text
stringlengths
56
1.16k
[2023-09-03 01:08:20,980::train::INFO] [train] Iter 16179 | loss 1.8040 | loss(rot) 1.6209 | loss(pos) 0.1716 | loss(seq) 0.0115 | grad 6.8672 | lr 0.0010 | time_forward 1.2340 | time_backward 1.4200
[2023-09-03 01:08:29,531::train::INFO] [train] Iter 16180 | loss 2.1625 | loss(rot) 1.1236 | loss(pos) 0.4797 | loss(seq) 0.5592 | grad 8.9050 | lr 0.0010 | time_forward 3.4190 | time_backward 5.1290
[2023-09-03 01:08:38,595::train::INFO] [train] Iter 16181 | loss 2.1149 | loss(rot) 1.9244 | loss(pos) 0.1271 | loss(seq) 0.0633 | grad 3.6754 | lr 0.0010 | time_forward 3.6540 | time_backward 5.4050
[2023-09-03 01:08:46,268::train::INFO] [train] Iter 16182 | loss 1.6315 | loss(rot) 1.4780 | loss(pos) 0.1194 | loss(seq) 0.0340 | grad 10.8937 | lr 0.0010 | time_forward 2.9680 | time_backward 4.7010
[2023-09-03 01:08:48,984::train::INFO] [train] Iter 16183 | loss 1.1594 | loss(rot) 0.4359 | loss(pos) 0.2725 | loss(seq) 0.4510 | grad 5.5246 | lr 0.0010 | time_forward 1.2890 | time_backward 1.4210
[2023-09-03 01:08:58,256::train::INFO] [train] Iter 16184 | loss 2.3106 | loss(rot) 1.8431 | loss(pos) 0.2280 | loss(seq) 0.2395 | grad 5.7396 | lr 0.0010 | time_forward 3.8450 | time_backward 5.4240
[2023-09-03 01:09:05,672::train::INFO] [train] Iter 16185 | loss 1.6217 | loss(rot) 0.0786 | loss(pos) 1.5380 | loss(seq) 0.0051 | grad 5.5092 | lr 0.0010 | time_forward 3.1810 | time_backward 4.2320
[2023-09-03 01:09:14,754::train::INFO] [train] Iter 16186 | loss 0.9550 | loss(rot) 0.3486 | loss(pos) 0.4755 | loss(seq) 0.1310 | grad 4.0872 | lr 0.0010 | time_forward 3.7500 | time_backward 5.3280
[2023-09-03 01:09:22,102::train::INFO] [train] Iter 16187 | loss 1.5103 | loss(rot) 0.7164 | loss(pos) 0.1585 | loss(seq) 0.6353 | grad 4.8313 | lr 0.0010 | time_forward 2.8260 | time_backward 4.5180
[2023-09-03 01:09:30,987::train::INFO] [train] Iter 16188 | loss 1.7091 | loss(rot) 1.5496 | loss(pos) 0.1349 | loss(seq) 0.0246 | grad 3.6801 | lr 0.0010 | time_forward 3.5490 | time_backward 5.3330
[2023-09-03 01:09:39,888::train::INFO] [train] Iter 16189 | loss 1.9818 | loss(rot) 1.5490 | loss(pos) 0.1167 | loss(seq) 0.3161 | grad 13.8956 | lr 0.0010 | time_forward 3.4110 | time_backward 5.4870
[2023-09-03 01:09:47,953::train::INFO] [train] Iter 16190 | loss 1.7183 | loss(rot) 0.2262 | loss(pos) 0.7729 | loss(seq) 0.7192 | grad 4.0840 | lr 0.0010 | time_forward 3.4380 | time_backward 4.6240
[2023-09-03 01:09:56,919::train::INFO] [train] Iter 16191 | loss 0.6111 | loss(rot) 0.1174 | loss(pos) 0.4527 | loss(seq) 0.0409 | grad 3.2186 | lr 0.0010 | time_forward 3.4420 | time_backward 5.5200
[2023-09-03 01:09:59,446::train::INFO] [train] Iter 16192 | loss 3.0747 | loss(rot) 2.2688 | loss(pos) 0.3758 | loss(seq) 0.4302 | grad 6.0381 | lr 0.0010 | time_forward 1.2330 | time_backward 1.2910
