text
stringlengths
56
1.16k
[2023-09-03 00:57:11,297::train::INFO] [train] Iter 16079 | loss 0.9011 | loss(rot) 0.3453 | loss(pos) 0.5443 | loss(seq) 0.0115 | grad 3.7694 | lr 0.0010 | time_forward 3.6900 | time_backward 5.1090
[2023-09-03 00:57:19,117::train::INFO] [train] Iter 16080 | loss 0.6993 | loss(rot) 0.0420 | loss(pos) 0.6485 | loss(seq) 0.0089 | grad 4.2997 | lr 0.0010 | time_forward 3.2180 | time_backward 4.5990
[2023-09-03 00:57:27,942::train::INFO] [train] Iter 16081 | loss 1.1643 | loss(rot) 0.4721 | loss(pos) 0.2210 | loss(seq) 0.4713 | grad 3.6813 | lr 0.0010 | time_forward 3.5180 | time_backward 5.3040
[2023-09-03 00:57:30,170::train::INFO] [train] Iter 16082 | loss 0.8911 | loss(rot) 0.1160 | loss(pos) 0.5153 | loss(seq) 0.2598 | grad 4.5962 | lr 0.0010 | time_forward 1.0230 | time_backward 1.1990
[2023-09-03 00:57:39,227::train::INFO] [train] Iter 16083 | loss 1.0166 | loss(rot) 0.4524 | loss(pos) 0.2450 | loss(seq) 0.3192 | grad 2.8960 | lr 0.0010 | time_forward 3.7220 | time_backward 5.3320
[2023-09-03 00:57:45,350::train::INFO] [train] Iter 16084 | loss 1.3695 | loss(rot) 0.5306 | loss(pos) 0.6218 | loss(seq) 0.2171 | grad 4.5822 | lr 0.0010 | time_forward 2.6070 | time_backward 3.5130
[2023-09-03 00:57:48,055::train::INFO] [train] Iter 16085 | loss 1.4001 | loss(rot) 0.2013 | loss(pos) 0.9197 | loss(seq) 0.2792 | grad 3.6537 | lr 0.0010 | time_forward 1.2660 | time_backward 1.4350
[2023-09-03 00:57:56,727::train::INFO] [train] Iter 16086 | loss 1.9527 | loss(rot) 1.3688 | loss(pos) 0.1118 | loss(seq) 0.4720 | grad 7.6961 | lr 0.0010 | time_forward 3.5960 | time_backward 5.0720
[2023-09-03 00:58:04,252::train::INFO] [train] Iter 16087 | loss 1.5495 | loss(rot) 1.4329 | loss(pos) 0.1044 | loss(seq) 0.0122 | grad 8.8056 | lr 0.0010 | time_forward 3.1890 | time_backward 4.3340
[2023-09-03 00:58:12,263::train::INFO] [train] Iter 16088 | loss 1.3749 | loss(rot) 0.6826 | loss(pos) 0.2198 | loss(seq) 0.4726 | grad 4.3003 | lr 0.0010 | time_forward 3.4680 | time_backward 4.5380
[2023-09-03 00:58:21,149::train::INFO] [train] Iter 16089 | loss 1.1007 | loss(rot) 0.8776 | loss(pos) 0.1249 | loss(seq) 0.0982 | grad 5.0966 | lr 0.0010 | time_forward 3.4640 | time_backward 5.4190
[2023-09-03 00:58:30,121::train::INFO] [train] Iter 16090 | loss 1.3987 | loss(rot) 1.1847 | loss(pos) 0.2140 | loss(seq) 0.0000 | grad 5.9736 | lr 0.0010 | time_forward 3.5260 | time_backward 5.4430
[2023-09-03 00:58:38,404::train::INFO] [train] Iter 16091 | loss 1.5512 | loss(rot) 1.2958 | loss(pos) 0.1341 | loss(seq) 0.1213 | grad 6.2603 | lr 0.0010 | time_forward 3.3080 | time_backward 4.9710
[2023-09-03 00:58:46,205::train::INFO] [train] Iter 16092 | loss 2.0021 | loss(rot) 1.9370 | loss(pos) 0.0651 | loss(seq) 0.0000 | grad 11.6462 | lr 0.0010 | time_forward 3.3340 | time_backward 4.4650
