text
stringlengths
56
1.16k
[2023-09-02 23:55:52,262::train::INFO] [train] Iter 15580 | loss 2.5718 | loss(rot) 1.6862 | loss(pos) 0.5051 | loss(seq) 0.3805 | grad 8.8853 | lr 0.0010 | time_forward 1.3560 | time_backward 1.5400
[2023-09-02 23:56:01,353::train::INFO] [train] Iter 15581 | loss 0.9256 | loss(rot) 0.3034 | loss(pos) 0.1110 | loss(seq) 0.5112 | grad 3.4196 | lr 0.0010 | time_forward 3.8090 | time_backward 5.2770
[2023-09-02 23:56:11,324::train::INFO] [train] Iter 15582 | loss 1.8094 | loss(rot) 1.3820 | loss(pos) 0.0793 | loss(seq) 0.3481 | grad 5.7120 | lr 0.0010 | time_forward 4.2040 | time_backward 5.7620
[2023-09-02 23:56:19,676::train::INFO] [train] Iter 15583 | loss 0.8616 | loss(rot) 0.5254 | loss(pos) 0.2380 | loss(seq) 0.0982 | grad 6.2959 | lr 0.0010 | time_forward 3.5910 | time_backward 4.7510
[2023-09-02 23:56:29,580::train::INFO] [train] Iter 15584 | loss 2.4213 | loss(rot) 2.2625 | loss(pos) 0.1425 | loss(seq) 0.0163 | grad 13.4084 | lr 0.0010 | time_forward 4.0550 | time_backward 5.8470
[2023-09-02 23:56:40,385::train::INFO] [train] Iter 15585 | loss 0.8545 | loss(rot) 0.3804 | loss(pos) 0.2778 | loss(seq) 0.1963 | grad 2.7358 | lr 0.0010 | time_forward 4.3740 | time_backward 6.4270
[2023-09-02 23:56:49,753::train::INFO] [train] Iter 15586 | loss 1.4307 | loss(rot) 0.0707 | loss(pos) 0.9497 | loss(seq) 0.4103 | grad 7.2198 | lr 0.0010 | time_forward 3.9250 | time_backward 5.4380
[2023-09-02 23:57:00,434::train::INFO] [train] Iter 15587 | loss 1.1810 | loss(rot) 0.2976 | loss(pos) 0.7012 | loss(seq) 0.1822 | grad 4.0920 | lr 0.0010 | time_forward 4.5870 | time_backward 6.0910
[2023-09-02 23:57:11,138::train::INFO] [train] Iter 15588 | loss 1.7626 | loss(rot) 1.0221 | loss(pos) 0.2614 | loss(seq) 0.4791 | grad 7.2297 | lr 0.0010 | time_forward 4.1410 | time_backward 6.5590
[2023-09-02 23:57:20,167::train::INFO] [train] Iter 15589 | loss 1.8913 | loss(rot) 1.2960 | loss(pos) 0.1588 | loss(seq) 0.4365 | grad 4.0324 | lr 0.0010 | time_forward 3.8230 | time_backward 5.2020
[2023-09-02 23:57:23,038::train::INFO] [train] Iter 15590 | loss 1.1261 | loss(rot) 1.0065 | loss(pos) 0.0618 | loss(seq) 0.0577 | grad 13.3159 | lr 0.0010 | time_forward 1.3480 | time_backward 1.5180
[2023-09-02 23:57:26,040::train::INFO] [train] Iter 15591 | loss 0.7326 | loss(rot) 0.2364 | loss(pos) 0.4614 | loss(seq) 0.0348 | grad 5.0143 | lr 0.0010 | time_forward 1.4120 | time_backward 1.5860
[2023-09-02 23:57:35,695::train::INFO] [train] Iter 15592 | loss 1.7058 | loss(rot) 1.0716 | loss(pos) 0.2480 | loss(seq) 0.3862 | grad 5.7312 | lr 0.0010 | time_forward 3.9440 | time_backward 5.7070
[2023-09-02 23:57:38,667::train::INFO] [train] Iter 15593 | loss 1.4658 | loss(rot) 0.6951 | loss(pos) 0.2011 | loss(seq) 0.5697 | grad 3.5804 | lr 0.0010 | time_forward 1.3580 | time_backward 1.6110
