text
stringlengths
56
1.16k
[2023-09-03 01:41:11,997::train::INFO] [train] Iter 16479 | loss 0.7630 | loss(rot) 0.6516 | loss(pos) 0.1095 | loss(seq) 0.0020 | grad 5.1130 | lr 0.0010 | time_forward 2.5440 | time_backward 3.6230
[2023-09-03 01:41:14,734::train::INFO] [train] Iter 16480 | loss 1.5049 | loss(rot) 0.7868 | loss(pos) 0.2085 | loss(seq) 0.5096 | grad 3.6468 | lr 0.0010 | time_forward 1.2600 | time_backward 1.4730
[2023-09-03 01:41:22,280::train::INFO] [train] Iter 16481 | loss 0.8444 | loss(rot) 0.2800 | loss(pos) 0.1787 | loss(seq) 0.3857 | grad 3.9032 | lr 0.0010 | time_forward 3.2770 | time_backward 4.2650
[2023-09-03 01:41:30,104::train::INFO] [train] Iter 16482 | loss 1.8168 | loss(rot) 0.0422 | loss(pos) 1.7740 | loss(seq) 0.0006 | grad 7.4861 | lr 0.0010 | time_forward 3.4330 | time_backward 4.3880
[2023-09-03 01:41:38,706::train::INFO] [train] Iter 16483 | loss 1.2780 | loss(rot) 0.2396 | loss(pos) 0.4052 | loss(seq) 0.6331 | grad 3.5174 | lr 0.0010 | time_forward 3.5140 | time_backward 5.0840
[2023-09-03 01:41:46,275::train::INFO] [train] Iter 16484 | loss 1.6466 | loss(rot) 1.2565 | loss(pos) 0.1552 | loss(seq) 0.2350 | grad 4.5379 | lr 0.0010 | time_forward 3.1370 | time_backward 4.4280
[2023-09-03 01:41:54,409::train::INFO] [train] Iter 16485 | loss 0.5646 | loss(rot) 0.1537 | loss(pos) 0.1304 | loss(seq) 0.2804 | grad 2.6706 | lr 0.0010 | time_forward 3.1900 | time_backward 4.9410
[2023-09-03 01:41:57,472::train::INFO] [train] Iter 16486 | loss 2.0594 | loss(rot) 1.7241 | loss(pos) 0.1122 | loss(seq) 0.2231 | grad 4.1536 | lr 0.0010 | time_forward 1.3650 | time_backward 1.6860
[2023-09-03 01:42:04,879::train::INFO] [train] Iter 16487 | loss 1.2457 | loss(rot) 0.4450 | loss(pos) 0.2254 | loss(seq) 0.5753 | grad 4.1108 | lr 0.0010 | time_forward 3.0950 | time_backward 4.3090
[2023-09-03 01:42:07,525::train::INFO] [train] Iter 16488 | loss 0.6447 | loss(rot) 0.2255 | loss(pos) 0.1558 | loss(seq) 0.2634 | grad 2.9607 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4040
[2023-09-03 01:42:10,529::train::INFO] [train] Iter 16489 | loss 0.9936 | loss(rot) 0.7574 | loss(pos) 0.1264 | loss(seq) 0.1099 | grad 5.9166 | lr 0.0010 | time_forward 1.3300 | time_backward 1.6700
[2023-09-03 01:42:17,907::train::INFO] [train] Iter 16490 | loss 0.5001 | loss(rot) 0.1224 | loss(pos) 0.3504 | loss(seq) 0.0274 | grad 4.1886 | lr 0.0010 | time_forward 2.9300 | time_backward 4.4450
[2023-09-03 01:42:25,632::train::INFO] [train] Iter 16491 | loss 2.3795 | loss(rot) 1.3885 | loss(pos) 0.4190 | loss(seq) 0.5720 | grad 4.0615 | lr 0.0010 | time_forward 3.1730 | time_backward 4.5500
[2023-09-03 01:42:32,886::train::INFO] [train] Iter 16492 | loss 1.9336 | loss(rot) 1.5534 | loss(pos) 0.0941 | loss(seq) 0.2862 | grad 7.3883 | lr 0.0010 | time_forward 2.9500 | time_backward 4.2990
