text
stringlengths 56
1.16k
|
---|
[2023-09-03 02:37:59,633::train::INFO] [train] Iter 16979 | loss 2.4394 | loss(rot) 2.1289 | loss(pos) 0.0871 | loss(seq) 0.2234 | grad 4.8786 | lr 0.0010 | time_forward 3.3360 | time_backward 4.6830 |
[2023-09-03 02:38:02,320::train::INFO] [train] Iter 16980 | loss 0.8762 | loss(rot) 0.3004 | loss(pos) 0.1226 | loss(seq) 0.4532 | grad 3.7103 | lr 0.0010 | time_forward 1.2620 | time_backward 1.4200 |
[2023-09-03 02:38:11,069::train::INFO] [train] Iter 16981 | loss 0.8583 | loss(rot) 0.7646 | loss(pos) 0.0935 | loss(seq) 0.0001 | grad 6.0480 | lr 0.0010 | time_forward 3.7360 | time_backward 5.0100 |
[2023-09-03 02:38:19,428::train::INFO] [train] Iter 16982 | loss 1.0163 | loss(rot) 0.6736 | loss(pos) 0.1212 | loss(seq) 0.2215 | grad 4.8147 | lr 0.0010 | time_forward 3.4960 | time_backward 4.8570 |
[2023-09-03 02:38:29,329::train::INFO] [train] Iter 16983 | loss 1.9416 | loss(rot) 1.1131 | loss(pos) 0.2996 | loss(seq) 0.5289 | grad 3.9705 | lr 0.0010 | time_forward 4.0160 | time_backward 5.8820 |
[2023-09-03 02:38:39,318::train::INFO] [train] Iter 16984 | loss 1.0899 | loss(rot) 0.2177 | loss(pos) 0.8411 | loss(seq) 0.0311 | grad 4.1870 | lr 0.0010 | time_forward 4.0230 | time_backward 5.9620 |
[2023-09-03 02:38:41,955::train::INFO] [train] Iter 16985 | loss 1.2662 | loss(rot) 0.2262 | loss(pos) 0.8626 | loss(seq) 0.1774 | grad 4.4200 | lr 0.0010 | time_forward 1.2160 | time_backward 1.4180 |
[2023-09-03 02:38:49,972::train::INFO] [train] Iter 16986 | loss 0.7122 | loss(rot) 0.6275 | loss(pos) 0.0685 | loss(seq) 0.0162 | grad 4.8820 | lr 0.0010 | time_forward 3.4120 | time_backward 4.6010 |
[2023-09-03 02:38:58,044::train::INFO] [train] Iter 16987 | loss 1.3229 | loss(rot) 0.7876 | loss(pos) 0.1129 | loss(seq) 0.4224 | grad 4.7846 | lr 0.0010 | time_forward 3.2820 | time_backward 4.7860 |
[2023-09-03 02:39:00,251::train::INFO] [train] Iter 16988 | loss 1.4490 | loss(rot) 0.0255 | loss(pos) 1.4198 | loss(seq) 0.0037 | grad 5.0256 | lr 0.0010 | time_forward 1.0210 | time_backward 1.1820 |
[2023-09-03 02:39:02,921::train::INFO] [train] Iter 16989 | loss 1.0863 | loss(rot) 0.3205 | loss(pos) 0.2053 | loss(seq) 0.5605 | grad 3.8793 | lr 0.0010 | time_forward 1.2340 | time_backward 1.4330 |
[2023-09-03 02:39:11,169::train::INFO] [train] Iter 16990 | loss 2.8580 | loss(rot) 2.5226 | loss(pos) 0.3347 | loss(seq) 0.0007 | grad 10.6771 | lr 0.0010 | time_forward 3.4720 | time_backward 4.7740 |
[2023-09-03 02:39:13,798::train::INFO] [train] Iter 16991 | loss 1.4537 | loss(rot) 1.1533 | loss(pos) 0.0612 | loss(seq) 0.2392 | grad 3.2305 | lr 0.0010 | time_forward 1.2100 | time_backward 1.4150 |
[2023-09-03 02:39:23,666::train::INFO] [train] Iter 16992 | loss 2.6756 | loss(rot) 2.2183 | loss(pos) 0.1814 | loss(seq) 0.2759 | grad 3.4445 | lr 0.0010 | time_forward 4.0300 | time_backward 5.8340 |
