text
stringlengths
56
1.16k
[2023-09-03 00:44:45,645::train::INFO] [train] Iter 15980 | loss 2.3055 | loss(rot) 1.8297 | loss(pos) 0.1846 | loss(seq) 0.2912 | grad 5.3893 | lr 0.0010 | time_forward 3.7560 | time_backward 5.4670
[2023-09-03 00:44:55,065::train::INFO] [train] Iter 15981 | loss 2.1517 | loss(rot) 1.3558 | loss(pos) 0.2341 | loss(seq) 0.5619 | grad 6.1227 | lr 0.0010 | time_forward 3.8180 | time_backward 5.5980
[2023-09-03 00:44:57,857::train::INFO] [train] Iter 15982 | loss 1.7491 | loss(rot) 0.9525 | loss(pos) 0.1956 | loss(seq) 0.6009 | grad 4.2054 | lr 0.0010 | time_forward 1.2480 | time_backward 1.5320
[2023-09-03 00:45:07,722::train::INFO] [train] Iter 15983 | loss 2.0714 | loss(rot) 1.4416 | loss(pos) 0.2306 | loss(seq) 0.3992 | grad 4.6850 | lr 0.0010 | time_forward 4.0500 | time_backward 5.8110
[2023-09-03 00:45:10,153::train::INFO] [train] Iter 15984 | loss 0.8583 | loss(rot) 0.1311 | loss(pos) 0.6477 | loss(seq) 0.0795 | grad 6.4022 | lr 0.0010 | time_forward 1.1050 | time_backward 1.3220
[2023-09-03 00:45:13,001::train::INFO] [train] Iter 15985 | loss 1.5760 | loss(rot) 0.7453 | loss(pos) 0.1877 | loss(seq) 0.6430 | grad 4.8457 | lr 0.0010 | time_forward 1.2820 | time_backward 1.5490
[2023-09-03 00:45:21,309::train::INFO] [train] Iter 15986 | loss 1.1650 | loss(rot) 0.3776 | loss(pos) 0.3565 | loss(seq) 0.4309 | grad 4.1167 | lr 0.0010 | time_forward 3.3250 | time_backward 4.9790
[2023-09-03 00:45:30,773::train::INFO] [train] Iter 15987 | loss 0.6022 | loss(rot) 0.1673 | loss(pos) 0.2169 | loss(seq) 0.2179 | grad 2.6514 | lr 0.0010 | time_forward 3.9000 | time_backward 5.5610
[2023-09-03 00:45:40,225::train::INFO] [train] Iter 15988 | loss 1.0550 | loss(rot) 0.5305 | loss(pos) 0.1071 | loss(seq) 0.4174 | grad 3.9731 | lr 0.0010 | time_forward 3.8310 | time_backward 5.6160
[2023-09-03 00:45:48,678::train::INFO] [train] Iter 15989 | loss 1.3387 | loss(rot) 1.0919 | loss(pos) 0.2179 | loss(seq) 0.0289 | grad 9.0797 | lr 0.0010 | time_forward 3.6230 | time_backward 4.8260
[2023-09-03 00:45:55,891::train::INFO] [train] Iter 15990 | loss 1.7221 | loss(rot) 1.0227 | loss(pos) 0.2435 | loss(seq) 0.4558 | grad 5.0490 | lr 0.0010 | time_forward 3.1860 | time_backward 4.0240
[2023-09-03 00:45:58,685::train::INFO] [train] Iter 15991 | loss 2.7214 | loss(rot) 2.4904 | loss(pos) 0.1755 | loss(seq) 0.0555 | grad 7.7443 | lr 0.0010 | time_forward 1.2740 | time_backward 1.5160
[2023-09-03 00:46:08,183::train::INFO] [train] Iter 15992 | loss 1.2191 | loss(rot) 1.1229 | loss(pos) 0.0793 | loss(seq) 0.0168 | grad 5.7395 | lr 0.0010 | time_forward 3.9920 | time_backward 5.5020
[2023-09-03 00:46:17,691::train::INFO] [train] Iter 15993 | loss 0.9254 | loss(rot) 0.8319 | loss(pos) 0.0597 | loss(seq) 0.0338 | grad 7.4977 | lr 0.0010 | time_forward 3.8620 | time_backward 5.6420