[2023-09-03 01:10:07,490::train::INFO] [train] Iter 16193 | loss 0.9807 | loss(rot) 0.4741 | loss(pos) 0.3009 | loss(seq) 0.2058 | grad 4.2660 | lr 0.0010 | time_forward 3.4060 | time_backward 4.6340
[2023-09-03 01:10:10,250::train::INFO] [train] Iter 16194 | loss 2.3477 | loss(rot) 2.1730 | loss(pos) 0.1727 | loss(seq) 0.0020 | grad 4.9812 | lr 0.0010 | time_forward 1.2620 | time_backward 1.4950
[2023-09-03 01:10:19,291::train::INFO] [train] Iter 16195 | loss 1.6465 | loss(rot) 0.0364 | loss(pos) 1.6042 | loss(seq) 0.0059 | grad 5.8172 | lr 0.0010 | time_forward 3.7310 | time_backward 5.3060
[2023-09-03 01:10:28,848::train::INFO] [train] Iter 16196 | loss 1.6259 | loss(rot) 0.7821 | loss(pos) 0.1727 | loss(seq) 0.6711 | grad 3.7673 | lr 0.0010 | time_forward 3.8710 | time_backward 5.6820
[2023-09-03 01:10:36,853::train::INFO] [train] Iter 16197 | loss 2.4790 | loss(rot) 1.6041 | loss(pos) 0.2979 | loss(seq) 0.5770 | grad 6.2695 | lr 0.0010 | time_forward 3.2730 | time_backward 4.7280
[2023-09-03 01:10:46,115::train::INFO] [train] Iter 16198 | loss 1.8669 | loss(rot) 0.7021 | loss(pos) 1.1215 | loss(seq) 0.0433 | grad 4.2746 | lr 0.0010 | time_forward 4.0060 | time_backward 5.2520
[2023-09-03 01:10:48,801::train::INFO] [train] Iter 16199 | loss 2.0740 | loss(rot) 1.8970 | loss(pos) 0.1770 | loss(seq) 0.0000 | grad 4.6392 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4330
[2023-09-03 01:10:56,349::train::INFO] [train] Iter 16200 | loss 2.4698 | loss(rot) 1.4825 | loss(pos) 0.4088 | loss(seq) 0.5786 | grad 7.2522 | lr 0.0010 | time_forward 3.1850 | time_backward 4.3590
[2023-09-03 01:11:04,567::train::INFO] [train] Iter 16201 | loss 1.3816 | loss(rot) 1.1302 | loss(pos) 0.2514 | loss(seq) 0.0000 | grad 5.4642 | lr 0.0010 | time_forward 3.5730 | time_backward 4.6420
[2023-09-03 01:11:12,726::train::INFO] [train] Iter 16202 | loss 1.1395 | loss(rot) 0.6139 | loss(pos) 0.1206 | loss(seq) 0.4050 | grad 3.7457 | lr 0.0010 | time_forward 3.4040 | time_backward 4.7510
[2023-09-03 01:11:20,742::train::INFO] [train] Iter 16203 | loss 1.2494 | loss(rot) 0.7652 | loss(pos) 0.3015 | loss(seq) 0.1827 | grad 8.0049 | lr 0.0010 | time_forward 3.1980 | time_backward 4.8150
[2023-09-03 01:11:27,913::train::INFO] [train] Iter 16204 | loss 1.4906 | loss(rot) 1.3740 | loss(pos) 0.1162 | loss(seq) 0.0003 | grad 4.0755 | lr 0.0010 | time_forward 2.9660 | time_backward 4.2010
[2023-09-03 01:11:35,696::train::INFO] [train] Iter 16205 | loss 0.9821 | loss(rot) 0.5455 | loss(pos) 0.1091 | loss(seq) 0.3276 | grad 4.7985 | lr 0.0010 | time_forward 3.2280 | time_backward 4.5520
[2023-09-03 01:11:38,038::train::INFO] [train] Iter 16206 | loss 2.4623 | loss(rot) 1.9049 | loss(pos) 0.2259 | loss(seq) 0.3315 | grad 5.7947 | lr 0.0010 | time_forward 1.0880 | time_backward 1.2500
