text
stringlengths 56
1.16k
|
---|
[2023-09-03 02:27:07,100::train::INFO] [train] Iter 16879 | loss 1.3945 | loss(rot) 1.2498 | loss(pos) 0.1198 | loss(seq) 0.0250 | grad 8.6460 | lr 0.0010 | time_forward 4.0740 | time_backward 6.0950 |
[2023-09-03 02:27:16,876::train::INFO] [train] Iter 16880 | loss 0.5858 | loss(rot) 0.3038 | loss(pos) 0.1006 | loss(seq) 0.1815 | grad 3.3407 | lr 0.0010 | time_forward 3.8820 | time_backward 5.8900 |
[2023-09-03 02:27:26,612::train::INFO] [train] Iter 16881 | loss 1.6925 | loss(rot) 0.8590 | loss(pos) 0.4401 | loss(seq) 0.3934 | grad 5.7113 | lr 0.0010 | time_forward 3.7480 | time_backward 5.9700 |
[2023-09-03 02:27:33,261::train::INFO] [train] Iter 16882 | loss 2.4164 | loss(rot) 1.7451 | loss(pos) 0.1990 | loss(seq) 0.4723 | grad 6.5038 | lr 0.0010 | time_forward 2.8130 | time_backward 3.8330 |
[2023-09-03 02:27:33,819::train::INFO] [train] Iter 16883 | loss 29.0654 | loss(rot) 3.9306 | loss(pos) 24.3350 | loss(seq) 0.7999 | grad 464.6556 | lr 0.0010 | time_forward 0.2260 | time_backward 0.3280 |
[2023-09-03 02:27:36,221::train::INFO] [train] Iter 16884 | loss 1.8662 | loss(rot) 1.3492 | loss(pos) 0.1677 | loss(seq) 0.3492 | grad 5.1529 | lr 0.0010 | time_forward 1.1560 | time_backward 1.2420 |
[2023-09-03 02:27:44,629::train::INFO] [train] Iter 16885 | loss 1.2385 | loss(rot) 0.9818 | loss(pos) 0.2269 | loss(seq) 0.0298 | grad 7.6438 | lr 0.0010 | time_forward 3.5790 | time_backward 4.7960 |
[2023-09-03 02:27:53,765::train::INFO] [train] Iter 16886 | loss 1.6337 | loss(rot) 0.1850 | loss(pos) 0.9850 | loss(seq) 0.4637 | grad 6.2000 | lr 0.0010 | time_forward 3.8910 | time_backward 5.2420 |
[2023-09-03 02:28:02,213::train::INFO] [train] Iter 16887 | loss 1.7027 | loss(rot) 1.0394 | loss(pos) 0.1633 | loss(seq) 0.5000 | grad 4.0135 | lr 0.0010 | time_forward 3.5970 | time_backward 4.8470 |
[2023-09-03 02:28:04,891::train::INFO] [train] Iter 16888 | loss 1.5771 | loss(rot) 0.0545 | loss(pos) 1.5215 | loss(seq) 0.0011 | grad 5.6674 | lr 0.0010 | time_forward 1.2410 | time_backward 1.4340 |
[2023-09-03 02:28:13,418::train::INFO] [train] Iter 16889 | loss 1.4540 | loss(rot) 0.8600 | loss(pos) 0.1815 | loss(seq) 0.4126 | grad 5.2736 | lr 0.0010 | time_forward 3.5510 | time_backward 4.9730 |
[2023-09-03 02:28:21,603::train::INFO] [train] Iter 16890 | loss 1.7870 | loss(rot) 1.4555 | loss(pos) 0.0878 | loss(seq) 0.2437 | grad 8.9503 | lr 0.0010 | time_forward 3.3280 | time_backward 4.8530 |
[2023-09-03 02:28:30,661::train::INFO] [train] Iter 16891 | loss 1.3286 | loss(rot) 0.2403 | loss(pos) 0.6498 | loss(seq) 0.4385 | grad 6.6068 | lr 0.0010 | time_forward 3.7680 | time_backward 5.2870 |
[2023-09-03 02:28:40,381::train::INFO] [train] Iter 16892 | loss 1.2249 | loss(rot) 0.5413 | loss(pos) 0.5725 | loss(seq) 0.1111 | grad 4.3288 | lr 0.0010 | time_forward 3.8980 | time_backward 5.8180 |
