text
stringlengths
56
1.16k
[2023-09-03 03:56:57,406::train::INFO] [train] Iter 17678 | loss 1.0910 | loss(rot) 0.8719 | loss(pos) 0.1591 | loss(seq) 0.0600 | grad 5.4278 | lr 0.0010 | time_forward 3.6000 | time_backward 5.6420
[2023-09-03 03:57:00,364::train::INFO] [train] Iter 17679 | loss 1.4994 | loss(rot) 0.4170 | loss(pos) 0.4631 | loss(seq) 0.6194 | grad 4.2483 | lr 0.0010 | time_forward 1.4130 | time_backward 1.5420
[2023-09-03 03:57:10,506::train::INFO] [train] Iter 17680 | loss 1.7259 | loss(rot) 0.8374 | loss(pos) 0.5096 | loss(seq) 0.3788 | grad 3.7551 | lr 0.0010 | time_forward 3.8510 | time_backward 6.2870
[2023-09-03 03:57:13,327::train::INFO] [train] Iter 17681 | loss 1.2739 | loss(rot) 0.5174 | loss(pos) 0.3490 | loss(seq) 0.4075 | grad 4.3770 | lr 0.0010 | time_forward 1.3120 | time_backward 1.5050
[2023-09-03 03:57:23,034::train::INFO] [train] Iter 17682 | loss 1.8481 | loss(rot) 0.2419 | loss(pos) 1.6000 | loss(seq) 0.0062 | grad 5.8608 | lr 0.0010 | time_forward 4.0850 | time_backward 5.6180
[2023-09-03 03:57:32,018::train::INFO] [train] Iter 17683 | loss 1.9484 | loss(rot) 1.0030 | loss(pos) 0.5046 | loss(seq) 0.4407 | grad 6.7290 | lr 0.0010 | time_forward 3.7140 | time_backward 5.2630
[2023-09-03 03:57:40,475::train::INFO] [train] Iter 17684 | loss 1.0513 | loss(rot) 0.2826 | loss(pos) 0.3005 | loss(seq) 0.4682 | grad 3.9708 | lr 0.0010 | time_forward 3.4330 | time_backward 5.0200
[2023-09-03 03:57:49,107::train::INFO] [train] Iter 17685 | loss 1.1647 | loss(rot) 0.6232 | loss(pos) 0.1626 | loss(seq) 0.3789 | grad 4.0488 | lr 0.0010 | time_forward 3.5710 | time_backward 5.0500
[2023-09-03 03:57:58,223::train::INFO] [train] Iter 17686 | loss 0.9832 | loss(rot) 0.7222 | loss(pos) 0.1405 | loss(seq) 0.1205 | grad 4.7970 | lr 0.0010 | time_forward 3.7270 | time_backward 5.3850
[2023-09-03 03:58:01,176::train::INFO] [train] Iter 17687 | loss 1.1462 | loss(rot) 0.5429 | loss(pos) 0.3906 | loss(seq) 0.2127 | grad 4.9141 | lr 0.0010 | time_forward 1.4250 | time_backward 1.5230
[2023-09-03 03:58:08,942::train::INFO] [train] Iter 17688 | loss 1.1962 | loss(rot) 0.4274 | loss(pos) 0.5394 | loss(seq) 0.2293 | grad 5.8005 | lr 0.0010 | time_forward 3.0630 | time_backward 4.6840
[2023-09-03 03:58:11,751::train::INFO] [train] Iter 17689 | loss 0.8598 | loss(rot) 0.2109 | loss(pos) 0.5882 | loss(seq) 0.0608 | grad 6.3874 | lr 0.0010 | time_forward 1.3290 | time_backward 1.4760
[2023-09-03 03:58:15,159::train::INFO] [train] Iter 17690 | loss 1.9835 | loss(rot) 1.0912 | loss(pos) 0.3580 | loss(seq) 0.5343 | grad 4.1250 | lr 0.0010 | time_forward 1.4280 | time_backward 1.9780
[2023-09-03 03:58:17,922::train::INFO] [train] Iter 17691 | loss 1.3617 | loss(rot) 1.2124 | loss(pos) 0.1492 | loss(seq) 0.0001 | grad 4.8702 | lr 0.0010 | time_forward 1.2750 | time_backward 1.4840
