text
stringlengths
56
1.16k
[2023-09-03 01:19:28,629::train::INFO] [train] Iter 16279 | loss 1.9899 | loss(rot) 1.8814 | loss(pos) 0.1073 | loss(seq) 0.0013 | grad 4.4936 | lr 0.0010 | time_forward 1.4230 | time_backward 1.9770
[2023-09-03 01:19:36,060::train::INFO] [train] Iter 16280 | loss 1.5486 | loss(rot) 0.9705 | loss(pos) 0.3910 | loss(seq) 0.1870 | grad 5.2793 | lr 0.0010 | time_forward 3.0500 | time_backward 4.3780
[2023-09-03 01:19:44,226::train::INFO] [train] Iter 16281 | loss 1.1347 | loss(rot) 0.0629 | loss(pos) 1.0623 | loss(seq) 0.0095 | grad 7.5000 | lr 0.0010 | time_forward 3.3570 | time_backward 4.8050
[2023-09-03 01:19:46,892::train::INFO] [train] Iter 16282 | loss 0.3743 | loss(rot) 0.1495 | loss(pos) 0.2062 | loss(seq) 0.0185 | grad 3.5931 | lr 0.0010 | time_forward 1.2500 | time_backward 1.4130
[2023-09-03 01:19:55,242::train::INFO] [train] Iter 16283 | loss 1.0016 | loss(rot) 0.2216 | loss(pos) 0.5075 | loss(seq) 0.2725 | grad 4.4845 | lr 0.0010 | time_forward 3.4110 | time_backward 4.9110
[2023-09-03 01:19:57,419::train::INFO] [train] Iter 16284 | loss 0.9178 | loss(rot) 0.7423 | loss(pos) 0.1116 | loss(seq) 0.0638 | grad 4.0406 | lr 0.0010 | time_forward 1.0400 | time_backward 1.1340
[2023-09-03 01:20:04,390::train::INFO] [train] Iter 16285 | loss 0.9370 | loss(rot) 0.2745 | loss(pos) 0.5857 | loss(seq) 0.0769 | grad 6.3065 | lr 0.0010 | time_forward 2.7450 | time_backward 4.2230
[2023-09-03 01:20:13,847::train::INFO] [train] Iter 16286 | loss 1.2300 | loss(rot) 0.3512 | loss(pos) 0.4233 | loss(seq) 0.4556 | grad 5.6992 | lr 0.0010 | time_forward 3.7530 | time_backward 5.7000
[2023-09-03 01:20:21,437::train::INFO] [train] Iter 16287 | loss 0.6974 | loss(rot) 0.0448 | loss(pos) 0.6400 | loss(seq) 0.0126 | grad 6.2199 | lr 0.0010 | time_forward 3.1860 | time_backward 4.3990
[2023-09-03 01:20:28,907::train::INFO] [train] Iter 16288 | loss 2.0612 | loss(rot) 1.6073 | loss(pos) 0.1598 | loss(seq) 0.2940 | grad 9.0333 | lr 0.0010 | time_forward 2.8950 | time_backward 4.5720
[2023-09-03 01:20:31,557::train::INFO] [train] Iter 16289 | loss 1.0703 | loss(rot) 0.1020 | loss(pos) 0.9633 | loss(seq) 0.0051 | grad 8.4103 | lr 0.0010 | time_forward 1.2710 | time_backward 1.3760
[2023-09-03 01:20:40,941::train::INFO] [train] Iter 16290 | loss 1.0145 | loss(rot) 0.1089 | loss(pos) 0.7599 | loss(seq) 0.1457 | grad 4.6980 | lr 0.0010 | time_forward 3.6880 | time_backward 5.6920
[2023-09-03 01:20:43,415::train::INFO] [train] Iter 16291 | loss 1.5353 | loss(rot) 0.9343 | loss(pos) 0.2226 | loss(seq) 0.3784 | grad 6.1608 | lr 0.0010 | time_forward 1.1910 | time_backward 1.2800
[2023-09-03 01:20:52,607::train::INFO] [train] Iter 16292 | loss 1.5230 | loss(rot) 0.8349 | loss(pos) 0.2584 | loss(seq) 0.4297 | grad 5.7070 | lr 0.0010 | time_forward 3.6830 | time_backward 5.4890
