text
stringlengths
56
1.16k
[2023-09-03 00:20:37,909::train::INFO] [train] Iter 15780 | loss 1.0107 | loss(rot) 0.8302 | loss(pos) 0.1804 | loss(seq) 0.0001 | grad 6.1838 | lr 0.0010 | time_forward 4.0500 | time_backward 5.6180
[2023-09-03 00:20:47,018::train::INFO] [train] Iter 15781 | loss 1.2809 | loss(rot) 0.1037 | loss(pos) 1.1595 | loss(seq) 0.0177 | grad 7.0870 | lr 0.0010 | time_forward 3.8250 | time_backward 5.2810
[2023-09-03 00:20:56,631::train::INFO] [train] Iter 15782 | loss 2.2060 | loss(rot) 1.7612 | loss(pos) 0.2726 | loss(seq) 0.1722 | grad 3.5557 | lr 0.0010 | time_forward 4.1080 | time_backward 5.5020
[2023-09-03 00:21:06,827::train::INFO] [train] Iter 15783 | loss 1.9197 | loss(rot) 1.7886 | loss(pos) 0.1000 | loss(seq) 0.0311 | grad 8.2618 | lr 0.0010 | time_forward 3.9220 | time_backward 6.2690
[2023-09-03 00:21:16,425::train::INFO] [train] Iter 15784 | loss 2.1711 | loss(rot) 0.0474 | loss(pos) 2.1197 | loss(seq) 0.0041 | grad 8.1256 | lr 0.0010 | time_forward 3.8000 | time_backward 5.7950
[2023-09-03 00:21:19,230::train::INFO] [train] Iter 15785 | loss 1.3554 | loss(rot) 0.5952 | loss(pos) 0.2354 | loss(seq) 0.5247 | grad 3.8528 | lr 0.0010 | time_forward 1.3570 | time_backward 1.4440
[2023-09-03 00:21:29,679::train::INFO] [train] Iter 15786 | loss 1.1675 | loss(rot) 0.2071 | loss(pos) 0.3458 | loss(seq) 0.6146 | grad 3.9195 | lr 0.0010 | time_forward 3.9910 | time_backward 6.4510
[2023-09-03 00:21:40,095::train::INFO] [train] Iter 15787 | loss 1.7030 | loss(rot) 0.1442 | loss(pos) 1.5561 | loss(seq) 0.0027 | grad 6.3037 | lr 0.0010 | time_forward 3.9050 | time_backward 6.5070
[2023-09-03 00:21:42,344::train::INFO] [train] Iter 15788 | loss 1.7006 | loss(rot) 1.4655 | loss(pos) 0.1125 | loss(seq) 0.1226 | grad 11.4202 | lr 0.0010 | time_forward 1.0490 | time_backward 1.1970
[2023-09-03 00:21:45,234::train::INFO] [train] Iter 15789 | loss 1.6321 | loss(rot) 0.7096 | loss(pos) 0.4263 | loss(seq) 0.4962 | grad 5.6715 | lr 0.0010 | time_forward 1.3480 | time_backward 1.5360
[2023-09-03 00:21:53,464::train::INFO] [train] Iter 15790 | loss 0.6329 | loss(rot) 0.0860 | loss(pos) 0.5328 | loss(seq) 0.0141 | grad 4.5997 | lr 0.0010 | time_forward 3.5190 | time_backward 4.7060
[2023-09-03 00:22:02,231::train::INFO] [train] Iter 15791 | loss 2.1369 | loss(rot) 0.0328 | loss(pos) 2.0986 | loss(seq) 0.0056 | grad 8.1491 | lr 0.0010 | time_forward 3.5130 | time_backward 5.2490
[2023-09-03 00:22:11,256::train::INFO] [train] Iter 15792 | loss 0.6576 | loss(rot) 0.4069 | loss(pos) 0.1814 | loss(seq) 0.0692 | grad 4.1593 | lr 0.0010 | time_forward 3.5830 | time_backward 5.4380
[2023-09-03 00:22:21,178::train::INFO] [train] Iter 15793 | loss 1.7335 | loss(rot) 1.0708 | loss(pos) 0.1870 | loss(seq) 0.4757 | grad 4.5615 | lr 0.0010 | time_forward 4.0970 | time_backward 5.8220
