text
stringlengths 56
1.16k
|
---|
[2023-09-03 03:00:59,077::train::INFO] [train] Iter 17178 | loss 0.8040 | loss(rot) 0.2351 | loss(pos) 0.0957 | loss(seq) 0.4733 | grad 2.9261 | lr 0.0010 | time_forward 2.7270 | time_backward 4.0660 |
[2023-09-03 03:01:08,556::train::INFO] [train] Iter 17179 | loss 0.7232 | loss(rot) 0.6152 | loss(pos) 0.0949 | loss(seq) 0.0132 | grad 16.2747 | lr 0.0010 | time_forward 3.5980 | time_backward 5.8770 |
[2023-09-03 03:01:11,448::train::INFO] [train] Iter 17180 | loss 1.3767 | loss(rot) 0.7373 | loss(pos) 0.2447 | loss(seq) 0.3948 | grad 6.1083 | lr 0.0010 | time_forward 1.3790 | time_backward 1.5090 |
[2023-09-03 03:01:20,441::train::INFO] [train] Iter 17181 | loss 1.1217 | loss(rot) 0.0628 | loss(pos) 1.0533 | loss(seq) 0.0055 | grad 5.1581 | lr 0.0010 | time_forward 3.6190 | time_backward 5.3710 |
[2023-09-03 03:01:29,873::train::INFO] [train] Iter 17182 | loss 0.8404 | loss(rot) 0.3749 | loss(pos) 0.3011 | loss(seq) 0.1644 | grad 4.5815 | lr 0.0010 | time_forward 3.6790 | time_backward 5.7480 |
[2023-09-03 03:01:38,586::train::INFO] [train] Iter 17183 | loss 1.2505 | loss(rot) 0.5224 | loss(pos) 0.1613 | loss(seq) 0.5668 | grad 4.3949 | lr 0.0010 | time_forward 3.4110 | time_backward 5.2980 |
[2023-09-03 03:01:41,184::train::INFO] [train] Iter 17184 | loss 1.9312 | loss(rot) 0.9377 | loss(pos) 0.5825 | loss(seq) 0.4111 | grad 7.4148 | lr 0.0010 | time_forward 1.2950 | time_backward 1.2990 |
[2023-09-03 03:01:48,870::train::INFO] [train] Iter 17185 | loss 2.3758 | loss(rot) 2.2614 | loss(pos) 0.1095 | loss(seq) 0.0048 | grad 5.4174 | lr 0.0010 | time_forward 3.0830 | time_backward 4.5840 |
[2023-09-03 03:01:55,838::train::INFO] [train] Iter 17186 | loss 1.0789 | loss(rot) 0.0587 | loss(pos) 1.0148 | loss(seq) 0.0054 | grad 12.1128 | lr 0.0010 | time_forward 3.0280 | time_backward 3.9360 |
[2023-09-03 03:02:05,976::train::INFO] [train] Iter 17187 | loss 1.1957 | loss(rot) 0.2538 | loss(pos) 0.5278 | loss(seq) 0.4141 | grad 4.3308 | lr 0.0010 | time_forward 4.1330 | time_backward 6.0020 |
[2023-09-03 03:02:13,603::train::INFO] [train] Iter 17188 | loss 1.5333 | loss(rot) 1.2558 | loss(pos) 0.1811 | loss(seq) 0.0964 | grad 5.0128 | lr 0.0010 | time_forward 3.3080 | time_backward 4.3150 |
[2023-09-03 03:02:22,324::train::INFO] [train] Iter 17189 | loss 2.7677 | loss(rot) 1.8461 | loss(pos) 0.3562 | loss(seq) 0.5653 | grad 4.7307 | lr 0.0010 | time_forward 3.8110 | time_backward 4.9060 |
[2023-09-03 03:02:31,362::train::INFO] [train] Iter 17190 | loss 1.6366 | loss(rot) 1.2317 | loss(pos) 0.1629 | loss(seq) 0.2419 | grad 5.7428 | lr 0.0010 | time_forward 3.7770 | time_backward 5.2580 |
[2023-09-03 03:02:39,284::train::INFO] [train] Iter 17191 | loss 0.9374 | loss(rot) 0.6773 | loss(pos) 0.2600 | loss(seq) 0.0001 | grad 6.2439 | lr 0.0010 | time_forward 3.3040 | time_backward 4.6140 |
