text
stringlengths
56
1.16k
[2023-09-03 00:08:58,799::train::INFO] [train] Iter 15680 | loss 0.5258 | loss(rot) 0.2163 | loss(pos) 0.0721 | loss(seq) 0.2374 | grad 3.2273 | lr 0.0010 | time_forward 4.3680 | time_backward 6.3790
[2023-09-03 00:09:07,613::train::INFO] [train] Iter 15681 | loss 0.6668 | loss(rot) 0.1531 | loss(pos) 0.4910 | loss(seq) 0.0227 | grad 5.6330 | lr 0.0010 | time_forward 3.7060 | time_backward 5.1030
[2023-09-03 00:09:10,188::train::INFO] [train] Iter 15682 | loss 1.0480 | loss(rot) 0.2726 | loss(pos) 0.7463 | loss(seq) 0.0291 | grad 4.2390 | lr 0.0010 | time_forward 1.2850 | time_backward 1.2860
[2023-09-03 00:09:18,800::train::INFO] [train] Iter 15683 | loss 1.4349 | loss(rot) 1.0011 | loss(pos) 0.0689 | loss(seq) 0.3649 | grad 6.1227 | lr 0.0010 | time_forward 3.6870 | time_backward 4.9200
[2023-09-03 00:09:30,233::train::INFO] [train] Iter 15684 | loss 0.9274 | loss(rot) 0.7025 | loss(pos) 0.1412 | loss(seq) 0.0837 | grad 4.4137 | lr 0.0010 | time_forward 4.7970 | time_backward 6.6310
[2023-09-03 00:09:40,992::train::INFO] [train] Iter 15685 | loss 1.1734 | loss(rot) 0.8514 | loss(pos) 0.0749 | loss(seq) 0.2471 | grad 5.5592 | lr 0.0010 | time_forward 4.4520 | time_backward 6.3020
[2023-09-03 00:09:43,533::train::INFO] [train] Iter 15686 | loss 0.7358 | loss(rot) 0.3308 | loss(pos) 0.1822 | loss(seq) 0.2228 | grad 3.2963 | lr 0.0010 | time_forward 1.1830 | time_backward 1.3430
[2023-09-03 00:09:46,491::train::INFO] [train] Iter 15687 | loss 5.4312 | loss(rot) 0.0314 | loss(pos) 5.3998 | loss(seq) 0.0000 | grad 10.4031 | lr 0.0010 | time_forward 1.4040 | time_backward 1.5490
[2023-09-03 00:09:57,605::train::INFO] [train] Iter 15688 | loss 1.0449 | loss(rot) 0.2757 | loss(pos) 0.5817 | loss(seq) 0.1876 | grad 4.7553 | lr 0.0010 | time_forward 4.4880 | time_backward 6.6220
[2023-09-03 00:10:06,606::train::INFO] [train] Iter 15689 | loss 1.2514 | loss(rot) 0.6148 | loss(pos) 0.4955 | loss(seq) 0.1411 | grad 4.8915 | lr 0.0010 | time_forward 3.8060 | time_backward 5.1900
[2023-09-03 00:10:14,062::train::INFO] [train] Iter 15690 | loss 0.9318 | loss(rot) 0.2500 | loss(pos) 0.6234 | loss(seq) 0.0584 | grad 5.1554 | lr 0.0010 | time_forward 3.2420 | time_backward 4.2100
[2023-09-03 00:10:24,084::train::INFO] [train] Iter 15691 | loss 1.7163 | loss(rot) 1.4679 | loss(pos) 0.1282 | loss(seq) 0.1202 | grad 4.1433 | lr 0.0010 | time_forward 4.3530 | time_backward 5.6630
[2023-09-03 00:10:34,312::train::INFO] [train] Iter 15692 | loss 1.4955 | loss(rot) 0.0589 | loss(pos) 1.4282 | loss(seq) 0.0085 | grad 6.4861 | lr 0.0010 | time_forward 4.3520 | time_backward 5.8600
[2023-09-03 00:10:37,360::train::INFO] [train] Iter 15693 | loss 1.1231 | loss(rot) 0.9919 | loss(pos) 0.1081 | loss(seq) 0.0231 | grad 4.4949 | lr 0.0010 | time_forward 1.4930 | time_backward 1.5430
[2023-09-03 00:10:40,352::train::INFO] [train] Iter 15694 | loss 0.5816 | loss(rot) 0.1250 | loss(pos) 0.4187 | loss(seq) 0.0378 | grad 3.5021 | lr 0.0010 | time_forward 1.4530 | time_backward 1.5350
[2023-09-03 00:10:49,402::train::INFO] [train] Iter 15695 | loss 1.8638 | loss(rot) 1.7548 | loss(pos) 0.1089 | loss(seq) 0.0000 | grad 6.1845 | lr 0.0010 | time_forward 3.9200 | time_backward 5.1240
[2023-09-03 00:10:57,489::train::INFO] [train] Iter 15696 | loss 0.7046 | loss(rot) 0.3088 | loss(pos) 0.1382 | loss(seq) 0.2575 | grad 3.3279 | lr 0.0010 | time_forward 3.5340 | time_backward 4.5480
