = 2
Idx = np.triu_indices(Z.shape[0],1)
Zv = Z[Idx]
Pv = sp.norm.cdf(-np.abs(Zv))*sideflag
[Hv,adjpvalsv] = smmt.multipletests(Pv,method = mce)[:2]
adj_pvals = np.zeros(Z.shape)
Zt = np.zeros(Z.shape)
Zv[np.invert(Hv)] = 0
Zt[Idx] = Zv
Zt = Zt + Zt.T;
adj_pvals[Idx] = adjpvalsv
adj_pvals = adj_pvals + adj_pvals.T;
adj_pvals[range(Z.shape[0]),range(Z.shape[0])] = 0
return Zt, binarize(Zt), adj_pvals | 3c582c0a59f8bd5544f8620870732562200f4f0a | 3,658,830 |
def esmf_grid(lon, lat, periodic=False, mask=None):
"""
Create an ESMF.Grid object, for constructing ESMF.Field and ESMF.Regrid.
Parameters
----------
lon, lat : 2D numpy array
Longitute/Latitude of cell centers.
Recommend Fortran-ordering to match ESMPy internal.
Shape should be ``(Nlon, Nlat)`` for rectilinear grid,
or ``(Nx, Ny)`` for general quadrilateral grid.
periodic : bool, optional
Periodic in longitude? Default to False.
Only useful for source grid.
mask : 2D numpy array, optional
Grid mask. According to the ESMF convention, masked cells
are set to 0 and unmasked cells to 1.
Shape should be ``(Nlon, Nlat)`` for rectilinear grid,
or ``(Nx, Ny)`` for general quadrilateral grid.
Returns
-------
grid : ESMF.Grid object
"""
# ESMPy expects Fortran-ordered array.
# Passing C-ordered array will slow down performance.
for a in [lon, lat]:
warn_f_contiguous(a)
warn_lat_range(lat)
# ESMF.Grid can actually take 3D array (lon, lat, radius),
# but regridding only works for 2D array
assert lon.ndim == 2, 'Input grid must be 2D array'
assert lon.shape == lat.shape, 'lon and lat must have same shape'
staggerloc = ESMF.StaggerLoc.CENTER # actually just integer 0
if periodic:
num_peri_dims = 1
else:
num_peri_dims = None
# ESMPy documentation claims that if staggerloc and coord_sys are None,
# they will be set to default values (CENTER and SPH_DEG).
# However, they actually need to be set explicitly,
# otherwise grid._coord_sys and grid._staggerloc will still be None.
grid = ESMF.Grid(
np.array(lon.shape),
staggerloc=staggerloc,
coord_sys=ESMF.CoordSys.SPH_DEG,
num_peri_dims=num_peri_dims,
)
# The grid object points to the underlying Fortran arrays in ESMF.
# To modify lat/lon coordinates, need to get pointers to them
lon_pointer = grid.get_coords(coord_dim=0, staggerloc=staggerloc)
lat_pointer = grid.get_coords(coord_dim=1, staggerloc=staggerloc)
# Use [...] to avoid overwritting the object. Only change array values.
lon_pointer[...] = lon
lat_pointer[...] = lat
# Follows SCRIP convention where 1 is unmasked and 0 is masked.
# See https://github.com/NCPP/ocgis/blob/61d88c60e9070215f28c1317221c2e074f8fb145/src/ocgis/regrid/base.py#L391-L404
if mask is not None:
# remove fractional values
mask = np.where(mask == 0, 0, 1)
# convert array type to integer (ESMF compat)
grid_mask = mask.astype(np.int32)
if not (grid_mask.shape == lon.shape):
raise ValueError(
'mask must have the same shape as the latitude/longitude'
'coordinates, got: mask.shape = %s, lon.shape = %s' % (mask.shape, lon.shape)
)
grid.add_item(ESMF.GridItem.MASK, staggerloc=ESMF.StaggerLoc.CENTER, from_file=False)
grid.mask[0][:] = grid_mask
return grid | 8087cfbf0c4923338984913dcd1a421e3a46dd29 | 3,658,831 |
import logging
def magic_series(grid):
""" Check if grid satisfies the definition
series[k] == sum(series[i] == k) """
logging.debug("Grid:\n{}".format(grid))
magic = (grid.sum(1) == np.where(grid.T)[1])
logging.debug("Magic check:\n{}".format(magic))
return magic.all() | 0deb972084f77e004c192d1c606d1ec34b193d61 | 3,658,832 |
def convert_to_numeral(decimal_integer: int, roman_format="brackets"):
"""Convert decimal to Roman numeral.
roman_format is a str containing either 'brackets' or 'latex'
The default option, 'brackets', converts 3,000,000,000 to [[MMM]] and
3,000,000 to [MMM].
'latex' outputs a LaTeX formula for the numeral.
"""
def barfunction_latex(prefix: str,
unbarred_string: str,
num_of_bars: int,
separator_size: int = 2):
"""Return a LaTeX-renderable representation of overline bars."""
bars_before = (r"\overline{" * num_of_bars) + r"\text{"
bars_after = r"}" + ("}" * num_of_bars)
if prefix:
separation = f"\\hspace{{{separator_size}pt}}"
else:
separation = ""
return prefix + separation + bars_before + unbarred_string + bars_after
def barfunction_brackets(prefix: str, unbarred_string: str,
num_of_bars: int):
"""Represent bars as (possibly nested) square brackets.
For example, 3,000,000,000 is converted to [[MMM]].
"""
bars_before = ("[" * num_of_bars)
bars_after = ("]" * num_of_bars)
return prefix + bars_before + unbarred_string + bars_after
def latex_surround_with_dollars(string):
"""Surround LaTeX math expression with dollar signs."""
return "$" + string + "$"
def list_occurring_roman_symbols(roman_symbols, integer_value):
"""List symbols that occur in Roman representation of number.
+ roman_symbols is [(int, str)], a list of tuples, each of which
representing one Roman symbol and its corresponding integer value.
For example, (3, 'III').
+ integer_value is the value to be converted.
Return: remainder, list_of_occurring_symbols
+ remainder: what remains from the number, which was too small to
represent with the provided symbols
+ list_of_occurring_symbols: a list of the symbols present in the Roman
representation of the number.
"""
remainder = integer_value
list_of_occurring_symbols = []
for integer_value, str_roman_symbol in roman_symbols:
repetitions, remainder = divmod(remainder, integer_value)
list_of_occurring_symbols.append(str_roman_symbol * repetitions)
return remainder, list_of_occurring_symbols
def apply_barfunction(list_of_occurring_symbols, barfunction,
numeral_string, num_of_bars):
"""Build up Roman numeral representation applying barfunction.
The barfunction is only applied if list_of_occurring_symbols is not
empty, otherwise the original numeral_string is returned untouched.
"""
unbarred_string = "".join(list_of_occurring_symbols)
if unbarred_string:
numeral_string = barfunction(numeral_string, unbarred_string,
num_of_bars)
return numeral_string
if roman_format == 'latex':
barfunction = barfunction_latex
elif roman_format == 'brackets':
barfunction = barfunction_brackets
else:
raise ValueError('roman_format should be either "latex" or "brackets"')
remainder = decimal_integer
numeral_string = ""
for symbolset in ROMAN_NUMERAL_TABLE:
num_of_bars = symbolset["bars"]
symbols = symbolset["symbols"]
remainder, list_of_occurring_symbols = list_occurring_roman_symbols(
symbols, remainder)
numeral_string = apply_barfunction(list_of_occurring_symbols,
barfunction, numeral_string,
num_of_bars)
if roman_format == 'latex':
return latex_surround_with_dollars(numeral_string)
return numeral_string | ebfd2b323879bcca9e20be0d9598104bf0f31e33 | 3,658,833 |
def transpose(x):
"""Tensor transpose """
return np.transpose(x) | 286c7e36629ff8e38ad5d0233bd1f8fd823514f2 | 3,658,834 |
from typing import Optional
from typing import List
from typing import Tuple
def greedy_reduction_flat(m: Mat2) -> Optional[List[Tuple[int, int]]]:
"""Returns a list of tuples (r1,r2) that specify which row should be added to which other row
in order to reduce one row of m to only contain a single 1.
In contrast to :func:`greedy_reduction`, it preforms the brute-force search starting with the
highest indices, and places the row operations in such a way that the resulting depth is log_2
of the number of rows that have to be added together.
