text
stringlengths
56
1.16k
[2023-09-03 03:22:51,021::train::INFO] [train] Iter 17378 | loss 0.8535 | loss(rot) 0.1033 | loss(pos) 0.5827 | loss(seq) 0.1675 | grad 3.4221 | lr 0.0010 | time_forward 3.3830 | time_backward 5.1980
[2023-09-03 03:22:59,588::train::INFO] [train] Iter 17379 | loss 1.4831 | loss(rot) 1.0175 | loss(pos) 0.1076 | loss(seq) 0.3580 | grad 3.3799 | lr 0.0010 | time_forward 3.4590 | time_backward 5.1040
[2023-09-03 03:23:02,261::train::INFO] [train] Iter 17380 | loss 0.8240 | loss(rot) 0.1301 | loss(pos) 0.6685 | loss(seq) 0.0254 | grad 6.0830 | lr 0.0010 | time_forward 1.1900 | time_backward 1.4800
[2023-09-03 03:23:04,940::train::INFO] [train] Iter 17381 | loss 0.9443 | loss(rot) 0.2926 | loss(pos) 0.6284 | loss(seq) 0.0233 | grad 4.2575 | lr 0.0010 | time_forward 1.2260 | time_backward 1.4490
[2023-09-03 03:23:07,672::train::INFO] [train] Iter 17382 | loss 0.5659 | loss(rot) 0.1109 | loss(pos) 0.4110 | loss(seq) 0.0440 | grad 2.4919 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4790
[2023-09-03 03:23:15,136::train::INFO] [train] Iter 17383 | loss 1.0855 | loss(rot) 0.4414 | loss(pos) 0.3184 | loss(seq) 0.3257 | grad 4.2581 | lr 0.0010 | time_forward 3.1240 | time_backward 4.3360
[2023-09-03 03:23:17,783::train::INFO] [train] Iter 17384 | loss 1.7061 | loss(rot) 0.8947 | loss(pos) 0.3164 | loss(seq) 0.4949 | grad 4.5754 | lr 0.0010 | time_forward 1.1830 | time_backward 1.4600
[2023-09-03 03:23:26,051::train::INFO] [train] Iter 17385 | loss 1.9835 | loss(rot) 1.3961 | loss(pos) 0.1622 | loss(seq) 0.4252 | grad 4.8577 | lr 0.0010 | time_forward 3.4850 | time_backward 4.7800
[2023-09-03 03:23:28,349::train::INFO] [train] Iter 17386 | loss 0.9015 | loss(rot) 0.2761 | loss(pos) 0.3858 | loss(seq) 0.2397 | grad 3.1365 | lr 0.0010 | time_forward 1.0480 | time_backward 1.2470
[2023-09-03 03:23:35,663::train::INFO] [train] Iter 17387 | loss 1.4429 | loss(rot) 0.8981 | loss(pos) 0.1149 | loss(seq) 0.4299 | grad 5.2821 | lr 0.0010 | time_forward 3.1420 | time_backward 4.1680
[2023-09-03 03:23:43,398::train::INFO] [train] Iter 17388 | loss 1.1421 | loss(rot) 0.3823 | loss(pos) 0.1539 | loss(seq) 0.6059 | grad 4.1402 | lr 0.0010 | time_forward 3.3490 | time_backward 4.3820
[2023-09-03 03:23:45,933::train::INFO] [train] Iter 17389 | loss 1.2192 | loss(rot) 1.1341 | loss(pos) 0.0728 | loss(seq) 0.0122 | grad 4.0844 | lr 0.0010 | time_forward 1.1430 | time_backward 1.3870
[2023-09-03 03:23:52,644::train::INFO] [train] Iter 17390 | loss 1.0207 | loss(rot) 0.2694 | loss(pos) 0.2712 | loss(seq) 0.4801 | grad 4.4958 | lr 0.0010 | time_forward 2.9420 | time_backward 3.7660
[2023-09-03 03:24:00,204::train::INFO] [train] Iter 17391 | loss 1.2085 | loss(rot) 0.0581 | loss(pos) 1.1460 | loss(seq) 0.0044 | grad 6.6395 | lr 0.0010 | time_forward 3.0580 | time_backward 4.4980