[2023-09-03 03:02:48,428::train::INFO] [train] Iter 17192 | loss 2.3030 | loss(rot) 1.7699 | loss(pos) 0.2021 | loss(seq) 0.3309 | grad 5.5961 | lr 0.0010 | time_forward 3.8870 | time_backward 5.2540 |
[2023-09-03 03:02:57,983::train::INFO] [train] Iter 17193 | loss 1.7587 | loss(rot) 0.5359 | loss(pos) 0.8366 | loss(seq) 0.3862 | grad 6.9860 | lr 0.0010 | time_forward 4.2060 | time_backward 5.3460 |
[2023-09-03 03:03:07,009::train::INFO] [train] Iter 17194 | loss 1.4560 | loss(rot) 0.1958 | loss(pos) 1.0818 | loss(seq) 0.1783 | grad 6.0599 | lr 0.0010 | time_forward 3.4770 | time_backward 5.5450 |
[2023-09-03 03:03:09,604::train::INFO] [train] Iter 17195 | loss 0.8258 | loss(rot) 0.1254 | loss(pos) 0.6637 | loss(seq) 0.0367 | grad 5.0868 | lr 0.0010 | time_forward 1.3530 | time_backward 1.2380 |
[2023-09-03 03:03:16,305::train::INFO] [train] Iter 17196 | loss 1.2361 | loss(rot) 0.0705 | loss(pos) 0.6120 | loss(seq) 0.5535 | grad 5.7801 | lr 0.0010 | time_forward 2.7340 | time_backward 3.9640 |
[2023-09-03 03:03:23,520::train::INFO] [train] Iter 17197 | loss 0.8053 | loss(rot) 0.1964 | loss(pos) 0.3414 | loss(seq) 0.2675 | grad 3.4316 | lr 0.0010 | time_forward 2.9980 | time_backward 4.2130 |
[2023-09-03 03:03:31,539::train::INFO] [train] Iter 17198 | loss 1.7229 | loss(rot) 0.9851 | loss(pos) 0.3945 | loss(seq) 0.3432 | grad 4.3310 | lr 0.0010 | time_forward 3.3990 | time_backward 4.6160 |
[2023-09-03 03:03:34,203::train::INFO] [train] Iter 17199 | loss 1.3942 | loss(rot) 0.5514 | loss(pos) 0.2395 | loss(seq) 0.6034 | grad 5.2563 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4070 |
[2023-09-03 03:03:41,836::train::INFO] [train] Iter 17200 | loss 0.5880 | loss(rot) 0.1328 | loss(pos) 0.4002 | loss(seq) 0.0550 | grad 3.7078 | lr 0.0010 | time_forward 3.1160 | time_backward 4.5140 |
[2023-09-03 03:03:50,663::train::INFO] [train] Iter 17201 | loss 0.8520 | loss(rot) 0.2873 | loss(pos) 0.2832 | loss(seq) 0.2815 | grad 4.6037 | lr 0.0010 | time_forward 3.7230 | time_backward 5.1000 |
[2023-09-03 03:03:53,299::train::INFO] [train] Iter 17202 | loss 1.3612 | loss(rot) 0.0762 | loss(pos) 1.2791 | loss(seq) 0.0060 | grad 8.9991 | lr 0.0010 | time_forward 1.2510 | time_backward 1.3820 |
[2023-09-03 03:04:01,687::train::INFO] [train] Iter 17203 | loss 1.0046 | loss(rot) 0.9014 | loss(pos) 0.0720 | loss(seq) 0.0313 | grad 6.0301 | lr 0.0010 | time_forward 3.6060 | time_backward 4.7800 |
[2023-09-03 03:04:09,121::train::INFO] [train] Iter 17204 | loss 2.3231 | loss(rot) 1.6194 | loss(pos) 0.2926 | loss(seq) 0.4111 | grad 6.0613 | lr 0.0010 | time_forward 3.1540 | time_backward 4.2770 |
[2023-09-03 03:04:17,473::train::INFO] [train] Iter 17205 | loss 1.1630 | loss(rot) 0.1181 | loss(pos) 0.8686 | loss(seq) 0.1763 | grad 7.0014 | lr 0.0010 | time_forward 3.4110 | time_backward 4.9370 |
[2023-09-03 03:04:22,821::train::INFO] [train] Iter 17206 | loss 1.6897 | loss(rot) 0.3797 | loss(pos) 1.3078 | loss(seq) 0.0022 | grad 6.2839 | lr 0.0010 | time_forward 2.3010 | time_backward 3.0430 |