Used in :func:`lookahead_extract_base`"""
indicest = find_minimal_sums(m, True)
if indicest is None: return indicest
return flat_indices(m, list(indicest))[0] | 85c8098dd6e727abe64c3d1410c63161309b5135 | 3,658,835 |
def estimate_psd(vec, num_segs=DEFAULT_NUM_SEGS, overlap=DEFAULT_OVERLAP, dt=DEFAULT_DT, tukey_alpha=DEFAULT_TUKEY_ALPHA, one_sided=True):
"""
estimates the PSD using a DFT
divides vec into "num_segs" with a fractional overlap of "overlap" between neighbors
returns the average PSD from these samples (arithmetic mean)
if one_sided, returns the one-sided PSD. Otherwise, returns the two-sided PSD (one half the one-sided PSD).
WARNING: your logic on how to split segments may be fragile...
"""
N = len(vec)
if overlap > N - num_segs:
raise ValueError, "overlap is too big!"
n = N/(1. + (num_segs-1.)*(1.-overlap)) ### compute the number of entries per segment
overlap = int(n*overlap) ### compute the number of overlapping entries
n = int(n)
seglen = dt*n
### compute dfts for each segment separately
psds = np.empty((n/2, num_segs), complex)
for segNo in xrange(num_segs):
start = segNo*(n-overlap)
psds[:,segNo], freqs = dft(vec[start:start+n]*tukey(n, tukey_alpha), dt=dt)
### average
mean_psd = np.sum(psds.real**2 + psds.imag**2, axis=1) / (seglen*num_segs)
if one_sided:
mean_psd *= 2 ### multiply by 2 to account for the power at negative frequencies in the one-sided PSD
return mean_psd, freqs | 1c2d8c51bfd75d617f75dbc4aa3304c05c36e899 | 3,658,836 |
def load_data(connection_string: str):
"""
Load data from a source. Source could be:
- A JSON File
- A MongoDB
Load data from a file
---------------------
If you want to load data from a File, you must to provide this connection string:
>>> connection_string = "/path/to/my/file.json"
or using URI format:
>>> connection_string = "file:///path/to/my/file.json"
Load file from a MongoDB
------------------------
If you want to load data from a MongoDB database, you must to provide a connection string like:
>>> connection_string = "mongodb://mongo.example.com:27017"
Or event more complicate:
>>> connection_string = "mongodb://db1.example.net,db2.example.net:2500/?replicaSet=test"
:param connection_string:
:type connection_string:
:return:
:rtype:
"""
assert isinstance(connection_string, str)
if connection_string.startswith("mongodb://"):
data = _load_from_mongo(connection_string)
elif connection_string.startswith("file://"):
data = _load_from_file(connection_string)
else:
data = _load_from_file("file://{}".format(connection_string))
# Load JSON info
return APITest(**data) | abb806e62510077abf8a0b686a5882f637502275 | 3,658,837 |
def himmelblau(xy):
"""
Himmelblau's function, as a set of residuals (cost = sum(residuals**2))
The standard Himmelbau's function is with data as [11, 7], and four
minimum at (3.0, 2.0), ~(-2.8, 3.1), ~(-3.8, -3.3), ~(3.6, -1.8).
Himmelblau's function is a quadratic model in both x and y. Its data-
space dimension (2) is equal to its model-space dimension (2), so
there is only parameter-effect curvature.
Parameters
----------
- xy : 2-element list-like
The x,y parameters of the model.
Returns
-------
2-element list-like
The residuals of the model.
Notes
------
https://en.wikipedia.org/wiki/Himmelblau%27s_function
"""
x, y = xy
r1 = x*x + y
r2 = y*y + x
return np.array([r1, r2]) | 6951c77afd39596e7a799fe413bc2fc96a4818c2 | 3,658,838 |
from typing import Dict
def parse_instrument_data(smoothie_response: str) -> Dict[str, bytearray]:
"""
Parse instrument data.
Args:
smoothie_response: A string containing a mount prefix (L or R) followed by :
and a hex string.
Returns:
mapping of the mount prefix to the hex string.
"""
try:
items = smoothie_response.split("\n")[0].strip().split(":")
mount = items[0]
if mount not in {"L", "R"}:
raise ParseError(
error_message=f"Invalid mount '{mount}'", parse_source=smoothie_response
)
# data received from Smoothieware is stringified HEX values
# because of how Smoothieware handles GCODE messages
data = bytearray.fromhex(items[1])
except (ValueError, IndexError, TypeError, AttributeError):
raise ParseError(
error_message="Unexpected argument to parse_instrument_data",
parse_source=smoothie_response,
)
return {mount: data} | 59f02a5d83b600f5fb4104f72f860925487f6422 | 3,658,839 |
import itertools
import os
def count_frames(directory):
"""
counts the number of consecutive pickled frames in directory
Args:
directory: str of directory
Returns:
0 for none, otherwise >0
"""
for i in itertools.count(start=0):
pickle_file = os.path.join(directory, f"{str(i).zfill(12)}.pickle")
if not os.path.isfile(pickle_file):
return i | 94df6183e34a5d498493f20c03b00346bc38c50f | 3,658,840 |
def _volume_sum_check(props: PropsDict, sum_to=1, atol=1e-3) -> bool:
"""Check arrays all sum to no more than 1"""
check_broadcastable(**props)
sum_ar = np.zeros((1,))
for prop in props:
sum_ar = sum_ar + props[prop]
try:
assert sum_ar.max() <= sum_to + atol
except AssertionError:
raise ValueError(f"Volume fractions for {props.keys()} sum to greater than one")
return True | 631743276b833fd9ea58ae766614b851764ee771 | 3,658,841 |
import os
def get_management_confs_in_domain(body=None): # noqa: E501
"""get management configuration items and expected values in the domain
get management configuration items and expected values in the domain # noqa: E501
:param body: domain info
:type body: dict | bytes
:rtype: ConfFiles
"""
if connexion.request.is_json:
body = DomainName.from_dict(connexion.request.get_json()) # noqa: E501
# Check whether the domain exists
domain = body.domain_name
# check the input domain
checkRes = Format.domainCheck(domain)
if not checkRes:
num = 400
base_rsp = BaseResponse(num, "Failed to verify the input parameter, please check the input parameters.")
return base_rsp, num
isExist = Format.isDomainExist(domain)
if not isExist:
base_rsp = BaseResponse(400, "The current domain does not exist")
return base_rsp, 400
# The parameters of the initial return value assignment
expected_conf_lists = ConfFiles(domain_name = domain,
conf_files = [])
# get the path in domain
domainPath = os.path.join(TARGETDIR, domain)
# When there is a file path is the path of judgment for the configuration items
for root, dirs, files in os.walk(domainPath):
if len(files) > 0 and len(root.split('/')) > 3:
if "hostRecord.txt" in files:
continue
for d_file in files:
d_file_path = os.path.join(root, d_file)
contents = Format.get_file_content_by_read(d_file_path)
feature = os.path.join(root.split('/')[-1], d_file)
yang_modules = YangModule()
d_module = yang_modules.getModuleByFeature(feature)
file_lists = yang_modules.getFilePathInModdule(yang_modules.module_list)
file_path = file_lists.get(d_module.name()).split(":")[-1]
conf = ConfFile(file_path = file_path, contents = contents)
expected_conf_lists.conf_files.append(conf)
print("expected_conf_lists is :{}".format(expected_conf_lists))
if len(expected_conf_lists.domain_name) > 0:
base_rsp = BaseResponse(200, "Get management configuration items and expected " +
"values in the domain succeccfully")
else:
base_rsp = BaseResponse(400, "The file is Null in this domain")
return expected_conf_lists | 95eace508c06be0b9cbf3d232ca2ccdbbaec467d | 3,658,842 |
def small_view(data, attribute):
"""
Extract a downsampled view from a dataset, for quick statistical summaries
"""
shp = data.shape
view = tuple([slice(None, None, np.intp(max(s / 50, 1))) for s in shp])
return data[attribute, view] | 62273269f87cbe6803ef0b5a8e47a681ca1f4d26 | 3,658,843 |
def playerStandings():
"""Returns a list of the players and their win records, sorted by wins.
The first entry in the list should be the player in first place, or a player
tied for first place if there is currently a tie.
Returns:
A list of tuples, each of which contains (id, name, wins, matches):
id: the player's unique id (assigned by the database)
name: the player's full name (as registered)
wins: the number of matches the player has won
matches: the number of matches the player has played
"""
## connecting with db
db = connect()
## creating a cursor object
c = db.cursor()
## get the scores table from the matches table using the below sql query
query = '''
SELECT wins_table.id, wins_table.team_name, wins_table.wins,
wins_table.wins + loses_table.loses as total FROM
(SELECT TEAMS.*, (SELECT COUNT(*) FROM MATCHES WHERE MATCHES.winner = TEAMS.id)
AS WINS FROM TEAMS) as wins_table,
(SELECT TEAMS.*, (SELECT COUNT(*) FROM MATCHES WHERE MATCHES.loser = TEAMS.id)
AS LOSES FROM TEAMS) as loses_table
WHERE wins_table.id = loses_table.id
ORDER BY wins_table.wins desc;
'''
## execute the query
c.execute(query)
## query result
result = c.fetchall()
## closing the connection with the database
db.close()
return result | c6554d1ff34dd08f756d1ad19665deacac4467de | 3,658,844 |
def get_all_feature_names(df: pd.DataFrame, target: str = None) -> list:
"""Get a list of all feature names in a dataframe.