[2023-09-02 23:57:47,280::train::INFO] [train] Iter 15594 | loss 0.9853 | loss(rot) 0.7111 | loss(pos) 0.1418 | loss(seq) 0.1324 | grad 3.8583 | lr 0.0010 | time_forward 3.6810 | time_backward 4.9280
[2023-09-02 23:57:50,242::train::INFO] [train] Iter 15595 | loss 0.7811 | loss(rot) 0.1372 | loss(pos) 0.6020 | loss(seq) 0.0419 | grad 5.2438 | lr 0.0010 | time_forward 1.4040 | time_backward 1.5540
[2023-09-02 23:57:59,769::train::INFO] [train] Iter 15596 | loss 2.8542 | loss(rot) 1.8560 | loss(pos) 0.3944 | loss(seq) 0.6039 | grad 5.9627 | lr 0.0010 | time_forward 4.2510 | time_backward 5.2720
[2023-09-02 23:58:02,779::train::INFO] [train] Iter 15597 | loss 1.5385 | loss(rot) 1.3572 | loss(pos) 0.1731 | loss(seq) 0.0082 | grad 6.6993 | lr 0.0010 | time_forward 1.3860 | time_backward 1.6210
[2023-09-02 23:58:12,100::train::INFO] [train] Iter 15598 | loss 1.5033 | loss(rot) 0.8827 | loss(pos) 0.1307 | loss(seq) 0.4899 | grad 3.8070 | lr 0.0010 | time_forward 3.9590 | time_backward 5.3570
[2023-09-02 23:58:15,724::train::INFO] [train] Iter 15599 | loss 2.0238 | loss(rot) 1.8544 | loss(pos) 0.1681 | loss(seq) 0.0012 | grad 3.7686 | lr 0.0010 | time_forward 1.5320 | time_backward 2.0890
[2023-09-02 23:58:24,774::train::INFO] [train] Iter 15600 | loss 1.6284 | loss(rot) 1.5010 | loss(pos) 0.0911 | loss(seq) 0.0362 | grad 13.0545 | lr 0.0010 | time_forward 3.8420 | time_backward 5.2030
[2023-09-02 23:58:33,371::train::INFO] [train] Iter 15601 | loss 1.6006 | loss(rot) 1.0508 | loss(pos) 0.1325 | loss(seq) 0.4173 | grad 4.7234 | lr 0.0010 | time_forward 3.5770 | time_backward 5.0170
[2023-09-02 23:58:36,354::train::INFO] [train] Iter 15602 | loss 1.5858 | loss(rot) 1.0533 | loss(pos) 0.1124 | loss(seq) 0.4200 | grad 3.3973 | lr 0.0010 | time_forward 1.3060 | time_backward 1.5860
[2023-09-02 23:58:46,584::train::INFO] [train] Iter 15603 | loss 1.3616 | loss(rot) 1.1840 | loss(pos) 0.0838 | loss(seq) 0.0937 | grad 3.4975 | lr 0.0010 | time_forward 4.2980 | time_backward 5.9280
[2023-09-02 23:58:54,351::train::INFO] [train] Iter 15604 | loss 1.0260 | loss(rot) 0.0594 | loss(pos) 0.9341 | loss(seq) 0.0325 | grad 6.8943 | lr 0.0010 | time_forward 3.1160 | time_backward 4.6470
[2023-09-02 23:59:04,965::train::INFO] [train] Iter 15605 | loss 1.2230 | loss(rot) 0.9608 | loss(pos) 0.0506 | loss(seq) 0.2115 | grad 7.3821 | lr 0.0010 | time_forward 5.2240 | time_backward 5.3870
[2023-09-02 23:59:13,927::train::INFO] [train] Iter 15606 | loss 0.9539 | loss(rot) 0.2686 | loss(pos) 0.3116 | loss(seq) 0.3736 | grad 3.4280 | lr 0.0010 | time_forward 3.7420 | time_backward 5.2160
[2023-09-02 23:59:22,952::train::INFO] [train] Iter 15607 | loss 1.6611 | loss(rot) 0.7423 | loss(pos) 0.3808 | loss(seq) 0.5380 | grad 5.0096 | lr 0.0010 | time_forward 3.6870 | time_backward 5.3340