[2023-09-03 03:04:32,160::train::INFO] [train] Iter 17207 | loss 1.6809 | loss(rot) 1.4705 | loss(pos) 0.2104 | loss(seq) 0.0000 | grad 3.3544 | lr 0.0010 | time_forward 3.7120 | time_backward 5.6230 |
[2023-09-03 03:04:34,849::train::INFO] [train] Iter 17208 | loss 1.0586 | loss(rot) 0.4218 | loss(pos) 0.1885 | loss(seq) 0.4483 | grad 5.3762 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4060 |
[2023-09-03 03:04:43,116::train::INFO] [train] Iter 17209 | loss 2.2290 | loss(rot) 1.4298 | loss(pos) 0.2993 | loss(seq) 0.4998 | grad 4.8483 | lr 0.0010 | time_forward 3.4960 | time_backward 4.7680 |
[2023-09-03 03:04:50,934::train::INFO] [train] Iter 17210 | loss 1.2057 | loss(rot) 0.5691 | loss(pos) 0.5847 | loss(seq) 0.0519 | grad 4.0066 | lr 0.0010 | time_forward 3.4320 | time_backward 4.3820 |
[2023-09-03 03:04:58,396::train::INFO] [train] Iter 17211 | loss 0.7586 | loss(rot) 0.1103 | loss(pos) 0.6251 | loss(seq) 0.0233 | grad 6.6080 | lr 0.0010 | time_forward 3.2050 | time_backward 4.2520 |
[2023-09-03 03:05:01,533::train::INFO] [train] Iter 17212 | loss 1.7220 | loss(rot) 0.5908 | loss(pos) 0.7328 | loss(seq) 0.3984 | grad 4.8386 | lr 0.0010 | time_forward 1.3870 | time_backward 1.7470 |
[2023-09-03 03:05:09,567::train::INFO] [train] Iter 17213 | loss 2.9069 | loss(rot) 0.3518 | loss(pos) 2.5524 | loss(seq) 0.0028 | grad 8.5103 | lr 0.0010 | time_forward 3.4190 | time_backward 4.6100 |
[2023-09-03 03:05:17,522::train::INFO] [train] Iter 17214 | loss 1.0346 | loss(rot) 0.4138 | loss(pos) 0.2277 | loss(seq) 0.3931 | grad 5.4365 | lr 0.0010 | time_forward 3.3960 | time_backward 4.5550 |
[2023-09-03 03:05:24,901::train::INFO] [train] Iter 17215 | loss 1.4319 | loss(rot) 1.2874 | loss(pos) 0.0721 | loss(seq) 0.0723 | grad 4.8073 | lr 0.0010 | time_forward 3.1350 | time_backward 4.2400 |
[2023-09-03 03:05:34,030::train::INFO] [train] Iter 17216 | loss 1.1038 | loss(rot) 0.9456 | loss(pos) 0.0841 | loss(seq) 0.0740 | grad 5.9695 | lr 0.0010 | time_forward 3.5490 | time_backward 5.5760 |
[2023-09-03 03:05:36,708::train::INFO] [train] Iter 17217 | loss 1.3309 | loss(rot) 1.1208 | loss(pos) 0.2101 | loss(seq) 0.0000 | grad 5.0832 | lr 0.0010 | time_forward 1.2230 | time_backward 1.4520 |
[2023-09-03 03:05:43,504::train::INFO] [train] Iter 17218 | loss 0.9712 | loss(rot) 0.5825 | loss(pos) 0.3078 | loss(seq) 0.0809 | grad 5.8679 | lr 0.0010 | time_forward 2.9110 | time_backward 3.8820 |
[2023-09-03 03:05:52,647::train::INFO] [train] Iter 17219 | loss 1.1149 | loss(rot) 0.3457 | loss(pos) 0.3375 | loss(seq) 0.4318 | grad 3.6707 | lr 0.0010 | time_forward 3.7870 | time_backward 5.3530 |
[2023-09-03 03:06:01,056::train::INFO] [train] Iter 17220 | loss 0.9429 | loss(rot) 0.8851 | loss(pos) 0.0572 | loss(seq) 0.0006 | grad 5.8365 | lr 0.0010 | time_forward 3.5930 | time_backward 4.8130 |