[2023-09-03 00:46:26,501::train::INFO] [train] Iter 15994 | loss 1.2978 | loss(rot) 0.0335 | loss(pos) 1.2620 | loss(seq) 0.0023 | grad 5.7833 | lr 0.0010 | time_forward 3.7990 | time_backward 5.0080
[2023-09-03 00:46:36,156::train::INFO] [train] Iter 15995 | loss 0.7164 | loss(rot) 0.1828 | loss(pos) 0.2609 | loss(seq) 0.2726 | grad 2.5875 | lr 0.0010 | time_forward 3.8930 | time_backward 5.7580
[2023-09-03 00:46:46,369::train::INFO] [train] Iter 15996 | loss 1.5059 | loss(rot) 0.7988 | loss(pos) 0.1950 | loss(seq) 0.5120 | grad 2.9091 | lr 0.0010 | time_forward 4.1450 | time_backward 6.0640
[2023-09-03 00:46:55,035::train::INFO] [train] Iter 15997 | loss 1.2283 | loss(rot) 0.1854 | loss(pos) 0.5055 | loss(seq) 0.5374 | grad 4.3882 | lr 0.0010 | time_forward 3.6910 | time_backward 4.9710
[2023-09-03 00:47:04,694::train::INFO] [train] Iter 15998 | loss 1.3601 | loss(rot) 1.2178 | loss(pos) 0.0482 | loss(seq) 0.0941 | grad 4.6571 | lr 0.0010 | time_forward 3.9620 | time_backward 5.6930
[2023-09-03 00:47:13,294::train::INFO] [train] Iter 15999 | loss 1.9355 | loss(rot) 0.0601 | loss(pos) 1.8736 | loss(seq) 0.0018 | grad 4.2520 | lr 0.0010 | time_forward 3.6400 | time_backward 4.9580
[2023-09-03 00:47:21,736::train::INFO] [train] Iter 16000 | loss 1.2239 | loss(rot) 1.0514 | loss(pos) 0.0906 | loss(seq) 0.0819 | grad 5.9088 | lr 0.0010 | time_forward 3.4270 | time_backward 5.0110
[2023-09-03 00:47:58,095::train::INFO] [val] Iter 16000 | loss 1.7670 | loss(rot) 1.1253 | loss(pos) 0.4240 | loss(seq) 0.2177
[2023-09-03 00:48:01,359::train::INFO] [train] Iter 16001 | loss 1.8426 | loss(rot) 1.6945 | loss(pos) 0.1417 | loss(seq) 0.0064 | grad 6.9450 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4840
[2023-09-03 00:48:10,387::train::INFO] [train] Iter 16002 | loss 2.6460 | loss(rot) 0.0215 | loss(pos) 2.6243 | loss(seq) 0.0003 | grad 10.9904 | lr 0.0010 | time_forward 4.3370 | time_backward 4.6880
[2023-09-03 00:48:13,152::train::INFO] [train] Iter 16003 | loss 3.0210 | loss(rot) 2.7022 | loss(pos) 0.2334 | loss(seq) 0.0853 | grad 7.0165 | lr 0.0010 | time_forward 1.2790 | time_backward 1.4820
[2023-09-03 00:48:15,956::train::INFO] [train] Iter 16004 | loss 2.3190 | loss(rot) 2.1408 | loss(pos) 0.0993 | loss(seq) 0.0790 | grad 4.1254 | lr 0.0010 | time_forward 1.2950 | time_backward 1.4880
[2023-09-03 00:48:23,782::train::INFO] [train] Iter 16005 | loss 1.8682 | loss(rot) 0.5670 | loss(pos) 0.9458 | loss(seq) 0.3554 | grad 4.9230 | lr 0.0010 | time_forward 3.2670 | time_backward 4.5560
[2023-09-03 00:48:27,101::train::INFO] [train] Iter 16006 | loss 1.0978 | loss(rot) 0.3549 | loss(pos) 0.4167 | loss(seq) 0.3262 | grad 3.1736 | lr 0.0010 | time_forward 1.4480 | time_backward 1.8670
[2023-09-03 00:48:34,231::train::INFO] [train] Iter 16007 | loss 2.3923 | loss(rot) 0.0580 | loss(pos) 2.3263 | loss(seq) 0.0080 | grad 11.3619 | lr 0.0010 | time_forward 2.9460 | time_backward 4.1800
