text
stringlengths
56
1.16k
[2023-09-03 01:52:20,680::train::INFO] [train] Iter 16579 | loss 0.9476 | loss(rot) 0.3549 | loss(pos) 0.2037 | loss(seq) 0.3890 | grad 3.2683 | lr 0.0010 | time_forward 3.9700 | time_backward 5.7090
[2023-09-03 01:52:31,180::train::INFO] [train] Iter 16580 | loss 2.3593 | loss(rot) 2.2883 | loss(pos) 0.0688 | loss(seq) 0.0022 | grad 4.3855 | lr 0.0010 | time_forward 4.3520 | time_backward 6.1440
[2023-09-03 01:52:33,893::train::INFO] [train] Iter 16581 | loss 1.0836 | loss(rot) 0.8826 | loss(pos) 0.1010 | loss(seq) 0.1001 | grad 4.5807 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4650
[2023-09-03 01:52:36,667::train::INFO] [train] Iter 16582 | loss 1.2751 | loss(rot) 0.9801 | loss(pos) 0.0864 | loss(seq) 0.2087 | grad 11.9676 | lr 0.0010 | time_forward 1.3070 | time_backward 1.4630
[2023-09-03 01:52:46,776::train::INFO] [train] Iter 16583 | loss 0.7985 | loss(rot) 0.3482 | loss(pos) 0.2395 | loss(seq) 0.2108 | grad 3.9847 | lr 0.0010 | time_forward 4.1080 | time_backward 5.9980
[2023-09-03 01:52:49,668::train::INFO] [train] Iter 16584 | loss 1.1592 | loss(rot) 0.8686 | loss(pos) 0.1037 | loss(seq) 0.1869 | grad 12.6575 | lr 0.0010 | time_forward 1.2870 | time_backward 1.5750
[2023-09-03 01:52:58,360::train::INFO] [train] Iter 16585 | loss 2.1022 | loss(rot) 1.8409 | loss(pos) 0.1000 | loss(seq) 0.1613 | grad 4.7503 | lr 0.0010 | time_forward 3.6310 | time_backward 5.0580
[2023-09-03 01:53:01,166::train::INFO] [train] Iter 16586 | loss 1.2376 | loss(rot) 0.1849 | loss(pos) 0.3722 | loss(seq) 0.6806 | grad 5.3142 | lr 0.0010 | time_forward 1.2680 | time_backward 1.5350
[2023-09-03 01:53:08,255::train::INFO] [train] Iter 16587 | loss 0.9045 | loss(rot) 0.8419 | loss(pos) 0.0623 | loss(seq) 0.0003 | grad 6.1227 | lr 0.0010 | time_forward 2.9300 | time_backward 4.1550
[2023-09-03 01:53:17,435::train::INFO] [train] Iter 16588 | loss 1.2858 | loss(rot) 0.1569 | loss(pos) 1.0809 | loss(seq) 0.0480 | grad 4.5708 | lr 0.0010 | time_forward 3.7720 | time_backward 5.4050
[2023-09-03 01:53:20,273::train::INFO] [train] Iter 16589 | loss 1.7754 | loss(rot) 1.1979 | loss(pos) 0.1497 | loss(seq) 0.4278 | grad 14.4100 | lr 0.0010 | time_forward 1.2890 | time_backward 1.5450
[2023-09-03 01:53:28,975::train::INFO] [train] Iter 16590 | loss 1.1453 | loss(rot) 0.5580 | loss(pos) 0.1674 | loss(seq) 0.4199 | grad 4.9843 | lr 0.0010 | time_forward 3.6690 | time_backward 4.9920
[2023-09-03 01:53:31,332::train::INFO] [train] Iter 16591 | loss 2.2035 | loss(rot) 1.9184 | loss(pos) 0.1577 | loss(seq) 0.1274 | grad 3.5345 | lr 0.0010 | time_forward 1.1020 | time_backward 1.2520
[2023-09-03 01:53:34,094::train::INFO] [train] Iter 16592 | loss 1.3522 | loss(rot) 0.8083 | loss(pos) 0.0985 | loss(seq) 0.4455 | grad 3.6636 | lr 0.0010 | time_forward 1.2750 | time_backward 1.4830
