text
stringlengths
56
1.16k
[2023-09-03 03:33:39,465::train::INFO] [train] Iter 17478 | loss 1.1077 | loss(rot) 0.7617 | loss(pos) 0.0717 | loss(seq) 0.2742 | grad 13.4296 | lr 0.0010 | time_forward 3.3560 | time_backward 4.3080
[2023-09-03 03:33:48,164::train::INFO] [train] Iter 17479 | loss 1.3653 | loss(rot) 0.6376 | loss(pos) 0.1762 | loss(seq) 0.5515 | grad 3.3153 | lr 0.0010 | time_forward 3.5810 | time_backward 5.1140
[2023-09-03 03:33:55,795::train::INFO] [train] Iter 17480 | loss 1.5685 | loss(rot) 1.4480 | loss(pos) 0.1203 | loss(seq) 0.0001 | grad 11.0536 | lr 0.0010 | time_forward 3.2920 | time_backward 4.3360
[2023-09-03 03:34:04,678::train::INFO] [train] Iter 17481 | loss 1.5994 | loss(rot) 0.8028 | loss(pos) 0.4612 | loss(seq) 0.3354 | grad 3.4103 | lr 0.0010 | time_forward 3.6100 | time_backward 5.2710
[2023-09-03 03:34:12,719::train::INFO] [train] Iter 17482 | loss 1.6462 | loss(rot) 1.4607 | loss(pos) 0.1820 | loss(seq) 0.0035 | grad 7.5915 | lr 0.0010 | time_forward 3.4340 | time_backward 4.6030
[2023-09-03 03:34:21,979::train::INFO] [train] Iter 17483 | loss 1.8329 | loss(rot) 0.5559 | loss(pos) 0.6428 | loss(seq) 0.6342 | grad 2.4126 | lr 0.0010 | time_forward 3.7790 | time_backward 5.4780
[2023-09-03 03:34:29,217::train::INFO] [train] Iter 17484 | loss 0.7764 | loss(rot) 0.1450 | loss(pos) 0.5838 | loss(seq) 0.0476 | grad 3.0552 | lr 0.0010 | time_forward 2.8630 | time_backward 4.3720
[2023-09-03 03:34:31,790::train::INFO] [train] Iter 17485 | loss 1.7084 | loss(rot) 0.8914 | loss(pos) 0.2700 | loss(seq) 0.5470 | grad 4.1099 | lr 0.0010 | time_forward 1.1790 | time_backward 1.3900
[2023-09-03 03:34:39,048::train::INFO] [train] Iter 17486 | loss 0.7981 | loss(rot) 0.0967 | loss(pos) 0.6786 | loss(seq) 0.0228 | grad 4.8245 | lr 0.0010 | time_forward 3.1170 | time_backward 4.1370
[2023-09-03 03:34:46,428::train::INFO] [train] Iter 17487 | loss 1.5757 | loss(rot) 1.1364 | loss(pos) 0.1788 | loss(seq) 0.2604 | grad 8.1838 | lr 0.0010 | time_forward 3.1770 | time_backward 4.2000
[2023-09-03 03:34:53,614::train::INFO] [train] Iter 17488 | loss 2.2536 | loss(rot) 1.8286 | loss(pos) 0.0822 | loss(seq) 0.3428 | grad 3.8776 | lr 0.0010 | time_forward 3.0610 | time_backward 4.1210
[2023-09-03 03:34:56,157::train::INFO] [train] Iter 17489 | loss 1.0452 | loss(rot) 0.9046 | loss(pos) 0.1385 | loss(seq) 0.0021 | grad 4.7596 | lr 0.0010 | time_forward 1.1760 | time_backward 1.3650
[2023-09-03 03:34:58,752::train::INFO] [train] Iter 17490 | loss 1.6709 | loss(rot) 1.3082 | loss(pos) 0.1683 | loss(seq) 0.1944 | grad 8.0381 | lr 0.0010 | time_forward 1.2000 | time_backward 1.3920
[2023-09-03 03:35:06,393::train::INFO] [train] Iter 17491 | loss 1.1551 | loss(rot) 0.6874 | loss(pos) 0.1038 | loss(seq) 0.3639 | grad 4.2621 | lr 0.0010 | time_forward 3.2930 | time_backward 4.3430