[2023-09-02 23:59:33,012::train::INFO] [train] Iter 15608 | loss 2.1132 | loss(rot) 1.2750 | loss(pos) 0.2126 | loss(seq) 0.6256 | grad 4.0466 | lr 0.0010 | time_forward 4.2030 | time_backward 5.8540
[2023-09-02 23:59:44,858::train::INFO] [train] Iter 15609 | loss 1.3969 | loss(rot) 0.7486 | loss(pos) 0.1615 | loss(seq) 0.4869 | grad 7.6481 | lr 0.0010 | time_forward 4.3060 | time_backward 7.5350
[2023-09-02 23:59:53,441::train::INFO] [train] Iter 15610 | loss 2.2855 | loss(rot) 1.2620 | loss(pos) 0.4999 | loss(seq) 0.5236 | grad 5.2548 | lr 0.0010 | time_forward 3.6650 | time_backward 4.9150
[2023-09-03 00:00:03,965::train::INFO] [train] Iter 15611 | loss 2.0250 | loss(rot) 1.1079 | loss(pos) 0.4164 | loss(seq) 0.5007 | grad 6.8712 | lr 0.0010 | time_forward 4.2170 | time_backward 6.3030
[2023-09-03 00:00:12,915::train::INFO] [train] Iter 15612 | loss 2.5680 | loss(rot) 2.3015 | loss(pos) 0.2543 | loss(seq) 0.0122 | grad 13.7510 | lr 0.0010 | time_forward 3.8170 | time_backward 5.1200
[2023-09-03 00:00:15,553::train::INFO] [train] Iter 15613 | loss 1.0914 | loss(rot) 0.2095 | loss(pos) 0.8532 | loss(seq) 0.0287 | grad 4.3052 | lr 0.0010 | time_forward 1.2670 | time_backward 1.3660
[2023-09-03 00:00:24,790::train::INFO] [train] Iter 15614 | loss 3.0088 | loss(rot) 2.5562 | loss(pos) 0.4525 | loss(seq) 0.0001 | grad 5.5043 | lr 0.0010 | time_forward 3.8650 | time_backward 5.3680
[2023-09-03 00:00:33,447::train::INFO] [train] Iter 15615 | loss 1.7135 | loss(rot) 1.6389 | loss(pos) 0.0650 | loss(seq) 0.0097 | grad 4.8952 | lr 0.0010 | time_forward 3.6940 | time_backward 4.9590
[2023-09-03 00:00:36,339::train::INFO] [train] Iter 15616 | loss 1.5954 | loss(rot) 0.8059 | loss(pos) 0.2582 | loss(seq) 0.5314 | grad 12.5131 | lr 0.0010 | time_forward 1.3650 | time_backward 1.5240
[2023-09-03 00:00:44,978::train::INFO] [train] Iter 15617 | loss 2.0246 | loss(rot) 1.9079 | loss(pos) 0.0775 | loss(seq) 0.0393 | grad 5.7450 | lr 0.0010 | time_forward 3.4830 | time_backward 5.1530
[2023-09-03 00:00:55,101::train::INFO] [train] Iter 15618 | loss 2.1186 | loss(rot) 1.8894 | loss(pos) 0.2292 | loss(seq) 0.0000 | grad 5.0212 | lr 0.0010 | time_forward 4.1290 | time_backward 5.9860
[2023-09-03 00:01:05,275::train::INFO] [train] Iter 15619 | loss 1.9236 | loss(rot) 1.7412 | loss(pos) 0.1559 | loss(seq) 0.0265 | grad 4.8791 | lr 0.0010 | time_forward 4.0050 | time_backward 6.1650
[2023-09-03 00:01:08,138::train::INFO] [train] Iter 15620 | loss 1.8166 | loss(rot) 0.1485 | loss(pos) 1.6419 | loss(seq) 0.0262 | grad 6.1412 | lr 0.0010 | time_forward 1.3360 | time_backward 1.5230
[2023-09-03 00:01:18,677::train::INFO] [train] Iter 15621 | loss 1.4812 | loss(rot) 1.0077 | loss(pos) 0.1011 | loss(seq) 0.3724 | grad 3.3054 | lr 0.0010 | time_forward 4.3770 | time_backward 6.1570
[2023-09-03 00:01:27,532::train::INFO] [train] Iter 15622 | loss 0.6360 | loss(rot) 0.1089 | loss(pos) 0.5062 | loss(seq) 0.0209 | grad 4.2253 | lr 0.0010 | time_forward 3.5570 | time_backward 5.2820