[2023-09-03 00:58:48,888::train::INFO] [train] Iter 16093 | loss 1.6514 | loss(rot) 1.4133 | loss(pos) 0.2375 | loss(seq) 0.0007 | grad 7.0541 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4400
[2023-09-03 00:58:58,411::train::INFO] [train] Iter 16094 | loss 1.2947 | loss(rot) 1.2277 | loss(pos) 0.0469 | loss(seq) 0.0200 | grad 3.8895 | lr 0.0010 | time_forward 3.8900 | time_backward 5.6180
[2023-09-03 00:59:01,051::train::INFO] [train] Iter 16095 | loss 0.8897 | loss(rot) 0.6910 | loss(pos) 0.1617 | loss(seq) 0.0371 | grad 5.2087 | lr 0.0010 | time_forward 1.2110 | time_backward 1.4250
[2023-09-03 00:59:09,880::train::INFO] [train] Iter 16096 | loss 1.1319 | loss(rot) 0.3350 | loss(pos) 0.6871 | loss(seq) 0.1098 | grad 5.1744 | lr 0.0010 | time_forward 3.5600 | time_backward 5.2650
[2023-09-03 00:59:18,756::train::INFO] [train] Iter 16097 | loss 1.2392 | loss(rot) 0.2525 | loss(pos) 0.6326 | loss(seq) 0.3541 | grad 3.3970 | lr 0.0010 | time_forward 3.7680 | time_backward 5.0930
[2023-09-03 00:59:27,507::train::INFO] [train] Iter 16098 | loss 0.9736 | loss(rot) 0.3683 | loss(pos) 0.1175 | loss(seq) 0.4878 | grad 3.0077 | lr 0.0010 | time_forward 3.6890 | time_backward 5.0590
[2023-09-03 00:59:36,346::train::INFO] [train] Iter 16099 | loss 1.6194 | loss(rot) 0.9581 | loss(pos) 0.1905 | loss(seq) 0.4708 | grad 3.8271 | lr 0.0010 | time_forward 3.6440 | time_backward 5.1920
[2023-09-03 00:59:44,948::train::INFO] [train] Iter 16100 | loss 1.0062 | loss(rot) 0.3532 | loss(pos) 0.3063 | loss(seq) 0.3466 | grad 3.2761 | lr 0.0010 | time_forward 3.5370 | time_backward 5.0610
[2023-09-03 00:59:47,615::train::INFO] [train] Iter 16101 | loss 1.1495 | loss(rot) 0.3520 | loss(pos) 0.1792 | loss(seq) 0.6183 | grad 6.5232 | lr 0.0010 | time_forward 1.2290 | time_backward 1.4240
[2023-09-03 00:59:50,310::train::INFO] [train] Iter 16102 | loss 2.3608 | loss(rot) 1.3566 | loss(pos) 0.4293 | loss(seq) 0.5748 | grad 5.9393 | lr 0.0010 | time_forward 1.2780 | time_backward 1.4130
[2023-09-03 00:59:52,991::train::INFO] [train] Iter 16103 | loss 2.3172 | loss(rot) 1.3038 | loss(pos) 0.5341 | loss(seq) 0.4792 | grad 5.0197 | lr 0.0010 | time_forward 1.2360 | time_backward 1.4410
[2023-09-03 01:00:00,413::train::INFO] [train] Iter 16104 | loss 1.4155 | loss(rot) 0.8803 | loss(pos) 0.3493 | loss(seq) 0.1858 | grad 4.3719 | lr 0.0010 | time_forward 3.0060 | time_backward 4.4130
[2023-09-03 01:00:02,767::train::INFO] [train] Iter 16105 | loss 1.6292 | loss(rot) 0.5104 | loss(pos) 1.0620 | loss(seq) 0.0568 | grad 4.4030 | lr 0.0010 | time_forward 1.1220 | time_backward 1.2290
[2023-09-03 01:00:05,356::train::INFO] [train] Iter 16106 | loss 2.0888 | loss(rot) 2.0066 | loss(pos) 0.0791 | loss(seq) 0.0032 | grad 8.9409 | lr 0.0010 | time_forward 1.2010 | time_backward 1.3660