[2023-09-03 03:58:27,362::train::INFO] [train] Iter 17692 | loss 2.7774 | loss(rot) 2.4155 | loss(pos) 0.3616 | loss(seq) 0.0003 | grad 5.9560 | lr 0.0010 | time_forward 3.6370 | time_backward 5.7970
[2023-09-03 03:58:30,185::train::INFO] [train] Iter 17693 | loss 1.1435 | loss(rot) 0.2535 | loss(pos) 0.8709 | loss(seq) 0.0191 | grad 5.5982 | lr 0.0010 | time_forward 1.3150 | time_backward 1.5030
[2023-09-03 03:58:38,539::train::INFO] [train] Iter 17694 | loss 2.0478 | loss(rot) 1.5351 | loss(pos) 0.1477 | loss(seq) 0.3650 | grad 9.3402 | lr 0.0010 | time_forward 3.3360 | time_backward 5.0110
[2023-09-03 03:58:46,716::train::INFO] [train] Iter 17695 | loss 1.3241 | loss(rot) 1.1130 | loss(pos) 0.1200 | loss(seq) 0.0911 | grad 5.2353 | lr 0.0010 | time_forward 3.4100 | time_backward 4.7630
[2023-09-03 03:58:49,504::train::INFO] [train] Iter 17696 | loss 1.1734 | loss(rot) 0.4912 | loss(pos) 0.2228 | loss(seq) 0.4593 | grad 4.1549 | lr 0.0010 | time_forward 1.3030 | time_backward 1.4820
[2023-09-03 03:58:52,777::train::INFO] [train] Iter 17697 | loss 2.0641 | loss(rot) 0.9683 | loss(pos) 0.5388 | loss(seq) 0.5570 | grad 5.4668 | lr 0.0010 | time_forward 1.4180 | time_backward 1.8510
[2023-09-03 03:59:01,825::train::INFO] [train] Iter 17698 | loss 1.5571 | loss(rot) 0.6865 | loss(pos) 0.4758 | loss(seq) 0.3948 | grad 5.2957 | lr 0.0010 | time_forward 3.5840 | time_backward 5.4600
[2023-09-03 03:59:12,015::train::INFO] [train] Iter 17699 | loss 1.2154 | loss(rot) 0.5209 | loss(pos) 0.3305 | loss(seq) 0.3640 | grad 5.0510 | lr 0.0010 | time_forward 4.2830 | time_backward 5.9030
[2023-09-03 03:59:20,827::train::INFO] [train] Iter 17700 | loss 2.4352 | loss(rot) 1.5961 | loss(pos) 0.3675 | loss(seq) 0.4716 | grad 8.6232 | lr 0.0010 | time_forward 3.7420 | time_backward 5.0670
[2023-09-03 03:59:24,681::train::INFO] [train] Iter 17701 | loss 1.4462 | loss(rot) 0.0798 | loss(pos) 1.1713 | loss(seq) 0.1951 | grad 6.6811 | lr 0.0010 | time_forward 1.5190 | time_backward 2.3290
[2023-09-03 03:59:33,691::train::INFO] [train] Iter 17702 | loss 1.4079 | loss(rot) 0.2400 | loss(pos) 0.5972 | loss(seq) 0.5706 | grad 6.4236 | lr 0.0010 | time_forward 3.5520 | time_backward 5.4540
[2023-09-03 03:59:42,053::train::INFO] [train] Iter 17703 | loss 1.4227 | loss(rot) 0.8041 | loss(pos) 0.1057 | loss(seq) 0.5128 | grad 3.1556 | lr 0.0010 | time_forward 3.7570 | time_backward 4.6010
[2023-09-03 03:59:51,485::train::INFO] [train] Iter 17704 | loss 1.7062 | loss(rot) 0.5948 | loss(pos) 0.4246 | loss(seq) 0.6868 | grad 5.7828 | lr 0.0010 | time_forward 3.8950 | time_backward 5.5330
[2023-09-03 03:59:54,379::train::INFO] [train] Iter 17705 | loss 1.3800 | loss(rot) 1.1454 | loss(pos) 0.1186 | loss(seq) 0.1160 | grad 4.8954 | lr 0.0010 | time_forward 1.3570 | time_backward 1.5300