[2023-09-03 01:53:36,867::train::INFO] [train] Iter 16593 | loss 0.7192 | loss(rot) 0.0574 | loss(pos) 0.4577 | loss(seq) 0.2041 | grad 3.5460 | lr 0.0010 | time_forward 1.3020 | time_backward 1.4670
[2023-09-03 01:53:43,304::train::INFO] [train] Iter 16594 | loss 1.5316 | loss(rot) 0.4112 | loss(pos) 0.8121 | loss(seq) 0.3083 | grad 3.6425 | lr 0.0010 | time_forward 2.7050 | time_backward 3.7290
[2023-09-03 01:53:52,106::train::INFO] [train] Iter 16595 | loss 1.4753 | loss(rot) 1.2277 | loss(pos) 0.1330 | loss(seq) 0.1146 | grad 5.2432 | lr 0.0010 | time_forward 3.6100 | time_backward 5.1880
[2023-09-03 01:54:01,343::train::INFO] [train] Iter 16596 | loss 2.4611 | loss(rot) 2.0880 | loss(pos) 0.1691 | loss(seq) 0.2040 | grad 5.6757 | lr 0.0010 | time_forward 3.8830 | time_backward 5.3510
[2023-09-03 01:54:08,880::train::INFO] [train] Iter 16597 | loss 2.6646 | loss(rot) 1.9222 | loss(pos) 0.2098 | loss(seq) 0.5326 | grad 8.2673 | lr 0.0010 | time_forward 3.2480 | time_backward 4.2850
[2023-09-03 01:54:16,338::train::INFO] [train] Iter 16598 | loss 1.2754 | loss(rot) 0.7147 | loss(pos) 0.1744 | loss(seq) 0.3863 | grad 4.1780 | lr 0.0010 | time_forward 3.0640 | time_backward 4.3910
[2023-09-03 01:54:24,312::train::INFO] [train] Iter 16599 | loss 0.7812 | loss(rot) 0.2279 | loss(pos) 0.3405 | loss(seq) 0.2128 | grad 3.1241 | lr 0.0010 | time_forward 3.2890 | time_backward 4.6820
[2023-09-03 01:54:33,464::train::INFO] [train] Iter 16600 | loss 0.8331 | loss(rot) 0.1003 | loss(pos) 0.4294 | loss(seq) 0.3034 | grad 3.5600 | lr 0.0010 | time_forward 3.7960 | time_backward 5.3530
[2023-09-03 01:54:42,415::train::INFO] [train] Iter 16601 | loss 1.5387 | loss(rot) 0.0663 | loss(pos) 1.4660 | loss(seq) 0.0063 | grad 5.5473 | lr 0.0010 | time_forward 3.7990 | time_backward 5.1490
[2023-09-03 01:54:52,512::train::INFO] [train] Iter 16602 | loss 0.9496 | loss(rot) 0.3327 | loss(pos) 0.4129 | loss(seq) 0.2040 | grad 2.4920 | lr 0.0010 | time_forward 4.0390 | time_backward 6.0560
[2023-09-03 01:54:55,234::train::INFO] [train] Iter 16603 | loss 1.3632 | loss(rot) 0.7064 | loss(pos) 0.2898 | loss(seq) 0.3670 | grad 9.0705 | lr 0.0010 | time_forward 1.3020 | time_backward 1.4160
[2023-09-03 01:55:04,376::train::INFO] [train] Iter 16604 | loss 1.5678 | loss(rot) 1.1460 | loss(pos) 0.1382 | loss(seq) 0.2836 | grad 10.3617 | lr 0.0010 | time_forward 3.8480 | time_backward 5.2900
[2023-09-03 01:55:11,711::train::INFO] [train] Iter 16605 | loss 0.7017 | loss(rot) 0.3429 | loss(pos) 0.0824 | loss(seq) 0.2764 | grad 4.0041 | lr 0.0010 | time_forward 3.0470 | time_backward 4.2840
[2023-09-03 01:55:20,335::train::INFO] [train] Iter 16606 | loss 2.1069 | loss(rot) 1.7897 | loss(pos) 0.1292 | loss(seq) 0.1880 | grad 9.8683 | lr 0.0010 | time_forward 3.6130 | time_backward 5.0070