[2023-09-03 01:11:45,371::train::INFO] [train] Iter 16207 | loss 2.3350 | loss(rot) 2.1800 | loss(pos) 0.1184 | loss(seq) 0.0365 | grad 9.2245 | lr 0.0010 | time_forward 3.0010 | time_backward 4.3280
[2023-09-03 01:11:54,674::train::INFO] [train] Iter 16208 | loss 2.0121 | loss(rot) 1.2718 | loss(pos) 0.2182 | loss(seq) 0.5220 | grad 4.1789 | lr 0.0010 | time_forward 3.5110 | time_backward 5.7890
[2023-09-03 01:12:01,975::train::INFO] [train] Iter 16209 | loss 0.6937 | loss(rot) 0.1181 | loss(pos) 0.3655 | loss(seq) 0.2101 | grad 4.2378 | lr 0.0010 | time_forward 2.8540 | time_backward 4.4360
[2023-09-03 01:12:09,511::train::INFO] [train] Iter 16210 | loss 1.5482 | loss(rot) 1.3950 | loss(pos) 0.1520 | loss(seq) 0.0013 | grad 4.5805 | lr 0.0010 | time_forward 3.2190 | time_backward 4.3130
[2023-09-03 01:12:17,766::train::INFO] [train] Iter 16211 | loss 1.4247 | loss(rot) 1.0171 | loss(pos) 0.2685 | loss(seq) 0.1391 | grad 6.5154 | lr 0.0010 | time_forward 3.6320 | time_backward 4.6190
[2023-09-03 01:12:26,673::train::INFO] [train] Iter 16212 | loss 2.0651 | loss(rot) 1.8315 | loss(pos) 0.2289 | loss(seq) 0.0047 | grad 7.2043 | lr 0.0010 | time_forward 3.7250 | time_backward 5.1790
[2023-09-03 01:12:28,790::train::INFO] [train] Iter 16213 | loss 1.4006 | loss(rot) 0.6475 | loss(pos) 0.4192 | loss(seq) 0.3339 | grad 3.5760 | lr 0.0010 | time_forward 0.9790 | time_backward 1.1340
[2023-09-03 01:12:35,938::train::INFO] [train] Iter 16214 | loss 1.9151 | loss(rot) 1.6524 | loss(pos) 0.2607 | loss(seq) 0.0021 | grad 5.8704 | lr 0.0010 | time_forward 3.0740 | time_backward 4.0710
[2023-09-03 01:12:38,524::train::INFO] [train] Iter 16215 | loss 1.5187 | loss(rot) 0.3128 | loss(pos) 0.7482 | loss(seq) 0.4577 | grad 4.3317 | lr 0.0010 | time_forward 1.1970 | time_backward 1.3860
[2023-09-03 01:12:41,178::train::INFO] [train] Iter 16216 | loss 0.7815 | loss(rot) 0.1926 | loss(pos) 0.5442 | loss(seq) 0.0447 | grad 5.1782 | lr 0.0010 | time_forward 1.2620 | time_backward 1.3860
[2023-09-03 01:12:50,159::train::INFO] [train] Iter 16217 | loss 2.3923 | loss(rot) 1.7311 | loss(pos) 0.1878 | loss(seq) 0.4734 | grad 12.8488 | lr 0.0010 | time_forward 3.7020 | time_backward 5.2750
[2023-09-03 01:12:57,053::train::INFO] [train] Iter 16218 | loss 1.7921 | loss(rot) 1.6182 | loss(pos) 0.0714 | loss(seq) 0.1025 | grad 9.4638 | lr 0.0010 | time_forward 3.0390 | time_backward 3.8520
[2023-09-03 01:13:05,841::train::INFO] [train] Iter 16219 | loss 1.5868 | loss(rot) 1.1655 | loss(pos) 0.2122 | loss(seq) 0.2091 | grad 4.1529 | lr 0.0010 | time_forward 3.8100 | time_backward 4.9750
[2023-09-03 01:13:13,742::train::INFO] [train] Iter 16220 | loss 0.7935 | loss(rot) 0.2364 | loss(pos) 0.2039 | loss(seq) 0.3532 | grad 2.8891 | lr 0.0010 | time_forward 3.2500 | time_backward 4.6470
[2023-09-03 01:13:22,263::train::INFO] [train] Iter 16221 | loss 2.3048 | loss(rot) 2.1595 | loss(pos) 0.1150 | loss(seq) 0.0302 | grad 4.3378 | lr 0.0010 | time_forward 3.5330 | time_backward 4.9850