[2023-09-03 02:39:27,017::train::INFO] [train] Iter 16993 | loss 1.4020 | loss(rot) 0.0264 | loss(pos) 1.3738 | loss(seq) 0.0018 | grad 6.0635 | lr 0.0010 | time_forward 1.4430 | time_backward 1.9060 |
[2023-09-03 02:39:29,722::train::INFO] [train] Iter 16994 | loss 0.7075 | loss(rot) 0.2020 | loss(pos) 0.4555 | loss(seq) 0.0500 | grad 3.8403 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4460 |
[2023-09-03 02:39:37,715::train::INFO] [train] Iter 16995 | loss 1.9012 | loss(rot) 1.6059 | loss(pos) 0.0913 | loss(seq) 0.2039 | grad 5.2966 | lr 0.0010 | time_forward 3.3920 | time_backward 4.5970 |
[2023-09-03 02:39:47,391::train::INFO] [train] Iter 16996 | loss 1.2993 | loss(rot) 0.7140 | loss(pos) 0.1208 | loss(seq) 0.4644 | grad 5.4595 | lr 0.0010 | time_forward 3.9670 | time_backward 5.7050 |
[2023-09-03 02:39:50,043::train::INFO] [train] Iter 16997 | loss 1.5378 | loss(rot) 1.3577 | loss(pos) 0.1266 | loss(seq) 0.0535 | grad 9.2367 | lr 0.0010 | time_forward 1.2190 | time_backward 1.4300 |
[2023-09-03 02:40:00,050::train::INFO] [train] Iter 16998 | loss 2.3210 | loss(rot) 1.6460 | loss(pos) 0.2292 | loss(seq) 0.4459 | grad 5.8161 | lr 0.0010 | time_forward 3.9530 | time_backward 6.0500 |
[2023-09-03 02:40:09,711::train::INFO] [train] Iter 16999 | loss 1.4954 | loss(rot) 1.2704 | loss(pos) 0.1998 | loss(seq) 0.0252 | grad 5.1018 | lr 0.0010 | time_forward 3.9420 | time_backward 5.7150 |
[2023-09-03 02:40:12,408::train::INFO] [train] Iter 17000 | loss 0.9069 | loss(rot) 0.5991 | loss(pos) 0.3072 | loss(seq) 0.0007 | grad 4.6547 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4370 |
[2023-09-03 02:40:47,687::train::INFO] [val] Iter 17000 | loss 1.7681 | loss(rot) 1.0538 | loss(pos) 0.4630 | loss(seq) 0.2513 |
[2023-09-03 02:40:54,809::train::INFO] [train] Iter 17001 | loss 2.2421 | loss(rot) 1.9708 | loss(pos) 0.1466 | loss(seq) 0.1247 | grad 5.1080 | lr 0.0010 | time_forward 2.8750 | time_backward 3.9400 |
[2023-09-03 02:41:02,622::train::INFO] [train] Iter 17002 | loss 1.2407 | loss(rot) 1.1342 | loss(pos) 0.1065 | loss(seq) 0.0000 | grad 5.9055 | lr 0.0010 | time_forward 3.2830 | time_backward 4.5270 |
[2023-09-03 02:41:10,863::train::INFO] [train] Iter 17003 | loss 1.7938 | loss(rot) 0.8566 | loss(pos) 0.3022 | loss(seq) 0.6351 | grad 4.4234 | lr 0.0010 | time_forward 3.6070 | time_backward 4.6300 |
[2023-09-03 02:41:20,047::train::INFO] [train] Iter 17004 | loss 0.9800 | loss(rot) 0.8280 | loss(pos) 0.0925 | loss(seq) 0.0595 | grad 4.2405 | lr 0.0010 | time_forward 3.7970 | time_backward 5.3830 |
[2023-09-03 02:41:22,734::train::INFO] [train] Iter 17005 | loss 2.1698 | loss(rot) 0.1741 | loss(pos) 1.9829 | loss(seq) 0.0128 | grad 7.2346 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4320 |
[2023-09-03 02:41:25,441::train::INFO] [train] Iter 17006 | loss 1.1186 | loss(rot) 0.5778 | loss(pos) 0.0958 | loss(seq) 0.4450 | grad 5.1570 | lr 0.0010 | time_forward 1.2480 | time_backward 1.4560 |