[2023-09-03 01:00:07,687::train::INFO] [train] Iter 16107 | loss 1.1796 | loss(rot) 0.6117 | loss(pos) 0.5457 | loss(seq) 0.0223 | grad 4.1850 | lr 0.0010 | time_forward 1.0900 | time_backward 1.2370
[2023-09-03 01:00:10,396::train::INFO] [train] Iter 16108 | loss 1.8963 | loss(rot) 1.1213 | loss(pos) 0.2938 | loss(seq) 0.4812 | grad 4.6180 | lr 0.0010 | time_forward 1.2440 | time_backward 1.4620
[2023-09-03 01:00:13,110::train::INFO] [train] Iter 16109 | loss 0.5786 | loss(rot) 0.4370 | loss(pos) 0.0987 | loss(seq) 0.0429 | grad 4.5186 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4600
[2023-09-03 01:00:16,238::train::INFO] [train] Iter 16110 | loss 1.4840 | loss(rot) 1.0569 | loss(pos) 0.1320 | loss(seq) 0.2951 | grad 4.2331 | lr 0.0010 | time_forward 1.3800 | time_backward 1.7430
[2023-09-03 01:00:18,909::train::INFO] [train] Iter 16111 | loss 2.4233 | loss(rot) 1.8060 | loss(pos) 0.2229 | loss(seq) 0.3944 | grad 5.8567 | lr 0.0010 | time_forward 1.2270 | time_backward 1.4410
[2023-09-03 01:00:21,747::train::INFO] [train] Iter 16112 | loss 2.0632 | loss(rot) 1.5779 | loss(pos) 0.2038 | loss(seq) 0.2816 | grad 6.8343 | lr 0.0010 | time_forward 1.3940 | time_backward 1.4400
[2023-09-03 01:00:30,546::train::INFO] [train] Iter 16113 | loss 1.8244 | loss(rot) 1.5443 | loss(pos) 0.2003 | loss(seq) 0.0798 | grad 5.4807 | lr 0.0010 | time_forward 3.6250 | time_backward 5.1700
[2023-09-03 01:00:37,071::train::INFO] [train] Iter 16114 | loss 2.2828 | loss(rot) 2.0596 | loss(pos) 0.1270 | loss(seq) 0.0962 | grad 12.2032 | lr 0.0010 | time_forward 2.8200 | time_backward 3.7020
[2023-09-03 01:00:47,067::train::INFO] [train] Iter 16115 | loss 2.0208 | loss(rot) 1.7367 | loss(pos) 0.2416 | loss(seq) 0.0424 | grad 4.4973 | lr 0.0010 | time_forward 4.8900 | time_backward 5.1020
[2023-09-03 01:00:52,737::train::INFO] [train] Iter 16116 | loss 0.9192 | loss(rot) 0.7175 | loss(pos) 0.1814 | loss(seq) 0.0203 | grad 5.0267 | lr 0.0010 | time_forward 2.2680 | time_backward 3.3980
[2023-09-03 01:01:03,965::train::INFO] [train] Iter 16117 | loss 1.3303 | loss(rot) 0.0951 | loss(pos) 0.9485 | loss(seq) 0.2867 | grad 6.2891 | lr 0.0010 | time_forward 5.3070 | time_backward 5.9170
[2023-09-03 01:01:13,514::train::INFO] [train] Iter 16118 | loss 1.1446 | loss(rot) 0.4490 | loss(pos) 0.1344 | loss(seq) 0.5613 | grad 4.1715 | lr 0.0010 | time_forward 4.5190 | time_backward 5.0260
[2023-09-03 01:01:20,853::train::INFO] [train] Iter 16119 | loss 1.7026 | loss(rot) 0.8392 | loss(pos) 0.5392 | loss(seq) 0.3242 | grad 5.8553 | lr 0.0010 | time_forward 2.9830 | time_backward 4.3520
[2023-09-03 01:01:32,339::train::INFO] [train] Iter 16120 | loss 2.0065 | loss(rot) 0.9640 | loss(pos) 0.5128 | loss(seq) 0.5298 | grad 5.8572 | lr 0.0010 | time_forward 5.4010 | time_backward 6.0810
[2023-09-03 01:01:40,202::train::INFO] [train] Iter 16121 | loss 1.5022 | loss(rot) 1.3919 | loss(pos) 0.1056 | loss(seq) 0.0046 | grad 12.3302 | lr 0.0010 | time_forward 3.3820 | time_backward 4.4770