Args:
df (pd.DataFrame): dataframe of features and target variable
target (str): name of target column in df
Returns:
all_feature_names (list): list of all feature names
"""
# if using the main df
if target in df.columns.tolist():
df = df.loc[ :, ~df.columns.isin([target])]
all_feature_names = df.columns.tolist()
# if using samples_df with true and predicted labels
else:
df = df.loc[ :, ~df.columns.isin(
[
'true_label',
'predicted_label'
]
)
]
all_feature_names = df.columns.tolist()
return all_feature_names | b0b1964832c6f56200a3d7fbbccd1030e9c52a93 | 3,658,845 |
import os
import tempfile
def skipUnlessAddressSanitizer(func):
"""Decorate the item to skip test unless Clang -fsanitize=thread is supported."""
def is_compiler_with_address_sanitizer(self):
compiler_path = self.getCompiler()
compiler = os.path.basename(compiler_path)
f = tempfile.NamedTemporaryFile()
if lldbplatformutil.getPlatform() == 'windows':
return "ASAN tests not compatible with 'windows'"
cmd = "echo 'int main() {}' | %s -x c -o %s -" % (compiler_path, f.name)
if os.popen(cmd).close() is not None:
return None # The compiler cannot compile at all, let's *not* skip the test
cmd = "echo 'int main() {}' | %s -fsanitize=address -x c -o %s -" % (compiler_path, f.name)
if os.popen(cmd).close() is not None:
return "Compiler cannot compile with -fsanitize=address"
return None
return skipTestIfFn(is_compiler_with_address_sanitizer)(func) | e7bc085fc508aae526859d0f690db43ae7e7e865 | 3,658,846 |
import random
def generate_enhancer_promoter_pair(ep_df):
"""
"""
std_ep_pair = ep_df[['chrom-Enh','chromStart','chromEnd','TSS']]
min_ep_gap = abs((std_ep_pair['chromEnd']-std_ep_pair['chromStart']).min())
max_ep_gap = abs((std_ep_pair['chromEnd']-std_ep_pair['chromStart']).max())
fake_samples = []
for enhancer in std_ep_pair[['chrom-Enh','chromStart','chromEnd']].values:
for promoter in std_ep_pair['TSS'].values:
gap = abs(enhancer[-1]-promoter)
if gap>min_ep_gap and gap<max_ep_gap:
current_sample = np.r_[enhancer, promoter]
fake_samples.append(current_sample)
fake_samples = random.sample(fake_samples, std_ep_pair.shape[0])
fake_ep_pair = pd.DataFrame(fake_samples, columns=['chrom-Enh','chromStart','chromEnd','TSS'])
return std_ep_pair, fake_ep_pair | b87906e6e2d5a23a729aa3f9b19fcd086db2e7c8 | 3,658,847 |
from typing import Union
from typing import Tuple
from typing import Dict
def constant_lrs(
draw, return_kwargs: bool = False
) -> Union[
st.SearchStrategy[lr_scheduler_pb2.ConstantLR],
st.SearchStrategy[Tuple[lr_scheduler_pb2.ConstantLR, Dict]],
]:
"""Returns a SearchStrategy for an ConstantLR plus maybe the kwargs."""
kwargs: Dict = {}
# initialise and return
all_fields_set(lr_scheduler_pb2.ConstantLR, kwargs)
constant_lr = lr_scheduler_pb2.ConstantLR(**kwargs)
if not return_kwargs:
return constant_lr
return constant_lr, kwargs | d7354717a052de2852ea61e55b1b2c3e3df19010 | 3,658,848 |
def get_read_only_storage_manager():
"""Get the current Flask app's read only storage manager, create if
necessary"""
return current_app.config.setdefault('read_only_storage_manager',
ReadOnlyStorageManager()) | cd5dac64a834ac98accb6824d5e971d763acc677 | 3,658,849 |
def __parse_sql(sql_rows):
"""
Parse sqlite3 databse output. Modify this function if you have a different
database setup. Helper function for sql_get().
Parameters:
sql_rows (str): output from SQL SELECT query.
Returns:
dict
"""
column_names = ['id', 'requester', 'item_name', 'custom_name',
'quantity', 'crafting_discipline', 'special_instruction',
'status', 'rarity', 'resource_provided', 'pub-date', 'crafter', 'stats']
request_dict = {str(row[0]): {column_names[i]: row[i] for i,_ in enumerate(column_names)} for row in sql_rows}
return request_dict | 09c61da81af069709dd020b8643425c4c6964137 | 3,658,850 |
import scipy
import random
def _generate_to(qubo, seed, oct_upper_bound, bias=0.5):
"""
Given a QUBO, an upper bound on oct, and a bias of bipartite vertices,
generate an Erdos-Renyi graph such that oct_upper_bound number of vertices
form an OCT set and the remaining vertices are partitioned into partites
(left partite set with probability of "bias"). Edges between the partite
sets are then removed.
"""
# Compute parameters needed for ER
n = qubo.order()
p = qubo.size() / scipy.special.binom(n, 2)
# Generate graph
graph = nx.erdos_renyi_graph(n=n, p=p, seed=seed)
random.seed(seed)
# Compute partite sets on the remaining vertices
nodes = list(graph.nodes())[oct_upper_bound:]
partite1 = set()
partite2 = set()
for node in nodes:
if random.random() < bias:
partite1.add(node)
else:
partite2.add(node)
# Remove edges within a partite set
for edge in chain(combinations(partite1, 2), combinations(partite2, 2)):
if graph.has_edge(*edge):
graph.remove_edge(*edge)
# Name the graph
graph.graph['name'] = '{}-{}-{}'.format(qubo.graph['name'], 'to', seed)
# Sanitize the graph and return
graph = reset_labels(graph)
return graph | 653aedbd44bf87a9908c8abcf2c9480b836f4a03 | 3,658,851 |
def sqlCreate(fields=None, extraFields=None, addCoastGuardFields=True, dbType='postgres'):
"""Return the sqlhelp object to create the table.
@param fields: which fields to put in the create. Defaults to all.
@param extraFields: A sequence of tuples containing (name,sql type) for additional fields
@param addCoastGuardFields: Add the extra fields that come after the NMEA check some from the USCG N-AIS format
@type addCoastGuardFields: bool
@param dbType: Which flavor of database we are using so that the create is tailored ('sqlite' or 'postgres')
@return: An object that can be used to generate a return
@rtype: sqlhelp.create
"""
if fields is None:
fields = fieldList
c = sqlhelp.create('waterlevel',dbType=dbType)
c.addPrimaryKey()
if 'MessageID' in fields: c.addInt ('MessageID')
if 'RepeatIndicator' in fields: c.addInt ('RepeatIndicator')
if 'UserID' in fields: c.addInt ('UserID')
if 'Spare' in fields: c.addInt ('Spare')
if 'dac' in fields: c.addInt ('dac')
if 'fid' in fields: c.addInt ('fid')
if 'month' in fields: c.addInt ('month')
if 'day' in fields: c.addInt ('day')
if 'hour' in fields: c.addInt ('hour')
if 'min' in fields: c.addInt ('min')
if 'stationid' in fields: c.addVarChar('stationid',7)
if 'waterlevel' in fields: c.addInt ('waterlevel')
if 'datum' in fields: c.addInt ('datum')
if 'sigma' in fields: c.addInt ('sigma')
if 'source' in fields: c.addInt ('source')
if addCoastGuardFields:
# c.addInt('cg_s_rssi') # Relative signal strength indicator
# c.addInt('cg_d_strength') # dBm receive strength
# c.addVarChar('cg_x',10) # Idonno
c.addInt('cg_t_arrival') # Receive timestamp from the AIS equipment 'T'
c.addInt('cg_s_slotnum') # Slot received in
c.addVarChar('cg_r',15) # Receiver station ID - should usually be an MMSI, but sometimes is a string
c.addInt('cg_sec') # UTC seconds since the epoch
c.addTimestamp('cg_timestamp') # UTC decoded cg_sec - not actually in the data stream
return c | 0a9bbbed4dd9c20e1126716bb64e2279d4ab29b6 | 3,658,852 |
def _section_cohort_management(course, access):
""" Provide data for the corresponding cohort management section """
course_key = course.id
ccx_enabled = hasattr(course_key, 'ccx')
section_data = {
'section_key': 'cohort_management',
'section_display_name': _('Cohorts'),
'access': access,
'ccx_is_enabled': ccx_enabled,
'course_cohort_settings_url': reverse(
'course_cohort_settings',
kwargs={'course_key_string': str(course_key)}
),
'cohorts_url': reverse('cohorts', kwargs={'course_key_string': str(course_key)}),
'upload_cohorts_csv_url': reverse('add_users_to_cohorts', kwargs={'course_id': str(course_key)}),
'verified_track_cohorting_url': reverse(
'verified_track_cohorting', kwargs={'course_key_string': str(course_key)}
),
}
return section_data | 161f01b96952b8538d737c13718d455b69542b51 | 3,658,853 |
def rivers_by_station_number(stations, N):
"""Returns a list of N tuples on the form (river name, number of stations on the river). These tuples are sorted in decreasing order of station numbers.