[2023-09-03 03:35:16,389::train::INFO] [train] Iter 17492 | loss 0.9173 | loss(rot) 0.2008 | loss(pos) 0.3759 | loss(seq) 0.3406 | grad 3.7499 | lr 0.0010 | time_forward 3.5770 | time_backward 6.4150
[2023-09-03 03:35:32,008::train::INFO] [train] Iter 17493 | loss 1.1503 | loss(rot) 0.4194 | loss(pos) 0.3742 | loss(seq) 0.3568 | grad 3.8478 | lr 0.0010 | time_forward 7.7920 | time_backward 7.8240
[2023-09-03 03:35:47,569::train::INFO] [train] Iter 17494 | loss 2.0577 | loss(rot) 1.8334 | loss(pos) 0.2193 | loss(seq) 0.0050 | grad 3.8666 | lr 0.0010 | time_forward 6.6470 | time_backward 8.9090
[2023-09-03 03:35:51,945::train::INFO] [train] Iter 17495 | loss 2.2822 | loss(rot) 1.5152 | loss(pos) 0.2132 | loss(seq) 0.5539 | grad 4.4882 | lr 0.0010 | time_forward 1.8800 | time_backward 2.4820
[2023-09-03 03:35:57,954::train::INFO] [train] Iter 17496 | loss 1.0347 | loss(rot) 0.2448 | loss(pos) 0.2623 | loss(seq) 0.5276 | grad 2.9590 | lr 0.0010 | time_forward 3.1780 | time_backward 2.8240
[2023-09-03 03:36:10,111::train::INFO] [train] Iter 17497 | loss 0.9939 | loss(rot) 0.3307 | loss(pos) 0.4283 | loss(seq) 0.2349 | grad 2.8993 | lr 0.0010 | time_forward 5.5780 | time_backward 6.5740
[2023-09-03 03:36:21,794::train::INFO] [train] Iter 17498 | loss 2.1257 | loss(rot) 1.3187 | loss(pos) 0.1666 | loss(seq) 0.6403 | grad 4.3654 | lr 0.0010 | time_forward 3.9220 | time_backward 7.7570
[2023-09-03 03:36:32,557::train::INFO] [train] Iter 17499 | loss 2.7091 | loss(rot) 2.4706 | loss(pos) 0.1298 | loss(seq) 0.1087 | grad 6.1603 | lr 0.0010 | time_forward 4.6950 | time_backward 6.0550
[2023-09-03 03:36:41,790::train::INFO] [train] Iter 17500 | loss 1.0787 | loss(rot) 0.2250 | loss(pos) 0.3702 | loss(seq) 0.4835 | grad 3.6546 | lr 0.0010 | time_forward 3.8190 | time_backward 5.4100
[2023-09-03 03:36:45,202::train::INFO] [train] Iter 17501 | loss 2.0778 | loss(rot) 1.5983 | loss(pos) 0.0997 | loss(seq) 0.3798 | grad 4.1899 | lr 0.0010 | time_forward 1.5250 | time_backward 1.8830
[2023-09-03 03:36:47,931::train::INFO] [train] Iter 17502 | loss 1.3555 | loss(rot) 0.9169 | loss(pos) 0.0669 | loss(seq) 0.3718 | grad 6.8773 | lr 0.0010 | time_forward 1.2200 | time_backward 1.5070
[2023-09-03 03:36:57,866::train::INFO] [train] Iter 17503 | loss 1.1906 | loss(rot) 0.4759 | loss(pos) 0.5186 | loss(seq) 0.1961 | grad 4.3133 | lr 0.0010 | time_forward 3.8930 | time_backward 6.0390
[2023-09-03 03:37:06,991::train::INFO] [train] Iter 17504 | loss 1.5143 | loss(rot) 1.2628 | loss(pos) 0.2515 | loss(seq) 0.0000 | grad 7.1265 | lr 0.0010 | time_forward 3.5610 | time_backward 5.5590
[2023-09-03 03:37:19,447::train::INFO] [train] Iter 17505 | loss 1.5308 | loss(rot) 0.9857 | loss(pos) 0.2018 | loss(seq) 0.3433 | grad 4.1196 | lr 0.0010 | time_forward 6.4110 | time_backward 6.0410