[2023-09-03 01:01:42,807::train::INFO] [train] Iter 16122 | loss 2.5076 | loss(rot) 2.3451 | loss(pos) 0.1269 | loss(seq) 0.0356 | grad 5.0086 | lr 0.0010 | time_forward 1.2240 | time_backward 1.3770
[2023-09-03 01:01:45,401::train::INFO] [train] Iter 16123 | loss 0.6605 | loss(rot) 0.2790 | loss(pos) 0.2909 | loss(seq) 0.0906 | grad 4.0746 | lr 0.0010 | time_forward 1.2010 | time_backward 1.3890
[2023-09-03 01:01:53,353::train::INFO] [train] Iter 16124 | loss 1.8517 | loss(rot) 1.0830 | loss(pos) 0.2761 | loss(seq) 0.4926 | grad 4.4866 | lr 0.0010 | time_forward 3.3100 | time_backward 4.6390
[2023-09-03 01:02:01,141::train::INFO] [train] Iter 16125 | loss 1.3958 | loss(rot) 0.0353 | loss(pos) 1.3553 | loss(seq) 0.0052 | grad 6.9185 | lr 0.0010 | time_forward 3.1190 | time_backward 4.6660
[2023-09-03 01:02:08,392::train::INFO] [train] Iter 16126 | loss 1.4386 | loss(rot) 0.9756 | loss(pos) 0.1559 | loss(seq) 0.3071 | grad 5.6951 | lr 0.0010 | time_forward 2.8900 | time_backward 4.3570
[2023-09-03 01:02:16,754::train::INFO] [train] Iter 16127 | loss 2.1067 | loss(rot) 1.1692 | loss(pos) 0.5791 | loss(seq) 0.3583 | grad 4.3388 | lr 0.0010 | time_forward 3.3100 | time_backward 5.0470
[2023-09-03 01:02:26,232::train::INFO] [train] Iter 16128 | loss 1.2716 | loss(rot) 0.5173 | loss(pos) 0.5059 | loss(seq) 0.2484 | grad 2.8971 | lr 0.0010 | time_forward 3.6380 | time_backward 5.8370
[2023-09-03 01:02:28,655::train::INFO] [train] Iter 16129 | loss 1.1156 | loss(rot) 0.3711 | loss(pos) 0.2025 | loss(seq) 0.5420 | grad 3.5709 | lr 0.0010 | time_forward 1.1110 | time_backward 1.3080
[2023-09-03 01:02:37,251::train::INFO] [train] Iter 16130 | loss 2.1531 | loss(rot) 1.8942 | loss(pos) 0.1824 | loss(seq) 0.0766 | grad 4.3323 | lr 0.0010 | time_forward 3.5720 | time_backward 5.0220
[2023-09-03 01:02:46,223::train::INFO] [train] Iter 16131 | loss 2.2207 | loss(rot) 1.2543 | loss(pos) 0.4496 | loss(seq) 0.5168 | grad 9.8677 | lr 0.0010 | time_forward 3.4540 | time_backward 5.5140
[2023-09-03 01:02:49,615::train::INFO] [train] Iter 16132 | loss 1.1379 | loss(rot) 0.3047 | loss(pos) 0.5438 | loss(seq) 0.2894 | grad 4.2331 | lr 0.0010 | time_forward 1.3820 | time_backward 1.9940
[2023-09-03 01:02:52,400::train::INFO] [train] Iter 16133 | loss 2.0617 | loss(rot) 1.1245 | loss(pos) 0.4499 | loss(seq) 0.4873 | grad 4.6905 | lr 0.0010 | time_forward 1.2660 | time_backward 1.5170
[2023-09-03 01:02:55,083::train::INFO] [train] Iter 16134 | loss 1.4266 | loss(rot) 0.6928 | loss(pos) 0.2023 | loss(seq) 0.5315 | grad 4.4740 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4270
[2023-09-03 01:02:57,691::train::INFO] [train] Iter 16135 | loss 0.7763 | loss(rot) 0.3201 | loss(pos) 0.3595 | loss(seq) 0.0967 | grad 3.6705 | lr 0.0010 | time_forward 1.2020 | time_backward 1.4020
