text
stringlengths
56
1.16k
[2023-09-03 02:15:53,715::train::INFO] [train] Iter 16779 | loss 1.9569 | loss(rot) 1.6903 | loss(pos) 0.0800 | loss(seq) 0.1865 | grad 4.4521 | lr 0.0010 | time_forward 1.4490 | time_backward 1.9060
[2023-09-03 02:16:03,064::train::INFO] [train] Iter 16780 | loss 1.7004 | loss(rot) 0.4731 | loss(pos) 0.5607 | loss(seq) 0.6666 | grad 4.3588 | lr 0.0010 | time_forward 3.9060 | time_backward 5.4390
[2023-09-03 02:16:12,707::train::INFO] [train] Iter 16781 | loss 1.2559 | loss(rot) 1.1334 | loss(pos) 0.0640 | loss(seq) 0.0585 | grad 7.6006 | lr 0.0010 | time_forward 4.0040 | time_backward 5.6350
[2023-09-03 02:16:19,981::train::INFO] [train] Iter 16782 | loss 1.1300 | loss(rot) 0.6712 | loss(pos) 0.1573 | loss(seq) 0.3015 | grad 4.8478 | lr 0.0010 | time_forward 3.1660 | time_backward 4.0890
[2023-09-03 02:16:29,400::train::INFO] [train] Iter 16783 | loss 1.2983 | loss(rot) 1.0350 | loss(pos) 0.1706 | loss(seq) 0.0927 | grad 5.5626 | lr 0.0010 | time_forward 3.9750 | time_backward 5.4400
[2023-09-03 02:16:37,851::train::INFO] [train] Iter 16784 | loss 1.1976 | loss(rot) 0.4126 | loss(pos) 0.3170 | loss(seq) 0.4680 | grad 4.5356 | lr 0.0010 | time_forward 3.6910 | time_backward 4.7570
[2023-09-03 02:16:45,265::train::INFO] [train] Iter 16785 | loss 1.0576 | loss(rot) 0.4660 | loss(pos) 0.3760 | loss(seq) 0.2156 | grad 3.5375 | lr 0.0010 | time_forward 3.1840 | time_backward 4.2270
[2023-09-03 02:16:53,941::train::INFO] [train] Iter 16786 | loss 2.5741 | loss(rot) 2.1883 | loss(pos) 0.1813 | loss(seq) 0.2045 | grad 4.9850 | lr 0.0010 | time_forward 3.6400 | time_backward 5.0330
[2023-09-03 02:17:03,006::train::INFO] [train] Iter 16787 | loss 1.0836 | loss(rot) 0.5211 | loss(pos) 0.0904 | loss(seq) 0.4721 | grad 3.6753 | lr 0.0010 | time_forward 3.6760 | time_backward 5.3850
[2023-09-03 02:17:11,344::train::INFO] [train] Iter 16788 | loss 1.9666 | loss(rot) 1.7689 | loss(pos) 0.1220 | loss(seq) 0.0757 | grad 4.0223 | lr 0.0010 | time_forward 3.3290 | time_backward 5.0050
[2023-09-03 02:17:13,755::train::INFO] [train] Iter 16789 | loss 1.4504 | loss(rot) 0.9662 | loss(pos) 0.0853 | loss(seq) 0.3990 | grad 12.6166 | lr 0.0010 | time_forward 1.1550 | time_backward 1.2540
[2023-09-03 02:17:16,374::train::INFO] [train] Iter 16790 | loss 1.4781 | loss(rot) 0.9311 | loss(pos) 0.1061 | loss(seq) 0.4408 | grad 3.7995 | lr 0.0010 | time_forward 1.1980 | time_backward 1.3970
[2023-09-03 02:17:24,778::train::INFO] [train] Iter 16791 | loss 1.5744 | loss(rot) 1.2104 | loss(pos) 0.0555 | loss(seq) 0.3085 | grad 5.2983 | lr 0.0010 | time_forward 3.5410 | time_backward 4.8590
[2023-09-03 02:17:27,416::train::INFO] [train] Iter 16792 | loss 0.7661 | loss(rot) 0.0849 | loss(pos) 0.6612 | loss(seq) 0.0201 | grad 5.3722 | lr 0.0010 | time_forward 1.2290 | time_backward 1.4060