[2023-09-03 03:24:02,828::train::INFO] [train] Iter 17392 | loss 0.7757 | loss(rot) 0.1222 | loss(pos) 0.2045 | loss(seq) 0.4490 | grad 2.4988 | lr 0.0010 | time_forward 1.2150 | time_backward 1.4050
[2023-09-03 03:24:09,990::train::INFO] [train] Iter 17393 | loss 1.0943 | loss(rot) 0.8392 | loss(pos) 0.2517 | loss(seq) 0.0034 | grad 11.3657 | lr 0.0010 | time_forward 2.8590 | time_backward 4.3000
[2023-09-03 03:24:18,927::train::INFO] [train] Iter 17394 | loss 2.0478 | loss(rot) 1.8731 | loss(pos) 0.1654 | loss(seq) 0.0092 | grad 6.2963 | lr 0.0010 | time_forward 3.4990 | time_backward 5.4330
[2023-09-03 03:24:21,604::train::INFO] [train] Iter 17395 | loss 2.6448 | loss(rot) 2.2775 | loss(pos) 0.3157 | loss(seq) 0.0516 | grad 4.0656 | lr 0.0010 | time_forward 1.1970 | time_backward 1.4770
[2023-09-03 03:24:30,807::train::INFO] [train] Iter 17396 | loss 1.7357 | loss(rot) 1.1605 | loss(pos) 0.1707 | loss(seq) 0.4045 | grad 4.2656 | lr 0.0010 | time_forward 3.5580 | time_backward 5.6410
[2023-09-03 03:24:36,149::train::INFO] [train] Iter 17397 | loss 1.1854 | loss(rot) 1.0458 | loss(pos) 0.1333 | loss(seq) 0.0063 | grad 4.7194 | lr 0.0010 | time_forward 2.2590 | time_backward 3.0730
[2023-09-03 03:24:44,993::train::INFO] [train] Iter 17398 | loss 1.0356 | loss(rot) 0.1210 | loss(pos) 0.5984 | loss(seq) 0.3162 | grad 5.4089 | lr 0.0010 | time_forward 3.5300 | time_backward 5.3110
[2023-09-03 03:24:53,965::train::INFO] [train] Iter 17399 | loss 3.5943 | loss(rot) 0.0222 | loss(pos) 3.5722 | loss(seq) 0.0000 | grad 9.9282 | lr 0.0010 | time_forward 3.6750 | time_backward 5.2930
[2023-09-03 03:24:56,575::train::INFO] [train] Iter 17400 | loss 0.8614 | loss(rot) 0.6765 | loss(pos) 0.1152 | loss(seq) 0.0698 | grad 13.9589 | lr 0.0010 | time_forward 1.1980 | time_backward 1.4080
[2023-09-03 03:25:04,670::train::INFO] [train] Iter 17401 | loss 2.4099 | loss(rot) 1.8720 | loss(pos) 0.2055 | loss(seq) 0.3324 | grad 4.1977 | lr 0.0010 | time_forward 3.4600 | time_backward 4.6320
[2023-09-03 03:25:13,474::train::INFO] [train] Iter 17402 | loss 0.9689 | loss(rot) 0.0672 | loss(pos) 0.7165 | loss(seq) 0.1852 | grad 3.7057 | lr 0.0010 | time_forward 3.6430 | time_backward 5.1570
[2023-09-03 03:25:22,289::train::INFO] [train] Iter 17403 | loss 2.5090 | loss(rot) 1.6424 | loss(pos) 0.2147 | loss(seq) 0.6519 | grad 4.0168 | lr 0.0010 | time_forward 3.7460 | time_backward 5.0650
[2023-09-03 03:25:30,353::train::INFO] [train] Iter 17404 | loss 1.0331 | loss(rot) 0.1182 | loss(pos) 0.6854 | loss(seq) 0.2295 | grad 5.2818 | lr 0.0010 | time_forward 3.3070 | time_backward 4.7530
[2023-09-03 03:25:39,172::train::INFO] [train] Iter 17405 | loss 2.1841 | loss(rot) 1.4193 | loss(pos) 0.1477 | loss(seq) 0.6171 | grad 3.8526 | lr 0.0010 | time_forward 3.4020 | time_backward 5.4130