[2023-09-03 02:28:48,767::train::INFO] [train] Iter 16893 | loss 1.5576 | loss(rot) 1.3587 | loss(pos) 0.1560 | loss(seq) 0.0429 | grad 5.5092 | lr 0.0010 | time_forward 3.5000 | time_backward 4.8820 |
[2023-09-03 02:28:51,431::train::INFO] [train] Iter 16894 | loss 3.4965 | loss(rot) 2.1568 | loss(pos) 1.2520 | loss(seq) 0.0878 | grad 8.1394 | lr 0.0010 | time_forward 1.2350 | time_backward 1.4250 |
[2023-09-03 02:28:59,934::train::INFO] [train] Iter 16895 | loss 1.1717 | loss(rot) 0.4545 | loss(pos) 0.4772 | loss(seq) 0.2399 | grad 3.7965 | lr 0.0010 | time_forward 3.4240 | time_backward 5.0760 |
[2023-09-03 02:29:02,642::train::INFO] [train] Iter 16896 | loss 1.0946 | loss(rot) 0.0479 | loss(pos) 0.7658 | loss(seq) 0.2809 | grad 5.7952 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4390 |
[2023-09-03 02:29:11,245::train::INFO] [train] Iter 16897 | loss 1.1560 | loss(rot) 0.3985 | loss(pos) 0.1584 | loss(seq) 0.5991 | grad 3.8457 | lr 0.0010 | time_forward 3.5510 | time_backward 5.0480 |
[2023-09-03 02:29:19,888::train::INFO] [train] Iter 16898 | loss 1.0565 | loss(rot) 0.7432 | loss(pos) 0.2794 | loss(seq) 0.0340 | grad 7.9305 | lr 0.0010 | time_forward 3.6980 | time_backward 4.9410 |
[2023-09-03 02:29:27,218::train::INFO] [train] Iter 16899 | loss 1.1364 | loss(rot) 0.2715 | loss(pos) 0.3124 | loss(seq) 0.5525 | grad 4.8589 | lr 0.0010 | time_forward 3.1270 | time_backward 4.2000 |
[2023-09-03 02:29:35,207::train::INFO] [train] Iter 16900 | loss 1.5713 | loss(rot) 0.8134 | loss(pos) 0.2002 | loss(seq) 0.5577 | grad 3.0857 | lr 0.0010 | time_forward 3.4760 | time_backward 4.5090 |
[2023-09-03 02:29:43,726::train::INFO] [train] Iter 16901 | loss 0.9137 | loss(rot) 0.3776 | loss(pos) 0.4934 | loss(seq) 0.0426 | grad 4.3865 | lr 0.0010 | time_forward 3.6820 | time_backward 4.8330 |
[2023-09-03 02:29:50,596::train::INFO] [train] Iter 16902 | loss 1.3427 | loss(rot) 0.2640 | loss(pos) 0.6075 | loss(seq) 0.4713 | grad 5.3816 | lr 0.0010 | time_forward 2.8230 | time_backward 4.0430 |
[2023-09-03 02:30:00,205::train::INFO] [train] Iter 16903 | loss 1.3150 | loss(rot) 0.3986 | loss(pos) 0.4015 | loss(seq) 0.5149 | grad 3.3153 | lr 0.0010 | time_forward 3.9770 | time_backward 5.6290 |
[2023-09-03 02:30:02,844::train::INFO] [train] Iter 16904 | loss 0.8010 | loss(rot) 0.5264 | loss(pos) 0.2728 | loss(seq) 0.0019 | grad 6.0205 | lr 0.0010 | time_forward 1.2170 | time_backward 1.4180 |
[2023-09-03 02:30:05,037::train::INFO] [train] Iter 16905 | loss 1.2992 | loss(rot) 0.6028 | loss(pos) 0.2754 | loss(seq) 0.4211 | grad 3.7406 | lr 0.0010 | time_forward 1.0170 | time_backward 1.1730 |
[2023-09-03 02:30:14,497::train::INFO] [train] Iter 16906 | loss 1.5085 | loss(rot) 1.3391 | loss(pos) 0.0808 | loss(seq) 0.0886 | grad 6.5166 | lr 0.0010 | time_forward 3.9440 | time_backward 5.5120 |
[2023-09-03 02:30:23,417::train::INFO] [train] Iter 16907 | loss 2.7044 | loss(rot) 2.2964 | loss(pos) 0.3290 | loss(seq) 0.0790 | grad 6.5520 | lr 0.0010 | time_forward 3.8490 | time_backward 5.0670 |