[2023-09-03 00:11:06,980::train::INFO] [train] Iter 15697 | loss 1.7301 | loss(rot) 1.6430 | loss(pos) 0.0640 | loss(seq) 0.0231 | grad 12.0842 | lr 0.0010 | time_forward 4.2520 | time_backward 5.2350
[2023-09-03 00:11:16,521::train::INFO] [train] Iter 15698 | loss 3.5398 | loss(rot) 0.0388 | loss(pos) 3.5009 | loss(seq) 0.0000 | grad 7.1555 | lr 0.0010 | time_forward 4.2720 | time_backward 5.2670
[2023-09-03 00:11:29,189::train::INFO] [train] Iter 15699 | loss 1.4927 | loss(rot) 1.1109 | loss(pos) 0.0924 | loss(seq) 0.2894 | grad 4.0276 | lr 0.0010 | time_forward 6.4220 | time_backward 6.2420
[2023-09-03 00:11:41,131::train::INFO] [train] Iter 15700 | loss 1.7732 | loss(rot) 1.0032 | loss(pos) 0.1719 | loss(seq) 0.5981 | grad 3.5685 | lr 0.0010 | time_forward 5.9750 | time_backward 5.9630
[2023-09-03 00:11:52,066::train::INFO] [train] Iter 15701 | loss 2.3217 | loss(rot) 1.6365 | loss(pos) 0.1602 | loss(seq) 0.5251 | grad 5.9733 | lr 0.0010 | time_forward 5.4040 | time_backward 5.5270
[2023-09-03 00:12:00,864::train::INFO] [train] Iter 15702 | loss 0.9552 | loss(rot) 0.1622 | loss(pos) 0.7409 | loss(seq) 0.0521 | grad 5.4121 | lr 0.0010 | time_forward 3.7220 | time_backward 5.0720
[2023-09-03 00:12:08,786::train::INFO] [train] Iter 15703 | loss 1.1375 | loss(rot) 0.4346 | loss(pos) 0.1429 | loss(seq) 0.5601 | grad 4.4057 | lr 0.0010 | time_forward 3.3390 | time_backward 4.5790
[2023-09-03 00:12:18,079::train::INFO] [train] Iter 15704 | loss 2.0654 | loss(rot) 1.4112 | loss(pos) 0.2759 | loss(seq) 0.3782 | grad 11.6977 | lr 0.0010 | time_forward 4.2050 | time_backward 5.0830
[2023-09-03 00:12:21,155::train::INFO] [train] Iter 15705 | loss 1.6204 | loss(rot) 0.9717 | loss(pos) 0.1395 | loss(seq) 0.5092 | grad 13.4382 | lr 0.0010 | time_forward 1.5470 | time_backward 1.5250
[2023-09-03 00:12:23,786::train::INFO] [train] Iter 15706 | loss 1.0353 | loss(rot) 0.6692 | loss(pos) 0.1054 | loss(seq) 0.2607 | grad 3.4441 | lr 0.0010 | time_forward 1.2700 | time_backward 1.3570
[2023-09-03 00:12:33,305::train::INFO] [train] Iter 15707 | loss 2.3192 | loss(rot) 1.7534 | loss(pos) 0.2594 | loss(seq) 0.3063 | grad 4.6809 | lr 0.0010 | time_forward 4.0140 | time_backward 5.5010
[2023-09-03 00:12:36,201::train::INFO] [train] Iter 15708 | loss 1.8555 | loss(rot) 1.6669 | loss(pos) 0.0906 | loss(seq) 0.0981 | grad 12.0731 | lr 0.0010 | time_forward 1.3490 | time_backward 1.5430
[2023-09-03 00:12:39,146::train::INFO] [train] Iter 15709 | loss 1.1394 | loss(rot) 0.8377 | loss(pos) 0.1990 | loss(seq) 0.1027 | grad 6.5198 | lr 0.0010 | time_forward 1.3940 | time_backward 1.5460
[2023-09-03 00:12:42,111::train::INFO] [train] Iter 15710 | loss 1.1892 | loss(rot) 0.5004 | loss(pos) 0.1485 | loss(seq) 0.5403 | grad 4.7646 | lr 0.0010 | time_forward 1.4120 | time_backward 1.5490
[2023-09-03 00:12:51,155::train::INFO] [train] Iter 15711 | loss 1.1009 | loss(rot) 0.2221 | loss(pos) 0.7144 | loss(seq) 0.1644 | grad 5.2592 | lr 0.0010 | time_forward 3.7040 | time_backward 5.3350
[2023-09-03 00:12:53,594::train::INFO] [train] Iter 15712 | loss 1.6260 | loss(rot) 0.7314 | loss(pos) 0.3046 | loss(seq) 0.5901 | grad 5.4525 | lr 0.0010 | time_forward 1.1170 | time_backward 1.3180
[2023-09-03 00:13:02,564::train::INFO] [train] Iter 15713 | loss 1.1619 | loss(rot) 0.9246 | loss(pos) 0.2372 | loss(seq) 0.0000 | grad 9.0378 | lr 0.0010 | time_forward 3.8430 | time_backward 5.1230