[2023-09-03 02:17:36,580::train::INFO] [train] Iter 16793 | loss 1.1634 | loss(rot) 0.2491 | loss(pos) 0.8940 | loss(seq) 0.0204 | grad 3.0917 | lr 0.0010 | time_forward 3.8590 | time_backward 5.3010
[2023-09-03 02:17:44,311::train::INFO] [train] Iter 16794 | loss 1.2281 | loss(rot) 1.0197 | loss(pos) 0.0961 | loss(seq) 0.1123 | grad 5.7712 | lr 0.0010 | time_forward 3.2920 | time_backward 4.4360
[2023-09-03 02:17:46,488::train::INFO] [train] Iter 16795 | loss 1.4041 | loss(rot) 0.6640 | loss(pos) 0.3272 | loss(seq) 0.4129 | grad 2.9381 | lr 0.0010 | time_forward 1.0050 | time_backward 1.1680
[2023-09-03 02:17:55,483::train::INFO] [train] Iter 16796 | loss 0.9022 | loss(rot) 0.8002 | loss(pos) 0.0947 | loss(seq) 0.0073 | grad 4.2312 | lr 0.0010 | time_forward 3.8120 | time_backward 5.1810
[2023-09-03 02:18:04,337::train::INFO] [train] Iter 16797 | loss 2.0926 | loss(rot) 1.2870 | loss(pos) 0.3316 | loss(seq) 0.4741 | grad 4.4541 | lr 0.0010 | time_forward 3.8110 | time_backward 5.0400
[2023-09-03 02:18:12,346::train::INFO] [train] Iter 16798 | loss 0.4153 | loss(rot) 0.3329 | loss(pos) 0.0749 | loss(seq) 0.0075 | grad 2.7845 | lr 0.0010 | time_forward 3.4820 | time_backward 4.5240
[2023-09-03 02:18:20,950::train::INFO] [train] Iter 16799 | loss 1.0853 | loss(rot) 0.5193 | loss(pos) 0.1438 | loss(seq) 0.4223 | grad 3.8382 | lr 0.0010 | time_forward 3.5450 | time_backward 5.0560
[2023-09-03 02:18:30,289::train::INFO] [train] Iter 16800 | loss 0.8561 | loss(rot) 0.1590 | loss(pos) 0.4609 | loss(seq) 0.2362 | grad 3.1063 | lr 0.0010 | time_forward 3.6600 | time_backward 5.6750
[2023-09-03 02:18:39,344::train::INFO] [train] Iter 16801 | loss 1.2719 | loss(rot) 0.3200 | loss(pos) 0.3742 | loss(seq) 0.5777 | grad 3.9424 | lr 0.0010 | time_forward 3.8310 | time_backward 5.2200
[2023-09-03 02:18:50,235::train::INFO] [train] Iter 16802 | loss 2.0154 | loss(rot) 1.6447 | loss(pos) 0.1263 | loss(seq) 0.2444 | grad 2.8607 | lr 0.0010 | time_forward 5.1030 | time_backward 5.7850
[2023-09-03 02:18:52,949::train::INFO] [train] Iter 16803 | loss 0.5730 | loss(rot) 0.1688 | loss(pos) 0.3120 | loss(seq) 0.0922 | grad 4.7575 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4600
[2023-09-03 02:19:02,836::train::INFO] [train] Iter 16804 | loss 1.2446 | loss(rot) 0.7092 | loss(pos) 0.1584 | loss(seq) 0.3770 | grad 5.1456 | lr 0.0010 | time_forward 3.9220 | time_backward 5.9430
[2023-09-03 02:19:11,561::train::INFO] [train] Iter 16805 | loss 1.1964 | loss(rot) 0.8641 | loss(pos) 0.1736 | loss(seq) 0.1587 | grad 8.1807 | lr 0.0010 | time_forward 3.6260 | time_backward 5.0960
[2023-09-03 02:19:19,739::train::INFO] [train] Iter 16806 | loss 1.0850 | loss(rot) 0.1978 | loss(pos) 0.4105 | loss(seq) 0.4767 | grad 5.4240 | lr 0.0010 | time_forward 3.3280 | time_backward 4.8460