[2023-09-03 00:22:23,680::train::INFO] [train] Iter 15794 | loss 1.2718 | loss(rot) 0.1338 | loss(pos) 0.9872 | loss(seq) 0.1508 | grad 4.6477 | lr 0.0010 | time_forward 1.1550 | time_backward 1.3440
[2023-09-03 00:22:33,198::train::INFO] [train] Iter 15795 | loss 2.3586 | loss(rot) 1.5197 | loss(pos) 0.3793 | loss(seq) 0.4596 | grad 5.6777 | lr 0.0010 | time_forward 3.8050 | time_backward 5.7100
[2023-09-03 00:22:42,417::train::INFO] [train] Iter 15796 | loss 1.0897 | loss(rot) 0.7038 | loss(pos) 0.1228 | loss(seq) 0.2632 | grad 7.8132 | lr 0.0010 | time_forward 3.8760 | time_backward 5.3400
[2023-09-03 00:22:52,907::train::INFO] [train] Iter 15797 | loss 1.5423 | loss(rot) 0.6666 | loss(pos) 0.3716 | loss(seq) 0.5041 | grad 4.3893 | lr 0.0010 | time_forward 4.5570 | time_backward 5.9280
[2023-09-03 00:23:03,085::train::INFO] [train] Iter 15798 | loss 1.1719 | loss(rot) 0.5844 | loss(pos) 0.2439 | loss(seq) 0.3436 | grad 7.6011 | lr 0.0010 | time_forward 3.9670 | time_backward 6.2070
[2023-09-03 00:23:13,557::train::INFO] [train] Iter 15799 | loss 2.2635 | loss(rot) 1.9304 | loss(pos) 0.2292 | loss(seq) 0.1039 | grad 5.7467 | lr 0.0010 | time_forward 3.9940 | time_backward 6.4740
[2023-09-03 00:23:22,580::train::INFO] [train] Iter 15800 | loss 2.0476 | loss(rot) 1.2193 | loss(pos) 0.3147 | loss(seq) 0.5136 | grad 6.1418 | lr 0.0010 | time_forward 3.6240 | time_backward 5.3960
[2023-09-03 00:23:31,184::train::INFO] [train] Iter 15801 | loss 1.0110 | loss(rot) 0.0351 | loss(pos) 0.9720 | loss(seq) 0.0039 | grad 6.5506 | lr 0.0010 | time_forward 3.5910 | time_backward 5.0100
[2023-09-03 00:23:41,060::train::INFO] [train] Iter 15802 | loss 1.4904 | loss(rot) 0.6354 | loss(pos) 0.4007 | loss(seq) 0.4542 | grad 3.4647 | lr 0.0010 | time_forward 4.0730 | time_backward 5.7990
[2023-09-03 00:23:51,880::train::INFO] [train] Iter 15803 | loss 1.2379 | loss(rot) 0.4363 | loss(pos) 0.6563 | loss(seq) 0.1453 | grad 2.6571 | lr 0.0010 | time_forward 4.2990 | time_backward 6.5190
[2023-09-03 00:23:55,609::train::INFO] [train] Iter 15804 | loss 2.0985 | loss(rot) 1.7452 | loss(pos) 0.1883 | loss(seq) 0.1650 | grad 3.2642 | lr 0.0010 | time_forward 1.4960 | time_backward 2.2270
[2023-09-03 00:24:05,325::train::INFO] [train] Iter 15805 | loss 0.8397 | loss(rot) 0.1226 | loss(pos) 0.6942 | loss(seq) 0.0229 | grad 5.4683 | lr 0.0010 | time_forward 3.8900 | time_backward 5.8210
[2023-09-03 00:24:14,029::train::INFO] [train] Iter 15806 | loss 1.3104 | loss(rot) 0.5492 | loss(pos) 0.2464 | loss(seq) 0.5148 | grad 4.5534 | lr 0.0010 | time_forward 3.5100 | time_backward 5.1900
[2023-09-03 00:24:23,007::train::INFO] [train] Iter 15807 | loss 1.9674 | loss(rot) 0.8924 | loss(pos) 0.4963 | loss(seq) 0.5787 | grad 4.1839 | lr 0.0010 | time_forward 3.5670 | time_backward 5.4090