[2023-09-03 01:42:41,447::train::INFO] [train] Iter 16493 | loss 2.2772 | loss(rot) 2.0964 | loss(pos) 0.1098 | loss(seq) 0.0710 | grad 5.0932 | lr 0.0010 | time_forward 3.6130 | time_backward 4.9440
[2023-09-03 01:42:50,325::train::INFO] [train] Iter 16494 | loss 0.6991 | loss(rot) 0.1913 | loss(pos) 0.4801 | loss(seq) 0.0277 | grad 4.3660 | lr 0.0010 | time_forward 3.7710 | time_backward 5.1040
[2023-09-03 01:42:52,991::train::INFO] [train] Iter 16495 | loss 1.5757 | loss(rot) 0.8002 | loss(pos) 0.2982 | loss(seq) 0.4773 | grad 4.0747 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4090
[2023-09-03 01:42:59,919::train::INFO] [train] Iter 16496 | loss 1.4811 | loss(rot) 0.7513 | loss(pos) 0.1064 | loss(seq) 0.6233 | grad 6.0319 | lr 0.0010 | time_forward 3.0060 | time_backward 3.9180
[2023-09-03 01:43:08,952::train::INFO] [train] Iter 16497 | loss 0.8363 | loss(rot) 0.0475 | loss(pos) 0.7774 | loss(seq) 0.0113 | grad 5.9188 | lr 0.0010 | time_forward 3.9020 | time_backward 5.1270
[2023-09-03 01:43:12,656::train::INFO] [train] Iter 16498 | loss 1.3270 | loss(rot) 1.0902 | loss(pos) 0.0780 | loss(seq) 0.1588 | grad 5.8272 | lr 0.0010 | time_forward 2.2880 | time_backward 1.4110
[2023-09-03 01:43:20,966::train::INFO] [train] Iter 16499 | loss 1.6409 | loss(rot) 0.9900 | loss(pos) 0.1383 | loss(seq) 0.5126 | grad 6.6246 | lr 0.0010 | time_forward 3.3890 | time_backward 4.9170
[2023-09-03 01:43:29,714::train::INFO] [train] Iter 16500 | loss 2.0203 | loss(rot) 1.9354 | loss(pos) 0.0836 | loss(seq) 0.0012 | grad 7.9161 | lr 0.0010 | time_forward 3.3330 | time_backward 5.4110
[2023-09-03 01:43:32,301::train::INFO] [train] Iter 16501 | loss 2.6500 | loss(rot) 1.1880 | loss(pos) 0.8879 | loss(seq) 0.5741 | grad 9.1305 | lr 0.0010 | time_forward 1.2070 | time_backward 1.3770
[2023-09-03 01:43:38,916::train::INFO] [train] Iter 16502 | loss 1.7041 | loss(rot) 1.1826 | loss(pos) 0.1262 | loss(seq) 0.3954 | grad 8.2333 | lr 0.0010 | time_forward 2.8380 | time_backward 3.7730
[2023-09-03 01:43:41,496::train::INFO] [train] Iter 16503 | loss 1.2097 | loss(rot) 1.0214 | loss(pos) 0.1877 | loss(seq) 0.0007 | grad 4.4484 | lr 0.0010 | time_forward 1.1810 | time_backward 1.3950
[2023-09-03 01:43:50,650::train::INFO] [train] Iter 16504 | loss 1.9685 | loss(rot) 1.4220 | loss(pos) 0.1485 | loss(seq) 0.3979 | grad 3.8387 | lr 0.0010 | time_forward 4.1460 | time_backward 5.0050
[2023-09-03 01:43:59,416::train::INFO] [train] Iter 16505 | loss 1.5370 | loss(rot) 0.9130 | loss(pos) 0.1508 | loss(seq) 0.4733 | grad 3.5170 | lr 0.0010 | time_forward 3.5310 | time_backward 5.2310
[2023-09-03 01:44:02,062::train::INFO] [train] Iter 16506 | loss 2.1447 | loss(rot) 1.9881 | loss(pos) 0.1064 | loss(seq) 0.0502 | grad 3.2244 | lr 0.0010 | time_forward 1.2190 | time_backward 1.4230
