text
stringlengths
56
1.16k
[2023-09-03 01:30:18,756::train::INFO] [train] Iter 16379 | loss 1.6851 | loss(rot) 1.5698 | loss(pos) 0.0925 | loss(seq) 0.0227 | grad 6.6976 | lr 0.0010 | time_forward 3.1530 | time_backward 4.1080
[2023-09-03 01:30:26,547::train::INFO] [train] Iter 16380 | loss 0.7879 | loss(rot) 0.2529 | loss(pos) 0.3468 | loss(seq) 0.1881 | grad 3.7261 | lr 0.0010 | time_forward 3.2430 | time_backward 4.5440
[2023-09-03 01:30:29,275::train::INFO] [train] Iter 16381 | loss 0.8955 | loss(rot) 0.0428 | loss(pos) 0.8421 | loss(seq) 0.0107 | grad 5.2816 | lr 0.0010 | time_forward 1.2700 | time_backward 1.4540
[2023-09-03 01:30:36,319::train::INFO] [train] Iter 16382 | loss 1.5147 | loss(rot) 0.7696 | loss(pos) 0.2626 | loss(seq) 0.4825 | grad 5.9469 | lr 0.0010 | time_forward 2.8960 | time_backward 4.1460
[2023-09-03 01:30:44,131::train::INFO] [train] Iter 16383 | loss 1.2171 | loss(rot) 0.0305 | loss(pos) 1.1840 | loss(seq) 0.0026 | grad 8.5531 | lr 0.0010 | time_forward 3.3870 | time_backward 4.4210
[2023-09-03 01:30:51,626::train::INFO] [train] Iter 16384 | loss 1.6138 | loss(rot) 0.8403 | loss(pos) 0.3148 | loss(seq) 0.4587 | grad 3.4507 | lr 0.0010 | time_forward 3.1910 | time_backward 4.3010
[2023-09-03 01:30:58,123::train::INFO] [train] Iter 16385 | loss 1.0593 | loss(rot) 0.9585 | loss(pos) 0.0771 | loss(seq) 0.0237 | grad 4.1108 | lr 0.0010 | time_forward 2.8220 | time_backward 3.6720
[2023-09-03 01:31:00,733::train::INFO] [train] Iter 16386 | loss 2.4659 | loss(rot) 0.0260 | loss(pos) 2.4379 | loss(seq) 0.0020 | grad 8.4921 | lr 0.0010 | time_forward 1.1860 | time_backward 1.4200
[2023-09-03 01:31:09,369::train::INFO] [train] Iter 16387 | loss 1.4258 | loss(rot) 0.9406 | loss(pos) 0.1112 | loss(seq) 0.3740 | grad 2.8837 | lr 0.0010 | time_forward 3.5950 | time_backward 5.0380
[2023-09-03 01:31:11,927::train::INFO] [train] Iter 16388 | loss 1.5004 | loss(rot) 0.5442 | loss(pos) 0.3966 | loss(seq) 0.5596 | grad 4.3031 | lr 0.0010 | time_forward 1.1870 | time_backward 1.3670
[2023-09-03 01:31:20,109::train::INFO] [train] Iter 16389 | loss 1.1852 | loss(rot) 0.9949 | loss(pos) 0.1769 | loss(seq) 0.0134 | grad 7.5040 | lr 0.0010 | time_forward 3.2180 | time_backward 4.9470
[2023-09-03 01:31:28,672::train::INFO] [train] Iter 16390 | loss 0.9194 | loss(rot) 0.7637 | loss(pos) 0.1556 | loss(seq) 0.0000 | grad 4.6358 | lr 0.0010 | time_forward 3.1970 | time_backward 5.3470
[2023-09-03 01:31:36,148::train::INFO] [train] Iter 16391 | loss 1.0943 | loss(rot) 0.2513 | loss(pos) 0.4442 | loss(seq) 0.3989 | grad 5.6946 | lr 0.0010 | time_forward 2.8120 | time_backward 4.6620
[2023-09-03 01:31:44,790::train::INFO] [train] Iter 16392 | loss 0.9709 | loss(rot) 0.6858 | loss(pos) 0.1257 | loss(seq) 0.1595 | grad 6.2383 | lr 0.0010 | time_forward 3.2560 | time_backward 5.3820