[2023-09-03 00:48:36,944::train::INFO] [train] Iter 16008 | loss 1.3452 | loss(rot) 0.9229 | loss(pos) 0.1097 | loss(seq) 0.3126 | grad 5.7640 | lr 0.0010 | time_forward 1.2160 | time_backward 1.4940
[2023-09-03 00:48:46,022::train::INFO] [train] Iter 16009 | loss 1.5447 | loss(rot) 1.4647 | loss(pos) 0.0752 | loss(seq) 0.0048 | grad 5.6909 | lr 0.0010 | time_forward 3.6530 | time_backward 5.4220
[2023-09-03 00:48:48,702::train::INFO] [train] Iter 16010 | loss 0.8843 | loss(rot) 0.6583 | loss(pos) 0.0777 | loss(seq) 0.1483 | grad 4.6568 | lr 0.0010 | time_forward 1.2360 | time_backward 1.4400
[2023-09-03 00:48:56,970::train::INFO] [train] Iter 16011 | loss 1.0102 | loss(rot) 0.4672 | loss(pos) 0.1153 | loss(seq) 0.4277 | grad 3.7265 | lr 0.0010 | time_forward 3.5800 | time_backward 4.6850
[2023-09-03 00:48:59,590::train::INFO] [train] Iter 16012 | loss 1.3696 | loss(rot) 0.7791 | loss(pos) 0.2250 | loss(seq) 0.3655 | grad 4.9944 | lr 0.0010 | time_forward 1.1920 | time_backward 1.4240
[2023-09-03 00:49:06,634::train::INFO] [train] Iter 16013 | loss 1.0855 | loss(rot) 0.0382 | loss(pos) 1.0410 | loss(seq) 0.0064 | grad 7.0437 | lr 0.0010 | time_forward 2.9020 | time_backward 4.1390
[2023-09-03 00:49:09,291::train::INFO] [train] Iter 16014 | loss 1.3512 | loss(rot) 0.4305 | loss(pos) 0.5384 | loss(seq) 0.3823 | grad 3.9103 | lr 0.0010 | time_forward 1.2370 | time_backward 1.4170
[2023-09-03 00:49:12,007::train::INFO] [train] Iter 16015 | loss 1.4202 | loss(rot) 1.2329 | loss(pos) 0.1169 | loss(seq) 0.0704 | grad 5.4162 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4450
[2023-09-03 00:49:21,135::train::INFO] [train] Iter 16016 | loss 2.1796 | loss(rot) 1.8122 | loss(pos) 0.1344 | loss(seq) 0.2331 | grad 5.6837 | lr 0.0010 | time_forward 3.6170 | time_backward 5.5080
[2023-09-03 00:49:30,283::train::INFO] [train] Iter 16017 | loss 1.2162 | loss(rot) 0.3304 | loss(pos) 0.6052 | loss(seq) 0.2805 | grad 5.7352 | lr 0.0010 | time_forward 3.5170 | time_backward 5.6140
[2023-09-03 00:49:39,289::train::INFO] [train] Iter 16018 | loss 1.0026 | loss(rot) 0.5771 | loss(pos) 0.1496 | loss(seq) 0.2759 | grad 4.9876 | lr 0.0010 | time_forward 3.5210 | time_backward 5.4810
[2023-09-03 00:49:47,096::train::INFO] [train] Iter 16019 | loss 0.5307 | loss(rot) 0.0813 | loss(pos) 0.4297 | loss(seq) 0.0197 | grad 4.4316 | lr 0.0010 | time_forward 3.3010 | time_backward 4.4890
[2023-09-03 00:49:49,897::train::INFO] [train] Iter 16020 | loss 2.0569 | loss(rot) 1.8794 | loss(pos) 0.0881 | loss(seq) 0.0894 | grad 7.6020 | lr 0.0010 | time_forward 1.3020 | time_backward 1.4960
[2023-09-03 00:50:00,698::train::INFO] [train] Iter 16021 | loss 2.6078 | loss(rot) 2.4999 | loss(pos) 0.0984 | loss(seq) 0.0096 | grad 5.1340 | lr 0.0010 | time_forward 4.0700 | time_backward 6.7280