[2023-09-03 03:37:22,340::train::INFO] [train] Iter 17506 | loss 1.6389 | loss(rot) 1.4983 | loss(pos) 0.1404 | loss(seq) 0.0001 | grad 4.9350 | lr 0.0010 | time_forward 1.3950 | time_backward 1.4950
[2023-09-03 03:37:24,809::train::INFO] [train] Iter 17507 | loss 2.1760 | loss(rot) 1.3170 | loss(pos) 0.4273 | loss(seq) 0.4317 | grad 5.2769 | lr 0.0010 | time_forward 1.1950 | time_backward 1.2680
[2023-09-03 03:37:32,275::train::INFO] [train] Iter 17508 | loss 1.9942 | loss(rot) 0.1783 | loss(pos) 1.8147 | loss(seq) 0.0012 | grad 5.8405 | lr 0.0010 | time_forward 2.9860 | time_backward 4.4770
[2023-09-03 03:37:40,875::train::INFO] [train] Iter 17509 | loss 1.5744 | loss(rot) 0.0460 | loss(pos) 1.5278 | loss(seq) 0.0005 | grad 7.2562 | lr 0.0010 | time_forward 3.4740 | time_backward 5.1230
[2023-09-03 03:37:48,622::train::INFO] [train] Iter 17510 | loss 1.5785 | loss(rot) 1.1622 | loss(pos) 0.0747 | loss(seq) 0.3417 | grad 6.0752 | lr 0.0010 | time_forward 3.0430 | time_backward 4.6980
[2023-09-03 03:37:57,612::train::INFO] [train] Iter 17511 | loss 1.5415 | loss(rot) 1.0786 | loss(pos) 0.0795 | loss(seq) 0.3834 | grad 3.8961 | lr 0.0010 | time_forward 3.4160 | time_backward 5.5700
[2023-09-03 03:38:05,628::train::INFO] [train] Iter 17512 | loss 1.3225 | loss(rot) 1.1788 | loss(pos) 0.0847 | loss(seq) 0.0590 | grad 3.9159 | lr 0.0010 | time_forward 3.0000 | time_backward 5.0130
[2023-09-03 03:38:14,103::train::INFO] [train] Iter 17513 | loss 1.0616 | loss(rot) 0.3597 | loss(pos) 0.1851 | loss(seq) 0.5169 | grad 5.2387 | lr 0.0010 | time_forward 3.2670 | time_backward 5.2040
[2023-09-03 03:38:17,619::train::INFO] [train] Iter 17514 | loss 2.6960 | loss(rot) 0.0163 | loss(pos) 2.6792 | loss(seq) 0.0005 | grad 5.8593 | lr 0.0010 | time_forward 1.5160 | time_backward 1.9970
[2023-09-03 03:38:26,953::train::INFO] [train] Iter 17515 | loss 0.7183 | loss(rot) 0.1026 | loss(pos) 0.5930 | loss(seq) 0.0228 | grad 5.0219 | lr 0.0010 | time_forward 3.6600 | time_backward 5.6700
[2023-09-03 03:38:34,133::train::INFO] [train] Iter 17516 | loss 1.7270 | loss(rot) 1.1568 | loss(pos) 0.1675 | loss(seq) 0.4026 | grad 4.7573 | lr 0.0010 | time_forward 2.8090 | time_backward 4.3580
[2023-09-03 03:38:37,012::train::INFO] [train] Iter 17517 | loss 1.6147 | loss(rot) 1.0063 | loss(pos) 0.1612 | loss(seq) 0.4472 | grad 4.9099 | lr 0.0010 | time_forward 1.3130 | time_backward 1.5610
[2023-09-03 03:38:39,903::train::INFO] [train] Iter 17518 | loss 1.3872 | loss(rot) 0.6716 | loss(pos) 0.2018 | loss(seq) 0.5137 | grad 5.0670 | lr 0.0010 | time_forward 1.2730 | time_backward 1.6140
[2023-09-03 03:38:48,462::train::INFO] [train] Iter 17519 | loss 2.5805 | loss(rot) 2.2003 | loss(pos) 0.3148 | loss(seq) 0.0654 | grad 6.3081 | lr 0.0010 | time_forward 3.4950 | time_backward 5.0600
[2023-09-03 03:38:57,454::train::INFO] [train] Iter 17520 | loss 1.6906 | loss(rot) 0.8858 | loss(pos) 0.3576 | loss(seq) 0.4473 | grad 5.6710 | lr 0.0010 | time_forward 3.8580 | time_backward 5.1280