[2023-09-03 02:19:22,192::train::INFO] [train] Iter 16807 | loss 2.7110 | loss(rot) 1.7143 | loss(pos) 0.5470 | loss(seq) 0.4496 | grad 6.6567 | lr 0.0010 | time_forward 1.1510 | time_backward 1.2990
[2023-09-03 02:19:24,878::train::INFO] [train] Iter 16808 | loss 1.4073 | loss(rot) 0.0558 | loss(pos) 1.3486 | loss(seq) 0.0029 | grad 6.7754 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4290
[2023-09-03 02:19:32,403::train::INFO] [train] Iter 16809 | loss 1.8803 | loss(rot) 1.2530 | loss(pos) 0.1539 | loss(seq) 0.4734 | grad 6.2174 | lr 0.0010 | time_forward 3.1630 | time_backward 4.3580
[2023-09-03 02:19:40,451::train::INFO] [train] Iter 16810 | loss 1.2165 | loss(rot) 0.6374 | loss(pos) 0.0850 | loss(seq) 0.4941 | grad 5.5664 | lr 0.0010 | time_forward 3.2100 | time_backward 4.8360
[2023-09-03 02:19:43,118::train::INFO] [train] Iter 16811 | loss 1.1060 | loss(rot) 0.4387 | loss(pos) 0.3356 | loss(seq) 0.3317 | grad 2.9459 | lr 0.0010 | time_forward 1.2280 | time_backward 1.4350
[2023-09-03 02:19:49,808::train::INFO] [train] Iter 16812 | loss 2.5869 | loss(rot) 2.3013 | loss(pos) 0.2455 | loss(seq) 0.0400 | grad 9.1638 | lr 0.0010 | time_forward 2.7870 | time_backward 3.8800
[2023-09-03 02:19:58,093::train::INFO] [train] Iter 16813 | loss 1.3797 | loss(rot) 1.0749 | loss(pos) 0.1812 | loss(seq) 0.1237 | grad 5.1240 | lr 0.0010 | time_forward 3.3320 | time_backward 4.9490
[2023-09-03 02:20:07,181::train::INFO] [train] Iter 16814 | loss 2.2511 | loss(rot) 2.1331 | loss(pos) 0.1057 | loss(seq) 0.0122 | grad 4.5204 | lr 0.0010 | time_forward 3.6130 | time_backward 5.4720
[2023-09-03 02:20:15,111::train::INFO] [train] Iter 16815 | loss 1.3608 | loss(rot) 1.1492 | loss(pos) 0.2109 | loss(seq) 0.0007 | grad 7.6061 | lr 0.0010 | time_forward 3.1680 | time_backward 4.7590
[2023-09-03 02:20:23,172::train::INFO] [train] Iter 16816 | loss 2.1707 | loss(rot) 1.6500 | loss(pos) 0.1906 | loss(seq) 0.3301 | grad 3.7630 | lr 0.0010 | time_forward 3.3350 | time_backward 4.7230
[2023-09-03 02:20:31,511::train::INFO] [train] Iter 16817 | loss 1.0853 | loss(rot) 0.8752 | loss(pos) 0.2057 | loss(seq) 0.0045 | grad 5.2960 | lr 0.0010 | time_forward 3.4950 | time_backward 4.8400
[2023-09-03 02:20:40,717::train::INFO] [train] Iter 16818 | loss 1.5590 | loss(rot) 1.3279 | loss(pos) 0.2241 | loss(seq) 0.0070 | grad 4.7542 | lr 0.0010 | time_forward 3.9340 | time_backward 5.2700
[2023-09-03 02:20:43,412::train::INFO] [train] Iter 16819 | loss 0.7690 | loss(rot) 0.1108 | loss(pos) 0.6382 | loss(seq) 0.0201 | grad 4.0282 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4510
[2023-09-03 02:20:51,463::train::INFO] [train] Iter 16820 | loss 2.8267 | loss(rot) 1.8619 | loss(pos) 0.4814 | loss(seq) 0.4835 | grad 6.0668 | lr 0.0010 | time_forward 3.2940 | time_backward 4.7370
[2023-09-03 02:21:00,339::train::INFO] [train] Iter 16821 | loss 1.6806 | loss(rot) 0.7451 | loss(pos) 0.6329 | loss(seq) 0.3027 | grad 5.8346 | lr 0.0010 | time_forward 3.5040 | time_backward 5.3610