[2023-09-03 00:50:10,233::train::INFO] [train] Iter 16022 | loss 1.4294 | loss(rot) 0.8187 | loss(pos) 0.1556 | loss(seq) 0.4551 | grad 4.4329 | lr 0.0010 | time_forward 3.8750 | time_backward 5.6390
[2023-09-03 00:50:19,768::train::INFO] [train] Iter 16023 | loss 1.8720 | loss(rot) 1.0383 | loss(pos) 0.2254 | loss(seq) 0.6084 | grad 3.1345 | lr 0.0010 | time_forward 3.9870 | time_backward 5.5450
[2023-09-03 00:50:28,679::train::INFO] [train] Iter 16024 | loss 2.8155 | loss(rot) 2.2092 | loss(pos) 0.2516 | loss(seq) 0.3547 | grad 3.6592 | lr 0.0010 | time_forward 3.6950 | time_backward 5.2010
[2023-09-03 00:50:37,267::train::INFO] [train] Iter 16025 | loss 1.5753 | loss(rot) 1.0244 | loss(pos) 0.1022 | loss(seq) 0.4487 | grad 7.7616 | lr 0.0010 | time_forward 3.6350 | time_backward 4.9480
[2023-09-03 00:50:46,471::train::INFO] [train] Iter 16026 | loss 1.6747 | loss(rot) 0.8436 | loss(pos) 0.1601 | loss(seq) 0.6710 | grad 4.0782 | lr 0.0010 | time_forward 3.8600 | time_backward 5.3390
[2023-09-03 00:50:48,666::train::INFO] [train] Iter 16027 | loss 1.4380 | loss(rot) 0.0452 | loss(pos) 1.3878 | loss(seq) 0.0050 | grad 5.3670 | lr 0.0010 | time_forward 1.0280 | time_backward 1.1640
[2023-09-03 00:50:57,712::train::INFO] [train] Iter 16028 | loss 0.7021 | loss(rot) 0.5793 | loss(pos) 0.1208 | loss(seq) 0.0019 | grad 3.6003 | lr 0.0010 | time_forward 3.7710 | time_backward 5.2450
[2023-09-03 00:51:06,659::train::INFO] [train] Iter 16029 | loss 1.0622 | loss(rot) 0.9049 | loss(pos) 0.0432 | loss(seq) 0.1140 | grad 5.5397 | lr 0.0010 | time_forward 3.8240 | time_backward 5.1200
[2023-09-03 00:51:15,649::train::INFO] [train] Iter 16030 | loss 1.3260 | loss(rot) 0.3368 | loss(pos) 0.6839 | loss(seq) 0.3052 | grad 3.8460 | lr 0.0010 | time_forward 3.7520 | time_backward 5.2340
[2023-09-03 00:51:22,727::train::INFO] [train] Iter 16031 | loss 0.7053 | loss(rot) 0.5932 | loss(pos) 0.1121 | loss(seq) 0.0000 | grad 6.0636 | lr 0.0010 | time_forward 3.0800 | time_backward 3.9940
[2023-09-03 00:51:31,394::train::INFO] [train] Iter 16032 | loss 1.2558 | loss(rot) 0.6258 | loss(pos) 0.3418 | loss(seq) 0.2882 | grad 2.8865 | lr 0.0010 | time_forward 3.6740 | time_backward 4.9900
[2023-09-03 00:51:40,817::train::INFO] [train] Iter 16033 | loss 1.4643 | loss(rot) 0.1367 | loss(pos) 0.8991 | loss(seq) 0.4285 | grad 4.4063 | lr 0.0010 | time_forward 4.0110 | time_backward 5.4090
[2023-09-03 00:51:49,344::train::INFO] [train] Iter 16034 | loss 1.0688 | loss(rot) 0.9784 | loss(pos) 0.0706 | loss(seq) 0.0198 | grad 5.2227 | lr 0.0010 | time_forward 3.6910 | time_backward 4.8320
[2023-09-03 00:51:51,505::train::INFO] [train] Iter 16035 | loss 0.8571 | loss(rot) 0.6177 | loss(pos) 0.2393 | loss(seq) 0.0000 | grad 8.7622 | lr 0.0010 | time_forward 1.0040 | time_backward 1.1540