[2023-09-03 02:30:29,896::train::INFO] [train] Iter 16908 | loss 1.4213 | loss(rot) 1.2601 | loss(pos) 0.1605 | loss(seq) 0.0006 | grad 22.5514 | lr 0.0010 | time_forward 2.7770 | time_backward 3.6980 |
[2023-09-03 02:30:37,761::train::INFO] [train] Iter 16909 | loss 1.7895 | loss(rot) 1.3679 | loss(pos) 0.4089 | loss(seq) 0.0128 | grad 11.3130 | lr 0.0010 | time_forward 3.3040 | time_backward 4.5570 |
[2023-09-03 02:30:46,278::train::INFO] [train] Iter 16910 | loss 1.3242 | loss(rot) 0.9391 | loss(pos) 0.1776 | loss(seq) 0.2075 | grad 3.8171 | lr 0.0010 | time_forward 3.6420 | time_backward 4.8730 |
[2023-09-03 02:30:54,771::train::INFO] [train] Iter 16911 | loss 0.7542 | loss(rot) 0.1681 | loss(pos) 0.5307 | loss(seq) 0.0554 | grad 4.1203 | lr 0.0010 | time_forward 3.6570 | time_backward 4.8310 |
[2023-09-03 02:31:02,019::train::INFO] [train] Iter 16912 | loss 0.5597 | loss(rot) 0.0849 | loss(pos) 0.4390 | loss(seq) 0.0359 | grad 4.3609 | lr 0.0010 | time_forward 2.9950 | time_backward 4.2490 |
[2023-09-03 02:31:11,729::train::INFO] [train] Iter 16913 | loss 1.2659 | loss(rot) 0.4744 | loss(pos) 0.2370 | loss(seq) 0.5545 | grad 3.2092 | lr 0.0010 | time_forward 3.8110 | time_backward 5.8960 |
[2023-09-03 02:31:20,178::train::INFO] [train] Iter 16914 | loss 0.9542 | loss(rot) 0.2688 | loss(pos) 0.1579 | loss(seq) 0.5274 | grad 3.4631 | lr 0.0010 | time_forward 3.4690 | time_backward 4.9770 |
[2023-09-03 02:31:28,585::train::INFO] [train] Iter 16915 | loss 0.9732 | loss(rot) 0.3394 | loss(pos) 0.4060 | loss(seq) 0.2278 | grad 3.7152 | lr 0.0010 | time_forward 3.5710 | time_backward 4.8340 |
[2023-09-03 02:31:30,826::train::INFO] [train] Iter 16916 | loss 1.3891 | loss(rot) 0.5861 | loss(pos) 0.2513 | loss(seq) 0.5517 | grad 5.5805 | lr 0.0010 | time_forward 1.0410 | time_backward 1.1970 |
[2023-09-03 02:31:39,546::train::INFO] [train] Iter 16917 | loss 0.8552 | loss(rot) 0.1987 | loss(pos) 0.2695 | loss(seq) 0.3870 | grad 3.8768 | lr 0.0010 | time_forward 3.6490 | time_backward 5.0670 |
[2023-09-03 02:31:49,296::train::INFO] [train] Iter 16918 | loss 2.0215 | loss(rot) 1.0539 | loss(pos) 0.3190 | loss(seq) 0.6486 | grad 3.9467 | lr 0.0010 | time_forward 4.0220 | time_backward 5.7240 |
[2023-09-03 02:31:57,324::train::INFO] [train] Iter 16919 | loss 0.6555 | loss(rot) 0.1408 | loss(pos) 0.1178 | loss(seq) 0.3970 | grad 2.6109 | lr 0.0010 | time_forward 3.4330 | time_backward 4.5780 |
[2023-09-03 02:32:07,255::train::INFO] [train] Iter 16920 | loss 2.1639 | loss(rot) 0.5078 | loss(pos) 1.6553 | loss(seq) 0.0008 | grad 5.9669 | lr 0.0010 | time_forward 3.9470 | time_backward 5.9800 |
[2023-09-03 02:32:09,490::train::INFO] [train] Iter 16921 | loss 1.2164 | loss(rot) 0.9559 | loss(pos) 0.1757 | loss(seq) 0.0848 | grad 5.5952 | lr 0.0010 | time_forward 1.0270 | time_backward 1.2040 |