[2023-09-03 02:21:03,020::train::INFO] [train] Iter 16822 | loss 2.2143 | loss(rot) 1.6346 | loss(pos) 0.0881 | loss(seq) 0.4916 | grad 3.3951 | lr 0.0010 | time_forward 1.2370 | time_backward 1.4410
[2023-09-03 02:21:05,712::train::INFO] [train] Iter 16823 | loss 1.4956 | loss(rot) 1.1452 | loss(pos) 0.0298 | loss(seq) 0.3206 | grad 3.9942 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4370
[2023-09-03 02:21:08,474::train::INFO] [train] Iter 16824 | loss 1.9730 | loss(rot) 1.4427 | loss(pos) 0.1387 | loss(seq) 0.3916 | grad 6.2705 | lr 0.0010 | time_forward 1.3080 | time_backward 1.4510
[2023-09-03 02:21:11,875::train::INFO] [train] Iter 16825 | loss 0.7549 | loss(rot) 0.2021 | loss(pos) 0.5020 | loss(seq) 0.0509 | grad 3.8457 | lr 0.0010 | time_forward 1.4020 | time_backward 1.9830
[2023-09-03 02:21:19,590::train::INFO] [train] Iter 16826 | loss 1.2182 | loss(rot) 1.0160 | loss(pos) 0.1593 | loss(seq) 0.0429 | grad 6.8512 | lr 0.0010 | time_forward 3.0820 | time_backward 4.6290
[2023-09-03 02:21:28,670::train::INFO] [train] Iter 16827 | loss 1.5377 | loss(rot) 0.3718 | loss(pos) 1.1600 | loss(seq) 0.0059 | grad 4.3496 | lr 0.0010 | time_forward 3.7900 | time_backward 5.2860
[2023-09-03 02:21:36,651::train::INFO] [train] Iter 16828 | loss 1.0876 | loss(rot) 0.2095 | loss(pos) 0.3654 | loss(seq) 0.5127 | grad 3.9140 | lr 0.0010 | time_forward 3.3030 | time_backward 4.6740
[2023-09-03 02:21:44,442::train::INFO] [train] Iter 16829 | loss 1.4595 | loss(rot) 1.0578 | loss(pos) 0.1412 | loss(seq) 0.2606 | grad 4.0891 | lr 0.0010 | time_forward 3.1650 | time_backward 4.6220
[2023-09-03 02:21:54,363::train::INFO] [train] Iter 16830 | loss 1.7691 | loss(rot) 1.5884 | loss(pos) 0.1804 | loss(seq) 0.0003 | grad 8.5445 | lr 0.0010 | time_forward 3.9290 | time_backward 5.9880
[2023-09-03 02:22:02,542::train::INFO] [train] Iter 16831 | loss 1.7625 | loss(rot) 1.3470 | loss(pos) 0.2611 | loss(seq) 0.1544 | grad 8.5573 | lr 0.0010 | time_forward 3.3720 | time_backward 4.8030
[2023-09-03 02:22:05,217::train::INFO] [train] Iter 16832 | loss 0.8781 | loss(rot) 0.4789 | loss(pos) 0.1064 | loss(seq) 0.2927 | grad 3.9928 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4310
[2023-09-03 02:22:13,550::train::INFO] [train] Iter 16833 | loss 1.4496 | loss(rot) 0.9352 | loss(pos) 0.1158 | loss(seq) 0.3986 | grad 3.8999 | lr 0.0010 | time_forward 3.5610 | time_backward 4.7690
[2023-09-03 02:22:22,258::train::INFO] [train] Iter 16834 | loss 0.7162 | loss(rot) 0.3482 | loss(pos) 0.1034 | loss(seq) 0.2647 | grad 3.5362 | lr 0.0010 | time_forward 3.6590 | time_backward 5.0470
[2023-09-03 02:22:24,934::train::INFO] [train] Iter 16835 | loss 1.4060 | loss(rot) 1.1492 | loss(pos) 0.0659 | loss(seq) 0.1909 | grad 3.3655 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4320