[2023-09-03 02:41:35,322::train::INFO] [train] Iter 17007 | loss 1.9001 | loss(rot) 1.6894 | loss(pos) 0.1328 | loss(seq) 0.0779 | grad 4.3138 | lr 0.0010 | time_forward 4.1370 | time_backward 5.7400 |
[2023-09-03 02:41:44,525::train::INFO] [train] Iter 17008 | loss 1.4244 | loss(rot) 0.6843 | loss(pos) 0.1832 | loss(seq) 0.5569 | grad 3.9250 | lr 0.0010 | time_forward 3.7090 | time_backward 5.4910 |
[2023-09-03 02:41:54,038::train::INFO] [train] Iter 17009 | loss 1.1253 | loss(rot) 0.9872 | loss(pos) 0.1373 | loss(seq) 0.0007 | grad 6.6601 | lr 0.0010 | time_forward 3.7200 | time_backward 5.7770 |
[2023-09-03 02:41:56,601::train::INFO] [train] Iter 17010 | loss 1.5964 | loss(rot) 1.2994 | loss(pos) 0.1847 | loss(seq) 0.1122 | grad 7.8318 | lr 0.0010 | time_forward 1.1930 | time_backward 1.3670 |
[2023-09-03 02:41:59,218::train::INFO] [train] Iter 17011 | loss 1.2250 | loss(rot) 0.5439 | loss(pos) 0.2866 | loss(seq) 0.3945 | grad 4.3304 | lr 0.0010 | time_forward 1.2150 | time_backward 1.3810 |
[2023-09-03 02:42:01,868::train::INFO] [train] Iter 17012 | loss 0.8953 | loss(rot) 0.7791 | loss(pos) 0.1150 | loss(seq) 0.0012 | grad 7.3944 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4020 |
[2023-09-03 02:42:04,122::train::INFO] [train] Iter 17013 | loss 1.9506 | loss(rot) 0.7987 | loss(pos) 0.8021 | loss(seq) 0.3499 | grad 7.3834 | lr 0.0010 | time_forward 1.0760 | time_backward 1.1750 |
[2023-09-03 02:42:14,312::train::INFO] [train] Iter 17014 | loss 2.0163 | loss(rot) 1.6758 | loss(pos) 0.1747 | loss(seq) 0.1658 | grad 5.8533 | lr 0.0010 | time_forward 4.4490 | time_backward 5.7380 |
[2023-09-03 02:42:23,499::train::INFO] [train] Iter 17015 | loss 1.4267 | loss(rot) 0.6274 | loss(pos) 0.4137 | loss(seq) 0.3856 | grad 4.5622 | lr 0.0010 | time_forward 3.5920 | time_backward 5.5910 |
[2023-09-03 02:42:32,830::train::INFO] [train] Iter 17016 | loss 1.0057 | loss(rot) 0.3759 | loss(pos) 0.3075 | loss(seq) 0.3223 | grad 4.0367 | lr 0.0010 | time_forward 3.7730 | time_backward 5.5540 |
[2023-09-03 02:42:40,195::train::INFO] [train] Iter 17017 | loss 0.6839 | loss(rot) 0.2189 | loss(pos) 0.4000 | loss(seq) 0.0650 | grad 4.6237 | lr 0.0010 | time_forward 3.0980 | time_backward 4.2640 |
[2023-09-03 02:42:49,534::train::INFO] [train] Iter 17018 | loss 1.2256 | loss(rot) 0.0757 | loss(pos) 1.1373 | loss(seq) 0.0126 | grad 4.3742 | lr 0.0010 | time_forward 3.9680 | time_backward 5.3670 |
[2023-09-03 02:42:58,709::train::INFO] [train] Iter 17019 | loss 1.5832 | loss(rot) 1.2395 | loss(pos) 0.1563 | loss(seq) 0.1874 | grad 4.1280 | lr 0.0010 | time_forward 3.5570 | time_backward 5.6140 |
[2023-09-03 02:43:07,347::train::INFO] [train] Iter 17020 | loss 1.4216 | loss(rot) 1.3486 | loss(pos) 0.0635 | loss(seq) 0.0095 | grad 4.8161 | lr 0.0010 | time_forward 3.3840 | time_backward 5.2500 |