[2023-09-03 03:25:46,993::train::INFO] [train] Iter 17406 | loss 2.0409 | loss(rot) 1.0264 | loss(pos) 0.3589 | loss(seq) 0.6556 | grad 4.8936 | lr 0.0010 | time_forward 3.3120 | time_backward 4.4980
[2023-09-03 03:25:49,626::train::INFO] [train] Iter 17407 | loss 1.9867 | loss(rot) 1.2055 | loss(pos) 0.3958 | loss(seq) 0.3854 | grad 4.0531 | lr 0.0010 | time_forward 1.2120 | time_backward 1.4180
[2023-09-03 03:25:57,787::train::INFO] [train] Iter 17408 | loss 1.0658 | loss(rot) 0.4095 | loss(pos) 0.0929 | loss(seq) 0.5634 | grad 4.2194 | lr 0.0010 | time_forward 3.3750 | time_backward 4.7820
[2023-09-03 03:26:04,863::train::INFO] [train] Iter 17409 | loss 1.4076 | loss(rot) 0.3650 | loss(pos) 0.9317 | loss(seq) 0.1109 | grad 5.1825 | lr 0.0010 | time_forward 3.0200 | time_backward 4.0520
[2023-09-03 03:26:13,353::train::INFO] [train] Iter 17410 | loss 0.5712 | loss(rot) 0.1934 | loss(pos) 0.2533 | loss(seq) 0.1246 | grad 3.3422 | lr 0.0010 | time_forward 3.4280 | time_backward 5.0580
[2023-09-03 03:26:19,319::train::INFO] [train] Iter 17411 | loss 1.2724 | loss(rot) 0.4522 | loss(pos) 0.6659 | loss(seq) 0.1542 | grad 4.3233 | lr 0.0010 | time_forward 2.5170 | time_backward 3.4450
[2023-09-03 03:26:28,055::train::INFO] [train] Iter 17412 | loss 1.0202 | loss(rot) 0.1531 | loss(pos) 0.8135 | loss(seq) 0.0535 | grad 6.8147 | lr 0.0010 | time_forward 3.3830 | time_backward 5.3510
[2023-09-03 03:26:36,935::train::INFO] [train] Iter 17413 | loss 2.0478 | loss(rot) 1.3350 | loss(pos) 0.1300 | loss(seq) 0.5828 | grad 7.3900 | lr 0.0010 | time_forward 3.5100 | time_backward 5.3660
[2023-09-03 03:26:45,605::train::INFO] [train] Iter 17414 | loss 2.0411 | loss(rot) 1.5117 | loss(pos) 0.3340 | loss(seq) 0.1954 | grad 6.5781 | lr 0.0010 | time_forward 3.6250 | time_backward 5.0410
[2023-09-03 03:26:52,244::train::INFO] [train] Iter 17415 | loss 0.5698 | loss(rot) 0.2185 | loss(pos) 0.1832 | loss(seq) 0.1681 | grad 3.3763 | lr 0.0010 | time_forward 2.7770 | time_backward 3.8580
[2023-09-03 03:26:54,870::train::INFO] [train] Iter 17416 | loss 1.9907 | loss(rot) 1.5164 | loss(pos) 0.1441 | loss(seq) 0.3302 | grad 6.5205 | lr 0.0010 | time_forward 1.2440 | time_backward 1.3780
[2023-09-03 03:26:57,488::train::INFO] [train] Iter 17417 | loss 1.3882 | loss(rot) 0.9886 | loss(pos) 0.1124 | loss(seq) 0.2872 | grad 4.4457 | lr 0.0010 | time_forward 1.2130 | time_backward 1.4020
[2023-09-03 03:27:04,914::train::INFO] [train] Iter 17418 | loss 2.9455 | loss(rot) 0.1269 | loss(pos) 2.8185 | loss(seq) 0.0000 | grad 10.0093 | lr 0.0010 | time_forward 3.0410 | time_backward 4.3790
[2023-09-03 03:27:12,083::train::INFO] [train] Iter 17419 | loss 1.0155 | loss(rot) 0.8050 | loss(pos) 0.2104 | loss(seq) 0.0000 | grad 7.7956 | lr 0.0010 | time_forward 2.9360 | time_backward 4.2290
[2023-09-03 03:27:19,053::train::INFO] [train] Iter 17420 | loss 2.7515 | loss(rot) 0.0752 | loss(pos) 2.6763 | loss(seq) 0.0000 | grad 5.3938 | lr 0.0010 | time_forward 2.9860 | time_backward 3.9810