[2023-09-03 02:22:33,173::train::INFO] [train] Iter 16836 | loss 0.9505 | loss(rot) 0.0632 | loss(pos) 0.8666 | loss(seq) 0.0208 | grad 3.4639 | lr 0.0010 | time_forward 3.4720 | time_backward 4.7640
[2023-09-03 02:22:40,914::train::INFO] [train] Iter 16837 | loss 1.2238 | loss(rot) 0.3332 | loss(pos) 0.5056 | loss(seq) 0.3849 | grad 3.6140 | lr 0.0010 | time_forward 3.1630 | time_backward 4.5730
[2023-09-03 02:22:50,391::train::INFO] [train] Iter 16838 | loss 1.0639 | loss(rot) 0.2321 | loss(pos) 0.6204 | loss(seq) 0.2113 | grad 4.0117 | lr 0.0010 | time_forward 3.8490 | time_backward 5.6260
[2023-09-03 02:23:00,109::train::INFO] [train] Iter 16839 | loss 0.9327 | loss(rot) 0.4822 | loss(pos) 0.2571 | loss(seq) 0.1935 | grad 3.9713 | lr 0.0010 | time_forward 3.8740 | time_backward 5.8410
[2023-09-03 02:23:02,750::train::INFO] [train] Iter 16840 | loss 1.6433 | loss(rot) 1.3920 | loss(pos) 0.2512 | loss(seq) 0.0001 | grad 5.6642 | lr 0.0010 | time_forward 1.2440 | time_backward 1.3930
[2023-09-03 02:23:05,396::train::INFO] [train] Iter 16841 | loss 1.2947 | loss(rot) 0.5812 | loss(pos) 0.1703 | loss(seq) 0.5432 | grad 3.5954 | lr 0.0010 | time_forward 1.2410 | time_backward 1.4010
[2023-09-03 02:23:13,335::train::INFO] [train] Iter 16842 | loss 1.7603 | loss(rot) 0.8322 | loss(pos) 0.4293 | loss(seq) 0.4988 | grad 6.8251 | lr 0.0010 | time_forward 3.3160 | time_backward 4.6200
[2023-09-03 02:23:23,171::train::INFO] [train] Iter 16843 | loss 2.0524 | loss(rot) 1.3668 | loss(pos) 0.1800 | loss(seq) 0.5057 | grad 4.8463 | lr 0.0010 | time_forward 3.9260 | time_backward 5.9070
[2023-09-03 02:23:31,496::train::INFO] [train] Iter 16844 | loss 2.2748 | loss(rot) 1.6639 | loss(pos) 0.1664 | loss(seq) 0.4446 | grad 6.0212 | lr 0.0010 | time_forward 3.5690 | time_backward 4.7520
[2023-09-03 02:23:33,749::train::INFO] [train] Iter 16845 | loss 0.8595 | loss(rot) 0.1643 | loss(pos) 0.5001 | loss(seq) 0.1950 | grad 4.1195 | lr 0.0010 | time_forward 1.0430 | time_backward 1.2050
[2023-09-03 02:23:42,900::train::INFO] [train] Iter 16846 | loss 0.9868 | loss(rot) 0.8830 | loss(pos) 0.1031 | loss(seq) 0.0007 | grad 6.3456 | lr 0.0010 | time_forward 3.8450 | time_backward 5.3030
[2023-09-03 02:23:45,598::train::INFO] [train] Iter 16847 | loss 0.8832 | loss(rot) 0.2586 | loss(pos) 0.3065 | loss(seq) 0.3182 | grad 2.7634 | lr 0.0010 | time_forward 1.2440 | time_backward 1.4500
[2023-09-03 02:23:54,985::train::INFO] [train] Iter 16848 | loss 0.9993 | loss(rot) 0.2627 | loss(pos) 0.5094 | loss(seq) 0.2272 | grad 4.3321 | lr 0.0010 | time_forward 3.9780 | time_backward 5.4050
[2023-09-03 02:23:57,671::train::INFO] [train] Iter 16849 | loss 1.5889 | loss(rot) 0.7095 | loss(pos) 0.5194 | loss(seq) 0.3601 | grad 9.0110 | lr 0.0010 | time_forward 1.2690 | time_backward 1.3990