[2023-09-03 00:24:25,903::train::INFO] [train] Iter 15808 | loss 1.4337 | loss(rot) 0.1454 | loss(pos) 0.6441 | loss(seq) 0.6443 | grad 7.5457 | lr 0.0010 | time_forward 1.3590 | time_backward 1.5330
[2023-09-03 00:24:28,324::train::INFO] [train] Iter 15809 | loss 1.7263 | loss(rot) 0.9675 | loss(pos) 0.2596 | loss(seq) 0.4992 | grad 3.4537 | lr 0.0010 | time_forward 1.1170 | time_backward 1.3010
[2023-09-03 00:24:38,249::train::INFO] [train] Iter 15810 | loss 1.0429 | loss(rot) 0.5473 | loss(pos) 0.3329 | loss(seq) 0.1627 | grad 4.1591 | lr 0.0010 | time_forward 4.1730 | time_backward 5.7350
[2023-09-03 00:24:40,704::train::INFO] [train] Iter 15811 | loss 4.7170 | loss(rot) 0.0353 | loss(pos) 4.6818 | loss(seq) 0.0000 | grad 11.4901 | lr 0.0010 | time_forward 1.1830 | time_backward 1.2680
[2023-09-03 00:24:50,561::train::INFO] [train] Iter 15812 | loss 2.5316 | loss(rot) 1.6798 | loss(pos) 0.3073 | loss(seq) 0.5445 | grad 7.1263 | lr 0.0010 | time_forward 4.1490 | time_backward 5.7030
[2023-09-03 00:24:57,267::train::INFO] [train] Iter 15813 | loss 1.1712 | loss(rot) 0.9989 | loss(pos) 0.1215 | loss(seq) 0.0508 | grad 6.3174 | lr 0.0010 | time_forward 2.7960 | time_backward 3.9070
[2023-09-03 00:25:05,660::train::INFO] [train] Iter 15814 | loss 0.5531 | loss(rot) 0.4980 | loss(pos) 0.0465 | loss(seq) 0.0086 | grad 4.0812 | lr 0.0010 | time_forward 3.3290 | time_backward 5.0590
[2023-09-03 00:25:14,174::train::INFO] [train] Iter 15815 | loss 2.8983 | loss(rot) 1.9592 | loss(pos) 0.4282 | loss(seq) 0.5109 | grad 3.8327 | lr 0.0010 | time_forward 3.5510 | time_backward 4.9580
[2023-09-03 00:25:21,829::train::INFO] [train] Iter 15816 | loss 1.3144 | loss(rot) 0.0634 | loss(pos) 0.9670 | loss(seq) 0.2841 | grad 5.0922 | lr 0.0010 | time_forward 3.1780 | time_backward 4.4730
[2023-09-03 00:25:31,154::train::INFO] [train] Iter 15817 | loss 1.1891 | loss(rot) 1.0696 | loss(pos) 0.1189 | loss(seq) 0.0006 | grad 4.9248 | lr 0.0010 | time_forward 3.9060 | time_backward 5.4150
[2023-09-03 00:25:34,142::train::INFO] [train] Iter 15818 | loss 1.0554 | loss(rot) 0.0918 | loss(pos) 0.7119 | loss(seq) 0.2517 | grad 4.2889 | lr 0.0010 | time_forward 1.3930 | time_backward 1.5910
[2023-09-03 00:25:44,793::train::INFO] [train] Iter 15819 | loss 1.6522 | loss(rot) 1.4689 | loss(pos) 0.0645 | loss(seq) 0.1188 | grad 3.9521 | lr 0.0010 | time_forward 4.4300 | time_backward 6.2180
[2023-09-03 00:25:53,008::train::INFO] [train] Iter 15820 | loss 1.2886 | loss(rot) 0.8263 | loss(pos) 0.1818 | loss(seq) 0.2806 | grad 4.5677 | lr 0.0010 | time_forward 3.5400 | time_backward 4.6710
[2023-09-03 00:26:01,688::train::INFO] [train] Iter 15821 | loss 1.8866 | loss(rot) 1.4443 | loss(pos) 0.1953 | loss(seq) 0.2470 | grad 5.3937 | lr 0.0010 | time_forward 3.4990 | time_backward 5.1770
[2023-09-03 00:26:11,309::train::INFO] [train] Iter 15822 | loss 1.1751 | loss(rot) 0.4016 | loss(pos) 0.2886 | loss(seq) 0.4849 | grad 3.9797 | lr 0.0010 | time_forward 3.8200 | time_backward 5.7980