[2023-09-03 00:51:54,177::train::INFO] [train] Iter 16036 | loss 1.1726 | loss(rot) 0.1626 | loss(pos) 0.7416 | loss(seq) 0.2684 | grad 6.0885 | lr 0.0010 | time_forward 1.2540 | time_backward 1.3980
[2023-09-03 00:52:02,703::train::INFO] [train] Iter 16037 | loss 2.3668 | loss(rot) 2.2625 | loss(pos) 0.1031 | loss(seq) 0.0012 | grad 3.9188 | lr 0.0010 | time_forward 3.6480 | time_backward 4.8740
[2023-09-03 00:52:11,957::train::INFO] [train] Iter 16038 | loss 1.6119 | loss(rot) 1.4507 | loss(pos) 0.0839 | loss(seq) 0.0773 | grad 3.5844 | lr 0.0010 | time_forward 3.7980 | time_backward 5.4520
[2023-09-03 00:52:21,733::train::INFO] [train] Iter 16039 | loss 2.4098 | loss(rot) 2.0946 | loss(pos) 0.2167 | loss(seq) 0.0986 | grad 3.2804 | lr 0.0010 | time_forward 3.7960 | time_backward 5.9690
[2023-09-03 00:52:30,826::train::INFO] [train] Iter 16040 | loss 1.8400 | loss(rot) 1.4896 | loss(pos) 0.1148 | loss(seq) 0.2356 | grad 5.3779 | lr 0.0010 | time_forward 3.6890 | time_backward 5.4000
[2023-09-03 00:52:38,771::train::INFO] [train] Iter 16041 | loss 2.0486 | loss(rot) 1.8426 | loss(pos) 0.1770 | loss(seq) 0.0290 | grad 10.9253 | lr 0.0010 | time_forward 3.2640 | time_backward 4.6780
[2023-09-03 00:52:46,456::train::INFO] [train] Iter 16042 | loss 1.4150 | loss(rot) 0.8592 | loss(pos) 0.0765 | loss(seq) 0.4793 | grad 4.6299 | lr 0.0010 | time_forward 3.2560 | time_backward 4.4250
[2023-09-03 00:52:49,079::train::INFO] [train] Iter 16043 | loss 1.8369 | loss(rot) 1.5475 | loss(pos) 0.1659 | loss(seq) 0.1235 | grad 5.8167 | lr 0.0010 | time_forward 1.2120 | time_backward 1.4080
[2023-09-03 00:52:58,623::train::INFO] [train] Iter 16044 | loss 1.6467 | loss(rot) 0.9747 | loss(pos) 0.2125 | loss(seq) 0.4596 | grad 4.5953 | lr 0.0010 | time_forward 3.7490 | time_backward 5.7910
[2023-09-03 00:53:06,262::train::INFO] [train] Iter 16045 | loss 2.2942 | loss(rot) 1.3929 | loss(pos) 0.3127 | loss(seq) 0.5886 | grad 4.5231 | lr 0.0010 | time_forward 3.2910 | time_backward 4.3440
[2023-09-03 00:53:14,149::train::INFO] [train] Iter 16046 | loss 0.9399 | loss(rot) 0.2739 | loss(pos) 0.4145 | loss(seq) 0.2515 | grad 4.7965 | lr 0.0010 | time_forward 3.3050 | time_backward 4.5800
[2023-09-03 00:53:21,492::train::INFO] [train] Iter 16047 | loss 2.7570 | loss(rot) 0.4032 | loss(pos) 2.3524 | loss(seq) 0.0014 | grad 6.4312 | lr 0.0010 | time_forward 3.9690 | time_backward 3.3700
[2023-09-03 00:53:30,604::train::INFO] [train] Iter 16048 | loss 1.2851 | loss(rot) 0.0520 | loss(pos) 1.2288 | loss(seq) 0.0042 | grad 4.6907 | lr 0.0010 | time_forward 3.8600 | time_backward 5.2480
[2023-09-03 00:53:38,326::train::INFO] [train] Iter 16049 | loss 1.6065 | loss(rot) 1.1776 | loss(pos) 0.0715 | loss(seq) 0.3574 | grad 5.3443 | lr 0.0010 | time_forward 3.3160 | time_backward 4.4030