[2023-09-03 04:00:02,835::train::INFO] [train] Iter 17706 | loss 1.9385 | loss(rot) 1.4934 | loss(pos) 0.1459 | loss(seq) 0.2992 | grad 5.2077 | lr 0.0010 | time_forward 3.6410 | time_backward 4.8120
[2023-09-03 04:00:11,362::train::INFO] [train] Iter 17707 | loss 1.3872 | loss(rot) 1.2781 | loss(pos) 0.0915 | loss(seq) 0.0176 | grad 9.4599 | lr 0.0010 | time_forward 3.4900 | time_backward 5.0340
[2023-09-03 04:00:21,190::train::INFO] [train] Iter 17708 | loss 1.3544 | loss(rot) 0.4214 | loss(pos) 0.7151 | loss(seq) 0.2179 | grad 4.6608 | lr 0.0010 | time_forward 4.0000 | time_backward 5.8240
[2023-09-03 04:00:23,937::train::INFO] [train] Iter 17709 | loss 1.7177 | loss(rot) 0.6370 | loss(pos) 0.4913 | loss(seq) 0.5894 | grad 5.3224 | lr 0.0010 | time_forward 1.3770 | time_backward 1.3570
[2023-09-03 04:00:34,783::train::INFO] [train] Iter 17710 | loss 1.1863 | loss(rot) 0.0337 | loss(pos) 0.9152 | loss(seq) 0.2375 | grad 4.1623 | lr 0.0010 | time_forward 4.2720 | time_backward 6.5700
[2023-09-03 04:00:38,037::train::INFO] [train] Iter 17711 | loss 2.2898 | loss(rot) 0.8190 | loss(pos) 1.0412 | loss(seq) 0.4295 | grad 8.1578 | lr 0.0010 | time_forward 1.8080 | time_backward 1.4420
[2023-09-03 04:00:49,079::train::INFO] [train] Iter 17712 | loss 1.5477 | loss(rot) 0.7198 | loss(pos) 0.4230 | loss(seq) 0.4048 | grad 4.1356 | lr 0.0010 | time_forward 4.4710 | time_backward 6.5660
[2023-09-03 04:00:58,881::train::INFO] [train] Iter 17713 | loss 1.9391 | loss(rot) 1.4118 | loss(pos) 0.1534 | loss(seq) 0.3740 | grad 4.9161 | lr 0.0010 | time_forward 3.9560 | time_backward 5.8430
[2023-09-03 04:01:07,088::train::INFO] [train] Iter 17714 | loss 1.7089 | loss(rot) 1.2733 | loss(pos) 0.2462 | loss(seq) 0.1894 | grad 8.9802 | lr 0.0010 | time_forward 3.6480 | time_backward 4.5550
[2023-09-03 04:01:13,972::train::INFO] [train] Iter 17715 | loss 0.7172 | loss(rot) 0.0838 | loss(pos) 0.4645 | loss(seq) 0.1689 | grad 5.3399 | lr 0.0010 | time_forward 3.0620 | time_backward 3.8190
[2023-09-03 04:01:24,442::train::INFO] [train] Iter 17716 | loss 0.7885 | loss(rot) 0.1295 | loss(pos) 0.6296 | loss(seq) 0.0293 | grad 5.8234 | lr 0.0010 | time_forward 4.3110 | time_backward 6.1540
[2023-09-03 04:01:34,375::train::INFO] [train] Iter 17717 | loss 1.8992 | loss(rot) 1.3266 | loss(pos) 0.1175 | loss(seq) 0.4551 | grad 5.2374 | lr 0.0010 | time_forward 4.0590 | time_backward 5.8700
[2023-09-03 04:01:44,174::train::INFO] [train] Iter 17718 | loss 1.2723 | loss(rot) 0.9862 | loss(pos) 0.2861 | loss(seq) 0.0000 | grad 5.7474 | lr 0.0010 | time_forward 3.8090 | time_backward 5.9860
[2023-09-03 04:01:54,353::train::INFO] [train] Iter 17719 | loss 1.4907 | loss(rot) 0.0874 | loss(pos) 1.3746 | loss(seq) 0.0287 | grad 4.8303 | lr 0.0010 | time_forward 4.6310 | time_backward 5.5440
[2023-09-03 04:02:03,203::train::INFO] [train] Iter 17720 | loss 0.7491 | loss(rot) 0.5591 | loss(pos) 0.1899 | loss(seq) 0.0001 | grad 6.6641 | lr 0.0010 | time_forward 3.6310 | time_backward 5.2150