[2023-09-03 01:55:22,996::train::INFO] [train] Iter 16607 | loss 0.9892 | loss(rot) 0.8447 | loss(pos) 0.1402 | loss(seq) 0.0042 | grad 4.7436 | lr 0.0010 | time_forward 1.2310 | time_backward 1.4270
[2023-09-03 01:55:32,190::train::INFO] [train] Iter 16608 | loss 1.0886 | loss(rot) 0.8463 | loss(pos) 0.2288 | loss(seq) 0.0134 | grad 7.1371 | lr 0.0010 | time_forward 3.9050 | time_backward 5.2850
[2023-09-03 01:55:39,265::train::INFO] [train] Iter 16609 | loss 1.5591 | loss(rot) 0.9195 | loss(pos) 0.1848 | loss(seq) 0.4548 | grad 7.7789 | lr 0.0010 | time_forward 2.9520 | time_backward 4.1190
[2023-09-03 01:55:46,684::train::INFO] [train] Iter 16610 | loss 1.0671 | loss(rot) 0.5304 | loss(pos) 0.3969 | loss(seq) 0.1397 | grad 4.5792 | lr 0.0010 | time_forward 3.1290 | time_backward 4.2860
[2023-09-03 01:55:49,360::train::INFO] [train] Iter 16611 | loss 1.7445 | loss(rot) 0.9348 | loss(pos) 0.2797 | loss(seq) 0.5300 | grad 5.3049 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4250
[2023-09-03 01:55:59,304::train::INFO] [train] Iter 16612 | loss 1.2382 | loss(rot) 0.5086 | loss(pos) 0.3731 | loss(seq) 0.3564 | grad 3.6352 | lr 0.0010 | time_forward 3.9770 | time_backward 5.9630
[2023-09-03 01:56:07,680::train::INFO] [train] Iter 16613 | loss 2.0925 | loss(rot) 1.5112 | loss(pos) 0.1619 | loss(seq) 0.4195 | grad 4.3446 | lr 0.0010 | time_forward 3.4560 | time_backward 4.9060
[2023-09-03 01:56:10,319::train::INFO] [train] Iter 16614 | loss 1.7257 | loss(rot) 1.1940 | loss(pos) 0.1186 | loss(seq) 0.4131 | grad 4.3941 | lr 0.0010 | time_forward 1.2350 | time_backward 1.4000
[2023-09-03 01:56:20,171::train::INFO] [train] Iter 16615 | loss 2.1569 | loss(rot) 1.9880 | loss(pos) 0.1571 | loss(seq) 0.0118 | grad 4.4388 | lr 0.0010 | time_forward 3.9560 | time_backward 5.8930
[2023-09-03 01:56:22,855::train::INFO] [train] Iter 16616 | loss 2.0036 | loss(rot) 1.7914 | loss(pos) 0.0783 | loss(seq) 0.1339 | grad 18.9797 | lr 0.0010 | time_forward 1.2340 | time_backward 1.4460
[2023-09-03 01:56:30,901::train::INFO] [train] Iter 16617 | loss 0.9527 | loss(rot) 0.3563 | loss(pos) 0.3063 | loss(seq) 0.2901 | grad 5.3121 | lr 0.0010 | time_forward 3.3860 | time_backward 4.6570
[2023-09-03 01:56:40,897::train::INFO] [train] Iter 16618 | loss 2.2858 | loss(rot) 0.4873 | loss(pos) 1.7956 | loss(seq) 0.0029 | grad 6.1286 | lr 0.0010 | time_forward 4.0960 | time_backward 5.8960
[2023-09-03 01:56:43,574::train::INFO] [train] Iter 16619 | loss 2.9266 | loss(rot) 2.7714 | loss(pos) 0.1478 | loss(seq) 0.0074 | grad 4.7436 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4330
[2023-09-03 01:56:51,945::train::INFO] [train] Iter 16620 | loss 1.3603 | loss(rot) 0.2253 | loss(pos) 0.8287 | loss(seq) 0.3063 | grad 5.4138 | lr 0.0010 | time_forward 3.5090 | time_backward 4.8590
[2023-09-03 01:56:54,645::train::INFO] [train] Iter 16621 | loss 1.1370 | loss(rot) 0.5400 | loss(pos) 0.1882 | loss(seq) 0.4088 | grad 3.7312 | lr 0.0010 | time_forward 1.2570 | time_backward 1.4390