[2023-09-03 01:44:04,436::train::INFO] [train] Iter 16507 | loss 1.1882 | loss(rot) 0.5245 | loss(pos) 0.3296 | loss(seq) 0.3342 | grad 5.2088 | lr 0.0010 | time_forward 1.1040 | time_backward 1.2660
[2023-09-03 01:44:11,501::train::INFO] [train] Iter 16508 | loss 0.7413 | loss(rot) 0.2102 | loss(pos) 0.2693 | loss(seq) 0.2617 | grad 3.7451 | lr 0.0010 | time_forward 3.0270 | time_backward 4.0320
[2023-09-03 01:44:14,111::train::INFO] [train] Iter 16509 | loss 1.5405 | loss(rot) 0.9096 | loss(pos) 0.1651 | loss(seq) 0.4657 | grad 3.6925 | lr 0.0010 | time_forward 1.2160 | time_backward 1.3910
[2023-09-03 01:44:22,638::train::INFO] [train] Iter 16510 | loss 1.4021 | loss(rot) 1.1276 | loss(pos) 0.0468 | loss(seq) 0.2277 | grad 6.5510 | lr 0.0010 | time_forward 3.2420 | time_backward 5.2810
[2023-09-03 01:44:24,873::train::INFO] [train] Iter 16511 | loss 1.7775 | loss(rot) 1.6586 | loss(pos) 0.0936 | loss(seq) 0.0253 | grad 5.1513 | lr 0.0010 | time_forward 1.0630 | time_backward 1.1680
[2023-09-03 01:44:33,555::train::INFO] [train] Iter 16512 | loss 1.3773 | loss(rot) 0.7295 | loss(pos) 0.1466 | loss(seq) 0.5012 | grad 3.0165 | lr 0.0010 | time_forward 3.5000 | time_backward 5.1790
[2023-09-03 01:44:41,258::train::INFO] [train] Iter 16513 | loss 1.8278 | loss(rot) 1.6500 | loss(pos) 0.0878 | loss(seq) 0.0900 | grad 5.9030 | lr 0.0010 | time_forward 3.3660 | time_backward 4.3330
[2023-09-03 01:44:48,422::train::INFO] [train] Iter 16514 | loss 1.4852 | loss(rot) 0.8966 | loss(pos) 0.0789 | loss(seq) 0.5097 | grad 5.1083 | lr 0.0010 | time_forward 3.0200 | time_backward 4.1400
[2023-09-03 01:44:57,159::train::INFO] [train] Iter 16515 | loss 0.8315 | loss(rot) 0.3713 | loss(pos) 0.1654 | loss(seq) 0.2948 | grad 3.1163 | lr 0.0010 | time_forward 3.5980 | time_backward 5.1350
[2023-09-03 01:45:05,756::train::INFO] [train] Iter 16516 | loss 5.1171 | loss(rot) 0.0736 | loss(pos) 5.0431 | loss(seq) 0.0004 | grad 12.8358 | lr 0.0010 | time_forward 3.5840 | time_backward 5.0110
[2023-09-03 01:45:14,052::train::INFO] [train] Iter 16517 | loss 1.5588 | loss(rot) 1.2092 | loss(pos) 0.1356 | loss(seq) 0.2140 | grad 8.3329 | lr 0.0010 | time_forward 3.4860 | time_backward 4.8070
[2023-09-03 01:45:20,624::train::INFO] [train] Iter 16518 | loss 1.1554 | loss(rot) 0.4416 | loss(pos) 0.2182 | loss(seq) 0.4956 | grad 7.5955 | lr 0.0010 | time_forward 2.7030 | time_backward 3.8660
[2023-09-03 01:45:29,564::train::INFO] [train] Iter 16519 | loss 3.5871 | loss(rot) 0.0791 | loss(pos) 3.5059 | loss(seq) 0.0021 | grad 12.3937 | lr 0.0010 | time_forward 3.0630 | time_backward 5.8730
[2023-09-03 01:45:34,551::train::INFO] [train] Iter 16520 | loss 2.0398 | loss(rot) 1.0067 | loss(pos) 0.4940 | loss(seq) 0.5391 | grad 4.3720 | lr 0.0010 | time_forward 1.4300 | time_backward 3.5540
[2023-09-03 01:45:40,102::train::INFO] [train] Iter 16521 | loss 1.0432 | loss(rot) 0.4460 | loss(pos) 0.1609 | loss(seq) 0.4363 | grad 3.7961 | lr 0.0010 | time_forward 3.4030 | time_backward 2.1460