[2023-09-03 03:39:00,320::train::INFO] [train] Iter 17521 | loss 2.2921 | loss(rot) 1.0666 | loss(pos) 0.7022 | loss(seq) 0.5233 | grad 6.0733 | lr 0.0010 | time_forward 1.3260 | time_backward 1.5360
[2023-09-03 03:39:07,601::train::INFO] [train] Iter 17522 | loss 2.5131 | loss(rot) 1.5994 | loss(pos) 0.3543 | loss(seq) 0.5594 | grad 7.6491 | lr 0.0010 | time_forward 3.0340 | time_backward 4.2420
[2023-09-03 03:39:10,617::train::INFO] [train] Iter 17523 | loss 0.7767 | loss(rot) 0.1226 | loss(pos) 0.3593 | loss(seq) 0.2947 | grad 4.1535 | lr 0.0010 | time_forward 1.4120 | time_backward 1.5870
[2023-09-03 03:39:20,545::train::INFO] [train] Iter 17524 | loss 2.0860 | loss(rot) 1.9246 | loss(pos) 0.1003 | loss(seq) 0.0611 | grad 3.5452 | lr 0.0010 | time_forward 3.7350 | time_backward 6.1890
[2023-09-03 03:39:23,118::train::INFO] [train] Iter 17525 | loss 1.2288 | loss(rot) 0.5448 | loss(pos) 0.4654 | loss(seq) 0.2186 | grad 4.5122 | lr 0.0010 | time_forward 1.1650 | time_backward 1.4040
[2023-09-03 03:39:32,266::train::INFO] [train] Iter 17526 | loss 1.2393 | loss(rot) 0.4090 | loss(pos) 0.1250 | loss(seq) 0.7054 | grad 3.6662 | lr 0.0010 | time_forward 3.7730 | time_backward 5.3710
[2023-09-03 03:39:42,207::train::INFO] [train] Iter 17527 | loss 1.0235 | loss(rot) 0.9359 | loss(pos) 0.0579 | loss(seq) 0.0298 | grad 4.7311 | lr 0.0010 | time_forward 3.9380 | time_backward 6.0000
[2023-09-03 03:39:51,319::train::INFO] [train] Iter 17528 | loss 1.2334 | loss(rot) 0.8443 | loss(pos) 0.0720 | loss(seq) 0.3170 | grad 3.2656 | lr 0.0010 | time_forward 3.8300 | time_backward 5.2780
[2023-09-03 03:40:00,569::train::INFO] [train] Iter 17529 | loss 1.1178 | loss(rot) 0.4797 | loss(pos) 0.1696 | loss(seq) 0.4686 | grad 3.0789 | lr 0.0010 | time_forward 3.7950 | time_backward 5.4510
[2023-09-03 03:40:08,945::train::INFO] [train] Iter 17530 | loss 1.9984 | loss(rot) 0.1478 | loss(pos) 1.8480 | loss(seq) 0.0025 | grad 7.6667 | lr 0.0010 | time_forward 3.4830 | time_backward 4.8840
[2023-09-03 03:40:18,451::train::INFO] [train] Iter 17531 | loss 2.1934 | loss(rot) 1.7221 | loss(pos) 0.1994 | loss(seq) 0.2718 | grad 4.6164 | lr 0.0010 | time_forward 4.0370 | time_backward 5.4660
[2023-09-03 03:40:27,946::train::INFO] [train] Iter 17532 | loss 2.0548 | loss(rot) 1.3410 | loss(pos) 0.3326 | loss(seq) 0.3812 | grad 4.5705 | lr 0.0010 | time_forward 3.5820 | time_backward 5.9090
[2023-09-03 03:40:37,461::train::INFO] [train] Iter 17533 | loss 0.9344 | loss(rot) 0.3833 | loss(pos) 0.4427 | loss(seq) 0.1084 | grad 4.1225 | lr 0.0010 | time_forward 3.5540 | time_backward 5.9580
[2023-09-03 03:40:40,334::train::INFO] [train] Iter 17534 | loss 1.4330 | loss(rot) 1.2360 | loss(pos) 0.1958 | loss(seq) 0.0013 | grad 22.5203 | lr 0.0010 | time_forward 1.2980 | time_backward 1.5710