[2023-09-03 00:01:31,018::train::INFO] [train] Iter 15623 | loss 1.4605 | loss(rot) 0.0960 | loss(pos) 1.3592 | loss(seq) 0.0054 | grad 5.3980 | lr 0.0010 | time_forward 1.4790 | time_backward 2.0010
[2023-09-03 00:01:40,423::train::INFO] [train] Iter 15624 | loss 0.7674 | loss(rot) 0.5973 | loss(pos) 0.1477 | loss(seq) 0.0224 | grad 4.1046 | lr 0.0010 | time_forward 4.0920 | time_backward 5.3040
[2023-09-03 00:01:48,803::train::INFO] [train] Iter 15625 | loss 1.0140 | loss(rot) 0.5021 | loss(pos) 0.4153 | loss(seq) 0.0966 | grad 5.3911 | lr 0.0010 | time_forward 3.6290 | time_backward 4.7480
[2023-09-03 00:01:59,155::train::INFO] [train] Iter 15626 | loss 0.6318 | loss(rot) 0.2231 | loss(pos) 0.1866 | loss(seq) 0.2221 | grad 3.4079 | lr 0.0010 | time_forward 4.0120 | time_backward 6.3360
[2023-09-03 00:02:07,947::train::INFO] [train] Iter 15627 | loss 1.0077 | loss(rot) 0.8535 | loss(pos) 0.1542 | loss(seq) 0.0000 | grad 2.7068 | lr 0.0010 | time_forward 3.5460 | time_backward 5.2420
[2023-09-03 00:02:18,082::train::INFO] [train] Iter 15628 | loss 1.5967 | loss(rot) 1.2869 | loss(pos) 0.3067 | loss(seq) 0.0031 | grad 6.5364 | lr 0.0010 | time_forward 4.0930 | time_backward 6.0380
[2023-09-03 00:02:20,930::train::INFO] [train] Iter 15629 | loss 2.1047 | loss(rot) 1.9481 | loss(pos) 0.1565 | loss(seq) 0.0000 | grad 6.1398 | lr 0.0010 | time_forward 1.3380 | time_backward 1.5020
[2023-09-03 00:02:30,824::train::INFO] [train] Iter 15630 | loss 1.3315 | loss(rot) 0.3502 | loss(pos) 0.7028 | loss(seq) 0.2784 | grad 4.7390 | lr 0.0010 | time_forward 4.1400 | time_backward 5.7510
[2023-09-03 00:02:39,754::train::INFO] [train] Iter 15631 | loss 2.6515 | loss(rot) 1.8659 | loss(pos) 0.3149 | loss(seq) 0.4707 | grad 5.9622 | lr 0.0010 | time_forward 3.8490 | time_backward 5.0770
[2023-09-03 00:02:48,117::train::INFO] [train] Iter 15632 | loss 1.8294 | loss(rot) 1.2400 | loss(pos) 0.1242 | loss(seq) 0.4652 | grad 4.9227 | lr 0.0010 | time_forward 3.6410 | time_backward 4.7200
[2023-09-03 00:02:50,814::train::INFO] [train] Iter 15633 | loss 1.1984 | loss(rot) 0.5551 | loss(pos) 0.2700 | loss(seq) 0.3733 | grad 6.2251 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4470
[2023-09-03 00:03:00,620::train::INFO] [train] Iter 15634 | loss 0.9432 | loss(rot) 0.4905 | loss(pos) 0.2805 | loss(seq) 0.1722 | grad 3.6656 | lr 0.0010 | time_forward 3.9820 | time_backward 5.7910
[2023-09-03 00:03:10,284::train::INFO] [train] Iter 15635 | loss 0.8902 | loss(rot) 0.1020 | loss(pos) 0.5689 | loss(seq) 0.2194 | grad 2.7592 | lr 0.0010 | time_forward 3.9110 | time_backward 5.7490
[2023-09-03 00:03:12,980::train::INFO] [train] Iter 15636 | loss 2.5581 | loss(rot) 0.0112 | loss(pos) 2.5465 | loss(seq) 0.0004 | grad 6.2555 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4410