[2023-09-03 02:32:18,690::train::INFO] [train] Iter 16922 | loss 0.5513 | loss(rot) 0.1994 | loss(pos) 0.2381 | loss(seq) 0.1138 | grad 3.5550 | lr 0.0010 | time_forward 3.9430 | time_backward 5.2530 |
[2023-09-03 02:32:28,576::train::INFO] [train] Iter 16923 | loss 1.2043 | loss(rot) 0.1724 | loss(pos) 1.0253 | loss(seq) 0.0066 | grad 5.1075 | lr 0.0010 | time_forward 4.0760 | time_backward 5.8060 |
[2023-09-03 02:32:31,411::train::INFO] [train] Iter 16924 | loss 1.1679 | loss(rot) 1.0287 | loss(pos) 0.1381 | loss(seq) 0.0012 | grad 5.4920 | lr 0.0010 | time_forward 1.3640 | time_backward 1.4670 |
[2023-09-03 02:32:34,154::train::INFO] [train] Iter 16925 | loss 1.1436 | loss(rot) 0.0899 | loss(pos) 0.7208 | loss(seq) 0.3329 | grad 5.6056 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4660 |
[2023-09-03 02:32:36,874::train::INFO] [train] Iter 16926 | loss 0.5997 | loss(rot) 0.1258 | loss(pos) 0.2122 | loss(seq) 0.2618 | grad 3.0800 | lr 0.0010 | time_forward 1.2520 | time_backward 1.4650 |
[2023-09-03 02:32:39,643::train::INFO] [train] Iter 16927 | loss 0.7548 | loss(rot) 0.5042 | loss(pos) 0.0909 | loss(seq) 0.1597 | grad 3.5065 | lr 0.0010 | time_forward 1.3020 | time_backward 1.4630 |
[2023-09-03 02:32:42,385::train::INFO] [train] Iter 16928 | loss 1.8540 | loss(rot) 1.0038 | loss(pos) 0.2586 | loss(seq) 0.5916 | grad 4.6053 | lr 0.0010 | time_forward 1.2900 | time_backward 1.4490 |
[2023-09-03 02:32:45,053::train::INFO] [train] Iter 16929 | loss 0.9165 | loss(rot) 0.2841 | loss(pos) 0.2863 | loss(seq) 0.3462 | grad 2.6302 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4250 |
[2023-09-03 02:32:54,803::train::INFO] [train] Iter 16930 | loss 2.2078 | loss(rot) 1.3171 | loss(pos) 0.3278 | loss(seq) 0.5629 | grad 4.5698 | lr 0.0010 | time_forward 4.0190 | time_backward 5.7270 |
[2023-09-03 02:32:57,487::train::INFO] [train] Iter 16931 | loss 0.8225 | loss(rot) 0.3907 | loss(pos) 0.0747 | loss(seq) 0.3570 | grad 2.9107 | lr 0.0010 | time_forward 1.2440 | time_backward 1.4370 |
[2023-09-03 02:33:06,092::train::INFO] [train] Iter 16932 | loss 0.4843 | loss(rot) 0.0375 | loss(pos) 0.4303 | loss(seq) 0.0164 | grad 4.3811 | lr 0.0010 | time_forward 3.5960 | time_backward 5.0050 |
[2023-09-03 02:33:15,075::train::INFO] [train] Iter 16933 | loss 1.1455 | loss(rot) 0.1588 | loss(pos) 0.7387 | loss(seq) 0.2479 | grad 6.8746 | lr 0.0010 | time_forward 3.7700 | time_backward 5.1930 |
[2023-09-03 02:33:17,682::train::INFO] [train] Iter 16934 | loss 1.5405 | loss(rot) 1.1509 | loss(pos) 0.3211 | loss(seq) 0.0685 | grad 7.3917 | lr 0.0010 | time_forward 1.2360 | time_backward 1.3670 |
[2023-09-03 02:33:24,959::train::INFO] [train] Iter 16935 | loss 1.3364 | loss(rot) 0.7092 | loss(pos) 0.1467 | loss(seq) 0.4805 | grad 5.0855 | lr 0.0010 | time_forward 3.0910 | time_backward 4.1820 |