[2023-09-03 01:31:53,531::train::INFO] [train] Iter 16393 | loss 1.4159 | loss(rot) 1.0417 | loss(pos) 0.1581 | loss(seq) 0.2160 | grad 4.3290 | lr 0.0010 | time_forward 3.1880 | time_backward 5.5500
[2023-09-03 01:31:56,132::train::INFO] [train] Iter 16394 | loss 0.7947 | loss(rot) 0.4790 | loss(pos) 0.1452 | loss(seq) 0.1706 | grad 4.5384 | lr 0.0010 | time_forward 1.1860 | time_backward 1.4110
[2023-09-03 01:32:02,083::train::INFO] [train] Iter 16395 | loss 1.1542 | loss(rot) 0.2613 | loss(pos) 0.4973 | loss(seq) 0.3955 | grad 7.0080 | lr 0.0010 | time_forward 2.3490 | time_backward 3.5970
[2023-09-03 01:32:10,871::train::INFO] [train] Iter 16396 | loss 1.6153 | loss(rot) 0.8053 | loss(pos) 0.3363 | loss(seq) 0.4737 | grad 12.8196 | lr 0.0010 | time_forward 3.2630 | time_backward 5.5220
[2023-09-03 01:32:13,418::train::INFO] [train] Iter 16397 | loss 2.1379 | loss(rot) 1.5696 | loss(pos) 0.2386 | loss(seq) 0.3296 | grad 5.0191 | lr 0.0010 | time_forward 1.1580 | time_backward 1.3860
[2023-09-03 01:32:20,670::train::INFO] [train] Iter 16398 | loss 0.9989 | loss(rot) 0.2387 | loss(pos) 0.5223 | loss(seq) 0.2379 | grad 4.4359 | lr 0.0010 | time_forward 3.0980 | time_backward 4.1500
[2023-09-03 01:32:28,913::train::INFO] [train] Iter 16399 | loss 1.4688 | loss(rot) 1.0202 | loss(pos) 0.1197 | loss(seq) 0.3289 | grad 4.9525 | lr 0.0010 | time_forward 3.2550 | time_backward 4.9840
[2023-09-03 01:32:36,485::train::INFO] [train] Iter 16400 | loss 0.9480 | loss(rot) 0.7695 | loss(pos) 0.1786 | loss(seq) 0.0000 | grad 11.0100 | lr 0.0010 | time_forward 2.9110 | time_backward 4.6580
[2023-09-03 01:32:44,960::train::INFO] [train] Iter 16401 | loss 0.7264 | loss(rot) 0.3111 | loss(pos) 0.3243 | loss(seq) 0.0910 | grad 3.3584 | lr 0.0010 | time_forward 3.6830 | time_backward 4.7890
[2023-09-03 01:32:47,648::train::INFO] [train] Iter 16402 | loss 0.7149 | loss(rot) 0.1667 | loss(pos) 0.2857 | loss(seq) 0.2625 | grad 3.1052 | lr 0.0010 | time_forward 1.2270 | time_backward 1.4580
[2023-09-03 01:32:50,383::train::INFO] [train] Iter 16403 | loss 1.1637 | loss(rot) 0.9472 | loss(pos) 0.1965 | loss(seq) 0.0199 | grad 7.3590 | lr 0.0010 | time_forward 1.2970 | time_backward 1.4360
[2023-09-03 01:32:53,120::train::INFO] [train] Iter 16404 | loss 1.2548 | loss(rot) 0.9724 | loss(pos) 0.0555 | loss(seq) 0.2269 | grad 4.0331 | lr 0.0010 | time_forward 1.3010 | time_backward 1.4330
[2023-09-03 01:32:55,750::train::INFO] [train] Iter 16405 | loss 0.8570 | loss(rot) 0.4326 | loss(pos) 0.3672 | loss(seq) 0.0572 | grad 4.3951 | lr 0.0010 | time_forward 1.2420 | time_backward 1.3840
[2023-09-03 01:33:02,552::train::INFO] [train] Iter 16406 | loss 1.7447 | loss(rot) 1.6679 | loss(pos) 0.0764 | loss(seq) 0.0003 | grad 6.3934 | lr 0.0010 | time_forward 2.9240 | time_backward 3.8760