[2023-09-03 01:13:24,626::train::INFO] [train] Iter 16222 | loss 1.2729 | loss(rot) 0.3463 | loss(pos) 0.5815 | loss(seq) 0.3451 | grad 6.0729 | lr 0.0010 | time_forward 1.1360 | time_backward 1.2150
[2023-09-03 01:13:32,513::train::INFO] [train] Iter 16223 | loss 1.2642 | loss(rot) 1.1394 | loss(pos) 0.1236 | loss(seq) 0.0012 | grad 11.9474 | lr 0.0010 | time_forward 3.2830 | time_backward 4.5840
[2023-09-03 01:13:40,087::train::INFO] [train] Iter 16224 | loss 1.6809 | loss(rot) 0.8315 | loss(pos) 0.2459 | loss(seq) 0.6035 | grad 6.2727 | lr 0.0010 | time_forward 2.9730 | time_backward 4.5980
[2023-09-03 01:13:42,618::train::INFO] [train] Iter 16225 | loss 1.7972 | loss(rot) 1.0265 | loss(pos) 0.3434 | loss(seq) 0.4273 | grad 4.9108 | lr 0.0010 | time_forward 1.1800 | time_backward 1.3480
[2023-09-03 01:13:50,627::train::INFO] [train] Iter 16226 | loss 1.1329 | loss(rot) 0.9879 | loss(pos) 0.0968 | loss(seq) 0.0482 | grad 9.7908 | lr 0.0010 | time_forward 3.3380 | time_backward 4.6670
[2023-09-03 01:13:53,241::train::INFO] [train] Iter 16227 | loss 1.5712 | loss(rot) 1.3407 | loss(pos) 0.1458 | loss(seq) 0.0846 | grad 6.4601 | lr 0.0010 | time_forward 1.2410 | time_backward 1.3700
[2023-09-03 01:13:55,857::train::INFO] [train] Iter 16228 | loss 2.4847 | loss(rot) 1.9538 | loss(pos) 0.1664 | loss(seq) 0.3645 | grad 7.9481 | lr 0.0010 | time_forward 1.2410 | time_backward 1.3710
[2023-09-03 01:13:58,957::train::INFO] [train] Iter 16229 | loss 1.2785 | loss(rot) 0.3441 | loss(pos) 0.5742 | loss(seq) 0.3602 | grad 5.6365 | lr 0.0010 | time_forward 1.3780 | time_backward 1.7200
[2023-09-03 01:14:01,555::train::INFO] [train] Iter 16230 | loss 0.6527 | loss(rot) 0.4635 | loss(pos) 0.1397 | loss(seq) 0.0495 | grad 3.3814 | lr 0.0010 | time_forward 1.2020 | time_backward 1.3820
[2023-09-03 01:14:08,797::train::INFO] [train] Iter 16231 | loss 0.6108 | loss(rot) 0.4253 | loss(pos) 0.1849 | loss(seq) 0.0007 | grad 4.1184 | lr 0.0010 | time_forward 2.8300 | time_backward 4.4090
[2023-09-03 01:14:17,549::train::INFO] [train] Iter 16232 | loss 1.3887 | loss(rot) 1.2919 | loss(pos) 0.0949 | loss(seq) 0.0019 | grad 6.5524 | lr 0.0010 | time_forward 3.6370 | time_backward 5.1110
[2023-09-03 01:14:25,155::train::INFO] [train] Iter 16233 | loss 0.6184 | loss(rot) 0.0660 | loss(pos) 0.4184 | loss(seq) 0.1341 | grad 3.4504 | lr 0.0010 | time_forward 3.2960 | time_backward 4.3080
[2023-09-03 01:14:34,136::train::INFO] [train] Iter 16234 | loss 1.0769 | loss(rot) 0.3456 | loss(pos) 0.6167 | loss(seq) 0.1147 | grad 4.1392 | lr 0.0010 | time_forward 3.6220 | time_backward 5.3550
[2023-09-03 01:14:35,829::train::INFO] [train] Iter 16235 | loss 2.7991 | loss(rot) 2.3458 | loss(pos) 0.4533 | loss(seq) 0.0000 | grad 7.0778 | lr 0.0010 | time_forward 0.7550 | time_backward 0.9340