[2023-09-03 01:21:00,308::train::INFO] [train] Iter 16293 | loss 1.0986 | loss(rot) 0.2460 | loss(pos) 0.8078 | loss(seq) 0.0448 | grad 4.5299 | lr 0.0010 | time_forward 3.3780 | time_backward 4.3200
[2023-09-03 01:21:09,060::train::INFO] [train] Iter 16294 | loss 2.0446 | loss(rot) 0.0198 | loss(pos) 2.0239 | loss(seq) 0.0009 | grad 6.6974 | lr 0.0010 | time_forward 3.5120 | time_backward 5.2360
[2023-09-03 01:21:16,878::train::INFO] [train] Iter 16295 | loss 2.8980 | loss(rot) 2.6937 | loss(pos) 0.1803 | loss(seq) 0.0240 | grad 3.9694 | lr 0.0010 | time_forward 3.3060 | time_backward 4.4970
[2023-09-03 01:21:26,262::train::INFO] [train] Iter 16296 | loss 1.3503 | loss(rot) 0.0339 | loss(pos) 1.3127 | loss(seq) 0.0036 | grad 7.0622 | lr 0.0010 | time_forward 3.8180 | time_backward 5.5630
[2023-09-03 01:21:35,558::train::INFO] [train] Iter 16297 | loss 0.5836 | loss(rot) 0.4427 | loss(pos) 0.0916 | loss(seq) 0.0493 | grad 3.6137 | lr 0.0010 | time_forward 3.8020 | time_backward 5.4910
[2023-09-03 01:21:43,198::train::INFO] [train] Iter 16298 | loss 1.0301 | loss(rot) 0.9379 | loss(pos) 0.0638 | loss(seq) 0.0284 | grad 6.5367 | lr 0.0010 | time_forward 3.3550 | time_backward 4.2810
[2023-09-03 01:21:52,327::train::INFO] [train] Iter 16299 | loss 1.3074 | loss(rot) 0.9665 | loss(pos) 0.1205 | loss(seq) 0.2204 | grad 3.1005 | lr 0.0010 | time_forward 3.5690 | time_backward 5.5570
[2023-09-03 01:22:00,603::train::INFO] [train] Iter 16300 | loss 1.0825 | loss(rot) 0.8547 | loss(pos) 0.2277 | loss(seq) 0.0000 | grad 3.8837 | lr 0.0010 | time_forward 3.5460 | time_backward 4.7260
[2023-09-03 01:22:08,147::train::INFO] [train] Iter 16301 | loss 1.2221 | loss(rot) 0.9127 | loss(pos) 0.0828 | loss(seq) 0.2266 | grad 5.7165 | lr 0.0010 | time_forward 3.4170 | time_backward 4.1230
[2023-09-03 01:22:16,940::train::INFO] [train] Iter 16302 | loss 1.4935 | loss(rot) 0.5683 | loss(pos) 0.3017 | loss(seq) 0.6235 | grad 4.2278 | lr 0.0010 | time_forward 3.4620 | time_backward 5.3280
[2023-09-03 01:22:24,805::train::INFO] [train] Iter 16303 | loss 1.4543 | loss(rot) 1.3438 | loss(pos) 0.1101 | loss(seq) 0.0003 | grad 4.8181 | lr 0.0010 | time_forward 3.3590 | time_backward 4.5020
[2023-09-03 01:22:32,079::train::INFO] [train] Iter 16304 | loss 1.4528 | loss(rot) 0.1808 | loss(pos) 0.8964 | loss(seq) 0.3756 | grad 8.2193 | lr 0.0010 | time_forward 2.9260 | time_backward 4.3440
[2023-09-03 01:22:39,641::train::INFO] [train] Iter 16305 | loss 1.7021 | loss(rot) 1.2404 | loss(pos) 0.1144 | loss(seq) 0.3474 | grad 4.1719 | lr 0.0010 | time_forward 3.0120 | time_backward 4.5470
[2023-09-03 01:22:47,777::train::INFO] [train] Iter 16306 | loss 1.0442 | loss(rot) 0.9426 | loss(pos) 0.1010 | loss(seq) 0.0006 | grad 3.8569 | lr 0.0010 | time_forward 3.2030 | time_backward 4.9290