[2023-09-03 01:33:10,702::train::INFO] [train] Iter 16407 | loss 1.2831 | loss(rot) 0.9755 | loss(pos) 0.1010 | loss(seq) 0.2066 | grad 4.9882 | lr 0.0010 | time_forward 3.2370 | time_backward 4.9100
[2023-09-03 01:33:18,047::train::INFO] [train] Iter 16408 | loss 1.0306 | loss(rot) 0.2329 | loss(pos) 0.4726 | loss(seq) 0.3252 | grad 4.5836 | lr 0.0010 | time_forward 2.8930 | time_backward 4.4480
[2023-09-03 01:33:26,690::train::INFO] [train] Iter 16409 | loss 0.9310 | loss(rot) 0.3888 | loss(pos) 0.3619 | loss(seq) 0.1804 | grad 3.2713 | lr 0.0010 | time_forward 3.2880 | time_backward 5.3520
[2023-09-03 01:33:35,128::train::INFO] [train] Iter 16410 | loss 1.0809 | loss(rot) 0.4183 | loss(pos) 0.4203 | loss(seq) 0.2423 | grad 4.1058 | lr 0.0010 | time_forward 3.2780 | time_backward 5.1570
[2023-09-03 01:33:42,498::train::INFO] [train] Iter 16411 | loss 2.0870 | loss(rot) 1.3640 | loss(pos) 0.2768 | loss(seq) 0.4462 | grad 4.3838 | lr 0.0010 | time_forward 3.1480 | time_backward 4.2180
[2023-09-03 01:33:51,320::train::INFO] [train] Iter 16412 | loss 1.7508 | loss(rot) 1.5989 | loss(pos) 0.1293 | loss(seq) 0.0225 | grad 9.4859 | lr 0.0010 | time_forward 3.6040 | time_backward 5.2050
[2023-09-03 01:34:00,012::train::INFO] [train] Iter 16413 | loss 1.2626 | loss(rot) 0.3411 | loss(pos) 0.3683 | loss(seq) 0.5531 | grad 3.6026 | lr 0.0010 | time_forward 3.6190 | time_backward 5.0660
[2023-09-03 01:34:07,706::train::INFO] [train] Iter 16414 | loss 0.9080 | loss(rot) 0.7287 | loss(pos) 0.0976 | loss(seq) 0.0816 | grad 5.0193 | lr 0.0010 | time_forward 3.0340 | time_backward 4.6560
[2023-09-03 01:34:15,736::train::INFO] [train] Iter 16415 | loss 1.0854 | loss(rot) 0.4295 | loss(pos) 0.1849 | loss(seq) 0.4710 | grad 4.4565 | lr 0.0010 | time_forward 3.4620 | time_backward 4.5650
[2023-09-03 01:34:22,989::train::INFO] [train] Iter 16416 | loss 0.7204 | loss(rot) 0.0597 | loss(pos) 0.6505 | loss(seq) 0.0102 | grad 6.7953 | lr 0.0010 | time_forward 3.0760 | time_backward 4.1730
[2023-09-03 01:34:25,591::train::INFO] [train] Iter 16417 | loss 2.1836 | loss(rot) 1.7149 | loss(pos) 0.1524 | loss(seq) 0.3163 | grad 4.6649 | lr 0.0010 | time_forward 1.2130 | time_backward 1.3850
[2023-09-03 01:34:33,890::train::INFO] [train] Iter 16418 | loss 2.3881 | loss(rot) 2.0595 | loss(pos) 0.1785 | loss(seq) 0.1501 | grad 5.0252 | lr 0.0010 | time_forward 3.4070 | time_backward 4.8880
[2023-09-03 01:34:41,761::train::INFO] [train] Iter 16419 | loss 1.3586 | loss(rot) 0.0367 | loss(pos) 1.3187 | loss(seq) 0.0032 | grad 8.5482 | lr 0.0010 | time_forward 3.1380 | time_backward 4.7290
[2023-09-03 01:34:50,352::train::INFO] [train] Iter 16420 | loss 1.7376 | loss(rot) 1.0245 | loss(pos) 0.2318 | loss(seq) 0.4813 | grad 4.1861 | lr 0.0010 | time_forward 3.4860 | time_backward 5.1020
[2023-09-03 01:34:59,237::train::INFO] [train] Iter 16421 | loss 1.3211 | loss(rot) 0.4702 | loss(pos) 0.4917 | loss(seq) 0.3591 | grad 3.9145 | lr 0.0010 | time_forward 3.5680 | time_backward 5.3140