[2023-09-03 01:03:07,115::train::INFO] [train] Iter 16136 | loss 1.1591 | loss(rot) 0.7690 | loss(pos) 0.1065 | loss(seq) 0.2835 | grad 8.5844 | lr 0.0010 | time_forward 3.6790 | time_backward 5.7410
[2023-09-03 01:03:15,827::train::INFO] [train] Iter 16137 | loss 1.2771 | loss(rot) 0.5455 | loss(pos) 0.1820 | loss(seq) 0.5496 | grad 3.9675 | lr 0.0010 | time_forward 3.5990 | time_backward 5.1100
[2023-09-03 01:03:24,728::train::INFO] [train] Iter 16138 | loss 1.1791 | loss(rot) 0.8586 | loss(pos) 0.3108 | loss(seq) 0.0096 | grad 6.0174 | lr 0.0010 | time_forward 3.6260 | time_backward 5.2720
[2023-09-03 01:03:32,332::train::INFO] [train] Iter 16139 | loss 1.6665 | loss(rot) 1.3919 | loss(pos) 0.0983 | loss(seq) 0.1763 | grad 6.3774 | lr 0.0010 | time_forward 3.2200 | time_backward 4.3800
[2023-09-03 01:03:34,920::train::INFO] [train] Iter 16140 | loss 2.1706 | loss(rot) 2.0141 | loss(pos) 0.0986 | loss(seq) 0.0578 | grad 9.3666 | lr 0.0010 | time_forward 1.1810 | time_backward 1.4030
[2023-09-03 01:03:37,615::train::INFO] [train] Iter 16141 | loss 2.4158 | loss(rot) 1.6208 | loss(pos) 0.2696 | loss(seq) 0.5254 | grad 5.5829 | lr 0.0010 | time_forward 1.2370 | time_backward 1.4540
[2023-09-03 01:03:40,407::train::INFO] [train] Iter 16142 | loss 1.1479 | loss(rot) 0.2754 | loss(pos) 0.1966 | loss(seq) 0.6759 | grad 3.4695 | lr 0.0010 | time_forward 1.3200 | time_backward 1.4550
[2023-09-03 01:03:48,967::train::INFO] [train] Iter 16143 | loss 0.7359 | loss(rot) 0.3150 | loss(pos) 0.1267 | loss(seq) 0.2943 | grad 4.6299 | lr 0.0010 | time_forward 3.3570 | time_backward 5.1990
[2023-09-03 01:03:56,485::train::INFO] [train] Iter 16144 | loss 1.0388 | loss(rot) 0.0639 | loss(pos) 0.9607 | loss(seq) 0.0142 | grad 8.8498 | lr 0.0010 | time_forward 3.1370 | time_backward 4.3770
[2023-09-03 01:04:05,428::train::INFO] [train] Iter 16145 | loss 1.3757 | loss(rot) 0.4126 | loss(pos) 0.6226 | loss(seq) 0.3406 | grad 7.1742 | lr 0.0010 | time_forward 3.5960 | time_backward 5.3380
[2023-09-03 01:04:14,447::train::INFO] [train] Iter 16146 | loss 1.8447 | loss(rot) 0.8399 | loss(pos) 0.1927 | loss(seq) 0.8121 | grad 3.9201 | lr 0.0010 | time_forward 3.6910 | time_backward 5.3240
[2023-09-03 01:04:23,404::train::INFO] [train] Iter 16147 | loss 1.2129 | loss(rot) 0.5427 | loss(pos) 0.1583 | loss(seq) 0.5119 | grad 5.6827 | lr 0.0010 | time_forward 3.6380 | time_backward 5.3160
[2023-09-03 01:04:32,484::train::INFO] [train] Iter 16148 | loss 1.7423 | loss(rot) 1.5625 | loss(pos) 0.0442 | loss(seq) 0.1356 | grad 11.6388 | lr 0.0010 | time_forward 3.4370 | time_backward 5.6400
[2023-09-03 01:04:38,928::train::INFO] [train] Iter 16149 | loss 0.9692 | loss(rot) 0.0403 | loss(pos) 0.9241 | loss(seq) 0.0048 | grad 8.5607 | lr 0.0010 | time_forward 2.7070 | time_backward 3.7330