If many stations have the same number of stations as the 'Nth' river, these are also included."""
riversList = stations_by_river(stations) #Get list of rivers to consider
riverNumber = []
for River in riversList:
riverNumber.append((River, len(riversList[River]))) #Get tuple of (river name, number of stations)
riverNumber.sort(key= lambda x:x[1], reverse=True) #Sort into decreasing numerical order
#This code is used to include any rivers with equal number of stations to the 'final' one being output.
extraStations = 0
#search through next few rivers to see how many have the same number of stations
for i in range(N, len(riverNumber)):
if riverNumber[i][1] == riverNumber[N-1][1]:
extraStations += 1
else:
break #as items pre-sorted once the number is not equal can exit
N += extraStations #adjust value of N
return riverNumber[:N] | 5f958116ae833d2ad4921662f753ca8f30a0af73 | 3,658,854 |
import json
def load_default_data() -> dict[str, str]:
"""Finds and opens a .json file with streamer data.
Reads from the file and assigns the data to streamer_list.
Args:
None
Returns:
A dict mapping keys (Twitch usernames) to their corresponding URLs.
Each row is represented as a seperate streamer. For example:
{
"GMHikaru":"https://www.twitch.tv/GMHikaru"
}
"""
with open("statum\static\streamers.json", "r") as default_streamers:
streamer_list: dict[str, str] = json.load(default_streamers)
default_streamers.close()
return streamer_list | bfeef64922fb4144228e031b9287c06525c4254d | 3,658,855 |
def get_value_key(generator, name):
"""
Return a key for the given generator and name pair.
If name None, no key is generated.
"""
if name is not None:
return f"{generator}+{name}"
return None | 0ad630299b00a23d029ea15543982125b792ad53 | 3,658,856 |
import math
def wav_to_log_spectrogram_clips(wav_file):
"""convert audio into logrithmic spectorgram, then chop it into 2d-segmentation of 100 frames"""
# convert audio into spectorgram
sound, sr = librosa.load(wav_file, sr=SR, mono=True)
stft = librosa.stft(sound, n_fft=N_FFT, hop_length=HOP_LEN, win_length=WIN_LEN)
mag, phase = librosa.magphase(stft)
db_spectro = librosa.amplitude_to_db(mag)
# chop magnitude of spectrogram into clips, each has 1025 bins, 100 frames
db_spectro_clips = np.empty((0, FREQ_BINS, 100))
for i in range(math.floor(mag.shape[1] / 100)):
db_spectro_clips = np.concatenate((db_spectro_clips, db_spectro[np.newaxis, :, i * 100: (i + 1) * 100]))
return db_spectro_clips | 51ccf7d5687005f3eb01f382d37b6d7e09e45730 | 3,658,857 |
def get_title(mods):
"""
Function takes the objects MODS and extracts and returns the text of the title.
"""
title = mods.find("{{{0}}}titleInfo/{{{0}}}title".format(MODS_NS))
if title is not None:
return title.text | 652a9cc61c8d2538c80818759666022b19058074 | 3,658,858 |
def get_from_identity(session, key, passive):
"""Look up the given key in the given session's identity map,
check the object for expired state if found.
"""
instance = session.identity_map.get(key)
if instance is not None:
state = attributes.instance_state(instance)
# expired - ensure it still exists
if state.expired:
if not passive & attributes.SQL_OK:
# TODO: no coverage here
return attributes.PASSIVE_NO_RESULT
elif not passive & attributes.RELATED_OBJECT_OK:
# this mode is used within a flush and the instance's
# expired state will be checked soon enough, if necessary
return instance
try:
state._load_expired(state, passive)
except orm_exc.ObjectDeletedError:
session._remove_newly_deleted([state])
return None
return instance
else:
return None | d910dc32311fafb5e6461971ea77ea22a02aadba | 3,658,859 |
def sample_ingredient(user, name='Cinnamon'):
"""
Create and return a sample ingredient
:param user: User(custom) object
:param name: name of the ingredient
:return: Ingredient object
"""
return Ingredient.objects.create(user=user, name=name) | 2828e1f42f6d755ac636d93d72b291cad3ba0061 | 3,658,860 |
import sys
def check_if_string(data):
"""
Takes a data as argument and checks if the provided argument is an
instance of string or not
Args:
data: Data to check for.
Returns:
result: Returns a boolean if the data provided is instance or not
"""
if sys.version_info[0] == 2:
return isinstance(data, basestring)
else:
return isinstance(data, str) | 403aabfde1c0d2f3c1ec4610cf83a4abe644acdb | 3,658,861 |
def viterbi(O,S,Y, pi, A, B):
"""Generates a path which is a sequence of most likely states that generates the given observation Y.
Args:
O (numpy.ndarray): observation space. Size: 1 X N
S (numpy.ndarray): state space. Size: 1 X K
Y (list): observation sequence. Size: 1 X T
pi (numpy.ndarray): inial probablities. Size: 1 X K
A (numpy.ndarray): transition matrix. Size: K X K
B (numpy.ndarray): emission matrix Size: N X K
Returns:
list: list of most likely sequence of POS tags
"""
# Reference: https://en.wikipedia.org/wiki/Viterbi_algorithm#Pseudocode
#**************************************************************************
## Example data for trial
# input
# O = np.arange(1,7) # observation space # uniq words # Size = 1 X N
# S = np.asarray([0, 1, 2]) # State space # uniq POS tags # Size = 1 X K
# Y = np.array([0, 2, 0, 2, 2, 1]).astype(np.int32) # Observation sequnece T
# # Size = 1 X T
# pi = np.array([0.6, 0.2, 0.2]) # Initial probablity # Size = 1 X K
# A = np.array([[0.8, 0.1, 0.1],
# [0.2, 0.7, 0.1],
# [0.1, 0.3, 0.6]]) # transition matrix # Size = K X K
# B = np.array([[0.7, 0.0, 0.3],
# [0.1, 0.9, 0.0],
# [0.0, 0.2, 0.8]]) # emission matrix # Size = K X N
# print("O",O)
# print("S",S)
# print("pi",pi)
# print("Y",Y)
# print("A",A,'\n')
# print("B",B)
# output
# X = [0, 0, 0, 2, 2, 1] # Most likely path/sequence
#**************************************************************************
N = len(O)
K = len(S)
T = len(Y)
T1 = np.zeros(shape=(K,T))
T2 = np.zeros(shape=(K,T))
for i in range(K):
T1[i,0] = pi[i] * B[i, Y[0]]
T2[i,0] = 0
for j in range(1, T):
for i in range(K):
if Y[j] == -1:
# Unkown word handling. Set B[i, Y[j]] = 1 for all tags if Y[j] == -1
# aka word not found in train set.
next_prob = T1[:,j-1] * A[:, i] * 1
else:
next_prob = T1[:,j-1] * A[:, i] * B[i, Y[j]]
T1[i,j] = np.max(next_prob)
T2[i,j] = np.argmax(next_prob)
Z = [None] * T
X = [None] * T
# Backpointer
Z[T-1] = np.argmax(T1[:,T-1])
X[T-1] = S[Z[T-1]]
for j in reversed(range(1, T)):
Z[j-1] = T2[int(Z[j]),j]
X[j-1] = S[int(Z[j-1])]
return X | db533c584cf2a287cfcc6f4097566cdb493c42cc | 3,658,862 |
def int_to_bigint(value):
"""Convert integers larger than 64 bits to bytearray
Smaller integers are left alone
"""
if value.bit_length() > 63:
return value.to_bytes((value.bit_length() + 9) // 8, 'little', signed=True)
return value | 0f2d64887dc15d1902b8e10b0257a187ed75187f | 3,658,863 |
def xcorr(S, dtmax=10):
"""
Cross correlate each pair of columns in S at offsets up to dtmax
"""
# import pdb; pdb.set_trace()
(T,N) = S.shape
H = np.zeros((N,N,dtmax))
# Compute cross correlation at each time offset
for dt in np.arange(dtmax):
# print "Computing cross correlation at offset %d" % dt
# Compute correlation in sections to conserve memory
chunksz = 16
for n1 in np.arange(N, step=chunksz):
for n2 in np.arange(N, step=chunksz):
n1c = min(n1 + chunksz, N)
n2c = min(n2 + chunksz, N)
# Corr coef is a bit funky. We want the upper right quadrant
# of this matrix. The result is ((n1c-n1)+(n2c-n2)) x ((n1c-n1)+(n2c-n2))
H[n1:n1c, n2:n2c, dt] = np.corrcoef(S[:T-dt, n1:n1c].T,
S[dt:, n2:n2c].T)[:(n1c-n1),(n1c-n1):]
# Set diagonal to zero at zero offset (obviously perfectly correlated)
if dt == 0:
H[:,:,0] = H[:,:,0]-np.diag(np.diag(H[:,:,0]))
return H | 7b27b2ce5c574db253554e8d6c2ebf0ac7c354ca | 3,658,864 |
def register_hooks():
"""Exec all the rules files. Gather the hooks from them
and load them into the hook dict for later use.
"""
global HOOKS_LOADED
for name, path in load_rules().items():
globals = {}
with open(path) as f:
exec(compile(f.read(), path, 'exec'), globals)
DESCRIPTIONS[name] = globals['__doc__']
for hook_name in HOOKS.keys():
if hook_name in globals:
HOOKS[hook_name].append(globals[hook_name])
HOOKS_LOADED = True
return HOOKS | c4bfd57fa0a503f4a5be7004fe2145b42c28727a | 3,658,865 |
import time
def jboss_status(jboss_cli_home, server_ip, jboss_admin_port, jboss_admin, jboss_admin_pwd, timeout='60000'):
"""
| ##@函数目的: Jboss状态
| ##@参数说明:
| ##@返回值:
| ##@函数逻辑:
| ##@开发人:jhuang
| ##@时间:
"""
time_start = time.time()
jboss_cli = 'jboss-cli.sh'
if jboss_cli_home[-1] != '/': jboss_cli_home = jboss_cli_home + '/'
ret = exec_shell(
'sh %sbin/%s --connect --controller=%s:%s --user=%s --password=%s --command="deployment-info" --timeout=%s' % (
jboss_cli_home, jboss_cli, server_ip, jboss_admin_port, jboss_admin, jboss_admin_pwd, timeout))
logger.debug('获取Jboss状态用时:%s' % (time.time() - time_start))
return ret | 055b84c0217738c34c8f051264327388103dbef3 | 3,658,866 |
def proxy_rotator():
"""Return a cycle object of proxy dict"""
return Proxy.get_proxy_rotator() | 4b988214818599ba19cd45f43aeec03e9cc37e08 | 3,658,867 |
def pow(a, b):
""" Return an attribute that represents a ^ b. """
return multiplyDivide(a, b, MultiplyDivideOperation.POWER) | 17551ad9a872a854c177e43317f1d22242a10cd5 | 3,658,868 |
async def send_simple_embed_to_channel(bot: commands.Bot, channel_name: str, message: str, color: str = config["colors"]["default"]) -> discord.Message:
"""Send a simple embed message to the channel with the given name in the given guild, using the given message and an optional colour.
Args:
bot (commands.Bot): The bot containing the guild with the channel to send the message to.
channel_name (int): The name of the channel to send the message to.
message (str): The contents of the message
color (str, optional): The colour that will be used in the embed. Defaults to config["colors"]["default"].
Returns:
discord.Message: The embed message that was sent.
"""
guild: discord.Guild = bot_util.get_guild(bot, config["guild-id"])
channel: discord.TextChannel = guild_util.get_channel_by_name(guild, channel_name)
return await channel.send(embed = discord.Embed(description = message, color = int(color, 0))) | 577594c5abdb946ac04decac3ef94ea0e8296535 | 3,658,869 |
def retry_on_server_errors_timeout_or_quota_issues_filter(exception):
"""Retry on server, timeout and 403 errors.
403 errors can be accessDenied, billingNotEnabled, and also quotaExceeded,
rateLimitExceeded."""
if HttpError is not None and isinstance(exception, HttpError):
if exception.status_code == 403:
return True
return retry_on_server_errors_and_timeout_filter(exception) | 18be4224af641b35cfba50d0ec85a1d22908d1e4 | 3,658,870 |
import os
import glob
def load_all_data(data_path):
"""Load all mode data."""
image_list = []
for cam in os.listdir(data_path):
image_dir = os.path.join(data_path, cam, 'dets')
cam_image_list = glob(image_dir+'/*.png')
cam_image_list = sorted(cam_image_list)
print(f'{len(cam_image_list)} images for {cam}')
image_list += cam_image_list
print(f'{len(image_list)} images in total')
return image_list | 188483de8942ba4014c5152ec1a151636e805bdf | 3,658,871 |
import argparse
import sys
def cmd_line_parser():
"""
This function parses the command line parameters and arguments
"""
parser = argparse.ArgumentParser(usage="python " + sys.argv[0] + " [-h] [passive/active] -d [Domain] [Options]", epilog='\tExample: \r\npython ' + sys.argv[0] + " passive -d baidu.com -o html")
parser._optionals.title = "OPTIONS"
parser._positionals.title = "POSITION OPTIONS"
parser.add_argument("scan_model", type=str, help="active or passive")
# active part
active = parser.add_argument_group("active", "active scan configuration options")
active.add_argument("-x", "--xxxxx", dest="load_config_file", default=False, action="store_true",
help="xxxxxxxxxxxx")
# passive part
passive = parser.add_argument_group("passive", "passive scan configuration options")
passive.add_argument("-w", "--word-list", default=False, help="Custom brute force dictionary path")
# other
parser.add_argument("-d", "--domain", dest="domain", default=False, help="Target to scan")
parser.add_argument("-m", "--multi-domain", dest="domains_file", default=False, help="Multi Target to scan")
parser.add_argument("-o", "--format", default=False, help="The format of the output file")
if len(sys.argv) == 1:
sys.argv.append("-h")
return parser.parse_args() | b00ed099de4f2db3c66367e07278c9c0c67f3633 | 3,658,872 |
def CSourceForElfSymbolTable(variable_prefix, names, str_offsets):
"""Generate C source definition for an ELF symbol table.
Args:
variable_prefix: variable name prefix
names: List of symbol names.
str_offsets: List of symbol name offsets in string table.
Returns:
String containing C source fragment.
"""
out = (
r'''// NOTE: ELF32_Sym and ELF64_Sym have very different layout.
#if UINTPTR_MAX == UINT32_MAX // ELF32_Sym
# define DEFINE_ELF_SYMBOL(name, name_offset, address, size) \
{ (name_offset), (address), (size), ELF_ST_INFO(STB_GLOBAL, STT_FUNC), \
0 /* other */, 1 /* shndx */ },
#else // ELF64_Sym
# define DEFINE_ELF_SYMBOL(name, name_offset, address, size) \
{ (name_offset), ELF_ST_INFO(STB_GLOBAL, STT_FUNC), \
0 /* other */, 1 /* shndx */, (address), (size) },
#endif // !ELF64_Sym
''')
out += 'static const ELF::Sym k%sSymbolTable[] = {\n' % variable_prefix
out += ' { 0 }, // ST_UNDEF\n'
out += ' LIST_ELF_SYMBOLS_%s(DEFINE_ELF_SYMBOL)\n' % variable_prefix
out += '};\n'
out += '#undef DEFINE_ELF_SYMBOL\n'
return out | 233c55815cf5b72092d3c60be42caffc95570c22 | 3,658,873 |
def _kahan_reduction(x, y):
"""Implements the Kahan summation reduction."""
(s, c), (s1, c1) = x, y
for val in -c1, s1:
u = val - c
t = s + u
# TODO(b/173158845): XLA:CPU reassociates-to-zero the correction term.
c = (t - s) - u
s = t
return s, c | 808f21403b92ceaf4aa50aa62d58753d62034ea1 | 3,658,874 |
from typing import Optional
def get_endpoint_access(endpoint_name: Optional[str] = None,
opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetEndpointAccessResult:
"""
Resource schema for a Redshift-managed VPC endpoint.
:param str endpoint_name: The name of the endpoint.