[2023-09-03 01:35:01,898::train::INFO] [train] Iter 16422 | loss 1.2529 | loss(rot) 0.2438 | loss(pos) 0.7011 | loss(seq) 0.3080 | grad 3.7596 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4060
[2023-09-03 01:35:04,106::train::INFO] [train] Iter 16423 | loss 1.2253 | loss(rot) 0.4862 | loss(pos) 0.3758 | loss(seq) 0.3632 | grad 4.3984 | lr 0.0010 | time_forward 1.0270 | time_backward 1.1770
[2023-09-03 01:35:12,852::train::INFO] [train] Iter 16424 | loss 1.1051 | loss(rot) 0.3808 | loss(pos) 0.2730 | loss(seq) 0.4513 | grad 3.1032 | lr 0.0010 | time_forward 3.5680 | time_backward 5.1590
[2023-09-03 01:35:20,231::train::INFO] [train] Iter 16425 | loss 0.8725 | loss(rot) 0.7387 | loss(pos) 0.1338 | loss(seq) 0.0000 | grad 4.3816 | lr 0.0010 | time_forward 3.1620 | time_backward 4.2140
[2023-09-03 01:35:28,625::train::INFO] [train] Iter 16426 | loss 0.7770 | loss(rot) 0.2271 | loss(pos) 0.2896 | loss(seq) 0.2602 | grad 3.4927 | lr 0.0010 | time_forward 3.2690 | time_backward 5.1220
[2023-09-03 01:35:37,498::train::INFO] [train] Iter 16427 | loss 0.9409 | loss(rot) 0.2368 | loss(pos) 0.4880 | loss(seq) 0.2161 | grad 3.1554 | lr 0.0010 | time_forward 3.6630 | time_backward 5.2050
[2023-09-03 01:35:40,165::train::INFO] [train] Iter 16428 | loss 1.7023 | loss(rot) 0.3968 | loss(pos) 0.7112 | loss(seq) 0.5943 | grad 5.8938 | lr 0.0010 | time_forward 1.2200 | time_backward 1.4450
[2023-09-03 01:35:42,970::train::INFO] [train] Iter 16429 | loss 1.2020 | loss(rot) 1.0948 | loss(pos) 0.0747 | loss(seq) 0.0325 | grad 11.2383 | lr 0.0010 | time_forward 1.2950 | time_backward 1.5070
[2023-09-03 01:35:50,703::train::INFO] [train] Iter 16430 | loss 2.9634 | loss(rot) 2.0596 | loss(pos) 0.4550 | loss(seq) 0.4488 | grad 4.5011 | lr 0.0010 | time_forward 3.0790 | time_backward 4.6490
[2023-09-03 01:35:53,324::train::INFO] [train] Iter 16431 | loss 0.9588 | loss(rot) 0.5731 | loss(pos) 0.1114 | loss(seq) 0.2743 | grad 5.6737 | lr 0.0010 | time_forward 1.1920 | time_backward 1.4260
[2023-09-03 01:36:02,381::train::INFO] [train] Iter 16432 | loss 1.2017 | loss(rot) 0.8099 | loss(pos) 0.0819 | loss(seq) 0.3099 | grad 5.4923 | lr 0.0010 | time_forward 3.4640 | time_backward 5.5890
[2023-09-03 01:36:05,033::train::INFO] [train] Iter 16433 | loss 0.5332 | loss(rot) 0.4401 | loss(pos) 0.0924 | loss(seq) 0.0006 | grad 4.2386 | lr 0.0010 | time_forward 1.1930 | time_backward 1.4560
[2023-09-03 01:36:07,760::train::INFO] [train] Iter 16434 | loss 0.9303 | loss(rot) 0.7279 | loss(pos) 0.1569 | loss(seq) 0.0455 | grad 5.1484 | lr 0.0010 | time_forward 1.2710 | time_backward 1.4520
[2023-09-03 01:36:15,100::train::INFO] [train] Iter 16435 | loss 0.9778 | loss(rot) 0.3262 | loss(pos) 0.5260 | loss(seq) 0.1255 | grad 4.9951 | lr 0.0010 | time_forward 3.0640 | time_backward 4.2720