[2023-09-03 01:14:44,472::train::INFO] [train] Iter 16236 | loss 1.4568 | loss(rot) 0.7212 | loss(pos) 0.1682 | loss(seq) 0.5674 | grad 2.8941 | lr 0.0010 | time_forward 3.5050 | time_backward 5.1350
[2023-09-03 01:14:53,195::train::INFO] [train] Iter 16237 | loss 1.2425 | loss(rot) 0.3883 | loss(pos) 0.7188 | loss(seq) 0.1355 | grad 3.6992 | lr 0.0010 | time_forward 3.5810 | time_backward 5.1380
[2023-09-03 01:14:55,817::train::INFO] [train] Iter 16238 | loss 0.8534 | loss(rot) 0.0799 | loss(pos) 0.1954 | loss(seq) 0.5782 | grad 2.5299 | lr 0.0010 | time_forward 1.2330 | time_backward 1.3860
[2023-09-03 01:14:58,300::train::INFO] [train] Iter 16239 | loss 2.0490 | loss(rot) 1.7466 | loss(pos) 0.1140 | loss(seq) 0.1884 | grad 4.7205 | lr 0.0010 | time_forward 1.2050 | time_backward 1.2740
[2023-09-03 01:15:06,998::train::INFO] [train] Iter 16240 | loss 1.8055 | loss(rot) 1.0086 | loss(pos) 0.2986 | loss(seq) 0.4983 | grad 8.4267 | lr 0.0010 | time_forward 3.6790 | time_backward 5.0170
[2023-09-03 01:15:15,617::train::INFO] [train] Iter 16241 | loss 1.2512 | loss(rot) 1.1011 | loss(pos) 0.0857 | loss(seq) 0.0644 | grad 6.5266 | lr 0.0010 | time_forward 3.5350 | time_backward 5.0800
[2023-09-03 01:15:21,977::train::INFO] [train] Iter 16242 | loss 2.1004 | loss(rot) 1.4532 | loss(pos) 0.1697 | loss(seq) 0.4775 | grad 8.2171 | lr 0.0010 | time_forward 2.7550 | time_backward 3.5920
[2023-09-03 01:15:24,150::train::INFO] [train] Iter 16243 | loss 1.5289 | loss(rot) 1.4167 | loss(pos) 0.1116 | loss(seq) 0.0007 | grad 5.9923 | lr 0.0010 | time_forward 1.0260 | time_backward 1.1430
[2023-09-03 01:15:26,379::train::INFO] [train] Iter 16244 | loss 1.0367 | loss(rot) 0.3992 | loss(pos) 0.2432 | loss(seq) 0.3944 | grad 4.6240 | lr 0.0010 | time_forward 1.0590 | time_backward 1.1670
[2023-09-03 01:15:33,968::train::INFO] [train] Iter 16245 | loss 0.8900 | loss(rot) 0.4347 | loss(pos) 0.0806 | loss(seq) 0.3748 | grad 3.1108 | lr 0.0010 | time_forward 3.0100 | time_backward 4.5750
[2023-09-03 01:15:42,194::train::INFO] [train] Iter 16246 | loss 1.5730 | loss(rot) 0.5171 | loss(pos) 0.3990 | loss(seq) 0.6570 | grad 3.5900 | lr 0.0010 | time_forward 3.5340 | time_backward 4.6890
[2023-09-03 01:15:51,136::train::INFO] [train] Iter 16247 | loss 2.0600 | loss(rot) 0.0197 | loss(pos) 2.0399 | loss(seq) 0.0004 | grad 9.4813 | lr 0.0010 | time_forward 3.8200 | time_backward 5.1180
[2023-09-03 01:15:59,262::train::INFO] [train] Iter 16248 | loss 1.0038 | loss(rot) 0.6210 | loss(pos) 0.1363 | loss(seq) 0.2465 | grad 4.4591 | lr 0.0010 | time_forward 3.5360 | time_backward 4.5840
[2023-09-03 01:16:07,340::train::INFO] [train] Iter 16249 | loss 0.9546 | loss(rot) 0.4718 | loss(pos) 0.0826 | loss(seq) 0.4002 | grad 5.4577 | lr 0.0010 | time_forward 3.5380 | time_backward 4.5370