[2023-09-03 01:22:50,187::train::INFO] [train] Iter 16307 | loss 0.8835 | loss(rot) 0.4523 | loss(pos) 0.3764 | loss(seq) 0.0549 | grad 4.0580 | lr 0.0010 | time_forward 1.1510 | time_backward 1.2410
[2023-09-03 01:22:59,129::train::INFO] [train] Iter 16308 | loss 1.2937 | loss(rot) 1.1408 | loss(pos) 0.1352 | loss(seq) 0.0177 | grad 4.6283 | lr 0.0010 | time_forward 3.3470 | time_backward 5.5730
[2023-09-03 01:23:07,005::train::INFO] [train] Iter 16309 | loss 1.2419 | loss(rot) 0.5218 | loss(pos) 0.5227 | loss(seq) 0.1974 | grad 4.5104 | lr 0.0010 | time_forward 3.3890 | time_backward 4.4840
[2023-09-03 01:23:15,017::train::INFO] [train] Iter 16310 | loss 1.3530 | loss(rot) 0.8771 | loss(pos) 0.1515 | loss(seq) 0.3244 | grad 6.1611 | lr 0.0010 | time_forward 3.5320 | time_backward 4.4770
[2023-09-03 01:23:23,779::train::INFO] [train] Iter 16311 | loss 1.2291 | loss(rot) 0.0465 | loss(pos) 1.1777 | loss(seq) 0.0048 | grad 8.5529 | lr 0.0010 | time_forward 3.5180 | time_backward 5.2410
[2023-09-03 01:23:31,592::train::INFO] [train] Iter 16312 | loss 1.9493 | loss(rot) 1.0846 | loss(pos) 0.3237 | loss(seq) 0.5409 | grad 5.4273 | lr 0.0010 | time_forward 3.1740 | time_backward 4.6350
[2023-09-03 01:23:40,434::train::INFO] [train] Iter 16313 | loss 2.6909 | loss(rot) 2.4156 | loss(pos) 0.2581 | loss(seq) 0.0171 | grad 3.5157 | lr 0.0010 | time_forward 3.4130 | time_backward 5.4260
[2023-09-03 01:23:48,526::train::INFO] [train] Iter 16314 | loss 0.6514 | loss(rot) 0.2511 | loss(pos) 0.1386 | loss(seq) 0.2617 | grad 2.8984 | lr 0.0010 | time_forward 3.4530 | time_backward 4.6280
[2023-09-03 01:23:51,746::train::INFO] [train] Iter 16315 | loss 0.8933 | loss(rot) 0.2841 | loss(pos) 0.2253 | loss(seq) 0.3840 | grad 2.6272 | lr 0.0010 | time_forward 1.4040 | time_backward 1.8120
[2023-09-03 01:24:00,412::train::INFO] [train] Iter 16316 | loss 1.0673 | loss(rot) 0.8276 | loss(pos) 0.2397 | loss(seq) 0.0000 | grad 3.2236 | lr 0.0010 | time_forward 3.3750 | time_backward 5.2870
[2023-09-03 01:24:03,082::train::INFO] [train] Iter 16317 | loss 1.1216 | loss(rot) 0.5898 | loss(pos) 0.2570 | loss(seq) 0.2748 | grad 3.8232 | lr 0.0010 | time_forward 1.2120 | time_backward 1.4560
[2023-09-03 01:24:11,316::train::INFO] [train] Iter 16318 | loss 1.1272 | loss(rot) 0.2135 | loss(pos) 0.3068 | loss(seq) 0.6069 | grad 3.5141 | lr 0.0010 | time_forward 3.5340 | time_backward 4.6960
[2023-09-03 01:24:19,617::train::INFO] [train] Iter 16319 | loss 2.2303 | loss(rot) 1.3129 | loss(pos) 0.4444 | loss(seq) 0.4730 | grad 3.9606 | lr 0.0010 | time_forward 3.2910 | time_backward 5.0070
[2023-09-03 01:24:22,232::train::INFO] [train] Iter 16320 | loss 1.4498 | loss(rot) 0.7087 | loss(pos) 0.2287 | loss(seq) 0.5124 | grad 4.5537 | lr 0.0010 | time_forward 1.2130 | time_backward 1.3980
[2023-09-03 01:24:29,810::train::INFO] [train] Iter 16321 | loss 1.9613 | loss(rot) 0.0925 | loss(pos) 1.8674 | loss(seq) 0.0015 | grad 8.8827 | lr 0.0010 | time_forward 3.0380 | time_backward 4.5360