[2023-09-03 03:06:08,008::train::INFO] [train] Iter 17221 | loss 1.7934 | loss(rot) 1.3509 | loss(pos) 0.1138 | loss(seq) 0.3287 | grad 8.5185 | lr 0.0010 | time_forward 2.8780 | time_backward 4.0700 |
[2023-09-03 03:06:10,626::train::INFO] [train] Iter 17222 | loss 1.2705 | loss(rot) 0.3933 | loss(pos) 0.6697 | loss(seq) 0.2075 | grad 5.7447 | lr 0.0010 | time_forward 1.2220 | time_backward 1.3930 |
[2023-09-03 03:06:13,094::train::INFO] [train] Iter 17223 | loss 0.8331 | loss(rot) 0.6984 | loss(pos) 0.0803 | loss(seq) 0.0544 | grad 4.1706 | lr 0.0010 | time_forward 1.1360 | time_backward 1.3100 |
[2023-09-03 03:06:21,367::train::INFO] [train] Iter 17224 | loss 1.1410 | loss(rot) 0.5751 | loss(pos) 0.1320 | loss(seq) 0.4339 | grad 4.9071 | lr 0.0010 | time_forward 3.5910 | time_backward 4.6790 |
[2023-09-03 03:06:29,212::train::INFO] [train] Iter 17225 | loss 0.7844 | loss(rot) 0.1699 | loss(pos) 0.3856 | loss(seq) 0.2288 | grad 5.3854 | lr 0.0010 | time_forward 3.3330 | time_backward 4.5080 |
[2023-09-03 03:06:31,840::train::INFO] [train] Iter 17226 | loss 1.1990 | loss(rot) 0.8647 | loss(pos) 0.0954 | loss(seq) 0.2389 | grad 3.5988 | lr 0.0010 | time_forward 1.2410 | time_backward 1.3840 |
[2023-09-03 03:06:34,231::train::INFO] [train] Iter 17227 | loss 2.3245 | loss(rot) 0.8014 | loss(pos) 1.1470 | loss(seq) 0.3760 | grad 6.2932 | lr 0.0010 | time_forward 1.1080 | time_backward 1.2540 |
[2023-09-03 03:06:36,819::train::INFO] [train] Iter 17228 | loss 1.5464 | loss(rot) 1.0441 | loss(pos) 0.1182 | loss(seq) 0.3840 | grad 5.6616 | lr 0.0010 | time_forward 1.1980 | time_backward 1.3870 |
[2023-09-03 03:06:45,902::train::INFO] [train] Iter 17229 | loss 1.2500 | loss(rot) 0.6621 | loss(pos) 0.2010 | loss(seq) 0.3869 | grad 5.3731 | lr 0.0010 | time_forward 3.6640 | time_backward 5.4160 |
[2023-09-03 03:06:53,675::train::INFO] [train] Iter 17230 | loss 1.3583 | loss(rot) 1.2098 | loss(pos) 0.1485 | loss(seq) 0.0000 | grad 11.3140 | lr 0.0010 | time_forward 3.3150 | time_backward 4.4550 |
[2023-09-03 03:07:01,405::train::INFO] [train] Iter 17231 | loss 1.6702 | loss(rot) 1.4245 | loss(pos) 0.1143 | loss(seq) 0.1314 | grad 5.2418 | lr 0.0010 | time_forward 3.0990 | time_backward 4.6280 |
[2023-09-03 03:07:04,169::train::INFO] [train] Iter 17232 | loss 1.8318 | loss(rot) 1.5974 | loss(pos) 0.2340 | loss(seq) 0.0003 | grad 4.5462 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4850 |
[2023-09-03 03:07:07,323::train::INFO] [train] Iter 17233 | loss 2.0613 | loss(rot) 0.0185 | loss(pos) 2.0380 | loss(seq) 0.0048 | grad 4.1045 | lr 0.0010 | time_forward 1.3680 | time_backward 1.7830 |
[2023-09-03 03:07:09,578::train::INFO] [train] Iter 17234 | loss 1.7316 | loss(rot) 1.5710 | loss(pos) 0.1230 | loss(seq) 0.0376 | grad 4.6238 | lr 0.0010 | time_forward 1.0300 | time_backward 1.2210 |