[2023-09-03 00:03:22,373::train::INFO] [train] Iter 15637 | loss 2.8898 | loss(rot) 2.2723 | loss(pos) 0.2378 | loss(seq) 0.3797 | grad 4.4063 | lr 0.0010 | time_forward 3.5690 | time_backward 5.8200
[2023-09-03 00:03:29,397::train::INFO] [train] Iter 15638 | loss 1.2796 | loss(rot) 1.0746 | loss(pos) 0.2050 | loss(seq) 0.0000 | grad 7.0087 | lr 0.0010 | time_forward 2.7680 | time_backward 4.2520
[2023-09-03 00:03:37,476::train::INFO] [train] Iter 15639 | loss 1.9493 | loss(rot) 1.5206 | loss(pos) 0.0866 | loss(seq) 0.3421 | grad 3.8969 | lr 0.0010 | time_forward 3.4150 | time_backward 4.6620
[2023-09-03 00:03:39,710::train::INFO] [train] Iter 15640 | loss 1.3445 | loss(rot) 0.4226 | loss(pos) 0.6858 | loss(seq) 0.2360 | grad 5.2033 | lr 0.0010 | time_forward 1.0440 | time_backward 1.1870
[2023-09-03 00:03:49,011::train::INFO] [train] Iter 15641 | loss 0.9054 | loss(rot) 0.8250 | loss(pos) 0.0610 | loss(seq) 0.0194 | grad 3.2311 | lr 0.0010 | time_forward 3.8270 | time_backward 5.4710
[2023-09-03 00:03:58,708::train::INFO] [train] Iter 15642 | loss 0.6987 | loss(rot) 0.3438 | loss(pos) 0.3104 | loss(seq) 0.0444 | grad 3.8822 | lr 0.0010 | time_forward 3.9370 | time_backward 5.7410
[2023-09-03 00:04:01,379::train::INFO] [train] Iter 15643 | loss 0.7740 | loss(rot) 0.5708 | loss(pos) 0.0769 | loss(seq) 0.1264 | grad 5.1811 | lr 0.0010 | time_forward 1.2350 | time_backward 1.4330
[2023-09-03 00:04:08,488::train::INFO] [train] Iter 15644 | loss 1.4732 | loss(rot) 0.2203 | loss(pos) 0.8524 | loss(seq) 0.4005 | grad 5.7660 | lr 0.0010 | time_forward 2.8720 | time_backward 4.2340
[2023-09-03 00:04:11,178::train::INFO] [train] Iter 15645 | loss 1.1343 | loss(rot) 0.5290 | loss(pos) 0.2483 | loss(seq) 0.3571 | grad 3.0898 | lr 0.0010 | time_forward 1.2290 | time_backward 1.4580
[2023-09-03 00:04:19,846::train::INFO] [train] Iter 15646 | loss 1.7190 | loss(rot) 1.4770 | loss(pos) 0.1176 | loss(seq) 0.1244 | grad 6.4058 | lr 0.0010 | time_forward 3.4730 | time_backward 5.1920
[2023-09-03 00:04:27,958::train::INFO] [train] Iter 15647 | loss 0.7442 | loss(rot) 0.1240 | loss(pos) 0.3802 | loss(seq) 0.2400 | grad 3.7734 | lr 0.0010 | time_forward 3.3850 | time_backward 4.7230
[2023-09-03 00:04:30,714::train::INFO] [train] Iter 15648 | loss 2.6601 | loss(rot) 0.0094 | loss(pos) 2.6507 | loss(seq) 0.0000 | grad 7.8744 | lr 0.0010 | time_forward 1.2890 | time_backward 1.4640
[2023-09-03 00:04:38,267::train::INFO] [train] Iter 15649 | loss 1.7188 | loss(rot) 1.2335 | loss(pos) 0.1269 | loss(seq) 0.3584 | grad 8.3003 | lr 0.0010 | time_forward 3.1370 | time_backward 4.4120
[2023-09-03 00:04:46,741::train::INFO] [train] Iter 15650 | loss 1.9982 | loss(rot) 0.9895 | loss(pos) 0.3106 | loss(seq) 0.6982 | grad 5.3499 | lr 0.0010 | time_forward 3.5590 | time_backward 4.9130