[2023-09-03 01:45:43,917::train::INFO] [train] Iter 16522 | loss 1.7662 | loss(rot) 1.5947 | loss(pos) 0.1538 | loss(seq) 0.0177 | grad 3.9454 | lr 0.0010 | time_forward 2.0750 | time_backward 1.7370
[2023-09-03 01:45:48,254::train::INFO] [train] Iter 16523 | loss 1.0225 | loss(rot) 0.0871 | loss(pos) 0.9135 | loss(seq) 0.0219 | grad 8.4280 | lr 0.0010 | time_forward 2.7640 | time_backward 1.5690
[2023-09-03 01:46:03,141::train::INFO] [train] Iter 16524 | loss 0.6337 | loss(rot) 0.1052 | loss(pos) 0.2238 | loss(seq) 0.3047 | grad 3.9051 | lr 0.0010 | time_forward 7.0540 | time_backward 7.8160
[2023-09-03 01:46:15,485::train::INFO] [train] Iter 16525 | loss 0.7449 | loss(rot) 0.2482 | loss(pos) 0.4558 | loss(seq) 0.0409 | grad 4.3773 | lr 0.0010 | time_forward 6.9310 | time_backward 5.4090
[2023-09-03 01:46:21,053::train::INFO] [train] Iter 16526 | loss 2.8115 | loss(rot) 2.2672 | loss(pos) 0.2433 | loss(seq) 0.3010 | grad 3.7391 | lr 0.0010 | time_forward 2.0750 | time_backward 3.4890
[2023-09-03 01:46:33,113::train::INFO] [train] Iter 16527 | loss 0.8836 | loss(rot) 0.2166 | loss(pos) 0.2022 | loss(seq) 0.4648 | grad 3.2526 | lr 0.0010 | time_forward 6.8190 | time_backward 5.2380
[2023-09-03 01:46:41,956::train::INFO] [train] Iter 16528 | loss 0.9476 | loss(rot) 0.2998 | loss(pos) 0.2283 | loss(seq) 0.4196 | grad 3.6697 | lr 0.0010 | time_forward 3.7460 | time_backward 5.0930
[2023-09-03 01:46:52,337::train::INFO] [train] Iter 16529 | loss 1.0694 | loss(rot) 0.9253 | loss(pos) 0.1307 | loss(seq) 0.0134 | grad 6.6092 | lr 0.0010 | time_forward 4.1520 | time_backward 6.2260
[2023-09-03 01:47:02,575::train::INFO] [train] Iter 16530 | loss 1.2437 | loss(rot) 0.6770 | loss(pos) 0.2670 | loss(seq) 0.2997 | grad 4.6316 | lr 0.0010 | time_forward 4.1180 | time_backward 6.1160
[2023-09-03 01:47:05,273::train::INFO] [train] Iter 16531 | loss 1.5041 | loss(rot) 0.6538 | loss(pos) 0.4077 | loss(seq) 0.4425 | grad 7.3191 | lr 0.0010 | time_forward 1.2700 | time_backward 1.4240
[2023-09-03 01:47:14,035::train::INFO] [train] Iter 16532 | loss 1.5427 | loss(rot) 0.9079 | loss(pos) 0.1356 | loss(seq) 0.4992 | grad 4.4522 | lr 0.0010 | time_forward 3.7270 | time_backward 5.0310
[2023-09-03 01:47:16,475::train::INFO] [train] Iter 16533 | loss 1.4031 | loss(rot) 1.0529 | loss(pos) 0.1039 | loss(seq) 0.2463 | grad 6.4440 | lr 0.0010 | time_forward 1.1650 | time_backward 1.2710
[2023-09-03 01:47:26,501::train::INFO] [train] Iter 16534 | loss 0.8956 | loss(rot) 0.2104 | loss(pos) 0.4975 | loss(seq) 0.1877 | grad 2.6900 | lr 0.0010 | time_forward 4.1090 | time_backward 5.8920
[2023-09-03 01:47:29,173::train::INFO] [train] Iter 16535 | loss 2.2177 | loss(rot) 1.5979 | loss(pos) 0.1588 | loss(seq) 0.4611 | grad 4.3443 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4140