[2023-09-03 03:40:42,887::train::INFO] [train] Iter 17535 | loss 2.0905 | loss(rot) 1.9685 | loss(pos) 0.1219 | loss(seq) 0.0001 | grad 5.3377 | lr 0.0010 | time_forward 1.1820 | time_backward 1.3670
[2023-09-03 03:40:51,928::train::INFO] [train] Iter 17536 | loss 0.8622 | loss(rot) 0.6388 | loss(pos) 0.1823 | loss(seq) 0.0411 | grad 4.8744 | lr 0.0010 | time_forward 3.6640 | time_backward 5.3740
[2023-09-03 03:41:01,996::train::INFO] [train] Iter 17537 | loss 1.1916 | loss(rot) 1.0509 | loss(pos) 0.1316 | loss(seq) 0.0091 | grad 4.1754 | lr 0.0010 | time_forward 3.9660 | time_backward 6.0920
[2023-09-03 03:41:09,910::train::INFO] [train] Iter 17538 | loss 2.0192 | loss(rot) 1.7170 | loss(pos) 0.0990 | loss(seq) 0.2032 | grad 9.3099 | lr 0.0010 | time_forward 3.4350 | time_backward 4.4750
[2023-09-03 03:41:19,240::train::INFO] [train] Iter 17539 | loss 2.0240 | loss(rot) 0.3522 | loss(pos) 1.6669 | loss(seq) 0.0049 | grad 5.2651 | lr 0.0010 | time_forward 3.6620 | time_backward 5.6650
[2023-09-03 03:41:27,634::train::INFO] [train] Iter 17540 | loss 1.8003 | loss(rot) 0.9187 | loss(pos) 0.3914 | loss(seq) 0.4902 | grad 3.9658 | lr 0.0010 | time_forward 3.3110 | time_backward 5.0790
[2023-09-03 03:41:37,287::train::INFO] [train] Iter 17541 | loss 0.4258 | loss(rot) 0.0801 | loss(pos) 0.3136 | loss(seq) 0.0321 | grad 2.4425 | lr 0.0010 | time_forward 3.7770 | time_backward 5.8720
[2023-09-03 03:41:45,375::train::INFO] [train] Iter 17542 | loss 1.5448 | loss(rot) 1.2630 | loss(pos) 0.1252 | loss(seq) 0.1565 | grad 6.8455 | lr 0.0010 | time_forward 3.4490 | time_backward 4.6350
[2023-09-03 03:41:53,760::train::INFO] [train] Iter 17543 | loss 0.8327 | loss(rot) 0.3728 | loss(pos) 0.1371 | loss(seq) 0.3229 | grad 6.7291 | lr 0.0010 | time_forward 3.7430 | time_backward 4.6390
[2023-09-03 03:41:58,554::train::INFO] [train] Iter 17544 | loss 1.1102 | loss(rot) 0.3204 | loss(pos) 0.5735 | loss(seq) 0.2163 | grad 5.3079 | lr 0.0010 | time_forward 1.9530 | time_backward 2.8370
[2023-09-03 03:42:07,326::train::INFO] [train] Iter 17545 | loss 1.1651 | loss(rot) 0.4659 | loss(pos) 0.5553 | loss(seq) 0.1438 | grad 5.0902 | lr 0.0010 | time_forward 3.7930 | time_backward 4.9260
[2023-09-03 03:42:15,769::train::INFO] [train] Iter 17546 | loss 0.8771 | loss(rot) 0.2741 | loss(pos) 0.2495 | loss(seq) 0.3535 | grad 4.1035 | lr 0.0010 | time_forward 3.5190 | time_backward 4.9210
[2023-09-03 03:42:23,019::train::INFO] [train] Iter 17547 | loss 2.1134 | loss(rot) 1.9751 | loss(pos) 0.1353 | loss(seq) 0.0030 | grad 4.1278 | lr 0.0010 | time_forward 2.9230 | time_backward 4.3240
[2023-09-03 03:42:26,112::train::INFO] [train] Iter 17548 | loss 2.1665 | loss(rot) 1.5070 | loss(pos) 0.1213 | loss(seq) 0.5382 | grad 5.5074 | lr 0.0010 | time_forward 1.4460 | time_backward 1.6440