"""
__args__ = dict()
__args__['endpointName'] = endpoint_name
if opts is None:
opts = pulumi.InvokeOptions()
if opts.version is None:
opts.version = _utilities.get_version()
__ret__ = pulumi.runtime.invoke('aws-native:redshift:getEndpointAccess', __args__, opts=opts, typ=GetEndpointAccessResult).value
return AwaitableGetEndpointAccessResult(
address=__ret__.address,
endpoint_create_time=__ret__.endpoint_create_time,
endpoint_status=__ret__.endpoint_status,
port=__ret__.port,
vpc_endpoint=__ret__.vpc_endpoint,
vpc_security_group_ids=__ret__.vpc_security_group_ids,
vpc_security_groups=__ret__.vpc_security_groups) | 6b38fbd0b27d1ce892fc37c37944979907796862 | 3,658,875 |
def predictor(
service: MLFlowDeploymentService,
data: np.ndarray,
) -> Output(predictions=np.ndarray):
"""Run a inference request against a prediction service"""
service.start(timeout=10) # should be a NOP if already started
prediction = service.predict(data)
prediction = prediction.argmax(axis=-1)
return prediction | c3b5f7241aeab0520db535134912431edf467137 | 3,658,876 |
def get_domain(ns, domain):
"""
Return LMIInstance of given LMI_SSSDDomain.
:type domain: string
:param domain: Name of the domain to find.
:rtype: LMIInstance of LMI_SSSDDomain
"""
keys = {'Name': domain}
try:
inst = ns.LMI_SSSDDomain.new_instance_name(keys).to_instance()
except wbem.CIMError, err:
if err[0] == wbem.CIM_ERR_NOT_FOUND:
raise LmiFailed("Cannot find the domain: %s" % domain)
raise
return inst | beadbd0c172a07c2b55b5bf2b22a05abf562b95b | 3,658,877 |
def mmd_loss(embedding, auxiliary_labels, weights_pos, weights_neg, params):
""" Computes mmd loss, weighted or unweighted """
if weights_pos is None:
return mmd_loss_unweighted(embedding, auxiliary_labels, params)
return mmd_loss_weighted(embedding, auxiliary_labels,
weights_pos, weights_neg, params) | 6b592159587ec49fc6fd77ed286f338d11582a4b | 3,658,878 |
def perdidas (n_r,n_inv,n_x,**kwargs):
"""Calcula las perdidas por equipos"""
n_t=n_r*n_inv*n_x
for kwargs in kwargs:
n_t=n_t*kwargs
return n_t | 157825059ad192ba90991bff6206b289755ce0ba | 3,658,879 |
def _symlink_dep_cmd(lib, deps_dir, in_runfiles):
"""
Helper function to construct a command for symlinking a library into the
deps directory.
"""
lib_path = lib.short_path if in_runfiles else lib.path
return (
"ln -sf " + relative_path(deps_dir, lib_path) + " " +
deps_dir + "/" + lib.basename + "\n"
) | 6672decdee61dfc7f5604c6ebe1c07ac99800a91 | 3,658,880 |
def boundingBoxEdgeLengths(domain):
"""
Returns the edge lengths of the bounding box of a domain
:param domain: a domain
:type domain: `escript.Domain`
:rtype: ``list`` of ``float``
"""
return [ v[1]-v[0] for v in boundingBox(domain) ] | a98fc867961bbf6a2ab518da6c933f1295d858db | 3,658,881 |
def get_user(isamAppliance, user):
"""
Get permitted features for user
NOTE: Getting an unexplained error for this function, URL maybe wrong
"""
return isamAppliance.invoke_get("Get permitted features for user",
"/authorization/features/users/{0}/v1".format(user)) | 0b2fd6c58e2623f8400daa942c83bd0757edd21f | 3,658,882 |
from typing import Sequence
from typing import List
from typing import Optional
def autoupdate(
config_file: str,
store: Store,
tags_only: bool,
freeze: bool,
repos: Sequence[str] = (),
add_unused_hooks: bool = False,
) -> int:
"""Auto-update the pre-commit config to the latest versions of repos."""
migrate_config(config_file, quiet=True)
retv = 0
rev_infos: List[Optional[RevInfo]] = []
changed = False
config = load_config(config_file)
for repo_config in config['repos']:
if repo_config['repo'] in {LOCAL, META}:
continue
info = RevInfo.from_config(repo_config)
if repos and info.repo not in repos:
rev_infos.append(None)
continue
output.write(f'Updating {info.repo} ... ')
new_info = info.update(tags_only=tags_only, freeze=freeze)
try:
_check_hooks_still_exist_at_rev(repo_config, new_info, store)
except RepositoryCannotBeUpdatedError as error:
output.write_line(error.args[0])
rev_infos.append(None)
retv = 1
continue
if new_info.rev != info.rev:
changed = True
if new_info.frozen:
updated_to = f'{new_info.frozen} (frozen)'
else:
updated_to = new_info.rev
msg = f'updating {info.rev} -> {updated_to}.'
output.write_line(msg)
rev_infos.append(new_info)
else:
output.write_line('already up to date.')
rev_infos.append(None)
if add_unused_hooks:
unused_hooks = _get_unused_hooks(repo_config, new_info, store)
if unused_hooks:
changed = True
for unused_hook in unused_hooks:
repo_config['hooks'].append({'id': unused_hook})
if changed:
_write_new_config(config_file, rev_infos)
return retv | f45aeae70d6e33b841791a09d9a1578834246e75 | 3,658,883 |
def plot_energy_resolution_cta_performance(cta_site, ax=None, **kwargs):
"""
Plot the cta performances (June 2018) for the true_energy resolution
Parameters
----------
cta_site: string
see `ctaplot.ana.cta_performance`
ax: `matplotlib.pyplot.axes`
kwargs: args for `matplotlib.pyplot.plot`
Returns
-------
ax: `matplotlib.pyplot.axes`
"""
ax = plt.gca() if ax is None else ax
cta_req = ana.cta_performance(cta_site)
e_cta, ar_cta = cta_req.get_energy_resolution()
kwargs.setdefault('label', "CTA performance {}".format(cta_site))
ax.set_ylabel(r"$(\Delta energy/energy)_{68}$")
ax.set_xlabel(rf'$E_R$ [{e_cta.unit.to_string("latex")}]')
with quantity_support():
ax.plot(e_cta, ar_cta, **kwargs)
ax.set_xscale('log')
ax.grid(True, which='both')
ax.legend()
return ax | 67f76bcaffb85339f45803d32daf3e2d783fb097 | 3,658,884 |
from typing import OrderedDict
def _n_nested_blocked_random_indices(sizes, n_iterations):
"""
Returns indices to randomly resample blocks of an array (with replacement) in
a nested manner many times. Here, "nested" resampling means to randomly resample
the first dimension, then for each randomly sampled element along that dimension,
randomly resample the second dimension, then for each randomly sampled element
along that dimension, randomly resample the third dimension etc.
Parameters
----------
sizes : OrderedDict
Dictionary with {names: (sizes, blocks)} of the dimensions to resample
n_iterations : int
The number of times to repeat the random resampling
"""
shape = [s[0] for s in sizes.values()]
indices = OrderedDict()
for ax, (key, (_, block)) in enumerate(sizes.items()):
indices[key] = _get_blocked_random_indices(
shape[: ax + 1] + [n_iterations], ax, block
)
return indices | 730ddba8f0753c29ebcf55c8449f365e6fc0b9ab | 3,658,885 |
def phase_type_from_parallel_erlang2(theta1, theta2, n1, n2):
"""Returns initial probabilities :math:`\\alpha` and generator matrix :math:`S`
for a phase-type representation of two parallel Erlang channels with parametrisation
:math:`(\\theta_1, n_1)` and :math:`(\\theta_2, n_2)` (rate and steps of Erlang
channels).
`Note`: To obtain a phase-type density pass the results of this method into
the method `utils.phase_type_pdf`.
`Note`: The two Erlang channels split at the first substep into each channel.
The parametrisation implies the rate :math:`n\\cdot\\theta` on the
individual exponentially-distributed substeps for the respective channel.
Parameters
----------
theta1 : float
Rate parameter of the first complete Erlang channel (inverse of the mean Erlang
waiting time).
theta2 : float
Rate parameter of the second complete Erlang channel (inverse of the mean Erlang
waiting time).
n1 : int or float
Number of steps of the first Erlang channel (shape parameter).
n2 : int or float
Number of steps of the second Erlang channel (shape parameter).
Returns
-------
alpha : 1d numpy.ndarray
The initial probability vector of the phase-type
distribution (with shape `(1,m)` where :math:`m=n_1+n_2-1`).
S : 2d numpy.ndarray
The transient generator matrix of the phase-type
distribution (with shape `(m,m)` where :math:`m=n_1+n_2-1`).