[2023-09-03 03:07:18,346::train::INFO] [train] Iter 17235 | loss 1.1294 | loss(rot) 0.6546 | loss(pos) 0.2062 | loss(seq) 0.2686 | grad 4.3556 | lr 0.0010 | time_forward 3.6160 | time_backward 5.1500 |
[2023-09-03 03:07:27,137::train::INFO] [train] Iter 17236 | loss 0.8287 | loss(rot) 0.1100 | loss(pos) 0.6940 | loss(seq) 0.0248 | grad 3.2372 | lr 0.0010 | time_forward 3.7470 | time_backward 5.0400 |
[2023-09-03 03:07:36,229::train::INFO] [train] Iter 17237 | loss 1.2845 | loss(rot) 0.5750 | loss(pos) 0.2128 | loss(seq) 0.4967 | grad 5.0812 | lr 0.0010 | time_forward 3.7110 | time_backward 5.3780 |
[2023-09-03 03:07:45,069::train::INFO] [train] Iter 17238 | loss 1.2665 | loss(rot) 1.0931 | loss(pos) 0.1104 | loss(seq) 0.0630 | grad 17.0287 | lr 0.0010 | time_forward 3.6360 | time_backward 5.2000 |
[2023-09-03 03:07:53,875::train::INFO] [train] Iter 17239 | loss 1.9878 | loss(rot) 1.8679 | loss(pos) 0.0888 | loss(seq) 0.0311 | grad 5.0255 | lr 0.0010 | time_forward 3.6540 | time_backward 5.1490 |
[2023-09-03 03:08:03,060::train::INFO] [train] Iter 17240 | loss 1.2744 | loss(rot) 1.1266 | loss(pos) 0.1409 | loss(seq) 0.0069 | grad 11.5858 | lr 0.0010 | time_forward 3.7350 | time_backward 5.4480 |
[2023-09-03 03:08:05,756::train::INFO] [train] Iter 17241 | loss 0.6881 | loss(rot) 0.4796 | loss(pos) 0.0746 | loss(seq) 0.1340 | grad 5.1221 | lr 0.0010 | time_forward 1.3140 | time_backward 1.3780 |
[2023-09-03 03:08:08,988::train::INFO] [train] Iter 17242 | loss 1.3170 | loss(rot) 0.2919 | loss(pos) 0.8957 | loss(seq) 0.1294 | grad 3.8613 | lr 0.0010 | time_forward 1.4140 | time_backward 1.8150 |
[2023-09-03 03:08:16,740::train::INFO] [train] Iter 17243 | loss 2.6404 | loss(rot) 2.5149 | loss(pos) 0.1160 | loss(seq) 0.0095 | grad 6.1103 | lr 0.0010 | time_forward 3.3830 | time_backward 4.3650 |
[2023-09-03 03:08:24,698::train::INFO] [train] Iter 17244 | loss 0.9396 | loss(rot) 0.5836 | loss(pos) 0.1734 | loss(seq) 0.1826 | grad 4.1870 | lr 0.0010 | time_forward 3.4180 | time_backward 4.5360 |
[2023-09-03 03:08:32,993::train::INFO] [train] Iter 17245 | loss 1.5024 | loss(rot) 0.0303 | loss(pos) 1.2852 | loss(seq) 0.1869 | grad 5.7997 | lr 0.0010 | time_forward 3.5720 | time_backward 4.7190 |
[2023-09-03 03:08:40,030::train::INFO] [train] Iter 17246 | loss 3.0462 | loss(rot) 2.5156 | loss(pos) 0.2110 | loss(seq) 0.3197 | grad 8.1451 | lr 0.0010 | time_forward 2.9810 | time_backward 4.0520 |
[2023-09-03 03:08:49,038::train::INFO] [train] Iter 17247 | loss 1.7259 | loss(rot) 1.5885 | loss(pos) 0.0914 | loss(seq) 0.0460 | grad 13.9565 | lr 0.0010 | time_forward 3.9960 | time_backward 5.0090 |
[2023-09-03 03:08:51,226::train::INFO] [train] Iter 17248 | loss 1.0048 | loss(rot) 0.2222 | loss(pos) 0.7424 | loss(seq) 0.0402 | grad 6.6747 | lr 0.0010 | time_forward 1.0170 | time_backward 1.1690 |
[2023-09-03 03:08:59,152::train::INFO] [train] Iter 17249 | loss 0.9354 | loss(rot) 0.1245 | loss(pos) 0.7809 | loss(seq) 0.0299 | grad 4.4250 | lr 0.0010 | time_forward 3.4130 | time_backward 4.5100 |