[2023-09-03 01:24:31,987::train::INFO] [train] Iter 16322 | loss 1.3892 | loss(rot) 1.2785 | loss(pos) 0.1106 | loss(seq) 0.0001 | grad 8.4165 | lr 0.0010 | time_forward 1.0120 | time_backward 1.1610
[2023-09-03 01:24:39,737::train::INFO] [train] Iter 16323 | loss 3.1762 | loss(rot) 0.0512 | loss(pos) 3.1109 | loss(seq) 0.0141 | grad 19.4300 | lr 0.0010 | time_forward 3.0750 | time_backward 4.6710
[2023-09-03 01:24:46,755::train::INFO] [train] Iter 16324 | loss 1.8142 | loss(rot) 1.4842 | loss(pos) 0.1143 | loss(seq) 0.2157 | grad 6.9851 | lr 0.0010 | time_forward 2.8460 | time_backward 4.1690
[2023-09-03 01:24:53,249::train::INFO] [train] Iter 16325 | loss 1.3542 | loss(rot) 0.4738 | loss(pos) 0.4911 | loss(seq) 0.3892 | grad 5.9924 | lr 0.0010 | time_forward 2.6930 | time_backward 3.7980
[2023-09-03 01:24:55,875::train::INFO] [train] Iter 16326 | loss 2.4301 | loss(rot) 1.7745 | loss(pos) 0.2101 | loss(seq) 0.4456 | grad 3.6305 | lr 0.0010 | time_forward 1.2080 | time_backward 1.4150
[2023-09-03 01:25:03,603::train::INFO] [train] Iter 16327 | loss 1.0327 | loss(rot) 0.8559 | loss(pos) 0.1148 | loss(seq) 0.0620 | grad 5.6885 | lr 0.0010 | time_forward 3.1030 | time_backward 4.6220
[2023-09-03 01:25:06,188::train::INFO] [train] Iter 16328 | loss 2.3355 | loss(rot) 1.5964 | loss(pos) 0.2307 | loss(seq) 0.5083 | grad 5.3386 | lr 0.0010 | time_forward 1.2060 | time_backward 1.3750
[2023-09-03 01:25:15,131::train::INFO] [train] Iter 16329 | loss 0.7324 | loss(rot) 0.4778 | loss(pos) 0.1259 | loss(seq) 0.1287 | grad 4.5230 | lr 0.0010 | time_forward 3.6100 | time_backward 5.3290
[2023-09-03 01:25:24,295::train::INFO] [train] Iter 16330 | loss 1.7265 | loss(rot) 1.2271 | loss(pos) 0.1183 | loss(seq) 0.3811 | grad 3.8350 | lr 0.0010 | time_forward 3.6790 | time_backward 5.4820
[2023-09-03 01:25:32,319::train::INFO] [train] Iter 16331 | loss 1.4658 | loss(rot) 1.3076 | loss(pos) 0.1085 | loss(seq) 0.0497 | grad 4.4870 | lr 0.0010 | time_forward 3.4380 | time_backward 4.5830
[2023-09-03 01:25:40,397::train::INFO] [train] Iter 16332 | loss 1.1925 | loss(rot) 0.7161 | loss(pos) 0.1227 | loss(seq) 0.3537 | grad 6.2413 | lr 0.0010 | time_forward 3.4400 | time_backward 4.6340
[2023-09-03 01:25:49,486::train::INFO] [train] Iter 16333 | loss 2.8714 | loss(rot) 2.4622 | loss(pos) 0.1689 | loss(seq) 0.2403 | grad 5.9522 | lr 0.0010 | time_forward 3.6670 | time_backward 5.4180
[2023-09-03 01:25:51,955::train::INFO] [train] Iter 16334 | loss 3.6702 | loss(rot) 0.2872 | loss(pos) 3.3830 | loss(seq) 0.0000 | grad 7.4491 | lr 0.0010 | time_forward 1.1610 | time_backward 1.3050
[2023-09-03 01:25:54,564::train::INFO] [train] Iter 16335 | loss 3.2515 | loss(rot) 0.0100 | loss(pos) 3.2416 | loss(seq) 0.0000 | grad 10.3711 | lr 0.0010 | time_forward 1.1960 | time_backward 1.4090