[2023-09-03 01:04:41,697::train::INFO] [train] Iter 16150 | loss 5.9315 | loss(rot) 0.1920 | loss(pos) 5.7334 | loss(seq) 0.0061 | grad 29.7298 | lr 0.0010 | time_forward 1.2400 | time_backward 1.5260
[2023-09-03 01:04:44,508::train::INFO] [train] Iter 16151 | loss 1.9957 | loss(rot) 1.3156 | loss(pos) 0.1869 | loss(seq) 0.4932 | grad 6.2517 | lr 0.0010 | time_forward 1.2790 | time_backward 1.5280
[2023-09-03 01:04:53,393::train::INFO] [train] Iter 16152 | loss 1.0769 | loss(rot) 0.5013 | loss(pos) 0.1812 | loss(seq) 0.3945 | grad 6.4902 | lr 0.0010 | time_forward 3.4390 | time_backward 5.4430
[2023-09-03 01:04:59,312::train::INFO] [train] Iter 16153 | loss 1.6848 | loss(rot) 1.1404 | loss(pos) 0.2425 | loss(seq) 0.3020 | grad 7.6626 | lr 0.0010 | time_forward 2.2630 | time_backward 3.6520
[2023-09-03 01:05:07,151::train::INFO] [train] Iter 16154 | loss 1.0863 | loss(rot) 0.5715 | loss(pos) 0.1890 | loss(seq) 0.3258 | grad 4.7291 | lr 0.0010 | time_forward 3.2820 | time_backward 4.5540
[2023-09-03 01:05:16,010::train::INFO] [train] Iter 16155 | loss 1.2056 | loss(rot) 1.0912 | loss(pos) 0.0880 | loss(seq) 0.0264 | grad 5.8897 | lr 0.0010 | time_forward 3.5940 | time_backward 5.2620
[2023-09-03 01:05:24,436::train::INFO] [train] Iter 16156 | loss 0.9791 | loss(rot) 0.6683 | loss(pos) 0.1366 | loss(seq) 0.1742 | grad 7.4083 | lr 0.0010 | time_forward 3.5840 | time_backward 4.8260
[2023-09-03 01:05:31,974::train::INFO] [train] Iter 16157 | loss 1.6122 | loss(rot) 1.1154 | loss(pos) 0.2298 | loss(seq) 0.2671 | grad 32.9779 | lr 0.0010 | time_forward 3.2080 | time_backward 4.3270
[2023-09-03 01:05:34,762::train::INFO] [train] Iter 16158 | loss 2.2495 | loss(rot) 1.2948 | loss(pos) 0.3998 | loss(seq) 0.5549 | grad 3.9044 | lr 0.0010 | time_forward 1.2420 | time_backward 1.5420
[2023-09-03 01:05:44,399::train::INFO] [train] Iter 16159 | loss 1.4865 | loss(rot) 0.5785 | loss(pos) 0.5317 | loss(seq) 0.3763 | grad 4.9048 | lr 0.0010 | time_forward 4.0770 | time_backward 5.5560
[2023-09-03 01:05:53,125::train::INFO] [train] Iter 16160 | loss 2.8327 | loss(rot) 2.3007 | loss(pos) 0.5317 | loss(seq) 0.0003 | grad 4.8743 | lr 0.0010 | time_forward 3.5000 | time_backward 5.2220
[2023-09-03 01:06:02,186::train::INFO] [train] Iter 16161 | loss 1.5730 | loss(rot) 0.7928 | loss(pos) 0.4322 | loss(seq) 0.3480 | grad 7.1894 | lr 0.0010 | time_forward 3.7180 | time_backward 5.3250
[2023-09-03 01:06:09,812::train::INFO] [train] Iter 16162 | loss 0.6412 | loss(rot) 0.1601 | loss(pos) 0.4514 | loss(seq) 0.0296 | grad 3.6792 | lr 0.0010 | time_forward 3.2650 | time_backward 4.3580
[2023-09-03 01:06:21,438::train::INFO] [train] Iter 16163 | loss 1.6776 | loss(rot) 1.1923 | loss(pos) 0.1179 | loss(seq) 0.3674 | grad 6.9247 | lr 0.0010 | time_forward 4.8980 | time_backward 6.7230
[2023-09-03 01:06:34,977::train::INFO] [train] Iter 16164 | loss 2.2542 | loss(rot) 2.1233 | loss(pos) 0.1238 | loss(seq) 0.0071 | grad 5.9868 | lr 0.0010 | time_forward 4.9770 | time_backward 8.5590