[2023-09-03 00:04:56,722::train::INFO] [train] Iter 15651 | loss 1.9987 | loss(rot) 1.3524 | loss(pos) 0.2036 | loss(seq) 0.4426 | grad 4.3929 | lr 0.0010 | time_forward 4.0180 | time_backward 5.9590
[2023-09-03 00:04:59,432::train::INFO] [train] Iter 15652 | loss 1.3448 | loss(rot) 0.0420 | loss(pos) 1.2944 | loss(seq) 0.0084 | grad 5.7330 | lr 0.0010 | time_forward 1.2470 | time_backward 1.4600
[2023-09-03 00:05:02,215::train::INFO] [train] Iter 15653 | loss 1.5787 | loss(rot) 0.6857 | loss(pos) 0.1887 | loss(seq) 0.7043 | grad 6.4431 | lr 0.0010 | time_forward 1.2730 | time_backward 1.5070
[2023-09-03 00:05:11,584::train::INFO] [train] Iter 15654 | loss 1.5928 | loss(rot) 0.9254 | loss(pos) 0.2234 | loss(seq) 0.4440 | grad 4.3233 | lr 0.0010 | time_forward 3.9630 | time_backward 5.4030
[2023-09-03 00:05:20,401::train::INFO] [train] Iter 15655 | loss 1.5131 | loss(rot) 0.5550 | loss(pos) 0.2470 | loss(seq) 0.7110 | grad 3.5533 | lr 0.0010 | time_forward 3.6820 | time_backward 5.1310
[2023-09-03 00:05:30,325::train::INFO] [train] Iter 15656 | loss 0.7729 | loss(rot) 0.3805 | loss(pos) 0.2928 | loss(seq) 0.0996 | grad 3.0218 | lr 0.0010 | time_forward 4.2140 | time_backward 5.7080
[2023-09-03 00:05:41,078::train::INFO] [train] Iter 15657 | loss 2.2007 | loss(rot) 1.7043 | loss(pos) 0.1313 | loss(seq) 0.3652 | grad 6.2011 | lr 0.0010 | time_forward 4.3880 | time_backward 6.3620
[2023-09-03 00:05:51,269::train::INFO] [train] Iter 15658 | loss 0.8913 | loss(rot) 0.7117 | loss(pos) 0.0942 | loss(seq) 0.0853 | grad 3.6521 | lr 0.0010 | time_forward 4.2900 | time_backward 5.8880
[2023-09-03 00:06:00,226::train::INFO] [train] Iter 15659 | loss 0.7036 | loss(rot) 0.5647 | loss(pos) 0.1370 | loss(seq) 0.0019 | grad 7.4646 | lr 0.0010 | time_forward 3.7700 | time_backward 5.1800
[2023-09-03 00:06:09,062::train::INFO] [train] Iter 15660 | loss 1.1786 | loss(rot) 0.2908 | loss(pos) 0.3916 | loss(seq) 0.4962 | grad 5.2615 | lr 0.0010 | time_forward 3.8530 | time_backward 4.9770
[2023-09-03 00:06:11,447::train::INFO] [train] Iter 15661 | loss 1.7357 | loss(rot) 1.3529 | loss(pos) 0.1746 | loss(seq) 0.2082 | grad 7.9008 | lr 0.0010 | time_forward 1.1230 | time_backward 1.2580
[2023-09-03 00:06:14,271::train::INFO] [train] Iter 15662 | loss 1.7825 | loss(rot) 1.5659 | loss(pos) 0.1166 | loss(seq) 0.1000 | grad 4.8569 | lr 0.0010 | time_forward 1.3210 | time_backward 1.4950
[2023-09-03 00:06:22,281::train::INFO] [train] Iter 15663 | loss 2.3235 | loss(rot) 1.2198 | loss(pos) 0.2481 | loss(seq) 0.8556 | grad 5.4555 | lr 0.0010 | time_forward 3.2970 | time_backward 4.7090
[2023-09-03 00:06:25,103::train::INFO] [train] Iter 15664 | loss 2.1456 | loss(rot) 2.0219 | loss(pos) 0.1060 | loss(seq) 0.0178 | grad 3.8201 | lr 0.0010 | time_forward 1.3260 | time_backward 1.4930
[2023-09-03 00:06:34,944::train::INFO] [train] Iter 15665 | loss 1.4812 | loss(rot) 0.8957 | loss(pos) 0.1571 | loss(seq) 0.4284 | grad 3.4194 | lr 0.0010 | time_forward 3.8530 | time_backward 5.9830