[2023-09-03 03:27:21,727::train::INFO] [train] Iter 17421 | loss 3.6372 | loss(rot) 0.0602 | loss(pos) 3.5770 | loss(seq) 0.0000 | grad 6.5630 | lr 0.0010 | time_forward 1.2300 | time_backward 1.4400
[2023-09-03 03:27:30,537::train::INFO] [train] Iter 17422 | loss 1.2659 | loss(rot) 0.9187 | loss(pos) 0.0862 | loss(seq) 0.2611 | grad 3.9186 | lr 0.0010 | time_forward 3.4630 | time_backward 5.3450
[2023-09-03 03:27:38,569::train::INFO] [train] Iter 17423 | loss 1.0299 | loss(rot) 0.2493 | loss(pos) 0.5335 | loss(seq) 0.2471 | grad 3.7962 | lr 0.0010 | time_forward 3.2740 | time_backward 4.7540
[2023-09-03 03:27:45,995::train::INFO] [train] Iter 17424 | loss 1.7643 | loss(rot) 1.6619 | loss(pos) 0.0899 | loss(seq) 0.0125 | grad 8.4962 | lr 0.0010 | time_forward 2.9390 | time_backward 4.4830
[2023-09-03 03:27:54,785::train::INFO] [train] Iter 17425 | loss 1.4135 | loss(rot) 0.6995 | loss(pos) 0.4325 | loss(seq) 0.2815 | grad 3.0252 | lr 0.0010 | time_forward 3.4650 | time_backward 5.3210
[2023-09-03 03:27:57,999::train::INFO] [train] Iter 17426 | loss 1.9874 | loss(rot) 1.0239 | loss(pos) 0.4403 | loss(seq) 0.5232 | grad 3.0414 | lr 0.0010 | time_forward 1.3290 | time_backward 1.8830
[2023-09-03 03:28:06,234::train::INFO] [train] Iter 17427 | loss 2.2077 | loss(rot) 1.9537 | loss(pos) 0.2092 | loss(seq) 0.0448 | grad 3.1571 | lr 0.0010 | time_forward 3.2290 | time_backward 5.0020
[2023-09-03 03:28:13,474::train::INFO] [train] Iter 17428 | loss 1.0567 | loss(rot) 0.2265 | loss(pos) 0.5883 | loss(seq) 0.2418 | grad 4.4781 | lr 0.0010 | time_forward 2.9430 | time_backward 4.2930
[2023-09-03 03:28:21,008::train::INFO] [train] Iter 17429 | loss 1.6537 | loss(rot) 1.2416 | loss(pos) 0.1412 | loss(seq) 0.2709 | grad 6.0038 | lr 0.0010 | time_forward 3.2180 | time_backward 4.3120
[2023-09-03 03:28:29,694::train::INFO] [train] Iter 17430 | loss 1.5347 | loss(rot) 0.2730 | loss(pos) 0.9134 | loss(seq) 0.3484 | grad 6.1485 | lr 0.0010 | time_forward 3.5620 | time_backward 5.1200
[2023-09-03 03:28:37,807::train::INFO] [train] Iter 17431 | loss 1.1562 | loss(rot) 0.3892 | loss(pos) 0.2999 | loss(seq) 0.4670 | grad 3.6239 | lr 0.0010 | time_forward 3.4730 | time_backward 4.6360
[2023-09-03 03:28:46,538::train::INFO] [train] Iter 17432 | loss 0.7832 | loss(rot) 0.0679 | loss(pos) 0.7020 | loss(seq) 0.0133 | grad 4.7981 | lr 0.0010 | time_forward 3.5870 | time_backward 5.1410
[2023-09-03 03:28:54,665::train::INFO] [train] Iter 17433 | loss 0.6036 | loss(rot) 0.4406 | loss(pos) 0.0919 | loss(seq) 0.0710 | grad 4.1644 | lr 0.0010 | time_forward 3.5300 | time_backward 4.5940
[2023-09-03 03:29:02,384::train::INFO] [train] Iter 17434 | loss 1.5659 | loss(rot) 0.9168 | loss(pos) 0.1671 | loss(seq) 0.4821 | grad 7.7692 | lr 0.0010 | time_forward 3.2040 | time_backward 4.5110