"""
### self-written, copied from env_PHdensity notebook
### butools can then be used to get density and network image with:
### 1) pdf = ph.PdfFromPH(a, A, x)
### 2) ph.ImageFromPH(a, A, 'display')
# some checks
for theta in (theta1, theta2):
if not isinstance(theta, float):
raise ValueError('Float expected for theta.')
for n in (n1, n2):
if isinstance(n, int):
pass
elif isinstance(n, float) and n.is_integer():
pass
else:
raise ValueError('Integer number expected for n.')
if n<1:
raise ValueError('Steps n expected to be 1 or more.')
# preallocate initial probs and subgenerator matrix
alpha = np.zeros((1, int(n1 + n2)-1))
S = np.zeros((int(n1 + n2)-1, int(n1 + n2)-1))
# first index sets source
alpha[0, 0] = 1.0
# substep rates
r1 = n1 * theta1
r2 = n2 * theta2
# outflux from source
# (from competing channels)
S[0, 0] = -(r1+r2)
# fill matrix (first channel)
l = [0] + list(range(1, int(n1)))
for i, inext in zip(l[0:-1], l[1:]):
S[i, inext] = r1
S[inext, inext] = -r1
# fill matrix (second channel)
l = [0] + list(range(int(n1), int(n1+n2)-1))
for i, inext in zip(l[0:-1], l[1:]):
S[i, inext] = r2
S[inext, inext] = -r2
return alpha, S | 667fc2abdb38e2e623a5f91f33ffb60f9b9e5ca8 | 3,658,886 |
def get_regions(max_time_value):
"""
Partition R into a finite collection of one-dimensional regions depending on the appearing max time value.
"""
regions = []
bound = 2 * max_time_value + 1
for i in range(0, bound + 1):
if i % 2 == 0:
temp = i // 2
r = Constraint('[' + str(temp) + ',' + str(temp) + ']')
regions.append(r)
else:
temp = (i - 1) // 2
if temp < max_time_value:
r = Constraint('(' + str(temp) + ',' + str(temp + 1) + ')')
regions.append(r)
else:
r = Constraint('(' + str(temp) + ',' + '+' + ')')
regions.append(r)
return regions | 1cc825592e07dc0bef30f04896e57df189d28bb3 | 3,658,887 |
def label_edges(g: nx.DiGraph) -> nx.DiGraph:
"""Label all the edges automatically.
Args:
g: the original directed graph.
Raises:
Exception: when some edge already has attribute "label_".
Returns:
The original directed graph with all edges labelled.
"""
g_labelled = nx.DiGraph(g)
i = 1
for edge in g_labelled.edges.data():
if _ATTR_LABEL in edge[2]:
raise Exception(
f"The edge {edge[0]}-{edge[1]} already has the {_ATTR_LABEL} attribute."
)
else:
edge[2][_ATTR_LABEL] = f"e{i}"
i += 1
return g_labelled | a74559cdce8d75a65913def6c545b86ed45b2ead | 3,658,888 |
from datetime import datetime
import calendar
def report_charts(request, report, casetype='Call'):
"""Return charts for the last 4 days based on the Call Summary Data"""
# The ussual filters.
query = request.GET.get('q', '')
interval = request.GET.get('interval', 'daily')
category = request.GET.get('category', '')
if report == 'categorysummary':
y_axis = 'category'
elif report == 'dailysummary':
y_axis = 'daily'
else:
y_axis = request.GET.get('y_axis', '')
datetime_range = request.GET.get("datetime_range")
agent = request.GET.get("agent")
form = ReportFilterForm(request.GET)
# Update the search url to chart based views.
search_url = reverse('report_charts', kwargs={'report': report})
# Convert date range string to datetime object
if datetime_range:
try:
a, b = [datetime_range.split(" - ")[0], datetime_range.split(" - ")[1]]
from_date = datetime.strptime(a, '%m/%d/%Y %I:%M %p')
to_date = datetime.strptime(b, '%m/%d/%Y %I:%M %p')
current = from_date
delta = to_date - from_date
date_list = []
if interval == 'hourly':
for i in range(int(delta.total_seconds()//3600)):
date_list.append(from_date + timedelta(seconds=i*3600))
elif interval == 'monthly':
while current <= to_date:
current += relativedelta(months=1)
date_list.append(current)
elif interval == 'weekly':
while current <= to_date:
current += relativedelta(weeks=1)
date_list.append(current)
else:
while current <= to_date:
current += relativedelta(days=1)
date_list.append(current)
epoch_list = [date_item.strftime('%m/%d/%Y %I:%M %p')
for date_item in date_list]
# Add filter to ajax query string.
except Exception as e:
from_date = None
to_date = None
else:
from_date = None
to_date = None
# Start date
base = datetime.today()
date_list = [base - timedelta(days=x) for x in range(0, 3)]
epoch_list = [date_item.strftime('%m/%d/%Y %I:%M %p')
for date_item in date_list]
epoch_list.reverse()
e = None
datetime_ranges = pairwise(epoch_list)
callsummary_data = []
total_calls = 0
for datetime_range in datetime_ranges:
# Date time list returns desending. We want assending.
datetime_range_string = " - ".join(datetime_range)
if y_axis == 'category':
categories = [i[0] for i in Category.objects.values_list('hl_category').distinct()]
for category in categories:
report_data = report_factory(report='chartreport',
datetime_range=datetime_range_string,
agent=agent,
query=query,
category=category,
casetype=casetype)
# Append data to tables list.
callsummary_data.append(report_data)
total_calls = total_calls + report_data.get('total_offered').get('count')
else:
report_data = report_factory(report='chartreport',
datetime_range=datetime_range_string,
agent=agent,
query=query,
category=category,
casetype=casetype)
# Append data to tables list.
callsummary_data.append(report_data)
total_calls = total_calls + report_data.get('total_offered').get('count')
# Multibar chart page.
if y_axis != 'daily':
summary_table = CallSummaryTable(callsummary_data)
tooltip_date = "%d %b %Y %H:%M:%S %p"
extra_serie = {"tooltip": {"y_start": "There are ", "y_end": " calls"},
"date_format": tooltip_date}
if y_axis == 'category':
categories = [i[0] for i in Category.objects.values_list('hl_category').distinct()]
chartdata = {
'x': epoch_list,
}
for i in range(len(categories)):
chartdata['name%s' % str(i+1)] = categories[i]
category_related = []
for data in callsummary_data:
if data.get('category') == categories[i]:
category_related.append(data)
chartdata['y%s' % str(i+1)] = [d.get('total_offered').get('count')
for d in category_related]
chartdata['extra%s' % str(i+1)] = extra_serie
elif y_axis == 'daily':
daysummary_data = []
month_names = []
day_names = list(calendar.day_name)
chartdata = {}
day_related = {}
for day_name in day_names:
day_related[day_name] = []
for i in range(len(day_names)):
day_summary = {}
chartdata['name%s' % str(i+1)] = day_names[i]
day_total_offered = 0
month_name = 'None'
for data in callsummary_data:
if data.get('day') == day_names[i]:
day_related[day_names[i]].append(data)
day_total_offered = day_total_offered + data.get('total_offered').get('count')
day_related[day_names[i]][-1]['day_total_offered'] = day_total_offered
month_name = data.get('month')
day_summary['month'] = month_name
month_names.append(month_name)
day_summary['%s' % (day_names[i].lower())] = day_total_offered
chartdata['y%s' % str(i+1)] = [d.get('day_total_offered')
for d in day_related[day_names[i]]]
chartdata['extra%s' % str(i+1)] = extra_serie
chartdata['x'] = month_names
daysummary_data.append(day_summary)
else:
ydata = [d.get('total_offered').get('count') for d in callsummary_data]
ydata2 = [d.get('total_answered') for d in callsummary_data]
ydata3 = [d.get('total_abandoned') for d in callsummary_data]
chartdata = {
'x': epoch_list,
'name1': 'Total Offered', 'y1': ydata, 'extra1': extra_serie,
'name2': 'Total Answered', 'y2': ydata2, 'extra2': extra_serie,
'name3': 'Total Abandoned', 'y3': ydata3, 'extra3': extra_serie,
}
charttype = "multiBarChart"
chartcontainer = 'multibarchart_container' # container name
if y_axis == 'daily':
summary_table = DaySummaryTable(daysummary_data)
export_format = request.GET.get('_export', None)
if TableExport.is_valid_format(export_format):
exporter = TableExport(export_format, summary_table)
return exporter.response('table.{}'.format(export_format))
data = {
'title': 'callsummary',
'form': form,
'summary_table': summary_table,
'datetime_ranges_number': len(datetime_ranges),
'error': e,
'y_axis': y_axis,
'search_url': search_url,
'total_calls': total_calls,
'charttype': charttype,
'casetype': casetype,
'chartdata': chartdata,
'chartcontainer': chartcontainer,
'extra': {
'name': 'Call data',
'x_is_date': False,
'x_axis_format': '',
'tag_script_js': True,
'jquery_on_ready': True,
},
}
if report == 'ajax':
return render(request, 'helpline/report_charts_factory.html', data)
else:
return render(request, 'helpline/report_charts.html', data) | 0e9721446e66ee901732a6b0792075ccee607eaa | 3,658,889 |
def _get_optimizer(learning_rate: float, gradient_clip_norm: float):
"""Gets model optimizer."""
kwargs = {'clipnorm': gradient_clip_norm} if gradient_clip_norm > 0 else {}
return tf.keras.optimizers.Adagrad(learning_rate, **kwargs) | 92b9b70c533828232872250eca724c2568638f2f | 3,658,890 |
def is_my_message(msg):
"""
Функция для проверки, какому боту отправлено сообщение.