[2023-09-03 01:36:21,814::train::INFO] [train] Iter 16436 | loss 2.1979 | loss(rot) 1.8853 | loss(pos) 0.0957 | loss(seq) 0.2169 | grad 5.5609 | lr 0.0010 | time_forward 2.8730 | time_backward 3.8380
[2023-09-03 01:36:29,645::train::INFO] [train] Iter 16437 | loss 1.3344 | loss(rot) 0.3617 | loss(pos) 0.1582 | loss(seq) 0.8145 | grad 3.3729 | lr 0.0010 | time_forward 3.3290 | time_backward 4.4990
[2023-09-03 01:36:38,664::train::INFO] [train] Iter 16438 | loss 0.9471 | loss(rot) 0.1899 | loss(pos) 0.4456 | loss(seq) 0.3116 | grad 4.4191 | lr 0.0010 | time_forward 3.6160 | time_backward 5.3990
[2023-09-03 01:36:46,545::train::INFO] [train] Iter 16439 | loss 0.9857 | loss(rot) 0.7966 | loss(pos) 0.1524 | loss(seq) 0.0367 | grad 4.5940 | lr 0.0010 | time_forward 3.3520 | time_backward 4.5270
[2023-09-03 01:36:54,218::train::INFO] [train] Iter 16440 | loss 1.1141 | loss(rot) 0.5960 | loss(pos) 0.1489 | loss(seq) 0.3692 | grad 4.7469 | lr 0.0010 | time_forward 3.3630 | time_backward 4.3060
[2023-09-03 01:36:56,798::train::INFO] [train] Iter 16441 | loss 1.6175 | loss(rot) 0.0366 | loss(pos) 1.3420 | loss(seq) 0.2389 | grad 5.0679 | lr 0.0010 | time_forward 1.1690 | time_backward 1.4030
[2023-09-03 01:37:04,740::train::INFO] [train] Iter 16442 | loss 1.2331 | loss(rot) 0.5706 | loss(pos) 0.0727 | loss(seq) 0.5897 | grad 3.8690 | lr 0.0010 | time_forward 3.3720 | time_backward 4.5650
[2023-09-03 01:37:11,846::train::INFO] [train] Iter 16443 | loss 1.8094 | loss(rot) 1.5563 | loss(pos) 0.2510 | loss(seq) 0.0020 | grad 4.5971 | lr 0.0010 | time_forward 3.0630 | time_backward 4.0400
[2023-09-03 01:37:20,394::train::INFO] [train] Iter 16444 | loss 1.1789 | loss(rot) 1.0156 | loss(pos) 0.1630 | loss(seq) 0.0003 | grad 9.9933 | lr 0.0010 | time_forward 3.5370 | time_backward 5.0070
[2023-09-03 01:37:25,938::train::INFO] [train] Iter 16445 | loss 1.6750 | loss(rot) 1.0766 | loss(pos) 0.1815 | loss(seq) 0.4169 | grad 3.6802 | lr 0.0010 | time_forward 2.3030 | time_backward 3.2380
[2023-09-03 01:37:32,728::train::INFO] [train] Iter 16446 | loss 1.8420 | loss(rot) 1.5086 | loss(pos) 0.0636 | loss(seq) 0.2698 | grad 12.1928 | lr 0.0010 | time_forward 2.9000 | time_backward 3.8880
[2023-09-03 01:37:35,957::train::INFO] [train] Iter 16447 | loss 2.1483 | loss(rot) 1.6326 | loss(pos) 0.1412 | loss(seq) 0.3745 | grad 5.4477 | lr 0.0010 | time_forward 1.3580 | time_backward 1.8670
[2023-09-03 01:37:43,110::train::INFO] [train] Iter 16448 | loss 1.4127 | loss(rot) 0.1907 | loss(pos) 0.8992 | loss(seq) 0.3228 | grad 5.0560 | lr 0.0010 | time_forward 2.7710 | time_backward 4.3780
[2023-09-03 01:37:45,854::train::INFO] [train] Iter 16449 | loss 1.7357 | loss(rot) 0.2182 | loss(pos) 1.4995 | loss(seq) 0.0180 | grad 6.4598 | lr 0.0010 | time_forward 1.2790 | time_backward 1.4610