[2023-09-03 03:09:07,130::train::INFO] [train] Iter 17250 | loss 1.0925 | loss(rot) 0.7304 | loss(pos) 0.1062 | loss(seq) 0.2560 | grad 4.3160 | lr 0.0010 | time_forward 3.4270 | time_backward 4.5470 |
[2023-09-03 03:09:09,758::train::INFO] [train] Iter 17251 | loss 1.1128 | loss(rot) 0.0289 | loss(pos) 1.0764 | loss(seq) 0.0076 | grad 4.4218 | lr 0.0010 | time_forward 1.2290 | time_backward 1.3950 |
[2023-09-03 03:09:17,525::train::INFO] [train] Iter 17252 | loss 1.1949 | loss(rot) 0.3692 | loss(pos) 0.4033 | loss(seq) 0.4224 | grad 4.9504 | lr 0.0010 | time_forward 3.3080 | time_backward 4.4560 |
[2023-09-03 03:09:25,295::train::INFO] [train] Iter 17253 | loss 2.5829 | loss(rot) 2.3235 | loss(pos) 0.1737 | loss(seq) 0.0857 | grad 7.9771 | lr 0.0010 | time_forward 3.3510 | time_backward 4.4150 |
[2023-09-03 03:09:33,615::train::INFO] [train] Iter 17254 | loss 1.4359 | loss(rot) 0.8022 | loss(pos) 0.1749 | loss(seq) 0.4588 | grad 4.0037 | lr 0.0010 | time_forward 3.4960 | time_backward 4.8220 |
[2023-09-03 03:09:41,537::train::INFO] [train] Iter 17255 | loss 1.6107 | loss(rot) 0.9913 | loss(pos) 0.1825 | loss(seq) 0.4369 | grad 4.5548 | lr 0.0010 | time_forward 3.2360 | time_backward 4.6820 |
[2023-09-03 03:09:48,203::train::INFO] [train] Iter 17256 | loss 2.5035 | loss(rot) 2.1316 | loss(pos) 0.0681 | loss(seq) 0.3038 | grad 6.4991 | lr 0.0010 | time_forward 2.7820 | time_backward 3.8800 |
[2023-09-03 03:09:55,659::train::INFO] [train] Iter 17257 | loss 0.3499 | loss(rot) 0.2484 | loss(pos) 0.0943 | loss(seq) 0.0072 | grad 2.9278 | lr 0.0010 | time_forward 3.1640 | time_backward 4.2890 |
[2023-09-03 03:10:01,236::train::INFO] [train] Iter 17258 | loss 1.3171 | loss(rot) 0.5213 | loss(pos) 0.4515 | loss(seq) 0.3442 | grad 4.0161 | lr 0.0010 | time_forward 2.4580 | time_backward 3.1150 |
[2023-09-03 03:10:10,239::train::INFO] [train] Iter 17259 | loss 1.6516 | loss(rot) 0.6622 | loss(pos) 0.5980 | loss(seq) 0.3913 | grad 3.9088 | lr 0.0010 | time_forward 3.4550 | time_backward 5.5450 |
[2023-09-03 03:10:19,116::train::INFO] [train] Iter 17260 | loss 0.5965 | loss(rot) 0.2940 | loss(pos) 0.1716 | loss(seq) 0.1309 | grad 3.6651 | lr 0.0010 | time_forward 3.4640 | time_backward 5.4090 |
[2023-09-03 03:10:21,817::train::INFO] [train] Iter 17261 | loss 0.6164 | loss(rot) 0.4395 | loss(pos) 0.1613 | loss(seq) 0.0157 | grad 3.4214 | lr 0.0010 | time_forward 1.2250 | time_backward 1.4720 |
[2023-09-03 03:10:24,319::train::INFO] [train] Iter 17262 | loss 0.9955 | loss(rot) 0.6991 | loss(pos) 0.2470 | loss(seq) 0.0494 | grad 5.6221 | lr 0.0010 | time_forward 1.1810 | time_backward 1.3180 |
[2023-09-03 03:10:33,048::train::INFO] [train] Iter 17263 | loss 1.5202 | loss(rot) 1.0193 | loss(pos) 0.1524 | loss(seq) 0.3485 | grad 4.6044 | lr 0.0010 | time_forward 3.4890 | time_backward 5.2170 |