[2023-09-03 03:29:05,651::train::INFO] [train] Iter 17435 | loss 1.6425 | loss(rot) 1.3469 | loss(pos) 0.1680 | loss(seq) 0.1276 | grad 5.8848 | lr 0.0010 | time_forward 1.3930 | time_backward 1.8720
[2023-09-03 03:29:14,347::train::INFO] [train] Iter 17436 | loss 2.6597 | loss(rot) 2.2834 | loss(pos) 0.2246 | loss(seq) 0.1517 | grad 3.4728 | lr 0.0010 | time_forward 3.4250 | time_backward 5.2670
[2023-09-03 03:29:23,160::train::INFO] [train] Iter 17437 | loss 1.1699 | loss(rot) 0.9186 | loss(pos) 0.2120 | loss(seq) 0.0393 | grad 5.3196 | lr 0.0010 | time_forward 3.5370 | time_backward 5.2730
[2023-09-03 03:29:31,842::train::INFO] [train] Iter 17438 | loss 1.7368 | loss(rot) 1.5342 | loss(pos) 0.1736 | loss(seq) 0.0289 | grad 9.6119 | lr 0.0010 | time_forward 3.3640 | time_backward 5.3150
[2023-09-03 03:29:39,695::train::INFO] [train] Iter 17439 | loss 2.3298 | loss(rot) 1.6684 | loss(pos) 0.2068 | loss(seq) 0.4546 | grad 4.9195 | lr 0.0010 | time_forward 3.2310 | time_backward 4.6170
[2023-09-03 03:29:41,842::train::INFO] [train] Iter 17440 | loss 1.8102 | loss(rot) 0.7541 | loss(pos) 0.5904 | loss(seq) 0.4657 | grad 4.6148 | lr 0.0010 | time_forward 0.9860 | time_backward 1.1570
[2023-09-03 03:29:44,443::train::INFO] [train] Iter 17441 | loss 1.7054 | loss(rot) 1.4942 | loss(pos) 0.2112 | loss(seq) 0.0000 | grad 6.4441 | lr 0.0010 | time_forward 1.1980 | time_backward 1.3990
[2023-09-03 03:29:46,513::train::INFO] [train] Iter 17442 | loss 1.9474 | loss(rot) 0.7791 | loss(pos) 0.5809 | loss(seq) 0.5874 | grad 5.1160 | lr 0.0010 | time_forward 0.9720 | time_backward 1.0940
[2023-09-03 03:29:54,190::train::INFO] [train] Iter 17443 | loss 2.3745 | loss(rot) 2.2191 | loss(pos) 0.1553 | loss(seq) 0.0001 | grad 5.5273 | lr 0.0010 | time_forward 3.2480 | time_backward 4.4180
[2023-09-03 03:30:01,422::train::INFO] [train] Iter 17444 | loss 1.2515 | loss(rot) 0.7030 | loss(pos) 0.2559 | loss(seq) 0.2926 | grad 4.0925 | lr 0.0010 | time_forward 2.8480 | time_backward 4.3800
[2023-09-03 03:30:04,027::train::INFO] [train] Iter 17445 | loss 1.2359 | loss(rot) 0.5397 | loss(pos) 0.2499 | loss(seq) 0.4463 | grad 3.8166 | lr 0.0010 | time_forward 1.2140 | time_backward 1.3870
[2023-09-03 03:30:06,613::train::INFO] [train] Iter 17446 | loss 2.6292 | loss(rot) 2.0892 | loss(pos) 0.2353 | loss(seq) 0.3046 | grad 4.1080 | lr 0.0010 | time_forward 1.2090 | time_backward 1.3740
[2023-09-03 03:30:14,393::train::INFO] [train] Iter 17447 | loss 1.5428 | loss(rot) 1.2231 | loss(pos) 0.2361 | loss(seq) 0.0836 | grad 6.5833 | lr 0.0010 | time_forward 3.1200 | time_backward 4.6580
[2023-09-03 03:30:23,243::train::INFO] [train] Iter 17448 | loss 1.7503 | loss(rot) 1.3956 | loss(pos) 0.1540 | loss(seq) 0.2006 | grad 6.6368 | lr 0.0010 | time_forward 3.4860 | time_backward 5.3600