[2023-09-03 00:26:21,991::train::INFO] [train] Iter 15823 | loss 1.7178 | loss(rot) 1.5262 | loss(pos) 0.0915 | loss(seq) 0.1001 | grad 4.8196 | lr 0.0010 | time_forward 4.2780 | time_backward 6.4000
[2023-09-03 00:26:24,939::train::INFO] [train] Iter 15824 | loss 0.5026 | loss(rot) 0.1834 | loss(pos) 0.2293 | loss(seq) 0.0900 | grad 3.3520 | lr 0.0010 | time_forward 1.3420 | time_backward 1.5930
[2023-09-03 00:26:33,785::train::INFO] [train] Iter 15825 | loss 1.3751 | loss(rot) 1.1739 | loss(pos) 0.1047 | loss(seq) 0.0965 | grad 3.4538 | lr 0.0010 | time_forward 3.7670 | time_backward 5.0720
[2023-09-03 00:26:44,414::train::INFO] [train] Iter 15826 | loss 0.9016 | loss(rot) 0.4315 | loss(pos) 0.3581 | loss(seq) 0.1119 | grad 3.7719 | lr 0.0010 | time_forward 4.2840 | time_backward 6.3420
[2023-09-03 00:26:53,014::train::INFO] [train] Iter 15827 | loss 2.8544 | loss(rot) 2.5498 | loss(pos) 0.3014 | loss(seq) 0.0032 | grad 5.3927 | lr 0.0010 | time_forward 3.5910 | time_backward 5.0050
[2023-09-03 00:26:55,986::train::INFO] [train] Iter 15828 | loss 1.1023 | loss(rot) 0.2884 | loss(pos) 0.7748 | loss(seq) 0.0391 | grad 5.6247 | lr 0.0010 | time_forward 1.4070 | time_backward 1.5610
[2023-09-03 00:26:58,837::train::INFO] [train] Iter 15829 | loss 0.7471 | loss(rot) 0.1213 | loss(pos) 0.6066 | loss(seq) 0.0193 | grad 3.1627 | lr 0.0010 | time_forward 1.3040 | time_backward 1.5090
[2023-09-03 00:27:08,932::train::INFO] [train] Iter 15830 | loss 1.6505 | loss(rot) 1.2202 | loss(pos) 0.1336 | loss(seq) 0.2967 | grad 4.1117 | lr 0.0010 | time_forward 3.8880 | time_backward 6.2030
[2023-09-03 00:27:11,781::train::INFO] [train] Iter 15831 | loss 2.1629 | loss(rot) 0.0181 | loss(pos) 2.1436 | loss(seq) 0.0012 | grad 5.4403 | lr 0.0010 | time_forward 1.2840 | time_backward 1.5620
[2023-09-03 00:27:21,586::train::INFO] [train] Iter 15832 | loss 1.0850 | loss(rot) 0.7119 | loss(pos) 0.1091 | loss(seq) 0.2641 | grad 3.5246 | lr 0.0010 | time_forward 4.0150 | time_backward 5.7860
[2023-09-03 00:27:29,791::train::INFO] [train] Iter 15833 | loss 1.2806 | loss(rot) 1.0118 | loss(pos) 0.1342 | loss(seq) 0.1345 | grad 7.2458 | lr 0.0010 | time_forward 3.4350 | time_backward 4.7670
[2023-09-03 00:27:32,537::train::INFO] [train] Iter 15834 | loss 0.5101 | loss(rot) 0.1527 | loss(pos) 0.2796 | loss(seq) 0.0778 | grad 4.3513 | lr 0.0010 | time_forward 1.2320 | time_backward 1.5110
[2023-09-03 00:27:36,115::train::INFO] [train] Iter 15835 | loss 1.5852 | loss(rot) 0.0375 | loss(pos) 1.5439 | loss(seq) 0.0038 | grad 5.5745 | lr 0.0010 | time_forward 1.4770 | time_backward 2.0690
[2023-09-03 00:27:44,677::train::INFO] [train] Iter 15836 | loss 1.0030 | loss(rot) 0.0349 | loss(pos) 0.9657 | loss(seq) 0.0024 | grad 6.3875 | lr 0.0010 | time_forward 3.5760 | time_backward 4.9830