[2023-09-03 01:26:02,218::train::INFO] [train] Iter 16336 | loss 1.2446 | loss(rot) 0.4411 | loss(pos) 0.1951 | loss(seq) 0.6083 | grad 4.4996 | lr 0.0010 | time_forward 3.1830 | time_backward 4.4690
[2023-09-03 01:26:10,134::train::INFO] [train] Iter 16337 | loss 1.3414 | loss(rot) 0.5387 | loss(pos) 0.2214 | loss(seq) 0.5813 | grad 4.0199 | lr 0.0010 | time_forward 3.0730 | time_backward 4.8400
[2023-09-03 01:26:17,547::train::INFO] [train] Iter 16338 | loss 0.5964 | loss(rot) 0.1852 | loss(pos) 0.3727 | loss(seq) 0.0385 | grad 3.3013 | lr 0.0010 | time_forward 2.9040 | time_backward 4.5060
[2023-09-03 01:26:25,016::train::INFO] [train] Iter 16339 | loss 0.8278 | loss(rot) 0.1029 | loss(pos) 0.7073 | loss(seq) 0.0176 | grad 3.9634 | lr 0.0010 | time_forward 3.1420 | time_backward 4.3230
[2023-09-03 01:26:32,810::train::INFO] [train] Iter 16340 | loss 2.2530 | loss(rot) 0.0233 | loss(pos) 2.2291 | loss(seq) 0.0006 | grad 5.2679 | lr 0.0010 | time_forward 3.3130 | time_backward 4.4780
[2023-09-03 01:26:35,519::train::INFO] [train] Iter 16341 | loss 2.1045 | loss(rot) 1.9391 | loss(pos) 0.1641 | loss(seq) 0.0013 | grad 6.6645 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4370
[2023-09-03 01:26:44,577::train::INFO] [train] Iter 16342 | loss 1.3548 | loss(rot) 0.6183 | loss(pos) 0.1525 | loss(seq) 0.5840 | grad 4.4755 | lr 0.0010 | time_forward 3.5240 | time_backward 5.5310
[2023-09-03 01:26:52,665::train::INFO] [train] Iter 16343 | loss 1.3322 | loss(rot) 0.8217 | loss(pos) 0.1647 | loss(seq) 0.3458 | grad 4.1801 | lr 0.0010 | time_forward 3.2180 | time_backward 4.8670
[2023-09-03 01:26:55,323::train::INFO] [train] Iter 16344 | loss 0.9514 | loss(rot) 0.2365 | loss(pos) 0.4939 | loss(seq) 0.2209 | grad 4.3578 | lr 0.0010 | time_forward 1.2250 | time_backward 1.4290
[2023-09-03 01:26:58,056::train::INFO] [train] Iter 16345 | loss 1.4459 | loss(rot) 1.1288 | loss(pos) 0.0688 | loss(seq) 0.2483 | grad 8.8835 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4490
[2023-09-03 01:27:06,992::train::INFO] [train] Iter 16346 | loss 1.3732 | loss(rot) 1.2230 | loss(pos) 0.0993 | loss(seq) 0.0509 | grad 8.5829 | lr 0.0010 | time_forward 3.7250 | time_backward 5.2090
[2023-09-03 01:27:13,715::train::INFO] [train] Iter 16347 | loss 0.5761 | loss(rot) 0.1088 | loss(pos) 0.4318 | loss(seq) 0.0356 | grad 3.9810 | lr 0.0010 | time_forward 2.9000 | time_backward 3.8180
[2023-09-03 01:27:21,265::train::INFO] [train] Iter 16348 | loss 2.2317 | loss(rot) 0.4814 | loss(pos) 1.1269 | loss(seq) 0.6234 | grad 5.2923 | lr 0.0010 | time_forward 3.2070 | time_backward 4.3390
[2023-09-03 01:27:28,977::train::INFO] [train] Iter 16349 | loss 1.6690 | loss(rot) 0.8746 | loss(pos) 0.2169 | loss(seq) 0.5775 | grad 4.7415 | lr 0.0010 | time_forward 3.2310 | time_backward 4.4770