[2023-09-03 03:42:28,983::train::INFO] [train] Iter 17549 | loss 1.2296 | loss(rot) 0.3822 | loss(pos) 0.3399 | loss(seq) 0.5075 | grad 4.1567 | lr 0.0010 | time_forward 1.4100 | time_backward 1.4570
[2023-09-03 03:42:38,405::train::INFO] [train] Iter 17550 | loss 1.6978 | loss(rot) 0.8760 | loss(pos) 0.2764 | loss(seq) 0.5455 | grad 3.1899 | lr 0.0010 | time_forward 3.9750 | time_backward 5.4440
[2023-09-03 03:42:46,758::train::INFO] [train] Iter 17551 | loss 0.7901 | loss(rot) 0.4444 | loss(pos) 0.0388 | loss(seq) 0.3069 | grad 2.7315 | lr 0.0010 | time_forward 3.5750 | time_backward 4.7740
[2023-09-03 03:42:49,647::train::INFO] [train] Iter 17552 | loss 0.8417 | loss(rot) 0.6691 | loss(pos) 0.0763 | loss(seq) 0.0963 | grad 7.5198 | lr 0.0010 | time_forward 1.2770 | time_backward 1.6080
[2023-09-03 03:42:52,301::train::INFO] [train] Iter 17553 | loss 1.8699 | loss(rot) 1.3039 | loss(pos) 0.1760 | loss(seq) 0.3900 | grad 4.3233 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4060
[2023-09-03 03:42:59,963::train::INFO] [train] Iter 17554 | loss 0.9048 | loss(rot) 0.1826 | loss(pos) 0.7003 | loss(seq) 0.0218 | grad 5.1525 | lr 0.0010 | time_forward 3.2910 | time_backward 4.3670
[2023-09-03 03:43:03,699::train::INFO] [train] Iter 17555 | loss 2.1755 | loss(rot) 2.0315 | loss(pos) 0.1433 | loss(seq) 0.0007 | grad 6.1774 | lr 0.0010 | time_forward 1.5750 | time_backward 2.1570
[2023-09-03 03:43:06,535::train::INFO] [train] Iter 17556 | loss 0.6607 | loss(rot) 0.5858 | loss(pos) 0.0613 | loss(seq) 0.0136 | grad 3.7690 | lr 0.0010 | time_forward 1.3350 | time_backward 1.4950
[2023-09-03 03:43:16,042::train::INFO] [train] Iter 17557 | loss 3.5008 | loss(rot) 0.0083 | loss(pos) 3.4925 | loss(seq) 0.0000 | grad 6.1395 | lr 0.0010 | time_forward 3.6810 | time_backward 5.8220
[2023-09-03 03:43:18,816::train::INFO] [train] Iter 17558 | loss 1.4042 | loss(rot) 0.7002 | loss(pos) 0.1984 | loss(seq) 0.5056 | grad 12.7763 | lr 0.0010 | time_forward 1.3350 | time_backward 1.4350
[2023-09-03 03:43:21,199::train::INFO] [train] Iter 17559 | loss 0.9490 | loss(rot) 0.3638 | loss(pos) 0.5463 | loss(seq) 0.0390 | grad 4.6894 | lr 0.0010 | time_forward 1.0690 | time_backward 1.2990
[2023-09-03 03:43:29,428::train::INFO] [train] Iter 17560 | loss 2.1949 | loss(rot) 0.0349 | loss(pos) 1.7464 | loss(seq) 0.4136 | grad 7.5065 | lr 0.0010 | time_forward 3.7740 | time_backward 4.4520
[2023-09-03 03:43:36,143::train::INFO] [train] Iter 17561 | loss 1.3579 | loss(rot) 0.0607 | loss(pos) 1.1427 | loss(seq) 0.1546 | grad 4.4885 | lr 0.0010 | time_forward 2.8500 | time_backward 3.8620
[2023-09-03 03:43:39,500::train::INFO] [train] Iter 17562 | loss 1.0602 | loss(rot) 0.3824 | loss(pos) 0.4493 | loss(seq) 0.2285 | grad 2.5479 | lr 0.0010 | time_forward 1.4170 | time_backward 1.9370
[2023-09-03 03:43:42,371::train::INFO] [train] Iter 17563 | loss 0.8619 | loss(rot) 0.7177 | loss(pos) 0.1399 | loss(seq) 0.0043 | grad 3.4441 | lr 0.0010 | time_forward 1.2900 | time_backward 1.5770