[2023-09-03 02:24:03,636::train::INFO] [train] Iter 16850 | loss 1.5413 | loss(rot) 1.2853 | loss(pos) 0.2219 | loss(seq) 0.0340 | grad 8.0372 | lr 0.0010 | time_forward 2.6070 | time_backward 3.3540
[2023-09-03 02:24:05,849::train::INFO] [train] Iter 16851 | loss 1.4483 | loss(rot) 0.8973 | loss(pos) 0.1292 | loss(seq) 0.4218 | grad 3.9544 | lr 0.0010 | time_forward 1.0370 | time_backward 1.1730
[2023-09-03 02:24:08,536::train::INFO] [train] Iter 16852 | loss 1.2725 | loss(rot) 0.4842 | loss(pos) 0.3271 | loss(seq) 0.4612 | grad 5.0163 | lr 0.0010 | time_forward 1.2770 | time_backward 1.4060
[2023-09-03 02:24:11,209::train::INFO] [train] Iter 16853 | loss 1.1241 | loss(rot) 0.4100 | loss(pos) 0.1641 | loss(seq) 0.5501 | grad 3.5992 | lr 0.0010 | time_forward 1.2520 | time_backward 1.4170
[2023-09-03 02:24:19,442::train::INFO] [train] Iter 16854 | loss 1.3401 | loss(rot) 0.5592 | loss(pos) 0.1740 | loss(seq) 0.6069 | grad 13.8539 | lr 0.0010 | time_forward 3.4640 | time_backward 4.7650
[2023-09-03 02:24:21,851::train::INFO] [train] Iter 16855 | loss 2.2726 | loss(rot) 1.1713 | loss(pos) 0.4887 | loss(seq) 0.6126 | grad 5.0561 | lr 0.0010 | time_forward 1.1300 | time_backward 1.2750
[2023-09-03 02:24:31,120::train::INFO] [train] Iter 16856 | loss 0.9428 | loss(rot) 0.8461 | loss(pos) 0.0964 | loss(seq) 0.0003 | grad 7.6731 | lr 0.0010 | time_forward 3.6510 | time_backward 5.6000
[2023-09-03 02:24:33,724::train::INFO] [train] Iter 16857 | loss 0.6019 | loss(rot) 0.0762 | loss(pos) 0.4637 | loss(seq) 0.0620 | grad 3.7224 | lr 0.0010 | time_forward 1.2290 | time_backward 1.3710
[2023-09-03 02:24:36,845::train::INFO] [train] Iter 16858 | loss 1.8069 | loss(rot) 1.0963 | loss(pos) 0.2379 | loss(seq) 0.4728 | grad 3.3087 | lr 0.0010 | time_forward 1.4080 | time_backward 1.7100
[2023-09-03 02:24:44,793::train::INFO] [train] Iter 16859 | loss 2.8779 | loss(rot) 2.7863 | loss(pos) 0.0913 | loss(seq) 0.0003 | grad 5.2779 | lr 0.0010 | time_forward 3.3400 | time_backward 4.6040
[2023-09-03 02:24:47,205::train::INFO] [train] Iter 16860 | loss 1.9834 | loss(rot) 1.1787 | loss(pos) 0.2917 | loss(seq) 0.5131 | grad 8.3801 | lr 0.0010 | time_forward 1.1350 | time_backward 1.2730
[2023-09-03 02:24:56,800::train::INFO] [train] Iter 16861 | loss 0.9902 | loss(rot) 0.1894 | loss(pos) 0.7660 | loss(seq) 0.0348 | grad 5.3985 | lr 0.0010 | time_forward 3.9530 | time_backward 5.6380
[2023-09-03 02:24:59,412::train::INFO] [train] Iter 16862 | loss 0.9884 | loss(rot) 0.2019 | loss(pos) 0.7758 | loss(seq) 0.0107 | grad 7.0918 | lr 0.0010 | time_forward 1.2160 | time_backward 1.3920
[2023-09-03 02:25:07,930::train::INFO] [train] Iter 16863 | loss 1.1890 | loss(rot) 0.6454 | loss(pos) 0.1794 | loss(seq) 0.3642 | grad 17.5348 | lr 0.0010 | time_forward 3.5900 | time_backward 4.9250
[2023-09-03 02:25:17,647::train::INFO] [train] Iter 16864 | loss 1.8022 | loss(rot) 1.5112 | loss(pos) 0.1541 | loss(seq) 0.1369 | grad 5.1935 | lr 0.0010 | time_forward 4.0100 | time_backward 5.7040