[2023-09-03 01:47:37,751::train::INFO] [train] Iter 16536 | loss 1.4339 | loss(rot) 1.2123 | loss(pos) 0.0945 | loss(seq) 0.1271 | grad 5.1644 | lr 0.0010 | time_forward 3.6880 | time_backward 4.8870
[2023-09-03 01:47:47,828::train::INFO] [train] Iter 16537 | loss 1.2133 | loss(rot) 0.0715 | loss(pos) 1.1394 | loss(seq) 0.0024 | grad 5.3228 | lr 0.0010 | time_forward 4.1020 | time_backward 5.9700
[2023-09-03 01:47:57,819::train::INFO] [train] Iter 16538 | loss 1.4909 | loss(rot) 1.0471 | loss(pos) 0.4438 | loss(seq) 0.0000 | grad 5.4505 | lr 0.0010 | time_forward 4.1880 | time_backward 5.7990
[2023-09-03 01:48:00,518::train::INFO] [train] Iter 16539 | loss 1.3413 | loss(rot) 0.4323 | loss(pos) 0.5665 | loss(seq) 0.3425 | grad 4.8438 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4490
[2023-09-03 01:48:02,816::train::INFO] [train] Iter 16540 | loss 0.9553 | loss(rot) 0.4273 | loss(pos) 0.1235 | loss(seq) 0.4045 | grad 2.1425 | lr 0.0010 | time_forward 1.0860 | time_backward 1.2100
[2023-09-03 01:48:11,106::train::INFO] [train] Iter 16541 | loss 1.9125 | loss(rot) 1.5115 | loss(pos) 0.0918 | loss(seq) 0.3092 | grad 4.1469 | lr 0.0010 | time_forward 3.4080 | time_backward 4.8790
[2023-09-03 01:48:20,842::train::INFO] [train] Iter 16542 | loss 2.5344 | loss(rot) 0.6253 | loss(pos) 1.9037 | loss(seq) 0.0054 | grad 6.3974 | lr 0.0010 | time_forward 3.9940 | time_backward 5.7390
[2023-09-03 01:48:29,071::train::INFO] [train] Iter 16543 | loss 0.6584 | loss(rot) 0.3342 | loss(pos) 0.0601 | loss(seq) 0.2641 | grad 2.6409 | lr 0.0010 | time_forward 3.4090 | time_backward 4.7990
[2023-09-03 01:48:31,844::train::INFO] [train] Iter 16544 | loss 1.4634 | loss(rot) 0.9098 | loss(pos) 0.0999 | loss(seq) 0.4536 | grad 4.4832 | lr 0.0010 | time_forward 1.3130 | time_backward 1.4560
[2023-09-03 01:48:38,837::train::INFO] [train] Iter 16545 | loss 0.6296 | loss(rot) 0.0984 | loss(pos) 0.5138 | loss(seq) 0.0174 | grad 3.8286 | lr 0.0010 | time_forward 3.0550 | time_backward 3.9360
[2023-09-03 01:48:41,267::train::INFO] [train] Iter 16546 | loss 1.3832 | loss(rot) 0.8134 | loss(pos) 0.4446 | loss(seq) 0.1253 | grad 6.9772 | lr 0.0010 | time_forward 1.1600 | time_backward 1.2650
[2023-09-03 01:48:43,761::train::INFO] [train] Iter 16547 | loss 0.9850 | loss(rot) 0.2973 | loss(pos) 0.4941 | loss(seq) 0.1936 | grad 2.9947 | lr 0.0010 | time_forward 1.2110 | time_backward 1.2800
[2023-09-03 01:48:46,044::train::INFO] [train] Iter 16548 | loss 1.4453 | loss(rot) 0.6298 | loss(pos) 0.3293 | loss(seq) 0.4862 | grad 3.3284 | lr 0.0010 | time_forward 1.0360 | time_backward 1.2160
[2023-09-03 01:48:48,745::train::INFO] [train] Iter 16549 | loss 1.6493 | loss(rot) 0.9371 | loss(pos) 0.2606 | loss(seq) 0.4516 | grad 5.6526 | lr 0.0010 | time_forward 1.2440 | time_backward 1.4540