[2023-09-03 03:43:50,542::train::INFO] [train] Iter 17564 | loss 1.0836 | loss(rot) 0.3779 | loss(pos) 0.1669 | loss(seq) 0.5389 | grad 3.4061 | lr 0.0010 | time_forward 3.5570 | time_backward 4.6100
[2023-09-03 03:43:53,883::train::INFO] [train] Iter 17565 | loss 1.8349 | loss(rot) 1.5020 | loss(pos) 0.1469 | loss(seq) 0.1861 | grad 8.0838 | lr 0.0010 | time_forward 1.4110 | time_backward 1.9270
[2023-09-03 03:43:56,750::train::INFO] [train] Iter 17566 | loss 0.7500 | loss(rot) 0.1322 | loss(pos) 0.5815 | loss(seq) 0.0363 | grad 3.3786 | lr 0.0010 | time_forward 1.3270 | time_backward 1.5360
[2023-09-03 03:44:05,464::train::INFO] [train] Iter 17567 | loss 1.2531 | loss(rot) 0.3479 | loss(pos) 0.2646 | loss(seq) 0.6406 | grad 3.4906 | lr 0.0010 | time_forward 3.6640 | time_backward 5.0460
[2023-09-03 03:44:13,726::train::INFO] [train] Iter 17568 | loss 1.3169 | loss(rot) 0.9305 | loss(pos) 0.0965 | loss(seq) 0.2899 | grad 4.5864 | lr 0.0010 | time_forward 3.3100 | time_backward 4.9470
[2023-09-03 03:44:22,682::train::INFO] [train] Iter 17569 | loss 2.9089 | loss(rot) 0.0528 | loss(pos) 2.8556 | loss(seq) 0.0005 | grad 11.8511 | lr 0.0010 | time_forward 3.7120 | time_backward 5.2400
[2023-09-03 03:44:31,811::train::INFO] [train] Iter 17570 | loss 1.0186 | loss(rot) 0.3305 | loss(pos) 0.1888 | loss(seq) 0.4993 | grad 2.5668 | lr 0.0010 | time_forward 3.8110 | time_backward 5.3130
[2023-09-03 03:44:40,765::train::INFO] [train] Iter 17571 | loss 2.1941 | loss(rot) 1.5794 | loss(pos) 0.1944 | loss(seq) 0.4202 | grad 6.9730 | lr 0.0010 | time_forward 3.6620 | time_backward 5.2890
[2023-09-03 03:44:50,532::train::INFO] [train] Iter 17572 | loss 1.1147 | loss(rot) 0.9264 | loss(pos) 0.1160 | loss(seq) 0.0723 | grad 7.6381 | lr 0.0010 | time_forward 4.1190 | time_backward 5.6450
[2023-09-03 03:45:00,672::train::INFO] [train] Iter 17573 | loss 1.4917 | loss(rot) 1.0323 | loss(pos) 0.1416 | loss(seq) 0.3178 | grad 5.5286 | lr 0.0010 | time_forward 3.9390 | time_backward 6.1980
[2023-09-03 03:45:08,901::train::INFO] [train] Iter 17574 | loss 2.9041 | loss(rot) 0.1080 | loss(pos) 2.7957 | loss(seq) 0.0003 | grad 11.0280 | lr 0.0010 | time_forward 3.5110 | time_backward 4.7130
[2023-09-03 03:45:18,669::train::INFO] [train] Iter 17575 | loss 0.6702 | loss(rot) 0.3468 | loss(pos) 0.1520 | loss(seq) 0.1713 | grad 2.5352 | lr 0.0010 | time_forward 3.9260 | time_backward 5.8380
[2023-09-03 03:45:27,299::train::INFO] [train] Iter 17576 | loss 0.8481 | loss(rot) 0.2554 | loss(pos) 0.1696 | loss(seq) 0.4231 | grad 2.4997 | lr 0.0010 | time_forward 3.4120 | time_backward 5.2140
[2023-09-03 03:45:35,908::train::INFO] [train] Iter 17577 | loss 3.0296 | loss(rot) 2.2131 | loss(pos) 0.1880 | loss(seq) 0.6285 | grad 9.1335 | lr 0.0010 | time_forward 3.6740 | time_backward 4.9320