[2023-09-03 00:06:45,613::train::INFO] [train] Iter 15666 | loss 1.2235 | loss(rot) 1.1194 | loss(pos) 0.1040 | loss(seq) 0.0001 | grad 4.8231 | lr 0.0010 | time_forward 3.9990 | time_backward 6.6670
[2023-09-03 00:06:55,345::train::INFO] [train] Iter 15667 | loss 1.0727 | loss(rot) 0.9764 | loss(pos) 0.0775 | loss(seq) 0.0189 | grad 8.4435 | lr 0.0010 | time_forward 3.8550 | time_backward 5.8730
[2023-09-03 00:07:07,699::train::INFO] [train] Iter 15668 | loss 1.8346 | loss(rot) 0.0148 | loss(pos) 1.8188 | loss(seq) 0.0010 | grad 11.3171 | lr 0.0010 | time_forward 5.6220 | time_backward 6.7290
[2023-09-03 00:07:17,855::train::INFO] [train] Iter 15669 | loss 2.1095 | loss(rot) 0.9928 | loss(pos) 0.7818 | loss(seq) 0.3349 | grad 7.0282 | lr 0.0010 | time_forward 4.2240 | time_backward 5.9280
[2023-09-03 00:07:29,721::train::INFO] [train] Iter 15670 | loss 1.2838 | loss(rot) 1.1830 | loss(pos) 0.0978 | loss(seq) 0.0030 | grad 4.1037 | lr 0.0010 | time_forward 4.7110 | time_backward 7.1520
[2023-09-03 00:07:41,691::train::INFO] [train] Iter 15671 | loss 0.9786 | loss(rot) 0.1002 | loss(pos) 0.8538 | loss(seq) 0.0246 | grad 6.2638 | lr 0.0010 | time_forward 4.7960 | time_backward 7.1700
[2023-09-03 00:07:51,982::train::INFO] [train] Iter 15672 | loss 1.4165 | loss(rot) 0.4373 | loss(pos) 0.3207 | loss(seq) 0.6585 | grad 5.0311 | lr 0.0010 | time_forward 4.3090 | time_backward 5.9780
[2023-09-03 00:08:01,456::train::INFO] [train] Iter 15673 | loss 1.1055 | loss(rot) 0.2120 | loss(pos) 0.3065 | loss(seq) 0.5870 | grad 4.2387 | lr 0.0010 | time_forward 3.9610 | time_backward 5.5100
[2023-09-03 00:08:12,076::train::INFO] [train] Iter 15674 | loss 2.1201 | loss(rot) 1.3214 | loss(pos) 0.4579 | loss(seq) 0.3408 | grad 5.1390 | lr 0.0010 | time_forward 4.3070 | time_backward 6.3100
[2023-09-03 00:08:14,994::train::INFO] [train] Iter 15675 | loss 1.3535 | loss(rot) 0.0482 | loss(pos) 1.3021 | loss(seq) 0.0032 | grad 5.9892 | lr 0.0010 | time_forward 1.3480 | time_backward 1.5660
[2023-09-03 00:08:26,546::train::INFO] [train] Iter 15676 | loss 2.1957 | loss(rot) 2.0107 | loss(pos) 0.1802 | loss(seq) 0.0047 | grad 7.9482 | lr 0.0010 | time_forward 5.4160 | time_backward 6.1330
[2023-09-03 00:08:29,476::train::INFO] [train] Iter 15677 | loss 1.0925 | loss(rot) 0.1260 | loss(pos) 0.9000 | loss(seq) 0.0665 | grad 8.7322 | lr 0.0010 | time_forward 1.4160 | time_backward 1.5080
[2023-09-03 00:08:40,185::train::INFO] [train] Iter 15678 | loss 0.8828 | loss(rot) 0.1111 | loss(pos) 0.7583 | loss(seq) 0.0134 | grad 5.1562 | lr 0.0010 | time_forward 4.0570 | time_backward 6.6480
[2023-09-03 00:08:48,048::train::INFO] [train] Iter 15679 | loss 1.1195 | loss(rot) 0.2880 | loss(pos) 0.3452 | loss(seq) 0.4863 | grad 5.4450 | lr 0.0010 | time_forward 3.0470 | time_backward 4.7940