[2023-09-03 01:48:56,441::train::INFO] [train] Iter 16550 | loss 1.1453 | loss(rot) 0.3183 | loss(pos) 0.3825 | loss(seq) 0.4445 | grad 4.1609 | lr 0.0010 | time_forward 3.2650 | time_backward 4.4280
[2023-09-03 01:49:04,940::train::INFO] [train] Iter 16551 | loss 1.2806 | loss(rot) 0.2971 | loss(pos) 0.8403 | loss(seq) 0.1432 | grad 2.9794 | lr 0.0010 | time_forward 3.5250 | time_backward 4.9720
[2023-09-03 01:49:08,265::train::INFO] [train] Iter 16552 | loss 2.9792 | loss(rot) 2.1100 | loss(pos) 0.2927 | loss(seq) 0.5765 | grad 4.2049 | lr 0.0010 | time_forward 1.4270 | time_backward 1.8940
[2023-09-03 01:49:16,224::train::INFO] [train] Iter 16553 | loss 4.8033 | loss(rot) 0.0149 | loss(pos) 4.7884 | loss(seq) 0.0000 | grad 16.5000 | lr 0.0010 | time_forward 3.2930 | time_backward 4.6620
[2023-09-03 01:49:18,904::train::INFO] [train] Iter 16554 | loss 2.1652 | loss(rot) 1.7975 | loss(pos) 0.3675 | loss(seq) 0.0001 | grad 8.0947 | lr 0.0010 | time_forward 1.2320 | time_backward 1.4440
[2023-09-03 01:49:28,178::train::INFO] [train] Iter 16555 | loss 2.0486 | loss(rot) 1.8077 | loss(pos) 0.1614 | loss(seq) 0.0795 | grad 4.7365 | lr 0.0010 | time_forward 3.8430 | time_backward 5.4050
[2023-09-03 01:49:38,298::train::INFO] [train] Iter 16556 | loss 2.5732 | loss(rot) 2.3769 | loss(pos) 0.1962 | loss(seq) 0.0000 | grad 6.3513 | lr 0.0010 | time_forward 4.1940 | time_backward 5.9230
[2023-09-03 01:49:41,194::train::INFO] [train] Iter 16557 | loss 3.8315 | loss(rot) 0.0301 | loss(pos) 3.8014 | loss(seq) 0.0000 | grad 7.3933 | lr 0.0010 | time_forward 1.2890 | time_backward 1.6030
[2023-09-03 01:49:49,282::train::INFO] [train] Iter 16558 | loss 1.6822 | loss(rot) 0.8926 | loss(pos) 0.2135 | loss(seq) 0.5761 | grad 3.7415 | lr 0.0010 | time_forward 3.2960 | time_backward 4.7890
[2023-09-03 01:49:52,076::train::INFO] [train] Iter 16559 | loss 1.1622 | loss(rot) 0.3270 | loss(pos) 0.6608 | loss(seq) 0.1743 | grad 5.3348 | lr 0.0010 | time_forward 1.2770 | time_backward 1.5130
[2023-09-03 01:49:54,653::train::INFO] [train] Iter 16560 | loss 0.8420 | loss(rot) 0.5276 | loss(pos) 0.1365 | loss(seq) 0.1780 | grad 5.9820 | lr 0.0010 | time_forward 1.1880 | time_backward 1.3850
[2023-09-03 01:50:04,656::train::INFO] [train] Iter 16561 | loss 1.3690 | loss(rot) 1.1769 | loss(pos) 0.1834 | loss(seq) 0.0088 | grad 4.0011 | lr 0.0010 | time_forward 3.9900 | time_backward 6.0090
[2023-09-03 01:50:14,981::train::INFO] [train] Iter 16562 | loss 1.2968 | loss(rot) 0.1842 | loss(pos) 1.0913 | loss(seq) 0.0214 | grad 4.5166 | lr 0.0010 | time_forward 4.2950 | time_backward 6.0250
[2023-09-03 01:50:24,509::train::INFO] [train] Iter 16563 | loss 2.2181 | loss(rot) 2.0504 | loss(pos) 0.1645 | loss(seq) 0.0032 | grad 17.7464 | lr 0.0010 | time_forward 3.9440 | time_backward 5.5800
[2023-09-03 01:50:27,264::train::INFO] [train] Iter 16564 | loss 0.8727 | loss(rot) 0.0707 | loss(pos) 0.7918 | loss(seq) 0.0102 | grad 3.7243 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4850