[2023-09-03 01:56:57,406::train::INFO] [train] Iter 16622 | loss 0.6418 | loss(rot) 0.1668 | loss(pos) 0.4440 | loss(seq) 0.0310 | grad 4.1977 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4810
[2023-09-03 01:57:05,604::train::INFO] [train] Iter 16623 | loss 1.8428 | loss(rot) 0.6254 | loss(pos) 0.4636 | loss(seq) 0.7537 | grad 7.8066 | lr 0.0010 | time_forward 3.3940 | time_backward 4.8020
[2023-09-03 01:57:08,294::train::INFO] [train] Iter 16624 | loss 1.7343 | loss(rot) 1.2739 | loss(pos) 0.1190 | loss(seq) 0.3414 | grad 4.1752 | lr 0.0010 | time_forward 1.2480 | time_backward 1.4390
[2023-09-03 01:57:15,850::train::INFO] [train] Iter 16625 | loss 0.7826 | loss(rot) 0.5863 | loss(pos) 0.1957 | loss(seq) 0.0006 | grad 6.0946 | lr 0.0010 | time_forward 3.1600 | time_backward 4.3920
[2023-09-03 01:57:26,048::train::INFO] [train] Iter 16626 | loss 1.3945 | loss(rot) 0.6552 | loss(pos) 0.1678 | loss(seq) 0.5715 | grad 5.2175 | lr 0.0010 | time_forward 4.1210 | time_backward 6.0740
[2023-09-03 01:57:34,459::train::INFO] [train] Iter 16627 | loss 2.3441 | loss(rot) 2.1815 | loss(pos) 0.1620 | loss(seq) 0.0006 | grad 8.3856 | lr 0.0010 | time_forward 3.5570 | time_backward 4.8500
[2023-09-03 01:57:44,749::train::INFO] [train] Iter 16628 | loss 1.9650 | loss(rot) 1.6008 | loss(pos) 0.1026 | loss(seq) 0.2617 | grad 3.6845 | lr 0.0010 | time_forward 4.0970 | time_backward 6.1890
[2023-09-03 01:57:53,612::train::INFO] [train] Iter 16629 | loss 1.1589 | loss(rot) 0.1711 | loss(pos) 0.9657 | loss(seq) 0.0221 | grad 4.3032 | lr 0.0010 | time_forward 3.7520 | time_backward 5.1070
[2023-09-03 01:58:02,177::train::INFO] [train] Iter 16630 | loss 1.1250 | loss(rot) 0.2238 | loss(pos) 0.6536 | loss(seq) 0.2476 | grad 4.9364 | lr 0.0010 | time_forward 3.6560 | time_backward 4.9050
[2023-09-03 01:58:04,914::train::INFO] [train] Iter 16631 | loss 1.5164 | loss(rot) 1.3444 | loss(pos) 0.0691 | loss(seq) 0.1029 | grad 4.2227 | lr 0.0010 | time_forward 1.2840 | time_backward 1.4500
[2023-09-03 01:58:13,634::train::INFO] [train] Iter 16632 | loss 1.4282 | loss(rot) 0.8492 | loss(pos) 0.3868 | loss(seq) 0.1922 | grad 5.3352 | lr 0.0010 | time_forward 3.6730 | time_backward 5.0440
[2023-09-03 01:58:23,780::train::INFO] [train] Iter 16633 | loss 2.2025 | loss(rot) 1.4629 | loss(pos) 0.3279 | loss(seq) 0.4117 | grad 5.6737 | lr 0.0010 | time_forward 4.0660 | time_backward 6.0760
[2023-09-03 01:58:26,507::train::INFO] [train] Iter 16634 | loss 1.7458 | loss(rot) 1.0937 | loss(pos) 0.3153 | loss(seq) 0.3369 | grad 12.3421 | lr 0.0010 | time_forward 1.2420 | time_backward 1.4680
[2023-09-03 01:58:33,959::train::INFO] [train] Iter 16635 | loss 1.6363 | loss(rot) 1.3310 | loss(pos) 0.2150 | loss(seq) 0.0903 | grad 5.3766 | lr 0.0010 | time_forward 3.1780 | time_backward 4.2700