[2023-09-03 02:43:16,559::train::INFO] [train] Iter 17021 | loss 1.3994 | loss(rot) 1.1224 | loss(pos) 0.2675 | loss(seq) 0.0095 | grad 4.7507 | lr 0.0010 | time_forward 3.8010 | time_backward 5.4080 |
[2023-09-03 02:43:19,205::train::INFO] [train] Iter 17022 | loss 1.5424 | loss(rot) 0.9066 | loss(pos) 0.3902 | loss(seq) 0.2456 | grad 7.0923 | lr 0.0010 | time_forward 1.2130 | time_backward 1.4300 |
[2023-09-03 02:43:21,604::train::INFO] [train] Iter 17023 | loss 1.9226 | loss(rot) 1.0454 | loss(pos) 0.4201 | loss(seq) 0.4571 | grad 4.7025 | lr 0.0010 | time_forward 1.1350 | time_backward 1.2600 |
[2023-09-03 02:43:29,327::train::INFO] [train] Iter 17024 | loss 1.6299 | loss(rot) 1.4554 | loss(pos) 0.1215 | loss(seq) 0.0530 | grad 4.7737 | lr 0.0010 | time_forward 3.3680 | time_backward 4.3360 |
[2023-09-03 02:43:37,576::train::INFO] [train] Iter 17025 | loss 2.5177 | loss(rot) 1.2100 | loss(pos) 0.8125 | loss(seq) 0.4952 | grad 5.2403 | lr 0.0010 | time_forward 3.4940 | time_backward 4.7510 |
[2023-09-03 02:43:46,972::train::INFO] [train] Iter 17026 | loss 1.8095 | loss(rot) 1.1971 | loss(pos) 0.2708 | loss(seq) 0.3417 | grad 6.2642 | lr 0.0010 | time_forward 3.7010 | time_backward 5.6910 |
[2023-09-03 02:43:55,312::train::INFO] [train] Iter 17027 | loss 0.8665 | loss(rot) 0.2735 | loss(pos) 0.5544 | loss(seq) 0.0386 | grad 4.9701 | lr 0.0010 | time_forward 3.5630 | time_backward 4.7730 |
[2023-09-03 02:44:04,320::train::INFO] [train] Iter 17028 | loss 0.7975 | loss(rot) 0.2975 | loss(pos) 0.2068 | loss(seq) 0.2932 | grad 3.6751 | lr 0.0010 | time_forward 3.5060 | time_backward 5.4980 |
[2023-09-03 02:44:13,617::train::INFO] [train] Iter 17029 | loss 1.8751 | loss(rot) 1.7296 | loss(pos) 0.0533 | loss(seq) 0.0922 | grad 6.9295 | lr 0.0010 | time_forward 3.6920 | time_backward 5.5940 |
[2023-09-03 02:44:23,070::train::INFO] [train] Iter 17030 | loss 1.7182 | loss(rot) 1.2278 | loss(pos) 0.1843 | loss(seq) 0.3061 | grad 5.1355 | lr 0.0010 | time_forward 3.8350 | time_backward 5.6140 |
[2023-09-03 02:44:31,653::train::INFO] [train] Iter 17031 | loss 1.3948 | loss(rot) 0.8342 | loss(pos) 0.1199 | loss(seq) 0.4407 | grad 4.8443 | lr 0.0010 | time_forward 3.5850 | time_backward 4.9850 |
[2023-09-03 02:44:34,267::train::INFO] [train] Iter 17032 | loss 2.1174 | loss(rot) 1.3123 | loss(pos) 0.3127 | loss(seq) 0.4924 | grad 6.2236 | lr 0.0010 | time_forward 1.2370 | time_backward 1.3740 |
[2023-09-03 02:44:43,378::train::INFO] [train] Iter 17033 | loss 1.5531 | loss(rot) 1.3262 | loss(pos) 0.0644 | loss(seq) 0.1625 | grad 3.5628 | lr 0.0010 | time_forward 3.7480 | time_backward 5.3590 |
[2023-09-03 02:44:50,643::train::INFO] [train] Iter 17034 | loss 0.4375 | loss(rot) 0.3097 | loss(pos) 0.0659 | loss(seq) 0.0619 | grad 3.9956 | lr 0.0010 | time_forward 3.1600 | time_backward 4.1020 |