[2023-09-03 00:53:47,141::train::INFO] [train] Iter 16050 | loss 2.0055 | loss(rot) 0.6371 | loss(pos) 1.3230 | loss(seq) 0.0454 | grad 5.5830 | lr 0.0010 | time_forward 3.5630 | time_backward 5.2480
[2023-09-03 00:53:54,101::train::INFO] [train] Iter 16051 | loss 0.4345 | loss(rot) 0.0721 | loss(pos) 0.3293 | loss(seq) 0.0331 | grad 3.9356 | lr 0.0010 | time_forward 2.9750 | time_backward 3.9830
[2023-09-03 00:54:01,817::train::INFO] [train] Iter 16052 | loss 1.0636 | loss(rot) 0.4762 | loss(pos) 0.2082 | loss(seq) 0.3792 | grad 4.2526 | lr 0.0010 | time_forward 3.2940 | time_backward 4.4190
[2023-09-03 00:54:09,624::train::INFO] [train] Iter 16053 | loss 1.0386 | loss(rot) 0.3027 | loss(pos) 0.3432 | loss(seq) 0.3926 | grad 5.0391 | lr 0.0010 | time_forward 3.3970 | time_backward 4.4050
[2023-09-03 00:54:19,188::train::INFO] [train] Iter 16054 | loss 1.2587 | loss(rot) 1.0908 | loss(pos) 0.1668 | loss(seq) 0.0012 | grad 4.6466 | lr 0.0010 | time_forward 3.7110 | time_backward 5.8490
[2023-09-03 00:54:26,479::train::INFO] [train] Iter 16055 | loss 0.6030 | loss(rot) 0.0511 | loss(pos) 0.5334 | loss(seq) 0.0185 | grad 3.2172 | lr 0.0010 | time_forward 3.0590 | time_backward 4.2290
[2023-09-03 00:54:29,094::train::INFO] [train] Iter 16056 | loss 2.3553 | loss(rot) 1.9679 | loss(pos) 0.1300 | loss(seq) 0.2575 | grad 5.4041 | lr 0.0010 | time_forward 1.2000 | time_backward 1.4120
[2023-09-03 00:54:31,667::train::INFO] [train] Iter 16057 | loss 1.0093 | loss(rot) 0.8811 | loss(pos) 0.1056 | loss(seq) 0.0226 | grad 15.9556 | lr 0.0010 | time_forward 1.1770 | time_backward 1.3930
[2023-09-03 00:54:40,862::train::INFO] [train] Iter 16058 | loss 2.0026 | loss(rot) 0.9282 | loss(pos) 0.5588 | loss(seq) 0.5156 | grad 5.3702 | lr 0.0010 | time_forward 3.7080 | time_backward 5.4680
[2023-09-03 00:54:48,683::train::INFO] [train] Iter 16059 | loss 1.9887 | loss(rot) 1.6283 | loss(pos) 0.1307 | loss(seq) 0.2297 | grad 3.0280 | lr 0.0010 | time_forward 3.3980 | time_backward 4.4190
[2023-09-03 00:54:57,709::train::INFO] [train] Iter 16060 | loss 2.5113 | loss(rot) 1.8553 | loss(pos) 0.2267 | loss(seq) 0.4293 | grad 4.0055 | lr 0.0010 | time_forward 3.6920 | time_backward 5.3300
[2023-09-03 00:55:00,303::train::INFO] [train] Iter 16061 | loss 2.1980 | loss(rot) 1.7559 | loss(pos) 0.1158 | loss(seq) 0.3263 | grad 5.8097 | lr 0.0010 | time_forward 1.1890 | time_backward 1.4010
[2023-09-03 00:55:02,933::train::INFO] [train] Iter 16062 | loss 1.6692 | loss(rot) 0.9430 | loss(pos) 0.1674 | loss(seq) 0.5587 | grad 3.8139 | lr 0.0010 | time_forward 1.2140 | time_backward 1.4140
[2023-09-03 00:55:10,276::train::INFO] [train] Iter 16063 | loss 1.4429 | loss(rot) 0.0275 | loss(pos) 1.4108 | loss(seq) 0.0046 | grad 10.5226 | lr 0.0010 | time_forward 3.0250 | time_backward 4.3140
[2023-09-03 00:55:19,094::train::INFO] [train] Iter 16064 | loss 0.9418 | loss(rot) 0.1863 | loss(pos) 0.3513 | loss(seq) 0.4042 | grad 4.2197 | lr 0.0010 | time_forward 3.6490 | time_backward 5.1660