[2023-09-03 04:02:10,691::train::INFO] [train] Iter 17721 | loss 0.8813 | loss(rot) 0.0289 | loss(pos) 0.8487 | loss(seq) 0.0037 | grad 5.2451 | lr 0.0010 | time_forward 3.1150 | time_backward 4.3700
[2023-09-03 04:02:20,064::train::INFO] [train] Iter 17722 | loss 0.6433 | loss(rot) 0.1210 | loss(pos) 0.2276 | loss(seq) 0.2947 | grad 2.5767 | lr 0.0010 | time_forward 3.8220 | time_backward 5.5460
[2023-09-03 04:02:23,094::train::INFO] [train] Iter 17723 | loss 1.8251 | loss(rot) 1.5869 | loss(pos) 0.2293 | loss(seq) 0.0089 | grad 4.7570 | lr 0.0010 | time_forward 1.5680 | time_backward 1.4580
[2023-09-03 04:02:32,040::train::INFO] [train] Iter 17724 | loss 1.0956 | loss(rot) 0.4760 | loss(pos) 0.2701 | loss(seq) 0.3495 | grad 6.8668 | lr 0.0010 | time_forward 3.8210 | time_backward 5.0980
[2023-09-03 04:02:33,871::train::INFO] [train] Iter 17725 | loss 1.6950 | loss(rot) 0.4193 | loss(pos) 1.2628 | loss(seq) 0.0129 | grad 5.6178 | lr 0.0010 | time_forward 0.8140 | time_backward 1.0120
[2023-09-03 04:02:36,858::train::INFO] [train] Iter 17726 | loss 1.1905 | loss(rot) 0.6474 | loss(pos) 0.2843 | loss(seq) 0.2588 | grad 3.6013 | lr 0.0010 | time_forward 1.4100 | time_backward 1.5710
[2023-09-03 04:02:46,888::train::INFO] [train] Iter 17727 | loss 1.5066 | loss(rot) 1.0260 | loss(pos) 0.1326 | loss(seq) 0.3480 | grad 6.4869 | lr 0.0010 | time_forward 4.1690 | time_backward 5.8580
[2023-09-03 04:02:54,469::train::INFO] [train] Iter 17728 | loss 1.7355 | loss(rot) 0.7638 | loss(pos) 0.6406 | loss(seq) 0.3311 | grad 7.5501 | lr 0.0010 | time_forward 3.2120 | time_backward 4.3660
[2023-09-03 04:03:02,680::train::INFO] [train] Iter 17729 | loss 0.2322 | loss(rot) 0.1156 | loss(pos) 0.0991 | loss(seq) 0.0174 | grad 2.3121 | lr 0.0010 | time_forward 3.4320 | time_backward 4.7750
[2023-09-03 04:03:11,134::train::INFO] [train] Iter 17730 | loss 1.8324 | loss(rot) 1.3002 | loss(pos) 0.0921 | loss(seq) 0.4401 | grad 5.5821 | lr 0.0010 | time_forward 3.7320 | time_backward 4.7180
[2023-09-03 04:03:19,431::train::INFO] [train] Iter 17731 | loss 0.7082 | loss(rot) 0.4321 | loss(pos) 0.0814 | loss(seq) 0.1946 | grad 3.2472 | lr 0.0010 | time_forward 3.3790 | time_backward 4.9140
[2023-09-03 04:03:26,002::train::INFO] [train] Iter 17732 | loss 4.8519 | loss(rot) 0.0096 | loss(pos) 4.8423 | loss(seq) 0.0000 | grad 11.0069 | lr 0.0010 | time_forward 2.6980 | time_backward 3.8690
[2023-09-03 04:03:34,184::train::INFO] [train] Iter 17733 | loss 0.9653 | loss(rot) 0.8320 | loss(pos) 0.0708 | loss(seq) 0.0625 | grad 4.8246 | lr 0.0010 | time_forward 3.3610 | time_backward 4.8180
[2023-09-03 04:03:41,839::train::INFO] [train] Iter 17734 | loss 1.0685 | loss(rot) 0.2125 | loss(pos) 0.3069 | loss(seq) 0.5491 | grad 2.8872 | lr 0.0010 | time_forward 3.1740 | time_backward 4.4780