[2023-09-03 01:27:36,757::train::INFO] [train] Iter 16350 | loss 2.0517 | loss(rot) 1.4397 | loss(pos) 0.1901 | loss(seq) 0.4219 | grad 4.0064 | lr 0.0010 | time_forward 3.2880 | time_backward 4.4880
[2023-09-03 01:27:44,393::train::INFO] [train] Iter 16351 | loss 0.9423 | loss(rot) 0.2914 | loss(pos) 0.1589 | loss(seq) 0.4920 | grad 3.3893 | lr 0.0010 | time_forward 3.1730 | time_backward 4.4590
[2023-09-03 01:27:47,166::train::INFO] [train] Iter 16352 | loss 1.2240 | loss(rot) 0.3444 | loss(pos) 0.3437 | loss(seq) 0.5358 | grad 4.1008 | lr 0.0010 | time_forward 1.3060 | time_backward 1.4630
[2023-09-03 01:27:50,016::train::INFO] [train] Iter 16353 | loss 0.7148 | loss(rot) 0.2654 | loss(pos) 0.1839 | loss(seq) 0.2656 | grad 3.5446 | lr 0.0010 | time_forward 1.3490 | time_backward 1.4970
[2023-09-03 01:27:56,976::train::INFO] [train] Iter 16354 | loss 1.5460 | loss(rot) 0.8356 | loss(pos) 0.2197 | loss(seq) 0.4907 | grad 6.9437 | lr 0.0010 | time_forward 2.8460 | time_backward 4.1090
[2023-09-03 01:28:04,755::train::INFO] [train] Iter 16355 | loss 0.7204 | loss(rot) 0.2506 | loss(pos) 0.3728 | loss(seq) 0.0970 | grad 4.0859 | lr 0.0010 | time_forward 3.3380 | time_backward 4.4380
[2023-09-03 01:28:13,468::train::INFO] [train] Iter 16356 | loss 2.1341 | loss(rot) 1.4279 | loss(pos) 0.2030 | loss(seq) 0.5033 | grad 7.2446 | lr 0.0010 | time_forward 3.6260 | time_backward 5.0840
[2023-09-03 01:28:21,220::train::INFO] [train] Iter 16357 | loss 0.5374 | loss(rot) 0.4162 | loss(pos) 0.1205 | loss(seq) 0.0007 | grad 6.2112 | lr 0.0010 | time_forward 2.9980 | time_backward 4.7430
[2023-09-03 01:28:29,472::train::INFO] [train] Iter 16358 | loss 1.5252 | loss(rot) 0.8169 | loss(pos) 0.1326 | loss(seq) 0.5758 | grad 4.9170 | lr 0.0010 | time_forward 3.5930 | time_backward 4.6550
[2023-09-03 01:28:32,098::train::INFO] [train] Iter 16359 | loss 0.9115 | loss(rot) 0.7080 | loss(pos) 0.1728 | loss(seq) 0.0307 | grad 5.1149 | lr 0.0010 | time_forward 1.2330 | time_backward 1.3900
[2023-09-03 01:28:39,709::train::INFO] [train] Iter 16360 | loss 0.8083 | loss(rot) 0.5399 | loss(pos) 0.1869 | loss(seq) 0.0814 | grad 6.0604 | lr 0.0010 | time_forward 3.0240 | time_backward 4.5840
[2023-09-03 01:28:48,606::train::INFO] [train] Iter 16361 | loss 1.4336 | loss(rot) 0.9139 | loss(pos) 0.1472 | loss(seq) 0.3725 | grad 4.8949 | lr 0.0010 | time_forward 3.2250 | time_backward 5.6690
[2023-09-03 01:28:57,114::train::INFO] [train] Iter 16362 | loss 2.4684 | loss(rot) 1.8433 | loss(pos) 0.2725 | loss(seq) 0.3526 | grad 5.2243 | lr 0.0010 | time_forward 3.4860 | time_backward 5.0200
[2023-09-03 01:29:05,646::train::INFO] [train] Iter 16363 | loss 1.6492 | loss(rot) 1.4290 | loss(pos) 0.1948 | loss(seq) 0.0253 | grad 5.4621 | lr 0.0010 | time_forward 3.4430 | time_backward 5.0860
[2023-09-03 01:29:13,086::train::INFO] [train] Iter 16364 | loss 1.2240 | loss(rot) 0.4376 | loss(pos) 0.7603 | loss(seq) 0.0262 | grad 4.4966 | lr 0.0010 | time_forward 3.1500 | time_backward 4.2870