[2023-09-03 03:30:25,826::train::INFO] [train] Iter 17449 | loss 1.9851 | loss(rot) 1.7459 | loss(pos) 0.1105 | loss(seq) 0.1287 | grad 6.9841 | lr 0.0010 | time_forward 1.1910 | time_backward 1.3890
[2023-09-03 03:30:33,313::train::INFO] [train] Iter 17450 | loss 0.9285 | loss(rot) 0.8098 | loss(pos) 0.1186 | loss(seq) 0.0000 | grad 3.8197 | lr 0.0010 | time_forward 3.0610 | time_backward 4.4220
[2023-09-03 03:30:40,395::train::INFO] [train] Iter 17451 | loss 2.5310 | loss(rot) 1.8085 | loss(pos) 0.2049 | loss(seq) 0.5176 | grad 5.8256 | lr 0.0010 | time_forward 3.1500 | time_backward 3.9290
[2023-09-03 03:30:49,539::train::INFO] [train] Iter 17452 | loss 4.1092 | loss(rot) 0.0661 | loss(pos) 4.0431 | loss(seq) 0.0000 | grad 10.5360 | lr 0.0010 | time_forward 3.7170 | time_backward 5.4240
[2023-09-03 03:30:53,931::train::INFO] [train] Iter 17453 | loss 0.7881 | loss(rot) 0.0774 | loss(pos) 0.6929 | loss(seq) 0.0177 | grad 3.9328 | lr 0.0010 | time_forward 1.9730 | time_backward 2.4150
[2023-09-03 03:31:02,536::train::INFO] [train] Iter 17454 | loss 1.1820 | loss(rot) 0.6338 | loss(pos) 0.2979 | loss(seq) 0.2502 | grad 6.7418 | lr 0.0010 | time_forward 3.4360 | time_backward 5.1660
[2023-09-03 03:31:05,888::train::INFO] [train] Iter 17455 | loss 0.8305 | loss(rot) 0.6398 | loss(pos) 0.1160 | loss(seq) 0.0748 | grad 3.7151 | lr 0.0010 | time_forward 1.4420 | time_backward 1.9080
[2023-09-03 03:31:14,664::train::INFO] [train] Iter 17456 | loss 2.2553 | loss(rot) 0.0160 | loss(pos) 2.2387 | loss(seq) 0.0006 | grad 4.2038 | lr 0.0010 | time_forward 3.6330 | time_backward 5.1390
[2023-09-03 03:31:17,303::train::INFO] [train] Iter 17457 | loss 1.0712 | loss(rot) 0.8752 | loss(pos) 0.1913 | loss(seq) 0.0047 | grad 4.7679 | lr 0.0010 | time_forward 1.2410 | time_backward 1.3960
[2023-09-03 03:31:19,431::train::INFO] [train] Iter 17458 | loss 0.7037 | loss(rot) 0.2702 | loss(pos) 0.3201 | loss(seq) 0.1133 | grad 3.6492 | lr 0.0010 | time_forward 0.9740 | time_backward 1.1500
[2023-09-03 03:31:26,855::train::INFO] [train] Iter 17459 | loss 1.1614 | loss(rot) 0.0660 | loss(pos) 0.8082 | loss(seq) 0.2872 | grad 3.7429 | lr 0.0010 | time_forward 3.0230 | time_backward 4.3970
[2023-09-03 03:31:34,815::train::INFO] [train] Iter 17460 | loss 1.2296 | loss(rot) 0.5842 | loss(pos) 0.2040 | loss(seq) 0.4414 | grad 4.1584 | lr 0.0010 | time_forward 3.2800 | time_backward 4.6760
[2023-09-03 03:31:43,313::train::INFO] [train] Iter 17461 | loss 1.7350 | loss(rot) 0.6087 | loss(pos) 0.7958 | loss(seq) 0.3306 | grad 4.8555 | lr 0.0010 | time_forward 3.3680 | time_backward 5.1260
[2023-09-03 03:31:51,787::train::INFO] [train] Iter 17462 | loss 1.1908 | loss(rot) 0.8576 | loss(pos) 0.1109 | loss(seq) 0.2222 | grad 2.9711 | lr 0.0010 | time_forward 3.3780 | time_backward 5.0820
[2023-09-03 03:32:00,314::train::INFO] [train] Iter 17463 | loss 1.8672 | loss(rot) 1.2645 | loss(pos) 0.1580 | loss(seq) 0.4447 | grad 6.6557 | lr 0.0010 | time_forward 3.5980 | time_backward 4.9150