[2023-09-03 01:50:30,732::train::INFO] [train] Iter 16565 | loss 1.9208 | loss(rot) 1.6310 | loss(pos) 0.0856 | loss(seq) 0.2042 | grad 2.9532 | lr 0.0010 | time_forward 1.4500 | time_backward 1.9960
[2023-09-03 01:50:40,544::train::INFO] [train] Iter 16566 | loss 1.3933 | loss(rot) 1.3602 | loss(pos) 0.0325 | loss(seq) 0.0006 | grad 7.4698 | lr 0.0010 | time_forward 3.9910 | time_backward 5.8170
[2023-09-03 01:50:50,707::train::INFO] [train] Iter 16567 | loss 1.4825 | loss(rot) 1.2466 | loss(pos) 0.0998 | loss(seq) 0.1362 | grad 5.5776 | lr 0.0010 | time_forward 4.0660 | time_backward 6.0820
[2023-09-03 01:50:53,474::train::INFO] [train] Iter 16568 | loss 1.3441 | loss(rot) 1.1344 | loss(pos) 0.1210 | loss(seq) 0.0888 | grad 6.2518 | lr 0.0010 | time_forward 1.2610 | time_backward 1.5020
[2023-09-03 01:51:01,916::train::INFO] [train] Iter 16569 | loss 0.8187 | loss(rot) 0.5756 | loss(pos) 0.1408 | loss(seq) 0.1023 | grad 3.6982 | lr 0.0010 | time_forward 3.5180 | time_backward 4.9200
[2023-09-03 01:51:04,684::train::INFO] [train] Iter 16570 | loss 1.6944 | loss(rot) 0.8167 | loss(pos) 0.2879 | loss(seq) 0.5898 | grad 3.0360 | lr 0.0010 | time_forward 1.2450 | time_backward 1.5200
[2023-09-03 01:51:12,939::train::INFO] [train] Iter 16571 | loss 1.3552 | loss(rot) 0.0722 | loss(pos) 1.2735 | loss(seq) 0.0095 | grad 7.2523 | lr 0.0010 | time_forward 3.4350 | time_backward 4.8160
[2023-09-03 01:51:21,866::train::INFO] [train] Iter 16572 | loss 2.0568 | loss(rot) 1.1871 | loss(pos) 0.4407 | loss(seq) 0.4290 | grad 5.3919 | lr 0.0010 | time_forward 3.6670 | time_backward 5.2560
[2023-09-03 01:51:31,750::train::INFO] [train] Iter 16573 | loss 1.8441 | loss(rot) 1.4690 | loss(pos) 0.1051 | loss(seq) 0.2700 | grad 3.7525 | lr 0.0010 | time_forward 4.0110 | time_backward 5.8690
[2023-09-03 01:51:41,724::train::INFO] [train] Iter 16574 | loss 1.4749 | loss(rot) 0.6497 | loss(pos) 0.3609 | loss(seq) 0.4644 | grad 4.2824 | lr 0.0010 | time_forward 4.1050 | time_backward 5.8660
[2023-09-03 01:51:50,516::train::INFO] [train] Iter 16575 | loss 0.9447 | loss(rot) 0.3467 | loss(pos) 0.1616 | loss(seq) 0.4364 | grad 5.6070 | lr 0.0010 | time_forward 3.7630 | time_backward 5.0250
[2023-09-03 01:51:58,609::train::INFO] [train] Iter 16576 | loss 0.7738 | loss(rot) 0.6530 | loss(pos) 0.1198 | loss(seq) 0.0011 | grad 4.5306 | lr 0.0010 | time_forward 3.4190 | time_backward 4.6700
[2023-09-03 01:52:08,493::train::INFO] [train] Iter 16577 | loss 1.6390 | loss(rot) 1.4398 | loss(pos) 0.1919 | loss(seq) 0.0073 | grad 7.0634 | lr 0.0010 | time_forward 3.9510 | time_backward 5.9310
[2023-09-03 01:52:10,976::train::INFO] [train] Iter 16578 | loss 1.5665 | loss(rot) 1.3056 | loss(pos) 0.0945 | loss(seq) 0.1664 | grad 5.7851 | lr 0.0010 | time_forward 1.1850 | time_backward 1.2940