Для того, чтобы не реагировать на команды для других ботов.
:param msg: Объект сообщения, для которого проводится проверка.
"""
text = msg.text.split()[0].split("@")
if len(text) > 1:
if text[1] != config.bot_name:
return False
return True | e99c8587ffbc1e582154785d657212f37358e926 | 3,658,891 |
from typing import Any
from typing import Dict
def execute_search_query(client: Client, query: Any, data_range: str) -> Dict[str, Any]:
"""Execute search job and waiting for the results
:type client: ``Client``
:param client: Http client
:type query: ``Any``
:param query: Search query
:type data_range: ``str``
:param data_range: http url query for getting range of data
:return: Search result
:rtype: ``Dict[str, Any]``
"""
response = client.varonis_execute_search(query)
location = get_search_result_path(response)
search_result = client.varonis_get_search_result(location, data_range, SEARCH_RESULT_RETRIES)
return search_result | 68a58f9c4bc7c2b4a754cce8bd97022d327d5155 | 3,658,892 |
def static(directory: str) -> WSGIApp:
"""Return a WSGI app that serves static files under the given directory.
Powered by WhiteNoise.
"""
app = WhiteNoise(empty_wsgi_app())
if exists(directory):
app.add_files(directory)
return app | 9eae5f688b50d6c6c523e69ee0e79f667fb1d567 | 3,658,893 |
def check_filter(id):
"""
Helper function to determine if the current crime is in the dictionary
"""
if id not in important_crime:
return 30
else:
return important_crime[id] * 30 | 9ca74e57abd32db6176216f31deae193e0cac0d4 | 3,658,894 |
def rand_email(domain=None):
"""Generate a random zone name
:return: a random zone name e.g. example.org.
:rtype: string
"""
domain = domain or rand_zone_name()
return 'example@%s' % domain.rstrip('.') | 3653319c77b7e304ea03b7bb06888d115f45dc1e | 3,658,895 |
def wordcount_for_reddit(data, search_word):
"""Return the number of times a word has been used."""
count = 0
for result in data: # do something which each result from scrape
for key in result:
stringed_list = str(result[key])
text_list = stringed_list.split()
for word in text_list:
if search_word == 'Go':
if word == search_word:
count += 1
elif word.lower() == search_word.lower():
count += 1
return count | b0967aa896191a69cd1b969589b34522299ff415 | 3,658,896 |
from typing import Union
from typing import List
from typing import Tuple
from typing import Optional
def openeo_to_eodatareaders(process_graph_json_in: Union[dict, str], job_data: str,
process_defs: Union[dict, list, str], vrt_only: bool = False,
existing_node_ids: List[Tuple] = None) \
-> Tuple[List[Tuple[str, List[str], Optional[str], List[str], str]], Graph]:
"""
This function translates an OpenEO process graph into a sequence of calls to EODataProcessor,
one for each node of the process graph.
Each openEO process is wrapped into an apply/reduce call using EODataProcessor methods.
"""
# Translate openEO PG to traversable object
if isinstance(process_graph_json_in, dict):
process_graph_json = deepcopy(process_graph_json_in)
else:
process_graph_json = process_graph_json_in
graph = translate_process_graph(process_graph_json, process_defs=process_defs).sort(by='dependency')
# Get wrapper processes -> TODO: is this really needed?
wrapper_processes = get_wrapper_processes()
nodes = []
N_nodes = len(graph.ids)
last_node = False
for k, node_id in enumerate(graph.ids):
cur_node = graph[node_id]
wrapper_name = None
wrapper_dimension = None
node_dependencies = None
if k + 1 == N_nodes:
last_node = True
if cur_node.is_reducer:
# Current process is classified as "reducer" in its process definition
if cur_node.parent_process:
# Current process has parent, must be an embedded process graph
wrapper_name = cur_node.parent_process.process_id
wrapper_dimension = cur_node.parent_process.dimension
else:
# Current process is of type "reducer" but has no parent, must be one of these processes:
# "reduce_dimension", "reduce_dimension_binary"
wrapper_name = cur_node.process_id
wrapper_dimension = cur_node.dimension
else:
wrapper_name = cur_node.process_id
recuder_dimension = None # for clarity, this will be needed when also 'apply_dimension' is supported by EODataProcessor
# Workaround for process "array_element" until it has the category "reducer" set
# TODO remove when the process definition is updated
if (not cur_node.is_reducer) and (cur_node.parent_process):
# Current process has parent, must be an embedded process graph
wrapper_name = cur_node.parent_process.process_id
wrapper_dimension = cur_node.parent_process.dimension
# NB find better solution
if wrapper_dimension:
wrapper_dimension = check_dim_name(wrapper_dimension)
if cur_node.content['process_id'] == 'run_udf':
operator = "UdfExec"
params = map_udf(cur_node.content, job_data, cur_node.id)
else:
operator = "EODataProcessor"
params = map_process(
cur_node.content,
cur_node.id,
cur_node.is_result,
job_data,
wrapper_name=wrapper_name,
wrapper_dimension=wrapper_dimension,
vrt_only=vrt_only,
last_node=last_node
)
# Get dependencies
if cur_node.result_process and (cur_node.process_id in wrapper_processes):
# The current process is a wrapper process, which embeds a process graph
# Its only dependency is the node in the embedded process graph with 'result' set to True.
node_dependencies = [cur_node.result_process.id]
else:
node_dependencies = list(cur_node.dependencies.ids)
# Add to nodes list
nodes.append((cur_node.id, params, node_dependencies, operator))
return nodes, graph | 519f91466accef2a8f1dbc0dc14f672bcbd763ad | 3,658,897 |
def calc_precision(gnd_assignments, pred_assignments):
"""
gnd_clusters should be a torch tensor of longs, containing
the assignment to each cluster
assumes that cluster assignments are 0-based, and no 'holes'
"""
precision_sum = 0
assert len(gnd_assignments.size()) == 1
assert len(pred_assignments.size()) == 1
assert pred_assignments.size(0) == gnd_assignments.size(0)
N = gnd_assignments.size(0)
K_gnd = gnd_assignments.max().item() + 1
K_pred = pred_assignments.max().item() + 1
for k_pred in range(K_pred):
mask = pred_assignments == k_pred
gnd = gnd_assignments[mask.nonzero().long().view(-1)]
max_intersect = 0
for k_gnd in range(K_gnd):
intersect = (gnd == k_gnd).long().sum().item()
max_intersect = max(max_intersect, intersect)
precision_sum += max_intersect
precision = precision_sum / N
return precision | 536e25aa8e3b50e71beedaab3f2058c79d9957e3 | 3,658,898 |
import jsonschema
import base64
import binascii
import os
from datetime import datetime
def scheduler_job_output_route():
"""receive output from assigned job"""
try:
jsonschema.validate(request.json, schema=sner.agent.protocol.output)
job_id = request.json['id']
retval = request.json['retval']
output = base64.b64decode(request.json['output'])
except (jsonschema.exceptions.ValidationError, binascii.Error):
return jsonify({'title': 'Invalid request'}), HTTPStatus.BAD_REQUEST
job = Job.query.filter(Job.id == job_id).one_or_none()
if job and (not job.retval):
# requests for invalid, deleted, repeated or clashing job ids are discarded
# agent should delete the output on it's side as well
job.retval = retval
os.makedirs(os.path.dirname(job.output_abspath), exist_ok=True)
with open(job.output_abspath, 'wb') as ftmp:
ftmp.write(output)
job.time_end = datetime.utcnow()
db.session.commit()
return '', HTTPStatus.OK | 75c7760426e4be823ba97d1af0816b3261295d49 | 3,658,899 |
Subsets and Splits