[2023-09-03 02:44:59,476::train::INFO] [train] Iter 17035 | loss 1.3931 | loss(rot) 0.6048 | loss(pos) 0.3483 | loss(seq) 0.4401 | grad 5.1301 | lr 0.0010 | time_forward 3.6720 | time_backward 5.1580 |
[2023-09-03 02:45:08,561::train::INFO] [train] Iter 17036 | loss 1.0098 | loss(rot) 0.3263 | loss(pos) 0.3200 | loss(seq) 0.3635 | grad 4.5209 | lr 0.0010 | time_forward 3.6860 | time_backward 5.3950 |
[2023-09-03 02:45:18,600::train::INFO] [train] Iter 17037 | loss 2.1047 | loss(rot) 1.8207 | loss(pos) 0.2840 | loss(seq) 0.0000 | grad 3.7995 | lr 0.0010 | time_forward 4.5730 | time_backward 5.4640 |
[2023-09-03 02:45:27,706::train::INFO] [train] Iter 17038 | loss 1.3854 | loss(rot) 1.1872 | loss(pos) 0.1982 | loss(seq) 0.0000 | grad 3.9929 | lr 0.0010 | time_forward 3.4520 | time_backward 5.6500 |
[2023-09-03 02:45:36,022::train::INFO] [train] Iter 17039 | loss 2.2294 | loss(rot) 1.5083 | loss(pos) 0.2555 | loss(seq) 0.4656 | grad 4.0837 | lr 0.0010 | time_forward 3.2080 | time_backward 5.1050 |
[2023-09-03 02:45:43,537::train::INFO] [train] Iter 17040 | loss 0.7794 | loss(rot) 0.2208 | loss(pos) 0.2085 | loss(seq) 0.3502 | grad 3.2256 | lr 0.0010 | time_forward 3.2610 | time_backward 4.2510 |
[2023-09-03 02:45:45,650::train::INFO] [train] Iter 17041 | loss 1.1303 | loss(rot) 0.1895 | loss(pos) 0.5427 | loss(seq) 0.3980 | grad 4.0413 | lr 0.0010 | time_forward 0.9800 | time_backward 1.1290 |
[2023-09-03 02:45:48,189::train::INFO] [train] Iter 17042 | loss 1.1436 | loss(rot) 0.9689 | loss(pos) 0.0876 | loss(seq) 0.0872 | grad 3.7592 | lr 0.0010 | time_forward 1.1810 | time_backward 1.3550 |
[2023-09-03 02:45:50,820::train::INFO] [train] Iter 17043 | loss 0.8209 | loss(rot) 0.3127 | loss(pos) 0.4259 | loss(seq) 0.0823 | grad 3.1621 | lr 0.0010 | time_forward 1.2250 | time_backward 1.4020 |
[2023-09-03 02:45:58,594::train::INFO] [train] Iter 17044 | loss 1.0414 | loss(rot) 0.9515 | loss(pos) 0.0574 | loss(seq) 0.0325 | grad 13.8466 | lr 0.0010 | time_forward 3.3550 | time_backward 4.4160 |
[2023-09-03 02:46:06,343::train::INFO] [train] Iter 17045 | loss 2.4133 | loss(rot) 2.1954 | loss(pos) 0.1971 | loss(seq) 0.0208 | grad 8.5216 | lr 0.0010 | time_forward 3.3350 | time_backward 4.4120 |
[2023-09-03 02:46:14,895::train::INFO] [train] Iter 17046 | loss 1.5437 | loss(rot) 1.2599 | loss(pos) 0.1182 | loss(seq) 0.1655 | grad 5.2228 | lr 0.0010 | time_forward 3.5240 | time_backward 5.0240 |
[2023-09-03 02:46:23,766::train::INFO] [train] Iter 17047 | loss 2.6713 | loss(rot) 1.6328 | loss(pos) 0.4597 | loss(seq) 0.5788 | grad 4.9028 | lr 0.0010 | time_forward 3.8460 | time_backward 5.0130 |
[2023-09-03 02:46:32,684::train::INFO] [train] Iter 17048 | loss 1.7290 | loss(rot) 1.5120 | loss(pos) 0.0849 | loss(seq) 0.1321 | grad 5.3019 | lr 0.0010 | time_forward 3.4740 | time_backward 5.4400 |
[2023-09-03 02:46:41,327::train::INFO] [train] Iter 17049 | loss 1.5048 | loss(rot) 0.8180 | loss(pos) 0.1674 | loss(seq) 0.5194 | grad 7.8467 | lr 0.0010 | time_forward 3.5710 | time_backward 5.0690 |