[2023-09-03 01:06:37,555::train::INFO] [train] Iter 16165 | loss 1.8170 | loss(rot) 1.6449 | loss(pos) 0.0617 | loss(seq) 0.1104 | grad 5.7095 | lr 0.0010 | time_forward 1.1840 | time_backward 1.3900
[2023-09-03 01:06:51,689::train::INFO] [train] Iter 16166 | loss 0.8640 | loss(rot) 0.7153 | loss(pos) 0.1364 | loss(seq) 0.0123 | grad 9.9345 | lr 0.0010 | time_forward 8.0990 | time_backward 6.0310
[2023-09-03 01:06:58,460::train::INFO] [train] Iter 16167 | loss 1.2637 | loss(rot) 0.5902 | loss(pos) 0.2565 | loss(seq) 0.4170 | grad 5.5041 | lr 0.0010 | time_forward 2.9730 | time_backward 3.7950
[2023-09-03 01:07:05,483::train::INFO] [train] Iter 16168 | loss 2.1315 | loss(rot) 1.2211 | loss(pos) 0.3054 | loss(seq) 0.6050 | grad 4.3094 | lr 0.0010 | time_forward 3.0300 | time_backward 3.9910
[2023-09-03 01:07:13,746::train::INFO] [train] Iter 16169 | loss 1.4194 | loss(rot) 0.0555 | loss(pos) 1.3615 | loss(seq) 0.0024 | grad 5.4458 | lr 0.0010 | time_forward 3.2670 | time_backward 4.9930
[2023-09-03 01:07:23,103::train::INFO] [train] Iter 16170 | loss 0.9236 | loss(rot) 0.0751 | loss(pos) 0.8321 | loss(seq) 0.0164 | grad 7.5159 | lr 0.0010 | time_forward 4.0630 | time_backward 5.2820
[2023-09-03 01:07:25,692::train::INFO] [train] Iter 16171 | loss 1.2733 | loss(rot) 0.6998 | loss(pos) 0.1169 | loss(seq) 0.4565 | grad 4.1123 | lr 0.0010 | time_forward 1.1890 | time_backward 1.3960
[2023-09-03 01:07:28,408::train::INFO] [train] Iter 16172 | loss 0.8446 | loss(rot) 0.2862 | loss(pos) 0.2877 | loss(seq) 0.2706 | grad 3.8450 | lr 0.0010 | time_forward 1.2960 | time_backward 1.4160
[2023-09-03 01:07:37,085::train::INFO] [train] Iter 16173 | loss 2.2806 | loss(rot) 1.8592 | loss(pos) 0.1296 | loss(seq) 0.2918 | grad 7.6391 | lr 0.0010 | time_forward 3.7330 | time_backward 4.9420
[2023-09-03 01:07:45,820::train::INFO] [train] Iter 16174 | loss 1.4241 | loss(rot) 0.6444 | loss(pos) 0.2015 | loss(seq) 0.5782 | grad 3.6072 | lr 0.0010 | time_forward 3.6760 | time_backward 5.0550
[2023-09-03 01:07:53,657::train::INFO] [train] Iter 16175 | loss 0.7849 | loss(rot) 0.0850 | loss(pos) 0.6836 | loss(seq) 0.0162 | grad 5.9194 | lr 0.0010 | time_forward 3.3350 | time_backward 4.4910
[2023-09-03 01:08:01,814::train::INFO] [train] Iter 16176 | loss 1.7039 | loss(rot) 0.0866 | loss(pos) 1.6164 | loss(seq) 0.0009 | grad 5.6727 | lr 0.0010 | time_forward 3.4070 | time_backward 4.7460
[2023-09-03 01:08:10,651::train::INFO] [train] Iter 16177 | loss 1.6135 | loss(rot) 0.6140 | loss(pos) 0.5399 | loss(seq) 0.4596 | grad 4.3540 | lr 0.0010 | time_forward 3.4690 | time_backward 5.3650
[2023-09-03 01:08:18,322::train::INFO] [train] Iter 16178 | loss 1.9789 | loss(rot) 0.5376 | loss(pos) 0.9406 | loss(seq) 0.5006 | grad 5.6563 | lr 0.0010 | time_forward 3.1590 | time_backward 4.5090