[2023-09-03 03:10:41,440::train::INFO] [train] Iter 17264 | loss 1.4010 | loss(rot) 0.7583 | loss(pos) 0.1364 | loss(seq) 0.5064 | grad 3.6172 | lr 0.0010 | time_forward 3.2140 | time_backward 5.1740 |
[2023-09-03 03:10:44,215::train::INFO] [train] Iter 17265 | loss 1.4678 | loss(rot) 1.0127 | loss(pos) 0.1559 | loss(seq) 0.2992 | grad 10.4785 | lr 0.0010 | time_forward 1.2560 | time_backward 1.5160 |
[2023-09-03 03:10:50,605::train::INFO] [train] Iter 17266 | loss 1.3808 | loss(rot) 0.0204 | loss(pos) 1.3576 | loss(seq) 0.0028 | grad 4.6925 | lr 0.0010 | time_forward 2.6780 | time_backward 3.7080 |
[2023-09-03 03:10:58,074::train::INFO] [train] Iter 17267 | loss 2.3547 | loss(rot) 2.0716 | loss(pos) 0.1334 | loss(seq) 0.1497 | grad 4.3049 | lr 0.0010 | time_forward 3.0300 | time_backward 4.4350 |
[2023-09-03 03:11:07,387::train::INFO] [train] Iter 17268 | loss 1.9331 | loss(rot) 0.6716 | loss(pos) 0.8359 | loss(seq) 0.4255 | grad 3.9801 | lr 0.0010 | time_forward 3.6470 | time_backward 5.6620 |
[2023-09-03 03:11:10,147::train::INFO] [train] Iter 17269 | loss 1.2244 | loss(rot) 0.3986 | loss(pos) 0.2418 | loss(seq) 0.5840 | grad 4.9872 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4890 |
[2023-09-03 03:11:18,475::train::INFO] [train] Iter 17270 | loss 1.0985 | loss(rot) 0.9744 | loss(pos) 0.0854 | loss(seq) 0.0387 | grad 14.8485 | lr 0.0010 | time_forward 3.5210 | time_backward 4.8030 |
[2023-09-03 03:11:21,329::train::INFO] [train] Iter 17271 | loss 1.3298 | loss(rot) 0.6258 | loss(pos) 0.3315 | loss(seq) 0.3725 | grad 9.1394 | lr 0.0010 | time_forward 1.3870 | time_backward 1.4640 |
[2023-09-03 03:11:32,844::train::INFO] [train] Iter 17272 | loss 1.9619 | loss(rot) 1.8225 | loss(pos) 0.1328 | loss(seq) 0.0066 | grad 5.3194 | lr 0.0010 | time_forward 6.2420 | time_backward 5.2700 |
[2023-09-03 03:11:35,041::train::INFO] [train] Iter 17273 | loss 1.1006 | loss(rot) 0.8609 | loss(pos) 0.0799 | loss(seq) 0.1597 | grad 4.1643 | lr 0.0010 | time_forward 1.0240 | time_backward 1.1690 |
[2023-09-03 03:11:37,623::train::INFO] [train] Iter 17274 | loss 0.8307 | loss(rot) 0.7621 | loss(pos) 0.0624 | loss(seq) 0.0062 | grad 13.6823 | lr 0.0010 | time_forward 1.2040 | time_backward 1.3750 |
[2023-09-03 03:11:45,029::train::INFO] [train] Iter 17275 | loss 1.6805 | loss(rot) 1.6374 | loss(pos) 0.0430 | loss(seq) 0.0000 | grad 4.8239 | lr 0.0010 | time_forward 3.0910 | time_backward 4.3110 |
[2023-09-03 03:11:52,886::train::INFO] [train] Iter 17276 | loss 1.0959 | loss(rot) 0.3947 | loss(pos) 0.6764 | loss(seq) 0.0249 | grad 4.3488 | lr 0.0010 | time_forward 3.0920 | time_backward 4.7620 |
[2023-09-03 03:11:55,513::train::INFO] [train] Iter 17277 | loss 1.2681 | loss(rot) 1.1355 | loss(pos) 0.1324 | loss(seq) 0.0001 | grad 7.0603 | lr 0.0010 | time_forward 1.1910 | time_backward 1.4320 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.