[2023-09-03 02:25:20,278::train::INFO] [train] Iter 16865 | loss 2.0904 | loss(rot) 1.8813 | loss(pos) 0.2090 | loss(seq) 0.0000 | grad 14.3474 | lr 0.0010 | time_forward 1.2480 | time_backward 1.3790
[2023-09-03 02:25:30,148::train::INFO] [train] Iter 16866 | loss 1.9441 | loss(rot) 1.1808 | loss(pos) 0.2667 | loss(seq) 0.4965 | grad 4.8447 | lr 0.0010 | time_forward 3.9870 | time_backward 5.8800
[2023-09-03 02:25:40,128::train::INFO] [train] Iter 16867 | loss 1.1708 | loss(rot) 0.6115 | loss(pos) 0.1077 | loss(seq) 0.4516 | grad 7.8202 | lr 0.0010 | time_forward 3.9150 | time_backward 6.0610
[2023-09-03 02:25:42,809::train::INFO] [train] Iter 16868 | loss 0.9968 | loss(rot) 0.8114 | loss(pos) 0.1189 | loss(seq) 0.0665 | grad 4.6591 | lr 0.0010 | time_forward 1.2330 | time_backward 1.4450
[2023-09-03 02:25:52,580::train::INFO] [train] Iter 16869 | loss 0.7968 | loss(rot) 0.1469 | loss(pos) 0.4638 | loss(seq) 0.1861 | grad 4.0546 | lr 0.0010 | time_forward 4.0290 | time_backward 5.7380
[2023-09-03 02:26:01,249::train::INFO] [train] Iter 16870 | loss 2.1237 | loss(rot) 0.0272 | loss(pos) 2.0955 | loss(seq) 0.0011 | grad 8.1263 | lr 0.0010 | time_forward 3.7380 | time_backward 4.9260
[2023-09-03 02:26:03,965::train::INFO] [train] Iter 16871 | loss 0.7225 | loss(rot) 0.3123 | loss(pos) 0.2895 | loss(seq) 0.1206 | grad 4.3099 | lr 0.0010 | time_forward 1.2620 | time_backward 1.4500
[2023-09-03 02:26:11,500::train::INFO] [train] Iter 16872 | loss 1.6237 | loss(rot) 0.7698 | loss(pos) 0.3467 | loss(seq) 0.5072 | grad 6.3305 | lr 0.0010 | time_forward 3.2250 | time_backward 4.3060
[2023-09-03 02:26:19,575::train::INFO] [train] Iter 16873 | loss 0.7320 | loss(rot) 0.1010 | loss(pos) 0.1492 | loss(seq) 0.4818 | grad 3.0914 | lr 0.0010 | time_forward 3.4350 | time_backward 4.6370
[2023-09-03 02:26:29,683::train::INFO] [train] Iter 16874 | loss 1.8152 | loss(rot) 1.6997 | loss(pos) 0.1155 | loss(seq) 0.0000 | grad 6.1261 | lr 0.0010 | time_forward 4.0630 | time_backward 6.0410
[2023-09-03 02:26:32,423::train::INFO] [train] Iter 16875 | loss 1.2485 | loss(rot) 1.1641 | loss(pos) 0.0842 | loss(seq) 0.0001 | grad 5.3289 | lr 0.0010 | time_forward 1.2850 | time_backward 1.4510
[2023-09-03 02:26:40,397::train::INFO] [train] Iter 16876 | loss 2.1876 | loss(rot) 1.9891 | loss(pos) 0.1753 | loss(seq) 0.0231 | grad 6.9370 | lr 0.0010 | time_forward 3.2960 | time_backward 4.6750
[2023-09-03 02:26:48,484::train::INFO] [train] Iter 16877 | loss 2.4173 | loss(rot) 1.3934 | loss(pos) 0.3808 | loss(seq) 0.6431 | grad 4.9853 | lr 0.0010 | time_forward 3.2600 | time_backward 4.8230
[2023-09-03 02:26:56,928::train::INFO] [train] Iter 16878 | loss 0.9825 | loss(rot) 0.8831 | loss(pos) 0.0948 | loss(seq) 0.0047 | grad 5.5279 | lr 0.0010 | time_forward 3.3620 | time_backward 5.0800