[2023-09-03 01:37:53,524::train::INFO] [train] Iter 16450 | loss 1.2045 | loss(rot) 0.7288 | loss(pos) 0.1103 | loss(seq) 0.3655 | grad 4.4723 | lr 0.0010 | time_forward 3.2020 | time_backward 4.4650
[2023-09-03 01:38:02,194::train::INFO] [train] Iter 16451 | loss 2.5708 | loss(rot) 2.4603 | loss(pos) 0.1057 | loss(seq) 0.0048 | grad 3.4515 | lr 0.0010 | time_forward 3.8030 | time_backward 4.8630
[2023-09-03 01:38:10,677::train::INFO] [train] Iter 16452 | loss 2.0917 | loss(rot) 0.0343 | loss(pos) 2.0568 | loss(seq) 0.0006 | grad 10.5117 | lr 0.0010 | time_forward 3.5720 | time_backward 4.9090
[2023-09-03 01:38:17,660::train::INFO] [train] Iter 16453 | loss 2.0973 | loss(rot) 1.8630 | loss(pos) 0.0783 | loss(seq) 0.1559 | grad 9.9652 | lr 0.0010 | time_forward 3.1630 | time_backward 3.8170
[2023-09-03 01:38:23,232::train::INFO] [train] Iter 16454 | loss 1.1757 | loss(rot) 0.3005 | loss(pos) 0.5933 | loss(seq) 0.2819 | grad 4.9910 | lr 0.0010 | time_forward 2.3720 | time_backward 3.1960
[2023-09-03 01:38:26,423::train::INFO] [train] Iter 16455 | loss 1.7443 | loss(rot) 1.5047 | loss(pos) 0.2306 | loss(seq) 0.0090 | grad 4.8470 | lr 0.0010 | time_forward 1.4030 | time_backward 1.7840
[2023-09-03 01:38:34,530::train::INFO] [train] Iter 16456 | loss 1.0419 | loss(rot) 0.4455 | loss(pos) 0.3299 | loss(seq) 0.2666 | grad 5.5681 | lr 0.0010 | time_forward 3.3110 | time_backward 4.7930
[2023-09-03 01:38:40,772::train::INFO] [train] Iter 16457 | loss 0.8265 | loss(rot) 0.5889 | loss(pos) 0.1130 | loss(seq) 0.1246 | grad 4.0046 | lr 0.0010 | time_forward 2.6700 | time_backward 3.5680
[2023-09-03 01:38:48,054::train::INFO] [train] Iter 16458 | loss 1.6943 | loss(rot) 1.5214 | loss(pos) 0.1547 | loss(seq) 0.0182 | grad 7.1873 | lr 0.0010 | time_forward 3.0980 | time_backward 4.1800
[2023-09-03 01:38:56,711::train::INFO] [train] Iter 16459 | loss 0.9776 | loss(rot) 0.3707 | loss(pos) 0.2025 | loss(seq) 0.4044 | grad 4.0247 | lr 0.0010 | time_forward 3.3820 | time_backward 5.2730
[2023-09-03 01:38:59,400::train::INFO] [train] Iter 16460 | loss 1.3532 | loss(rot) 1.1859 | loss(pos) 0.0711 | loss(seq) 0.0961 | grad 7.4903 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4300
[2023-09-03 01:39:07,341::train::INFO] [train] Iter 16461 | loss 1.6699 | loss(rot) 0.9350 | loss(pos) 0.2709 | loss(seq) 0.4640 | grad 3.7420 | lr 0.0010 | time_forward 3.5510 | time_backward 4.3770
[2023-09-03 01:39:09,782::train::INFO] [train] Iter 16462 | loss 1.8653 | loss(rot) 1.1370 | loss(pos) 0.2427 | loss(seq) 0.4857 | grad 3.9892 | lr 0.0010 | time_forward 1.1530 | time_backward 1.2840
[2023-09-03 01:39:19,892::train::INFO] [train] Iter 16463 | loss 1.0518 | loss(rot) 0.1180 | loss(pos) 0.8716 | loss(seq) 0.0622 | grad 4.6000 | lr 0.0010 | time_forward 4.9010 | time_backward 5.2050
[2023-09-03 01:39:25,225::train::INFO] [train] Iter 16464 | loss 1.8912 | loss(rot) 1.7119 | loss(pos) 0.1793 | loss(seq) 0.0000 | grad 14.3815 | lr 0.0010 | time_forward 2.2630 | time_backward 3.0670