[2023-09-03 01:16:09,907::train::INFO] [train] Iter 16250 | loss 0.7942 | loss(rot) 0.2288 | loss(pos) 0.4788 | loss(seq) 0.0866 | grad 4.8486 | lr 0.0010 | time_forward 1.1770 | time_backward 1.3870
[2023-09-03 01:16:18,603::train::INFO] [train] Iter 16251 | loss 1.1071 | loss(rot) 0.5016 | loss(pos) 0.2838 | loss(seq) 0.3218 | grad 3.2736 | lr 0.0010 | time_forward 3.6270 | time_backward 5.0650
[2023-09-03 01:16:20,231::train::INFO] [train] Iter 16252 | loss 1.9943 | loss(rot) 1.1060 | loss(pos) 0.4351 | loss(seq) 0.4532 | grad 5.9559 | lr 0.0010 | time_forward 0.7290 | time_backward 0.8960
[2023-09-03 01:16:27,358::train::INFO] [train] Iter 16253 | loss 2.2643 | loss(rot) 2.1735 | loss(pos) 0.0906 | loss(seq) 0.0003 | grad 6.8143 | lr 0.0010 | time_forward 2.9870 | time_backward 4.1360
[2023-09-03 01:16:34,927::train::INFO] [train] Iter 16254 | loss 2.9057 | loss(rot) 1.9574 | loss(pos) 0.3588 | loss(seq) 0.5894 | grad 5.9274 | lr 0.0010 | time_forward 3.2600 | time_backward 4.3060
[2023-09-03 01:16:43,407::train::INFO] [train] Iter 16255 | loss 1.1761 | loss(rot) 0.5956 | loss(pos) 0.1732 | loss(seq) 0.4074 | grad 4.1912 | lr 0.0010 | time_forward 3.6540 | time_backward 4.8220
[2023-09-03 01:16:51,849::train::INFO] [train] Iter 16256 | loss 0.7732 | loss(rot) 0.3252 | loss(pos) 0.3875 | loss(seq) 0.0605 | grad 2.9127 | lr 0.0010 | time_forward 3.6140 | time_backward 4.8240
[2023-09-03 01:16:54,504::train::INFO] [train] Iter 16257 | loss 0.5029 | loss(rot) 0.0746 | loss(pos) 0.3713 | loss(seq) 0.0570 | grad 3.4054 | lr 0.0010 | time_forward 1.2610 | time_backward 1.3900
[2023-09-03 01:17:02,162::train::INFO] [train] Iter 16258 | loss 0.9874 | loss(rot) 0.0921 | loss(pos) 0.7488 | loss(seq) 0.1465 | grad 4.2008 | lr 0.0010 | time_forward 3.0570 | time_backward 4.5970
[2023-09-03 01:17:11,175::train::INFO] [train] Iter 16259 | loss 2.2571 | loss(rot) 1.4249 | loss(pos) 0.2329 | loss(seq) 0.5993 | grad 4.7210 | lr 0.0010 | time_forward 3.6630 | time_backward 5.3470
[2023-09-03 01:17:20,246::train::INFO] [train] Iter 16260 | loss 1.7001 | loss(rot) 1.1595 | loss(pos) 0.1560 | loss(seq) 0.3847 | grad 5.8359 | lr 0.0010 | time_forward 3.6920 | time_backward 5.3640
[2023-09-03 01:17:27,822::train::INFO] [train] Iter 16261 | loss 1.0142 | loss(rot) 0.0807 | loss(pos) 0.9152 | loss(seq) 0.0183 | grad 5.6170 | lr 0.0010 | time_forward 3.2410 | time_backward 4.3310
[2023-09-03 01:17:36,816::train::INFO] [train] Iter 16262 | loss 1.4758 | loss(rot) 1.1542 | loss(pos) 0.2681 | loss(seq) 0.0535 | grad 5.7081 | lr 0.0010 | time_forward 3.8290 | time_backward 5.1620
[2023-09-03 01:17:44,900::train::INFO] [train] Iter 16263 | loss 1.4164 | loss(rot) 0.8885 | loss(pos) 0.2556 | loss(seq) 0.2723 | grad 3.9829 | lr 0.0010 | time_forward 3.4400 | time_backward 4.6400
[2023-09-03 01:17:47,590::train::INFO] [train] Iter 16264 | loss 0.9115 | loss(rot) 0.1613 | loss(pos) 0.7212 | loss(seq) 0.0290 | grad 4.8045 | lr 0.0010 | time_forward 1.2480 | time_backward 1.4390