[2023-09-03 01:29:21,295::train::INFO] [train] Iter 16365 | loss 0.8245 | loss(rot) 0.3213 | loss(pos) 0.1535 | loss(seq) 0.3497 | grad 4.1147 | lr 0.0010 | time_forward 3.4370 | time_backward 4.7690
[2023-09-03 01:29:30,217::train::INFO] [train] Iter 16366 | loss 1.2167 | loss(rot) 0.3521 | loss(pos) 0.5323 | loss(seq) 0.3322 | grad 4.0564 | lr 0.0010 | time_forward 3.8460 | time_backward 5.0700
[2023-09-03 01:29:32,910::train::INFO] [train] Iter 16367 | loss 1.6621 | loss(rot) 1.5724 | loss(pos) 0.0897 | loss(seq) 0.0000 | grad 7.5649 | lr 0.0010 | time_forward 1.2620 | time_backward 1.4270
[2023-09-03 01:29:35,507::train::INFO] [train] Iter 16368 | loss 0.9921 | loss(rot) 0.3925 | loss(pos) 0.3730 | loss(seq) 0.2266 | grad 3.8208 | lr 0.0010 | time_forward 1.2090 | time_backward 1.3860
[2023-09-03 01:29:38,227::train::INFO] [train] Iter 16369 | loss 1.2367 | loss(rot) 0.4919 | loss(pos) 0.7336 | loss(seq) 0.0113 | grad 4.6346 | lr 0.0010 | time_forward 1.2580 | time_backward 1.4250
[2023-09-03 01:29:40,482::train::INFO] [train] Iter 16370 | loss 0.9818 | loss(rot) 0.6348 | loss(pos) 0.2240 | loss(seq) 0.1229 | grad 7.9865 | lr 0.0010 | time_forward 1.0650 | time_backward 1.1860
[2023-09-03 01:29:47,749::train::INFO] [train] Iter 16371 | loss 0.9675 | loss(rot) 0.4742 | loss(pos) 0.0615 | loss(seq) 0.4318 | grad 5.1044 | lr 0.0010 | time_forward 3.1440 | time_backward 4.1190
[2023-09-03 01:29:50,450::train::INFO] [train] Iter 16372 | loss 0.6084 | loss(rot) 0.4337 | loss(pos) 0.1089 | loss(seq) 0.0659 | grad 4.3707 | lr 0.0010 | time_forward 1.3020 | time_backward 1.3960
[2023-09-03 01:29:53,628::train::INFO] [train] Iter 16373 | loss 1.7931 | loss(rot) 0.8391 | loss(pos) 0.3822 | loss(seq) 0.5718 | grad 3.2946 | lr 0.0010 | time_forward 1.3190 | time_backward 1.8570
[2023-09-03 01:30:01,987::train::INFO] [train] Iter 16374 | loss 2.8184 | loss(rot) 2.4167 | loss(pos) 0.2346 | loss(seq) 0.1672 | grad 4.0389 | lr 0.0010 | time_forward 3.3750 | time_backward 4.9810
[2023-09-03 01:30:03,541::train::INFO] [train] Iter 16375 | loss 1.2725 | loss(rot) 0.5040 | loss(pos) 0.5913 | loss(seq) 0.1772 | grad 5.3357 | lr 0.0010 | time_forward 0.6730 | time_backward 0.8770
[2023-09-03 01:30:06,197::train::INFO] [train] Iter 16376 | loss 1.1821 | loss(rot) 0.4035 | loss(pos) 0.1482 | loss(seq) 0.6304 | grad 3.1412 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4030
[2023-09-03 01:30:08,786::train::INFO] [train] Iter 16377 | loss 1.8317 | loss(rot) 0.9578 | loss(pos) 0.6379 | loss(seq) 0.2361 | grad 4.9376 | lr 0.0010 | time_forward 1.1660 | time_backward 1.4210
[2023-09-03 01:30:11,478::train::INFO] [train] Iter 16378 | loss 0.9973 | loss(rot) 0.8896 | loss(pos) 0.1077 | loss(seq) 0.0000 | grad 3.9990 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4330