[2023-09-03 02:46:43,952::train::INFO] [train] Iter 17050 | loss 1.5062 | loss(rot) 1.4134 | loss(pos) 0.0661 | loss(seq) 0.0267 | grad 4.8855 | lr 0.0010 | time_forward 1.2180 | time_backward 1.4040 |
[2023-09-03 02:46:46,612::train::INFO] [train] Iter 17051 | loss 1.2434 | loss(rot) 1.0338 | loss(pos) 0.2096 | loss(seq) 0.0000 | grad 6.0854 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4160 |
[2023-09-03 02:46:54,341::train::INFO] [train] Iter 17052 | loss 1.3138 | loss(rot) 0.3336 | loss(pos) 0.5108 | loss(seq) 0.4695 | grad 7.3923 | lr 0.0010 | time_forward 3.1560 | time_backward 4.5700 |
[2023-09-03 02:47:01,339::train::INFO] [train] Iter 17053 | loss 1.3011 | loss(rot) 0.6468 | loss(pos) 0.1854 | loss(seq) 0.4688 | grad 3.3847 | lr 0.0010 | time_forward 2.9060 | time_backward 4.0890 |
[2023-09-03 02:47:08,612::train::INFO] [train] Iter 17054 | loss 1.2155 | loss(rot) 1.0294 | loss(pos) 0.1859 | loss(seq) 0.0001 | grad 8.4661 | lr 0.0010 | time_forward 3.1330 | time_backward 4.1370 |
[2023-09-03 02:47:10,846::train::INFO] [train] Iter 17055 | loss 1.2458 | loss(rot) 0.6090 | loss(pos) 0.2765 | loss(seq) 0.3603 | grad 6.8507 | lr 0.0010 | time_forward 1.0430 | time_backward 1.1870 |
[2023-09-03 02:47:13,118::train::INFO] [train] Iter 17056 | loss 2.9315 | loss(rot) 2.6356 | loss(pos) 0.2952 | loss(seq) 0.0007 | grad 7.8146 | lr 0.0010 | time_forward 1.0390 | time_backward 1.2090 |
[2023-09-03 02:47:21,088::train::INFO] [train] Iter 17057 | loss 1.6427 | loss(rot) 1.3878 | loss(pos) 0.1360 | loss(seq) 0.1190 | grad 18.3845 | lr 0.0010 | time_forward 3.3990 | time_backward 4.5670 |
[2023-09-03 02:47:28,127::train::INFO] [train] Iter 17058 | loss 1.0885 | loss(rot) 0.8980 | loss(pos) 0.1905 | loss(seq) 0.0000 | grad 4.1250 | lr 0.0010 | time_forward 2.9400 | time_backward 4.0960 |
[2023-09-03 02:47:35,698::train::INFO] [train] Iter 17059 | loss 1.8820 | loss(rot) 1.1507 | loss(pos) 0.3567 | loss(seq) 0.3746 | grad 6.0772 | lr 0.0010 | time_forward 3.2280 | time_backward 4.3400 |
[2023-09-03 02:47:43,073::train::INFO] [train] Iter 17060 | loss 0.9094 | loss(rot) 0.3072 | loss(pos) 0.4299 | loss(seq) 0.1723 | grad 5.2236 | lr 0.0010 | time_forward 3.1640 | time_backward 4.2080 |
[2023-09-03 02:47:51,675::train::INFO] [train] Iter 17061 | loss 1.5958 | loss(rot) 1.2869 | loss(pos) 0.1575 | loss(seq) 0.1514 | grad 6.1420 | lr 0.0010 | time_forward 3.6550 | time_backward 4.9440 |
[2023-09-03 02:47:54,793::train::INFO] [train] Iter 17062 | loss 2.1945 | loss(rot) 1.5362 | loss(pos) 0.3159 | loss(seq) 0.3424 | grad 5.1467 | lr 0.0010 | time_forward 1.3670 | time_backward 1.7480 |
[2023-09-03 02:48:01,787::train::INFO] [train] Iter 17063 | loss 1.4234 | loss(rot) 1.2110 | loss(pos) 0.1987 | loss(seq) 0.0137 | grad 5.0605 | lr 0.0010 | time_forward 2.9610 | time_backward 4.0150 |