[2023-09-03 02:33:27,567::train::INFO] [train] Iter 16936 | loss 0.6494 | loss(rot) 0.1385 | loss(pos) 0.1814 | loss(seq) 0.3295 | grad 3.3952 | lr 0.0010 | time_forward 1.2200 | time_backward 1.3860 |
[2023-09-03 02:33:33,449::train::INFO] [train] Iter 16937 | loss 1.1239 | loss(rot) 0.1581 | loss(pos) 0.6010 | loss(seq) 0.3649 | grad 3.8420 | lr 0.0010 | time_forward 2.5500 | time_backward 3.3290 |
[2023-09-03 02:33:36,022::train::INFO] [train] Iter 16938 | loss 1.7113 | loss(rot) 1.5967 | loss(pos) 0.1145 | loss(seq) 0.0000 | grad 3.7801 | lr 0.0010 | time_forward 1.1960 | time_backward 1.3740 |
[2023-09-03 02:33:45,585::train::INFO] [train] Iter 16939 | loss 2.4460 | loss(rot) 2.1404 | loss(pos) 0.1030 | loss(seq) 0.2025 | grad 3.8913 | lr 0.0010 | time_forward 4.0260 | time_backward 5.5330 |
[2023-09-03 02:33:53,071::train::INFO] [train] Iter 16940 | loss 1.5650 | loss(rot) 1.2417 | loss(pos) 0.1113 | loss(seq) 0.2120 | grad 5.6615 | lr 0.0010 | time_forward 3.2000 | time_backward 4.2690 |
[2023-09-03 02:33:55,707::train::INFO] [train] Iter 16941 | loss 1.9138 | loss(rot) 1.5971 | loss(pos) 0.1268 | loss(seq) 0.1898 | grad 7.4433 | lr 0.0010 | time_forward 1.2300 | time_backward 1.4030 |
[2023-09-03 02:33:57,945::train::INFO] [train] Iter 16942 | loss 0.9524 | loss(rot) 0.3085 | loss(pos) 0.2262 | loss(seq) 0.4177 | grad 3.7414 | lr 0.0010 | time_forward 1.0590 | time_backward 1.1760 |
[2023-09-03 02:34:00,205::train::INFO] [train] Iter 16943 | loss 1.6101 | loss(rot) 0.6715 | loss(pos) 0.3718 | loss(seq) 0.5668 | grad 5.9935 | lr 0.0010 | time_forward 1.0800 | time_backward 1.1760 |
[2023-09-03 02:34:02,451::train::INFO] [train] Iter 16944 | loss 2.0871 | loss(rot) 1.2431 | loss(pos) 0.2567 | loss(seq) 0.5873 | grad 6.0436 | lr 0.0010 | time_forward 1.0610 | time_backward 1.1810 |
[2023-09-03 02:34:11,119::train::INFO] [train] Iter 16945 | loss 0.8432 | loss(rot) 0.2805 | loss(pos) 0.1623 | loss(seq) 0.4004 | grad 3.3588 | lr 0.0010 | time_forward 3.6900 | time_backward 4.9760 |
[2023-09-03 02:34:20,866::train::INFO] [train] Iter 16946 | loss 1.4756 | loss(rot) 0.2170 | loss(pos) 0.7999 | loss(seq) 0.4587 | grad 4.8193 | lr 0.0010 | time_forward 3.9760 | time_backward 5.7660 |
[2023-09-03 02:34:30,595::train::INFO] [train] Iter 16947 | loss 1.0973 | loss(rot) 0.4036 | loss(pos) 0.1907 | loss(seq) 0.5029 | grad 3.0631 | lr 0.0010 | time_forward 4.0410 | time_backward 5.6840 |
[2023-09-03 02:34:38,592::train::INFO] [train] Iter 16948 | loss 1.6847 | loss(rot) 0.6969 | loss(pos) 0.5829 | loss(seq) 0.4049 | grad 5.0396 | lr 0.0010 | time_forward 3.4140 | time_backward 4.5800 |
[2023-09-03 02:34:44,457::train::INFO] [train] Iter 16949 | loss 1.0523 | loss(rot) 0.8074 | loss(pos) 0.0615 | loss(seq) 0.1834 | grad 5.2351 | lr 0.0010 | time_forward 2.4400 | time_backward 3.4220 |
[2023-09-03 02:34:52,763::train::INFO] [train] Iter 16950 | loss 1.0344 | loss(rot) 0.8511 | loss(pos) 0.0893 | loss(seq) 0.0939 | grad 5.3274 | lr 0.0010 | time_forward 3.5100 | time_backward 4.7920 |