[2023-09-03 01:58:43,890::train::INFO] [train] Iter 16636 | loss 0.7867 | loss(rot) 0.1228 | loss(pos) 0.3690 | loss(seq) 0.2949 | grad 5.7289 | lr 0.0010 | time_forward 3.9890 | time_backward 5.9380
[2023-09-03 01:58:51,744::train::INFO] [train] Iter 16637 | loss 2.2375 | loss(rot) 1.9843 | loss(pos) 0.1313 | loss(seq) 0.1219 | grad 4.6721 | lr 0.0010 | time_forward 3.3120 | time_backward 4.5390
[2023-09-03 01:59:01,646::train::INFO] [train] Iter 16638 | loss 1.0599 | loss(rot) 0.9826 | loss(pos) 0.0637 | loss(seq) 0.0137 | grad 10.8398 | lr 0.0010 | time_forward 3.9740 | time_backward 5.9240
[2023-09-03 01:59:12,210::train::INFO] [train] Iter 16639 | loss 1.0049 | loss(rot) 0.1348 | loss(pos) 0.8364 | loss(seq) 0.0337 | grad 2.2278 | lr 0.0010 | time_forward 4.6910 | time_backward 5.8710
[2023-09-03 01:59:20,479::train::INFO] [train] Iter 16640 | loss 0.6500 | loss(rot) 0.5676 | loss(pos) 0.0496 | loss(seq) 0.0328 | grad 3.5743 | lr 0.0010 | time_forward 3.4690 | time_backward 4.7960
[2023-09-03 01:59:29,789::train::INFO] [train] Iter 16641 | loss 1.4990 | loss(rot) 1.3144 | loss(pos) 0.1802 | loss(seq) 0.0045 | grad 5.3328 | lr 0.0010 | time_forward 3.8940 | time_backward 5.4140
[2023-09-03 01:59:32,459::train::INFO] [train] Iter 16642 | loss 2.3784 | loss(rot) 0.0584 | loss(pos) 1.8884 | loss(seq) 0.4317 | grad 5.7766 | lr 0.0010 | time_forward 1.2270 | time_backward 1.4390
[2023-09-03 01:59:35,232::train::INFO] [train] Iter 16643 | loss 1.5774 | loss(rot) 1.1897 | loss(pos) 0.3878 | loss(seq) 0.0000 | grad 7.4868 | lr 0.0010 | time_forward 1.2980 | time_backward 1.4720
[2023-09-03 01:59:37,954::train::INFO] [train] Iter 16644 | loss 1.7815 | loss(rot) 1.6286 | loss(pos) 0.1529 | loss(seq) 0.0000 | grad 11.0740 | lr 0.0010 | time_forward 1.2890 | time_backward 1.4290
[2023-09-03 01:59:40,731::train::INFO] [train] Iter 16645 | loss 0.9328 | loss(rot) 0.3299 | loss(pos) 0.1277 | loss(seq) 0.4751 | grad 4.0938 | lr 0.0010 | time_forward 1.3050 | time_backward 1.4680
[2023-09-03 01:59:51,131::train::INFO] [train] Iter 16646 | loss 2.0752 | loss(rot) 1.4672 | loss(pos) 0.2286 | loss(seq) 0.3794 | grad 4.1366 | lr 0.0010 | time_forward 4.3920 | time_backward 6.0040
[2023-09-03 01:59:59,530::train::INFO] [train] Iter 16647 | loss 2.2816 | loss(rot) 1.7289 | loss(pos) 0.0657 | loss(seq) 0.4869 | grad 4.3196 | lr 0.0010 | time_forward 3.4970 | time_backward 4.8990
[2023-09-03 02:00:07,068::train::INFO] [train] Iter 16648 | loss 1.9720 | loss(rot) 1.3515 | loss(pos) 0.2908 | loss(seq) 0.3298 | grad 6.5119 | lr 0.0010 | time_forward 3.1650 | time_backward 4.3540
[2023-09-03 02:00:12,824::train::INFO] [train] Iter 16649 | loss 1.0545 | loss(rot) 0.5123 | loss(pos) 0.2712 | loss(seq) 0.2709 | grad 3.0909 | lr 0.0010 | time_forward 2.3930 | time_backward 3.3590