[2023-09-03 01:17:56,536::train::INFO] [train] Iter 16265 | loss 1.4749 | loss(rot) 1.3118 | loss(pos) 0.1320 | loss(seq) 0.0311 | grad 5.5937 | lr 0.0010 | time_forward 3.6650 | time_backward 5.2760
[2023-09-03 01:18:03,128::train::INFO] [train] Iter 16266 | loss 2.6745 | loss(rot) 2.3362 | loss(pos) 0.0656 | loss(seq) 0.2727 | grad 4.7191 | lr 0.0010 | time_forward 2.7780 | time_backward 3.8110
[2023-09-03 01:18:12,352::train::INFO] [train] Iter 16267 | loss 1.7445 | loss(rot) 1.3843 | loss(pos) 0.1114 | loss(seq) 0.2488 | grad 4.3249 | lr 0.0010 | time_forward 3.6180 | time_backward 5.6020
[2023-09-03 01:18:14,957::train::INFO] [train] Iter 16268 | loss 0.8667 | loss(rot) 0.7199 | loss(pos) 0.1462 | loss(seq) 0.0007 | grad 5.2774 | lr 0.0010 | time_forward 1.2290 | time_backward 1.3720
[2023-09-03 01:18:20,498::train::INFO] [train] Iter 16269 | loss 1.1084 | loss(rot) 0.9527 | loss(pos) 0.0900 | loss(seq) 0.0657 | grad 4.6172 | lr 0.0010 | time_forward 2.2750 | time_backward 3.2640
[2023-09-03 01:18:29,581::train::INFO] [train] Iter 16270 | loss 1.3006 | loss(rot) 1.1109 | loss(pos) 0.1853 | loss(seq) 0.0045 | grad 4.7098 | lr 0.0010 | time_forward 3.6820 | time_backward 5.3970
[2023-09-03 01:18:37,455::train::INFO] [train] Iter 16271 | loss 0.7058 | loss(rot) 0.1289 | loss(pos) 0.3175 | loss(seq) 0.2594 | grad 3.7168 | lr 0.0010 | time_forward 3.3910 | time_backward 4.4800
[2023-09-03 01:18:45,789::train::INFO] [train] Iter 16272 | loss 1.2256 | loss(rot) 0.1422 | loss(pos) 0.9281 | loss(seq) 0.1554 | grad 6.2009 | lr 0.0010 | time_forward 3.5930 | time_backward 4.7370
[2023-09-03 01:18:54,662::train::INFO] [train] Iter 16273 | loss 1.4255 | loss(rot) 0.2600 | loss(pos) 1.1448 | loss(seq) 0.0207 | grad 6.9215 | lr 0.0010 | time_forward 3.7470 | time_backward 5.1230
[2023-09-03 01:18:57,894::train::INFO] [train] Iter 16274 | loss 1.1501 | loss(rot) 0.9678 | loss(pos) 0.1665 | loss(seq) 0.0158 | grad 4.2212 | lr 0.0010 | time_forward 1.3740 | time_backward 1.8540
[2023-09-03 01:19:00,619::train::INFO] [train] Iter 16275 | loss 0.8468 | loss(rot) 0.3252 | loss(pos) 0.2444 | loss(seq) 0.2772 | grad 3.4133 | lr 0.0010 | time_forward 1.2870 | time_backward 1.4340
[2023-09-03 01:19:08,385::train::INFO] [train] Iter 16276 | loss 1.4840 | loss(rot) 0.6216 | loss(pos) 0.3994 | loss(seq) 0.4630 | grad 5.4333 | lr 0.0010 | time_forward 3.2920 | time_backward 4.4700
[2023-09-03 01:19:17,534::train::INFO] [train] Iter 16277 | loss 0.9397 | loss(rot) 0.4105 | loss(pos) 0.4878 | loss(seq) 0.0414 | grad 3.1427 | lr 0.0010 | time_forward 3.9430 | time_backward 5.2020
[2023-09-03 01:19:25,226::train::INFO] [train] Iter 16278 | loss 1.8443 | loss(rot) 1.0173 | loss(pos) 0.3016 | loss(seq) 0.5255 | grad 5.9937 | lr 0.0010 | time_forward 3.2080 | time_backward 4.4810