[2023-09-03 00:27:55,132::train::INFO] [train] Iter 15837 | loss 1.0626 | loss(rot) 0.6798 | loss(pos) 0.2336 | loss(seq) 0.1492 | grad 4.7043 | lr 0.0010 | time_forward 4.2350 | time_backward 6.2160
[2023-09-03 00:27:58,941::train::INFO] [train] Iter 15838 | loss 1.8506 | loss(rot) 0.9779 | loss(pos) 0.3540 | loss(seq) 0.5187 | grad 3.6330 | lr 0.0010 | time_forward 1.7530 | time_backward 2.0530
[2023-09-03 00:28:08,332::train::INFO] [train] Iter 15839 | loss 1.6179 | loss(rot) 0.0664 | loss(pos) 1.5501 | loss(seq) 0.0015 | grad 6.4600 | lr 0.0010 | time_forward 3.7500 | time_backward 5.6360
[2023-09-03 00:28:18,053::train::INFO] [train] Iter 15840 | loss 1.6096 | loss(rot) 0.8641 | loss(pos) 0.2490 | loss(seq) 0.4964 | grad 4.1217 | lr 0.0010 | time_forward 3.9790 | time_backward 5.7400
[2023-09-03 00:28:26,581::train::INFO] [train] Iter 15841 | loss 2.1134 | loss(rot) 1.2134 | loss(pos) 0.2906 | loss(seq) 0.6094 | grad 3.8544 | lr 0.0010 | time_forward 3.5820 | time_backward 4.9400
[2023-09-03 00:28:37,100::train::INFO] [train] Iter 15842 | loss 2.0239 | loss(rot) 1.6579 | loss(pos) 0.3659 | loss(seq) 0.0001 | grad 7.5927 | lr 0.0010 | time_forward 4.4160 | time_backward 6.0990
[2023-09-03 00:28:40,018::train::INFO] [train] Iter 15843 | loss 1.6289 | loss(rot) 1.3274 | loss(pos) 0.1237 | loss(seq) 0.1778 | grad 10.6776 | lr 0.0010 | time_forward 1.3160 | time_backward 1.5990
[2023-09-03 00:28:50,529::train::INFO] [train] Iter 15844 | loss 2.0071 | loss(rot) 1.1174 | loss(pos) 0.3491 | loss(seq) 0.5405 | grad 10.8937 | lr 0.0010 | time_forward 4.2670 | time_backward 6.2410
[2023-09-03 00:28:59,751::train::INFO] [train] Iter 15845 | loss 1.3476 | loss(rot) 0.3068 | loss(pos) 0.4505 | loss(seq) 0.5902 | grad 5.9346 | lr 0.0010 | time_forward 3.7670 | time_backward 5.4530
[2023-09-03 00:29:08,517::train::INFO] [train] Iter 15846 | loss 1.1726 | loss(rot) 1.0909 | loss(pos) 0.0814 | loss(seq) 0.0003 | grad 6.1924 | lr 0.0010 | time_forward 3.6710 | time_backward 5.0900
[2023-09-03 00:29:11,390::train::INFO] [train] Iter 15847 | loss 1.7292 | loss(rot) 1.2422 | loss(pos) 0.1778 | loss(seq) 0.3092 | grad 4.6658 | lr 0.0010 | time_forward 1.3090 | time_backward 1.5610
[2023-09-03 00:29:21,823::train::INFO] [train] Iter 15848 | loss 2.0481 | loss(rot) 1.4248 | loss(pos) 0.2142 | loss(seq) 0.4090 | grad 4.7880 | lr 0.0010 | time_forward 4.2320 | time_backward 6.1970
[2023-09-03 00:29:30,750::train::INFO] [train] Iter 15849 | loss 1.4298 | loss(rot) 0.7694 | loss(pos) 0.1541 | loss(seq) 0.5063 | grad 6.4905 | lr 0.0010 | time_forward 3.6240 | time_backward 5.2990
[2023-09-03 00:29:41,330::train::INFO] [train] Iter 15850 | loss 1.2931 | loss(rot) 1.1600 | loss(pos) 0.0858 | loss(seq) 0.0474 | grad 6.3138 | lr 0.0010 | time_forward 4.2400 | time_backward 6.3370