[2023-09-03 00:55:27,279::train::INFO] [train] Iter 16065 | loss 1.3399 | loss(rot) 0.5692 | loss(pos) 0.4738 | loss(seq) 0.2969 | grad 5.3163 | lr 0.0010 | time_forward 3.5040 | time_backward 4.6770
[2023-09-03 00:55:34,594::train::INFO] [train] Iter 16066 | loss 0.7420 | loss(rot) 0.6149 | loss(pos) 0.1067 | loss(seq) 0.0205 | grad 3.6029 | lr 0.0010 | time_forward 2.8930 | time_backward 4.4170
[2023-09-03 00:55:42,302::train::INFO] [train] Iter 16067 | loss 1.5257 | loss(rot) 0.7495 | loss(pos) 0.4862 | loss(seq) 0.2901 | grad 4.0620 | lr 0.0010 | time_forward 3.1400 | time_backward 4.5640
[2023-09-03 00:55:44,628::train::INFO] [train] Iter 16068 | loss 0.8618 | loss(rot) 0.5169 | loss(pos) 0.1070 | loss(seq) 0.2379 | grad 4.6968 | lr 0.0010 | time_forward 1.0940 | time_backward 1.2290
[2023-09-03 00:55:53,094::train::INFO] [train] Iter 16069 | loss 1.0625 | loss(rot) 0.7449 | loss(pos) 0.0593 | loss(seq) 0.2584 | grad 9.6194 | lr 0.0010 | time_forward 3.4350 | time_backward 5.0080
[2023-09-03 00:55:59,824::train::INFO] [train] Iter 16070 | loss 1.9380 | loss(rot) 0.1168 | loss(pos) 1.6542 | loss(seq) 0.1670 | grad 5.2923 | lr 0.0010 | time_forward 2.7100 | time_backward 4.0170
[2023-09-03 00:56:08,735::train::INFO] [train] Iter 16071 | loss 1.1519 | loss(rot) 1.0485 | loss(pos) 0.0640 | loss(seq) 0.0393 | grad 11.5316 | lr 0.0010 | time_forward 3.5100 | time_backward 5.3980
[2023-09-03 00:56:20,616::train::INFO] [train] Iter 16072 | loss 1.7705 | loss(rot) 1.0781 | loss(pos) 0.1198 | loss(seq) 0.5726 | grad 2.8230 | lr 0.0010 | time_forward 3.8300 | time_backward 8.0480
[2023-09-03 00:56:30,416::train::INFO] [train] Iter 16073 | loss 1.0986 | loss(rot) 0.6458 | loss(pos) 0.0845 | loss(seq) 0.3684 | grad 4.5360 | lr 0.0010 | time_forward 3.8820 | time_backward 5.9040
[2023-09-03 00:56:38,508::train::INFO] [train] Iter 16074 | loss 1.8377 | loss(rot) 1.8029 | loss(pos) 0.0347 | loss(seq) 0.0000 | grad 3.7711 | lr 0.0010 | time_forward 3.5020 | time_backward 4.5880
[2023-09-03 00:56:48,085::train::INFO] [train] Iter 16075 | loss 2.2892 | loss(rot) 1.5019 | loss(pos) 0.1452 | loss(seq) 0.6422 | grad 2.9124 | lr 0.0010 | time_forward 4.0530 | time_backward 5.5200
[2023-09-03 00:56:51,424::train::INFO] [train] Iter 16076 | loss 2.4101 | loss(rot) 1.5368 | loss(pos) 0.3396 | loss(seq) 0.5337 | grad 4.9384 | lr 0.0010 | time_forward 1.4510 | time_backward 1.8840
[2023-09-03 00:56:59,820::train::INFO] [train] Iter 16077 | loss 1.4670 | loss(rot) 0.6534 | loss(pos) 0.2966 | loss(seq) 0.5170 | grad 3.7124 | lr 0.0010 | time_forward 3.5830 | time_backward 4.8100
[2023-09-03 00:57:02,494::train::INFO] [train] Iter 16078 | loss 2.3250 | loss(rot) 1.8891 | loss(pos) 0.1193 | loss(seq) 0.3166 | grad 3.3956 | lr 0.0010 | time_forward 1.2320 | time_backward 1.4390