[2023-09-03 02:35:00,687::train::INFO] [train] Iter 16951 | loss 1.4826 | loss(rot) 0.8164 | loss(pos) 0.2465 | loss(seq) 0.4197 | grad 6.9329 | lr 0.0010 | time_forward 3.2900 | time_backward 4.6300 |
[2023-09-03 02:35:03,259::train::INFO] [train] Iter 16952 | loss 1.6079 | loss(rot) 0.9683 | loss(pos) 0.1107 | loss(seq) 0.5288 | grad 3.6214 | lr 0.0010 | time_forward 1.2120 | time_backward 1.3580 |
[2023-09-03 02:35:13,093::train::INFO] [train] Iter 16953 | loss 0.9317 | loss(rot) 0.1851 | loss(pos) 0.7211 | loss(seq) 0.0255 | grad 5.2349 | lr 0.0010 | time_forward 3.9880 | time_backward 5.8430 |
[2023-09-03 02:35:16,177::train::INFO] [train] Iter 16954 | loss 2.7102 | loss(rot) 1.9876 | loss(pos) 0.2476 | loss(seq) 0.4749 | grad 4.9422 | lr 0.0010 | time_forward 1.3400 | time_backward 1.7400 |
[2023-09-03 02:35:24,091::train::INFO] [train] Iter 16955 | loss 1.5125 | loss(rot) 0.6584 | loss(pos) 0.4260 | loss(seq) 0.4280 | grad 3.5160 | lr 0.0010 | time_forward 3.3670 | time_backward 4.5450 |
[2023-09-03 02:35:26,491::train::INFO] [train] Iter 16956 | loss 2.1561 | loss(rot) 1.5659 | loss(pos) 0.1738 | loss(seq) 0.4164 | grad 4.8584 | lr 0.0010 | time_forward 1.1280 | time_backward 1.2680 |
[2023-09-03 02:35:29,157::train::INFO] [train] Iter 16957 | loss 0.8725 | loss(rot) 0.3101 | loss(pos) 0.3278 | loss(seq) 0.2346 | grad 3.4814 | lr 0.0010 | time_forward 1.2370 | time_backward 1.4270 |
[2023-09-03 02:35:38,810::train::INFO] [train] Iter 16958 | loss 0.8490 | loss(rot) 0.3356 | loss(pos) 0.2577 | loss(seq) 0.2556 | grad 4.7470 | lr 0.0010 | time_forward 3.8020 | time_backward 5.8470 |
[2023-09-03 02:35:48,854::train::INFO] [train] Iter 16959 | loss 2.1887 | loss(rot) 2.0496 | loss(pos) 0.1388 | loss(seq) 0.0003 | grad 5.5371 | lr 0.0010 | time_forward 4.3110 | time_backward 5.7290 |
[2023-09-03 02:35:52,121::train::INFO] [train] Iter 16960 | loss 2.7116 | loss(rot) 2.5182 | loss(pos) 0.1611 | loss(seq) 0.0323 | grad 4.8275 | lr 0.0010 | time_forward 1.4160 | time_backward 1.8480 |
[2023-09-03 02:35:54,805::train::INFO] [train] Iter 16961 | loss 1.1914 | loss(rot) 0.6580 | loss(pos) 0.3029 | loss(seq) 0.2305 | grad 6.8623 | lr 0.0010 | time_forward 1.2120 | time_backward 1.4700 |
[2023-09-03 02:35:57,509::train::INFO] [train] Iter 16962 | loss 2.0965 | loss(rot) 1.9048 | loss(pos) 0.1540 | loss(seq) 0.0377 | grad 6.6770 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4600 |
[2023-09-03 02:36:00,714::train::INFO] [train] Iter 16963 | loss 2.3163 | loss(rot) 1.7292 | loss(pos) 0.1839 | loss(seq) 0.4032 | grad 5.4301 | lr 0.0010 | time_forward 1.3900 | time_backward 1.7850 |
[2023-09-03 02:36:08,729::train::INFO] [train] Iter 16964 | loss 1.9727 | loss(rot) 1.8424 | loss(pos) 0.1038 | loss(seq) 0.0266 | grad 10.0525 | lr 0.0010 | time_forward 3.1350 | time_backward 4.8760 |