[2023-09-03 00:29:44,031::train::INFO] [train] Iter 15851 | loss 2.1389 | loss(rot) 1.5141 | loss(pos) 0.1831 | loss(seq) 0.4417 | grad 4.6424 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4580
[2023-09-03 00:29:53,533::train::INFO] [train] Iter 15852 | loss 1.2908 | loss(rot) 0.4219 | loss(pos) 0.1494 | loss(seq) 0.7196 | grad 3.1091 | lr 0.0010 | time_forward 3.8210 | time_backward 5.6770
[2023-09-03 00:30:03,446::train::INFO] [train] Iter 15853 | loss 1.6283 | loss(rot) 0.9146 | loss(pos) 0.1971 | loss(seq) 0.5166 | grad 4.0677 | lr 0.0010 | time_forward 4.2330 | time_backward 5.6770
[2023-09-03 00:30:13,159::train::INFO] [train] Iter 15854 | loss 0.9904 | loss(rot) 0.4311 | loss(pos) 0.0950 | loss(seq) 0.4642 | grad 4.4984 | lr 0.0010 | time_forward 3.8040 | time_backward 5.9040
[2023-09-03 00:30:16,070::train::INFO] [train] Iter 15855 | loss 1.1584 | loss(rot) 0.0389 | loss(pos) 1.1055 | loss(seq) 0.0141 | grad 7.7941 | lr 0.0010 | time_forward 1.3550 | time_backward 1.5380
[2023-09-03 00:30:26,486::train::INFO] [train] Iter 15856 | loss 1.8184 | loss(rot) 0.7341 | loss(pos) 0.4770 | loss(seq) 0.6073 | grad 3.7072 | lr 0.0010 | time_forward 4.2200 | time_backward 6.1930
[2023-09-03 00:30:29,367::train::INFO] [train] Iter 15857 | loss 0.7675 | loss(rot) 0.0480 | loss(pos) 0.7165 | loss(seq) 0.0030 | grad 4.7952 | lr 0.0010 | time_forward 1.3100 | time_backward 1.5670
[2023-09-03 00:30:38,132::train::INFO] [train] Iter 15858 | loss 2.1114 | loss(rot) 0.1485 | loss(pos) 1.9617 | loss(seq) 0.0012 | grad 5.8037 | lr 0.0010 | time_forward 3.4380 | time_backward 5.3230
[2023-09-03 00:30:45,706::train::INFO] [train] Iter 15859 | loss 1.3451 | loss(rot) 0.4176 | loss(pos) 0.3702 | loss(seq) 0.5573 | grad 4.7233 | lr 0.0010 | time_forward 3.1080 | time_backward 4.4630
[2023-09-03 00:30:50,218::train::INFO] [train] Iter 15860 | loss 2.3263 | loss(rot) 1.9085 | loss(pos) 0.2849 | loss(seq) 0.1329 | grad 5.3506 | lr 0.0010 | time_forward 1.9160 | time_backward 2.5920
[2023-09-03 00:30:52,459::train::INFO] [train] Iter 15861 | loss 1.9018 | loss(rot) 1.1986 | loss(pos) 0.1798 | loss(seq) 0.5233 | grad 4.7826 | lr 0.0010 | time_forward 1.0310 | time_backward 1.2060
[2023-09-03 00:31:02,913::train::INFO] [train] Iter 15862 | loss 0.7768 | loss(rot) 0.5745 | loss(pos) 0.1079 | loss(seq) 0.0944 | grad 5.3456 | lr 0.0010 | time_forward 4.1160 | time_backward 6.2790
[2023-09-03 00:31:05,763::train::INFO] [train] Iter 15863 | loss 2.0801 | loss(rot) 1.7498 | loss(pos) 0.1895 | loss(seq) 0.1408 | grad 3.8045 | lr 0.0010 | time_forward 1.2960 | time_backward 1.5520
[2023-09-03 00:31:08,668::train::INFO] [train] Iter 15864 | loss 1.2074 | loss(rot) 1.0170 | loss(pos) 0.1131 | loss(seq) 0.0774 | grad 5.8679 | lr 0.0010 | time_forward 1.3450 | time_backward 1.5570
[2023-09-03 00:31:19,327::train::INFO] [train] Iter 15865 | loss 0.9746 | loss(rot) 0.3231 | loss(pos) 0.3459 | loss(seq) 0.3056 | grad 4.7356 | lr 0.0010 | time_forward 4.3000 | time_backward 6.3550