[2023-09-03 04:03:44,235::train::INFO] [train] Iter 17735 | loss 2.4395 | loss(rot) 2.1435 | loss(pos) 0.2959 | loss(seq) 0.0000 | grad 5.4900 | lr 0.0010 | time_forward 1.1190 | time_backward 1.2740
[2023-09-03 04:03:52,178::train::INFO] [train] Iter 17736 | loss 1.7115 | loss(rot) 1.1704 | loss(pos) 0.0849 | loss(seq) 0.4563 | grad 3.7809 | lr 0.0010 | time_forward 3.4100 | time_backward 4.5300
[2023-09-03 04:03:54,813::train::INFO] [train] Iter 17737 | loss 1.1095 | loss(rot) 0.3767 | loss(pos) 0.1215 | loss(seq) 0.6113 | grad 2.6235 | lr 0.0010 | time_forward 1.2400 | time_backward 1.3910
[2023-09-03 04:04:04,320::train::INFO] [train] Iter 17738 | loss 1.5192 | loss(rot) 1.0992 | loss(pos) 0.1516 | loss(seq) 0.2684 | grad 4.4801 | lr 0.0010 | time_forward 4.0380 | time_backward 5.4540
[2023-09-03 04:04:13,630::train::INFO] [train] Iter 17739 | loss 1.0362 | loss(rot) 0.4446 | loss(pos) 0.3580 | loss(seq) 0.2336 | grad 3.3044 | lr 0.0010 | time_forward 3.9470 | time_backward 5.3600
[2023-09-03 04:04:22,131::train::INFO] [train] Iter 17740 | loss 0.9947 | loss(rot) 0.5446 | loss(pos) 0.1479 | loss(seq) 0.3022 | grad 5.2499 | lr 0.0010 | time_forward 3.6180 | time_backward 4.8670
[2023-09-03 04:04:32,037::train::INFO] [train] Iter 17741 | loss 1.9882 | loss(rot) 1.8525 | loss(pos) 0.0877 | loss(seq) 0.0479 | grad 6.1733 | lr 0.0010 | time_forward 3.9120 | time_backward 5.9850
[2023-09-03 04:04:40,027::train::INFO] [train] Iter 17742 | loss 0.5890 | loss(rot) 0.2154 | loss(pos) 0.2390 | loss(seq) 0.1346 | grad 3.1217 | lr 0.0010 | time_forward 3.2250 | time_backward 4.7590
[2023-09-03 04:04:49,598::train::INFO] [train] Iter 17743 | loss 0.9037 | loss(rot) 0.7026 | loss(pos) 0.2010 | loss(seq) 0.0000 | grad 4.0526 | lr 0.0010 | time_forward 3.8730 | time_backward 5.6950
[2023-09-03 04:04:53,791::train::INFO] [train] Iter 17744 | loss 0.6763 | loss(rot) 0.2088 | loss(pos) 0.4097 | loss(seq) 0.0578 | grad 4.5584 | lr 0.0010 | time_forward 2.7060 | time_backward 1.4770
[2023-09-03 04:05:04,776::train::INFO] [train] Iter 17745 | loss 1.3471 | loss(rot) 0.4167 | loss(pos) 0.2379 | loss(seq) 0.6926 | grad 3.7530 | lr 0.0010 | time_forward 5.2760 | time_backward 5.7070
[2023-09-03 04:05:14,373::train::INFO] [train] Iter 17746 | loss 1.7056 | loss(rot) 1.1779 | loss(pos) 0.1259 | loss(seq) 0.4018 | grad 4.0693 | lr 0.0010 | time_forward 4.0740 | time_backward 5.5190
[2023-09-03 04:05:17,089::train::INFO] [train] Iter 17747 | loss 0.9991 | loss(rot) 0.0644 | loss(pos) 0.9204 | loss(seq) 0.0143 | grad 5.3503 | lr 0.0010 | time_forward 1.3040 | time_backward 1.3980
[2023-09-03 04:05:25,219::train::INFO] [train] Iter 17748 | loss 1.9691 | loss(rot) 0.0322 | loss(pos) 1.4718 | loss(seq) 0.4652 | grad 8.3322 | lr 0.0010 | time_forward 3.4600 | time_backward 4.6660