[2023-09-03 01:39:28,307::train::INFO] [train] Iter 16465 | loss 2.0306 | loss(rot) 0.1030 | loss(pos) 1.9165 | loss(seq) 0.0110 | grad 8.8773 | lr 0.0010 | time_forward 1.5410 | time_backward 1.5370
[2023-09-03 01:39:37,765::train::INFO] [train] Iter 16466 | loss 1.3884 | loss(rot) 1.0489 | loss(pos) 0.0564 | loss(seq) 0.2830 | grad 10.2805 | lr 0.0010 | time_forward 4.4840 | time_backward 4.9710
[2023-09-03 01:39:40,523::train::INFO] [train] Iter 16467 | loss 0.9928 | loss(rot) 0.3851 | loss(pos) 0.2835 | loss(seq) 0.3242 | grad 7.3016 | lr 0.0010 | time_forward 1.3340 | time_backward 1.4200
[2023-09-03 01:39:48,519::train::INFO] [train] Iter 16468 | loss 1.3912 | loss(rot) 1.2500 | loss(pos) 0.0631 | loss(seq) 0.0781 | grad 7.7231 | lr 0.0010 | time_forward 3.5630 | time_backward 4.4300
[2023-09-03 01:39:57,090::train::INFO] [train] Iter 16469 | loss 1.2646 | loss(rot) 0.2061 | loss(pos) 1.0270 | loss(seq) 0.0315 | grad 5.4032 | lr 0.0010 | time_forward 3.6540 | time_backward 4.9130
[2023-09-03 01:40:06,960::train::INFO] [train] Iter 16470 | loss 1.2543 | loss(rot) 0.6509 | loss(pos) 0.1096 | loss(seq) 0.4938 | grad 2.8413 | lr 0.0010 | time_forward 3.8340 | time_backward 6.0320
[2023-09-03 01:40:14,783::train::INFO] [train] Iter 16471 | loss 0.9643 | loss(rot) 0.3209 | loss(pos) 0.2649 | loss(seq) 0.3785 | grad 4.2866 | lr 0.0010 | time_forward 3.6320 | time_backward 4.1880
[2023-09-03 01:40:24,687::train::INFO] [train] Iter 16472 | loss 1.0961 | loss(rot) 0.2072 | loss(pos) 0.4860 | loss(seq) 0.4029 | grad 3.7139 | lr 0.0010 | time_forward 4.0390 | time_backward 5.8620
[2023-09-03 01:40:31,431::train::INFO] [train] Iter 16473 | loss 2.4727 | loss(rot) 2.3173 | loss(pos) 0.1102 | loss(seq) 0.0452 | grad 5.1255 | lr 0.0010 | time_forward 2.9560 | time_backward 3.7840
[2023-09-03 01:40:40,116::train::INFO] [train] Iter 16474 | loss 1.8834 | loss(rot) 1.2585 | loss(pos) 0.1351 | loss(seq) 0.4898 | grad 4.6089 | lr 0.0010 | time_forward 3.6050 | time_backward 5.0770
[2023-09-03 01:40:48,920::train::INFO] [train] Iter 16475 | loss 2.2615 | loss(rot) 1.6334 | loss(pos) 0.1737 | loss(seq) 0.4545 | grad 4.6904 | lr 0.0010 | time_forward 4.1540 | time_backward 4.6470
[2023-09-03 01:40:57,036::train::INFO] [train] Iter 16476 | loss 1.3257 | loss(rot) 0.3541 | loss(pos) 0.5061 | loss(seq) 0.4654 | grad 5.3575 | lr 0.0010 | time_forward 3.4840 | time_backward 4.6280
[2023-09-03 01:40:59,797::train::INFO] [train] Iter 16477 | loss 1.6396 | loss(rot) 1.0302 | loss(pos) 0.1683 | loss(seq) 0.4411 | grad 5.0162 | lr 0.0010 | time_forward 1.3100 | time_backward 1.4480
[2023-09-03 01:41:05,826::train::INFO] [train] Iter 16478 | loss 1.6153 | loss(rot) 1.3293 | loss(pos) 0.1104 | loss(seq) 0.1757 | grad 6.9222 | lr 0.0010 | time_forward 2.5090 | time_backward 3.5160