[2023-09-03 02:48:09,651::train::INFO] [train] Iter 17064 | loss 1.4153 | loss(rot) 1.2100 | loss(pos) 0.1649 | loss(seq) 0.0404 | grad 5.7852 | lr 0.0010 | time_forward 3.3170 | time_backward 4.5430 |
[2023-09-03 02:48:18,428::train::INFO] [train] Iter 17065 | loss 1.8557 | loss(rot) 1.4197 | loss(pos) 0.1242 | loss(seq) 0.3117 | grad 3.8444 | lr 0.0010 | time_forward 3.6370 | time_backward 5.1360 |
[2023-09-03 02:48:25,691::train::INFO] [train] Iter 17066 | loss 1.9948 | loss(rot) 1.2136 | loss(pos) 0.2572 | loss(seq) 0.5239 | grad 3.5502 | lr 0.0010 | time_forward 3.0940 | time_backward 4.1660 |
[2023-09-03 02:48:28,294::train::INFO] [train] Iter 17067 | loss 1.4223 | loss(rot) 1.2297 | loss(pos) 0.1609 | loss(seq) 0.0316 | grad 6.0680 | lr 0.0010 | time_forward 1.2040 | time_backward 1.3870 |
[2023-09-03 02:48:34,898::train::INFO] [train] Iter 17068 | loss 1.1034 | loss(rot) 0.5280 | loss(pos) 0.1636 | loss(seq) 0.4119 | grad 5.5917 | lr 0.0010 | time_forward 2.6640 | time_backward 3.9360 |
[2023-09-03 02:48:42,958::train::INFO] [train] Iter 17069 | loss 1.8495 | loss(rot) 1.7571 | loss(pos) 0.0798 | loss(seq) 0.0127 | grad 3.5601 | lr 0.0010 | time_forward 3.4510 | time_backward 4.6050 |
[2023-09-03 02:48:52,565::train::INFO] [train] Iter 17070 | loss 1.7576 | loss(rot) 0.8490 | loss(pos) 0.2797 | loss(seq) 0.6288 | grad 3.4831 | lr 0.0010 | time_forward 4.2090 | time_backward 5.3940 |
[2023-09-03 02:49:01,311::train::INFO] [train] Iter 17071 | loss 1.2294 | loss(rot) 0.3420 | loss(pos) 0.3423 | loss(seq) 0.5451 | grad 3.3473 | lr 0.0010 | time_forward 3.4580 | time_backward 5.2850 |
[2023-09-03 02:49:09,867::train::INFO] [train] Iter 17072 | loss 1.7718 | loss(rot) 0.9775 | loss(pos) 0.2521 | loss(seq) 0.5422 | grad 3.4984 | lr 0.0010 | time_forward 3.3300 | time_backward 5.2220 |
[2023-09-03 02:49:18,025::train::INFO] [train] Iter 17073 | loss 0.7842 | loss(rot) 0.1862 | loss(pos) 0.3256 | loss(seq) 0.2724 | grad 3.3831 | lr 0.0010 | time_forward 3.2660 | time_backward 4.8880 |
[2023-09-03 02:49:21,178::train::INFO] [train] Iter 17074 | loss 0.9762 | loss(rot) 0.0299 | loss(pos) 0.9400 | loss(seq) 0.0063 | grad 5.3234 | lr 0.0010 | time_forward 1.3250 | time_backward 1.8250 |
[2023-09-03 02:49:23,768::train::INFO] [train] Iter 17075 | loss 0.7219 | loss(rot) 0.2276 | loss(pos) 0.2158 | loss(seq) 0.2785 | grad 2.7216 | lr 0.0010 | time_forward 1.1870 | time_backward 1.3990 |
[2023-09-03 02:49:33,206::train::INFO] [train] Iter 17076 | loss 2.8548 | loss(rot) 2.7090 | loss(pos) 0.1426 | loss(seq) 0.0032 | grad 3.0266 | lr 0.0010 | time_forward 3.9470 | time_backward 5.4880 |
[2023-09-03 02:49:41,276::train::INFO] [train] Iter 17077 | loss 2.2188 | loss(rot) 1.5545 | loss(pos) 0.1704 | loss(seq) 0.4939 | grad 3.9673 | lr 0.0010 | time_forward 3.4180 | time_backward 4.6480 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.