[2023-09-03 04:05:33,595::train::INFO] [train] Iter 17749 | loss 1.3774 | loss(rot) 0.5306 | loss(pos) 0.2799 | loss(seq) 0.5669 | grad 7.8065 | lr 0.0010 | time_forward 3.5690 | time_backward 4.8030
[2023-09-03 04:05:42,784::train::INFO] [train] Iter 17750 | loss 1.3239 | loss(rot) 1.1746 | loss(pos) 0.1284 | loss(seq) 0.0208 | grad 5.7001 | lr 0.0010 | time_forward 3.7580 | time_backward 5.4280
[2023-09-03 04:05:45,521::train::INFO] [train] Iter 17751 | loss 0.4879 | loss(rot) 0.1031 | loss(pos) 0.3405 | loss(seq) 0.0443 | grad 3.5359 | lr 0.0010 | time_forward 1.2910 | time_backward 1.4320
[2023-09-03 04:05:50,981::train::INFO] [train] Iter 17752 | loss 1.1932 | loss(rot) 0.5037 | loss(pos) 0.2957 | loss(seq) 0.3938 | grad 5.5309 | lr 0.0010 | time_forward 2.2100 | time_backward 3.2460
[2023-09-03 04:05:59,607::train::INFO] [train] Iter 17753 | loss 0.7911 | loss(rot) 0.0261 | loss(pos) 0.7566 | loss(seq) 0.0084 | grad 6.2524 | lr 0.0010 | time_forward 3.7330 | time_backward 4.8870
[2023-09-03 04:06:02,217::train::INFO] [train] Iter 17754 | loss 1.7925 | loss(rot) 1.2929 | loss(pos) 0.2900 | loss(seq) 0.2095 | grad 24.3642 | lr 0.0010 | time_forward 1.2170 | time_backward 1.3890
[2023-09-03 04:06:09,710::train::INFO] [train] Iter 17755 | loss 0.8435 | loss(rot) 0.4639 | loss(pos) 0.3359 | loss(seq) 0.0437 | grad 5.7845 | lr 0.0010 | time_forward 2.9470 | time_backward 4.5420
[2023-09-03 04:06:18,964::train::INFO] [train] Iter 17756 | loss 0.9277 | loss(rot) 0.2534 | loss(pos) 0.4240 | loss(seq) 0.2503 | grad 4.5784 | lr 0.0010 | time_forward 3.4630 | time_backward 5.7870
[2023-09-03 04:06:27,831::train::INFO] [train] Iter 17757 | loss 1.4947 | loss(rot) 0.6721 | loss(pos) 0.2499 | loss(seq) 0.5728 | grad 7.1590 | lr 0.0010 | time_forward 3.4630 | time_backward 5.4000
[2023-09-03 04:06:34,110::train::INFO] [train] Iter 17758 | loss 1.8713 | loss(rot) 1.4593 | loss(pos) 0.1249 | loss(seq) 0.2870 | grad 7.4187 | lr 0.0010 | time_forward 2.6340 | time_backward 3.6410
[2023-09-03 04:06:43,245::train::INFO] [train] Iter 17759 | loss 1.9180 | loss(rot) 0.6610 | loss(pos) 0.4835 | loss(seq) 0.7735 | grad 3.9573 | lr 0.0010 | time_forward 3.7300 | time_backward 5.4010
[2023-09-03 04:06:51,378::train::INFO] [train] Iter 17760 | loss 1.0546 | loss(rot) 0.3065 | loss(pos) 0.2184 | loss(seq) 0.5297 | grad 4.3922 | lr 0.0010 | time_forward 3.4420 | time_backward 4.6880
[2023-09-03 04:06:59,270::train::INFO] [train] Iter 17761 | loss 3.0341 | loss(rot) 0.0625 | loss(pos) 2.9713 | loss(seq) 0.0004 | grad 8.7741 | lr 0.0010 | time_forward 3.5500 | time_backward 4.3380
[2023-09-03 04:07:01,915::train::INFO] [train] Iter 17762 | loss 0.6582 | loss(rot) 0.5553 | loss(pos) 0.1025 | loss(seq) 0.0003 | grad 4.4805 | lr 0.0010 | time_forward 1.2450 | time_backward 1.3970
[2023-09-03 04:07:04,155::train::INFO] [train] Iter 17763 | loss 2.1506 | loss(rot) 1.9266 | loss(pos) 0.1342 | loss(seq) 0.0898 | grad 3.8209 | lr 0.0010 | time_forward 1.0650 | time_backward 1.1710