[2023-09-03 02:36:11,390::train::INFO] [train] Iter 16965 | loss 1.1980 | loss(rot) 0.4464 | loss(pos) 0.3362 | loss(seq) 0.4154 | grad 3.1850 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4200 |
[2023-09-03 02:36:20,243::train::INFO] [train] Iter 16966 | loss 1.5536 | loss(rot) 0.4959 | loss(pos) 0.4782 | loss(seq) 0.5794 | grad 3.7062 | lr 0.0010 | time_forward 3.8570 | time_backward 4.9920 |
[2023-09-03 02:36:29,775::train::INFO] [train] Iter 16967 | loss 1.5072 | loss(rot) 1.2405 | loss(pos) 0.0744 | loss(seq) 0.1924 | grad 3.0445 | lr 0.0010 | time_forward 3.7970 | time_backward 5.7150 |
[2023-09-03 02:36:36,369::train::INFO] [train] Iter 16968 | loss 1.7438 | loss(rot) 1.5394 | loss(pos) 0.1455 | loss(seq) 0.0588 | grad 6.4969 | lr 0.0010 | time_forward 2.8080 | time_backward 3.7830 |
[2023-09-03 02:36:45,396::train::INFO] [train] Iter 16969 | loss 1.1010 | loss(rot) 0.7016 | loss(pos) 0.0651 | loss(seq) 0.3343 | grad 4.0778 | lr 0.0010 | time_forward 3.8570 | time_backward 5.1660 |
[2023-09-03 02:36:52,864::train::INFO] [train] Iter 16970 | loss 1.3302 | loss(rot) 0.5136 | loss(pos) 0.4210 | loss(seq) 0.3956 | grad 4.7069 | lr 0.0010 | time_forward 3.1680 | time_backward 4.2970 |
[2023-09-03 02:37:01,569::train::INFO] [train] Iter 16971 | loss 1.8207 | loss(rot) 1.3588 | loss(pos) 0.0536 | loss(seq) 0.4083 | grad 6.2738 | lr 0.0010 | time_forward 3.7410 | time_backward 4.9620 |
[2023-09-03 02:37:09,018::train::INFO] [train] Iter 16972 | loss 2.4340 | loss(rot) 1.4284 | loss(pos) 0.4433 | loss(seq) 0.5623 | grad 5.8526 | lr 0.0010 | time_forward 3.1130 | time_backward 4.3320 |
[2023-09-03 02:37:11,453::train::INFO] [train] Iter 16973 | loss 1.4096 | loss(rot) 1.2932 | loss(pos) 0.1042 | loss(seq) 0.0121 | grad 9.1998 | lr 0.0010 | time_forward 1.1480 | time_backward 1.2830 |
[2023-09-03 02:37:19,454::train::INFO] [train] Iter 16974 | loss 1.1160 | loss(rot) 0.4160 | loss(pos) 0.4581 | loss(seq) 0.2419 | grad 5.3928 | lr 0.0010 | time_forward 3.4150 | time_backward 4.5830 |
[2023-09-03 02:37:29,312::train::INFO] [train] Iter 16975 | loss 1.5024 | loss(rot) 1.1548 | loss(pos) 0.1249 | loss(seq) 0.2227 | grad 3.4657 | lr 0.0010 | time_forward 4.1150 | time_backward 5.7390 |
[2023-09-03 02:37:39,107::train::INFO] [train] Iter 16976 | loss 1.6358 | loss(rot) 1.0009 | loss(pos) 0.1463 | loss(seq) 0.4886 | grad 4.4035 | lr 0.0010 | time_forward 4.0010 | time_backward 5.7900 |
[2023-09-03 02:37:41,962::train::INFO] [train] Iter 16977 | loss 1.5183 | loss(rot) 0.8519 | loss(pos) 0.4006 | loss(seq) 0.2658 | grad 3.5182 | lr 0.0010 | time_forward 1.4200 | time_backward 1.4320 |
[2023-09-03 02:37:51,611::train::INFO] [train] Iter 16978 | loss 1.8482 | loss(rot) 1.6441 | loss(pos) 0.2041 | loss(seq) 0.0000 | grad 3.6688 | lr 0.0010 | time_forward 3.8790 | time_backward 5.7670 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.