[2023-09-03 02:00:22,525::train::INFO] [train] Iter 16650 | loss 1.0754 | loss(rot) 0.4869 | loss(pos) 0.1964 | loss(seq) 0.3921 | grad 3.0597 | lr 0.0010 | time_forward 4.0330 | time_backward 5.6640
[2023-09-03 02:00:24,437::train::INFO] [train] Iter 16651 | loss 1.3784 | loss(rot) 0.5446 | loss(pos) 0.7440 | loss(seq) 0.0898 | grad 6.6180 | lr 0.0010 | time_forward 0.8600 | time_backward 1.0480
[2023-09-03 02:00:33,706::train::INFO] [train] Iter 16652 | loss 1.5165 | loss(rot) 0.7685 | loss(pos) 0.2147 | loss(seq) 0.5333 | grad 3.5921 | lr 0.0010 | time_forward 3.9070 | time_backward 5.3570
[2023-09-03 02:00:43,773::train::INFO] [train] Iter 16653 | loss 2.6640 | loss(rot) 0.0125 | loss(pos) 2.6516 | loss(seq) 0.0000 | grad 8.4966 | lr 0.0010 | time_forward 4.0900 | time_backward 5.9740
[2023-09-03 02:00:53,762::train::INFO] [train] Iter 16654 | loss 3.5748 | loss(rot) 0.0556 | loss(pos) 3.5192 | loss(seq) 0.0000 | grad 11.3802 | lr 0.0010 | time_forward 4.0500 | time_backward 5.9180
[2023-09-03 02:01:01,760::train::INFO] [train] Iter 16655 | loss 1.6945 | loss(rot) 0.8657 | loss(pos) 0.3017 | loss(seq) 0.5271 | grad 5.8456 | lr 0.0010 | time_forward 3.3300 | time_backward 4.6650
[2023-09-03 02:01:10,446::train::INFO] [train] Iter 16656 | loss 3.5820 | loss(rot) 0.0514 | loss(pos) 3.5306 | loss(seq) 0.0000 | grad 9.1976 | lr 0.0010 | time_forward 3.6430 | time_backward 5.0240
[2023-09-03 02:01:20,519::train::INFO] [train] Iter 16657 | loss 1.9901 | loss(rot) 1.6563 | loss(pos) 0.1306 | loss(seq) 0.2032 | grad 4.3667 | lr 0.0010 | time_forward 4.2310 | time_backward 5.8390
[2023-09-03 02:01:23,196::train::INFO] [train] Iter 16658 | loss 1.1154 | loss(rot) 0.5490 | loss(pos) 0.2663 | loss(seq) 0.3002 | grad 3.7966 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4340
[2023-09-03 02:01:31,627::train::INFO] [train] Iter 16659 | loss 0.9919 | loss(rot) 0.3212 | loss(pos) 0.3626 | loss(seq) 0.3082 | grad 4.1542 | lr 0.0010 | time_forward 3.5450 | time_backward 4.8830
[2023-09-03 02:01:34,304::train::INFO] [train] Iter 16660 | loss 1.7429 | loss(rot) 1.6194 | loss(pos) 0.0970 | loss(seq) 0.0265 | grad 8.6926 | lr 0.0010 | time_forward 1.2350 | time_backward 1.4380
[2023-09-03 02:01:44,281::train::INFO] [train] Iter 16661 | loss 2.1295 | loss(rot) 1.6955 | loss(pos) 0.1653 | loss(seq) 0.2687 | grad 3.8838 | lr 0.0010 | time_forward 4.0720 | time_backward 5.9020
[2023-09-03 02:01:52,754::train::INFO] [train] Iter 16662 | loss 0.8265 | loss(rot) 0.3073 | loss(pos) 0.2752 | loss(seq) 0.2440 | grad 3.4273 | lr 0.0010 | time_forward 3.6090 | time_backward 4.8500
[2023-09-03 02:02:01,453::train::INFO] [train] Iter 16663 | loss 1.0955 | loss(rot) 0.4668 | loss(pos) 0.2580 | loss(seq) 0.3707 | grad 5.5298 | lr 0.0010 | time_forward 3.7350 | time_backward 4.9600
[2023-09-03 02:02:12,157::train::INFO] [train] Iter 16664 | loss 1.1651 | loss(rot) 0.2983 | loss(pos) 0.6009 | loss(seq) 0.2659 | grad 3.3723 | lr 0.0010 | time_forward 4.4590 | time_backward 6.2420