[2023-09-03 03:32:02,983::train::INFO] [train] Iter 17464 | loss 1.1779 | loss(rot) 0.7067 | loss(pos) 0.1441 | loss(seq) 0.3271 | grad 5.2711 | lr 0.0010 | time_forward 1.2920 | time_backward 1.3740
[2023-09-03 03:32:11,279::train::INFO] [train] Iter 17465 | loss 1.3767 | loss(rot) 1.1943 | loss(pos) 0.1543 | loss(seq) 0.0280 | grad 5.4898 | lr 0.0010 | time_forward 3.5780 | time_backward 4.7140
[2023-09-03 03:32:18,730::train::INFO] [train] Iter 17466 | loss 1.5338 | loss(rot) 1.3623 | loss(pos) 0.1450 | loss(seq) 0.0265 | grad 5.2861 | lr 0.0010 | time_forward 3.1540 | time_backward 4.2940
[2023-09-03 03:32:27,746::train::INFO] [train] Iter 17467 | loss 1.0387 | loss(rot) 0.4412 | loss(pos) 0.1184 | loss(seq) 0.4791 | grad 3.5303 | lr 0.0010 | time_forward 3.6410 | time_backward 5.3730
[2023-09-03 03:32:30,391::train::INFO] [train] Iter 17468 | loss 1.2780 | loss(rot) 0.0520 | loss(pos) 1.2150 | loss(seq) 0.0110 | grad 7.4767 | lr 0.0010 | time_forward 1.2250 | time_backward 1.4160
[2023-09-03 03:32:39,345::train::INFO] [train] Iter 17469 | loss 2.0921 | loss(rot) 1.6122 | loss(pos) 0.1445 | loss(seq) 0.3354 | grad 3.0122 | lr 0.0010 | time_forward 3.8610 | time_backward 5.0880
[2023-09-03 03:32:47,605::train::INFO] [train] Iter 17470 | loss 1.3114 | loss(rot) 0.8228 | loss(pos) 0.1193 | loss(seq) 0.3693 | grad 3.6715 | lr 0.0010 | time_forward 3.5580 | time_backward 4.6990
[2023-09-03 03:32:54,325::train::INFO] [train] Iter 17471 | loss 0.8522 | loss(rot) 0.3811 | loss(pos) 0.2290 | loss(seq) 0.2421 | grad 3.6177 | lr 0.0010 | time_forward 2.7320 | time_backward 3.9850
[2023-09-03 03:32:56,970::train::INFO] [train] Iter 17472 | loss 1.1379 | loss(rot) 0.4606 | loss(pos) 0.3539 | loss(seq) 0.3233 | grad 4.1559 | lr 0.0010 | time_forward 1.1990 | time_backward 1.4420
[2023-09-03 03:33:05,857::train::INFO] [train] Iter 17473 | loss 1.4422 | loss(rot) 1.3517 | loss(pos) 0.0832 | loss(seq) 0.0073 | grad 5.3713 | lr 0.0010 | time_forward 3.6320 | time_backward 5.2530
[2023-09-03 03:33:08,622::train::INFO] [train] Iter 17474 | loss 1.4132 | loss(rot) 0.9866 | loss(pos) 0.0656 | loss(seq) 0.3610 | grad 4.3415 | lr 0.0010 | time_forward 1.3300 | time_backward 1.4310
[2023-09-03 03:33:17,338::train::INFO] [train] Iter 17475 | loss 0.9051 | loss(rot) 0.8408 | loss(pos) 0.0640 | loss(seq) 0.0004 | grad 3.5368 | lr 0.0010 | time_forward 3.6850 | time_backward 5.0290
[2023-09-03 03:33:24,272::train::INFO] [train] Iter 17476 | loss 1.2046 | loss(rot) 0.2255 | loss(pos) 0.5517 | loss(seq) 0.4274 | grad 4.3257 | lr 0.0010 | time_forward 2.8100 | time_backward 4.1210
[2023-09-03 03:33:31,798::train::INFO] [train] Iter 17477 | loss 1.0513 | loss(rot) 0.3321 | loss(pos) 0.6487 | loss(seq) 0.0705 | grad 5.4451 | lr 0.0010 | time_forward 3.1440 | time_backward 4.3790