[2023-09-03 04:07:13,059::train::INFO] [train] Iter 17764 | loss 1.4494 | loss(rot) 0.5124 | loss(pos) 0.3599 | loss(seq) 0.5771 | grad 4.4566 | lr 0.0010 | time_forward 3.4640 | time_backward 5.4250
[2023-09-03 04:07:20,343::train::INFO] [train] Iter 17765 | loss 1.0662 | loss(rot) 0.9170 | loss(pos) 0.0741 | loss(seq) 0.0751 | grad 8.7334 | lr 0.0010 | time_forward 2.9260 | time_backward 4.3540
[2023-09-03 04:07:28,083::train::INFO] [train] Iter 17766 | loss 1.1399 | loss(rot) 0.4602 | loss(pos) 0.3553 | loss(seq) 0.3244 | grad 5.0452 | lr 0.0010 | time_forward 3.3420 | time_backward 4.3940
[2023-09-03 04:07:36,113::train::INFO] [train] Iter 17767 | loss 1.3456 | loss(rot) 1.2695 | loss(pos) 0.0609 | loss(seq) 0.0152 | grad 5.8328 | lr 0.0010 | time_forward 3.3940 | time_backward 4.6330
[2023-09-03 04:07:43,841::train::INFO] [train] Iter 17768 | loss 0.9741 | loss(rot) 0.1731 | loss(pos) 0.7936 | loss(seq) 0.0074 | grad 4.2156 | lr 0.0010 | time_forward 3.2650 | time_backward 4.4590
[2023-09-03 04:07:46,513::train::INFO] [train] Iter 17769 | loss 1.1106 | loss(rot) 0.4260 | loss(pos) 0.3442 | loss(seq) 0.3404 | grad 4.7212 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4180
[2023-09-03 04:07:49,193::train::INFO] [train] Iter 17770 | loss 0.6668 | loss(rot) 0.1495 | loss(pos) 0.4322 | loss(seq) 0.0851 | grad 5.0529 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4060
[2023-09-03 04:07:51,399::train::INFO] [train] Iter 17771 | loss 1.1855 | loss(rot) 0.1848 | loss(pos) 0.7306 | loss(seq) 0.2701 | grad 6.4863 | lr 0.0010 | time_forward 1.0440 | time_backward 1.1580
[2023-09-03 04:07:59,542::train::INFO] [train] Iter 17772 | loss 3.2013 | loss(rot) 2.4240 | loss(pos) 0.3052 | loss(seq) 0.4722 | grad 5.6208 | lr 0.0010 | time_forward 3.5360 | time_backward 4.6040
[2023-09-03 04:08:07,616::train::INFO] [train] Iter 17773 | loss 1.0041 | loss(rot) 0.4233 | loss(pos) 0.4433 | loss(seq) 0.1374 | grad 9.3121 | lr 0.0010 | time_forward 3.3100 | time_backward 4.7610
[2023-09-03 04:08:15,434::train::INFO] [train] Iter 17774 | loss 0.9324 | loss(rot) 0.2087 | loss(pos) 0.4951 | loss(seq) 0.2286 | grad 4.0753 | lr 0.0010 | time_forward 3.0820 | time_backward 4.7320
[2023-09-03 04:08:23,255::train::INFO] [train] Iter 17775 | loss 1.0205 | loss(rot) 0.9034 | loss(pos) 0.1140 | loss(seq) 0.0031 | grad 9.0718 | lr 0.0010 | time_forward 3.1730 | time_backward 4.6450
[2023-09-03 04:08:30,967::train::INFO] [train] Iter 17776 | loss 0.9557 | loss(rot) 0.2521 | loss(pos) 0.6702 | loss(seq) 0.0334 | grad 5.4528 | lr 0.0010 | time_forward 3.3270 | time_backward 4.3810
[2023-09-03 04:08:38,648::train::INFO] [train] Iter 17777 | loss 0.7315 | loss(rot) 0.2386 | loss(pos) 0.3866 | loss(seq) 0.1063 | grad 4.7227 | lr 0.0010 | time_forward 3.3630 | time_backward 4.3140