[2023-09-03 02:02:21,444::train::INFO] [train] Iter 16665 | loss 1.7908 | loss(rot) 1.1436 | loss(pos) 0.1678 | loss(seq) 0.4795 | grad 9.6367 | lr 0.0010 | time_forward 3.9420 | time_backward 5.3400
[2023-09-03 02:02:24,085::train::INFO] [train] Iter 16666 | loss 2.1025 | loss(rot) 1.7436 | loss(pos) 0.1574 | loss(seq) 0.2015 | grad 4.3140 | lr 0.0010 | time_forward 1.2240 | time_backward 1.4130
[2023-09-03 02:02:34,136::train::INFO] [train] Iter 16667 | loss 2.9431 | loss(rot) 2.7289 | loss(pos) 0.2130 | loss(seq) 0.0012 | grad 5.2292 | lr 0.0010 | time_forward 4.2290 | time_backward 5.8180
[2023-09-03 02:02:43,957::train::INFO] [train] Iter 16668 | loss 1.1561 | loss(rot) 0.6716 | loss(pos) 0.3959 | loss(seq) 0.0886 | grad 3.8788 | lr 0.0010 | time_forward 3.9540 | time_backward 5.8630
[2023-09-03 02:02:52,638::train::INFO] [train] Iter 16669 | loss 1.8193 | loss(rot) 1.0732 | loss(pos) 0.2754 | loss(seq) 0.4707 | grad 4.6550 | lr 0.0010 | time_forward 3.6300 | time_backward 5.0470
[2023-09-03 02:02:55,267::train::INFO] [train] Iter 16670 | loss 1.0495 | loss(rot) 0.9482 | loss(pos) 0.0711 | loss(seq) 0.0302 | grad 7.2517 | lr 0.0010 | time_forward 1.2250 | time_backward 1.4010
[2023-09-03 02:03:02,794::train::INFO] [train] Iter 16671 | loss 1.4511 | loss(rot) 0.7263 | loss(pos) 0.5636 | loss(seq) 0.1612 | grad 5.0837 | lr 0.0010 | time_forward 3.1580 | time_backward 4.3650
[2023-09-03 02:03:05,466::train::INFO] [train] Iter 16672 | loss 1.5925 | loss(rot) 1.4809 | loss(pos) 0.1087 | loss(seq) 0.0030 | grad 9.2838 | lr 0.0010 | time_forward 1.2420 | time_backward 1.4260
[2023-09-03 02:03:13,431::train::INFO] [train] Iter 16673 | loss 2.4494 | loss(rot) 0.0368 | loss(pos) 2.4119 | loss(seq) 0.0007 | grad 6.4521 | lr 0.0010 | time_forward 3.3150 | time_backward 4.6480
[2023-09-03 02:03:23,402::train::INFO] [train] Iter 16674 | loss 2.1780 | loss(rot) 0.0487 | loss(pos) 2.1199 | loss(seq) 0.0094 | grad 9.7457 | lr 0.0010 | time_forward 4.1380 | time_backward 5.8290
[2023-09-03 02:03:26,130::train::INFO] [train] Iter 16675 | loss 1.3754 | loss(rot) 1.1849 | loss(pos) 0.1899 | loss(seq) 0.0006 | grad 9.4553 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4510
[2023-09-03 02:03:36,405::train::INFO] [train] Iter 16676 | loss 1.3613 | loss(rot) 0.5448 | loss(pos) 0.4012 | loss(seq) 0.4153 | grad 7.8798 | lr 0.0010 | time_forward 4.3710 | time_backward 5.9010
[2023-09-03 02:03:44,939::train::INFO] [train] Iter 16677 | loss 0.6008 | loss(rot) 0.4011 | loss(pos) 0.0827 | loss(seq) 0.1170 | grad 4.4187 | lr 0.0010 | time_forward 3.6400 | time_backward 4.8900
[2023-09-03 02:03:50,886::train::INFO] [train] Iter 16678 | loss 0.5611 | loss(rot) 0.3651 | loss(pos) 0.1960 | loss(seq) 0.0000 | grad 4.8684 | lr 0.0010 | time_forward 2.5360 | time_backward 3.4070