[2023-09-03 00:31:26,582::train::INFO] [train] Iter 15866 | loss 1.5456 | loss(rot) 0.9112 | loss(pos) 0.1852 | loss(seq) 0.4493 | grad 5.8039 | lr 0.0010 | time_forward 2.9340 | time_backward 4.3170
[2023-09-03 00:31:28,954::train::INFO] [train] Iter 15867 | loss 1.2001 | loss(rot) 0.4746 | loss(pos) 0.2408 | loss(seq) 0.4846 | grad 3.9751 | lr 0.0010 | time_forward 1.1030 | time_backward 1.2660
[2023-09-03 00:31:31,843::train::INFO] [train] Iter 15868 | loss 1.4581 | loss(rot) 1.3274 | loss(pos) 0.1007 | loss(seq) 0.0300 | grad 4.7248 | lr 0.0010 | time_forward 1.3210 | time_backward 1.5380
[2023-09-03 00:31:39,692::train::INFO] [train] Iter 15869 | loss 1.0731 | loss(rot) 0.5507 | loss(pos) 0.3574 | loss(seq) 0.1650 | grad 5.1488 | lr 0.0010 | time_forward 3.0680 | time_backward 4.7770
[2023-09-03 00:31:46,990::train::INFO] [train] Iter 15870 | loss 1.1004 | loss(rot) 0.5169 | loss(pos) 0.1702 | loss(seq) 0.4133 | grad 3.8307 | lr 0.0010 | time_forward 3.0350 | time_backward 4.2590
[2023-09-03 00:31:56,445::train::INFO] [train] Iter 15871 | loss 1.7452 | loss(rot) 0.5334 | loss(pos) 0.9063 | loss(seq) 0.3056 | grad 6.7479 | lr 0.0010 | time_forward 4.1040 | time_backward 5.3480
[2023-09-03 00:32:04,880::train::INFO] [train] Iter 15872 | loss 2.4472 | loss(rot) 1.4941 | loss(pos) 0.3808 | loss(seq) 0.5723 | grad 4.1961 | lr 0.0010 | time_forward 3.5860 | time_backward 4.8440
[2023-09-03 00:32:13,173::train::INFO] [train] Iter 15873 | loss 1.7533 | loss(rot) 1.6452 | loss(pos) 0.1068 | loss(seq) 0.0012 | grad 6.8230 | lr 0.0010 | time_forward 3.2910 | time_backward 4.9980
[2023-09-03 00:32:21,812::train::INFO] [train] Iter 15874 | loss 2.0257 | loss(rot) 1.0489 | loss(pos) 0.4826 | loss(seq) 0.4942 | grad 6.2371 | lr 0.0010 | time_forward 3.5580 | time_backward 5.0780
[2023-09-03 00:32:31,867::train::INFO] [train] Iter 15875 | loss 1.1109 | loss(rot) 0.2547 | loss(pos) 0.7711 | loss(seq) 0.0851 | grad 7.0186 | lr 0.0010 | time_forward 4.1600 | time_backward 5.8920
[2023-09-03 00:32:39,618::train::INFO] [train] Iter 15876 | loss 1.7132 | loss(rot) 0.7399 | loss(pos) 0.6125 | loss(seq) 0.3608 | grad 7.9616 | lr 0.0010 | time_forward 3.2390 | time_backward 4.5060
[2023-09-03 00:32:49,262::train::INFO] [train] Iter 15877 | loss 0.5182 | loss(rot) 0.1836 | loss(pos) 0.2944 | loss(seq) 0.0403 | grad 3.1459 | lr 0.0010 | time_forward 4.2620 | time_backward 5.3780
[2023-09-03 00:32:58,564::train::INFO] [train] Iter 15878 | loss 0.9082 | loss(rot) 0.2508 | loss(pos) 0.2588 | loss(seq) 0.3985 | grad 4.3663 | lr 0.0010 | time_forward 3.8850 | time_backward 5.4130
[2023-09-03 00:33:08,676::train::INFO] [train] Iter 15879 | loss 1.6294 | loss(rot) 0.3909 | loss(pos) 0.7417 | loss(seq) 0.4968 | grad 6.1904 | lr 0.0010 | time_forward 3.8040 | time_backward 6.3010