[2023-09-03 00:13:06,098::train::INFO] [train] Iter 15714 | loss 1.9753 | loss(rot) 1.7675 | loss(pos) 0.1396 | loss(seq) 0.0682 | grad 5.2938 | lr 0.0010 | time_forward 1.5280 | time_backward 2.0040
[2023-09-03 00:13:16,507::train::INFO] [train] Iter 15715 | loss 2.6142 | loss(rot) 0.0524 | loss(pos) 2.5544 | loss(seq) 0.0075 | grad 5.9248 | lr 0.0010 | time_forward 4.2590 | time_backward 6.1470
[2023-09-03 00:13:25,057::train::INFO] [train] Iter 15716 | loss 1.5029 | loss(rot) 0.2467 | loss(pos) 0.6313 | loss(seq) 0.6249 | grad 5.8428 | lr 0.0010 | time_forward 3.5150 | time_backward 5.0310
[2023-09-03 00:13:27,991::train::INFO] [train] Iter 15717 | loss 1.3284 | loss(rot) 0.6728 | loss(pos) 0.1567 | loss(seq) 0.4989 | grad 10.1437 | lr 0.0010 | time_forward 1.3720 | time_backward 1.5590
[2023-09-03 00:13:30,415::train::INFO] [train] Iter 15718 | loss 1.4662 | loss(rot) 0.4968 | loss(pos) 0.3802 | loss(seq) 0.5892 | grad 5.5613 | lr 0.0010 | time_forward 1.1400 | time_backward 1.2800
[2023-09-03 00:13:33,311::train::INFO] [train] Iter 15719 | loss 1.0294 | loss(rot) 0.3003 | loss(pos) 0.6465 | loss(seq) 0.0826 | grad 3.1915 | lr 0.0010 | time_forward 1.3430 | time_backward 1.5480
[2023-09-03 00:13:36,200::train::INFO] [train] Iter 15720 | loss 2.0108 | loss(rot) 1.4763 | loss(pos) 0.1373 | loss(seq) 0.3973 | grad 14.6809 | lr 0.0010 | time_forward 1.3560 | time_backward 1.5290
[2023-09-03 00:13:44,123::train::INFO] [train] Iter 15721 | loss 0.9396 | loss(rot) 0.1602 | loss(pos) 0.7406 | loss(seq) 0.0388 | grad 5.0662 | lr 0.0010 | time_forward 3.2690 | time_backward 4.6500
[2023-09-03 00:13:52,555::train::INFO] [train] Iter 15722 | loss 1.2424 | loss(rot) 0.7919 | loss(pos) 0.3086 | loss(seq) 0.1419 | grad 5.9679 | lr 0.0010 | time_forward 3.3570 | time_backward 5.0710
[2023-09-03 00:13:55,446::train::INFO] [train] Iter 15723 | loss 0.9622 | loss(rot) 0.2025 | loss(pos) 0.3571 | loss(seq) 0.4026 | grad 3.0881 | lr 0.0010 | time_forward 1.3360 | time_backward 1.5510
[2023-09-03 00:13:57,914::train::INFO] [train] Iter 15724 | loss 0.8745 | loss(rot) 0.4077 | loss(pos) 0.3166 | loss(seq) 0.1502 | grad 3.5472 | lr 0.0010 | time_forward 1.1940 | time_backward 1.2710
[2023-09-03 00:14:00,378::train::INFO] [train] Iter 15725 | loss 0.6119 | loss(rot) 0.1043 | loss(pos) 0.4793 | loss(seq) 0.0283 | grad 2.2522 | lr 0.0010 | time_forward 1.1220 | time_backward 1.3380
[2023-09-03 00:14:08,052::train::INFO] [train] Iter 15726 | loss 2.2041 | loss(rot) 1.6032 | loss(pos) 0.2342 | loss(seq) 0.3667 | grad 5.6542 | lr 0.0010 | time_forward 3.1030 | time_backward 4.5680
[2023-09-03 00:14:18,846::train::INFO] [train] Iter 15727 | loss 1.1107 | loss(rot) 0.5702 | loss(pos) 0.1039 | loss(seq) 0.4366 | grad 4.2351 | lr 0.0010 | time_forward 4.7830 | time_backward 6.0080
[2023-09-03 00:14:21,611::train::INFO] [train] Iter 15728 | loss 1.0287 | loss(rot) 0.8080 | loss(pos) 0.1905 | loss(seq) 0.0302 | grad 8.9425 | lr 0.0010 | time_forward 1.2820 | time_backward 1.4780
[2023-09-03 00:14:31,454::train::INFO] [train] Iter 15729 | loss 1.9860 | loss(rot) 1.3590 | loss(pos) 0.1847 | loss(seq) 0.4424 | grad 4.3177 | lr 0.0010 | time_forward 4.1560 | time_backward 5.6840
[2023-09-03 00:14:39,885::train::INFO] [train] Iter 15730 | loss 2.0958 | loss(rot) 1.7362 | loss(pos) 0.0980 | loss(seq) 0.2616 | grad 5.0317 | lr 0.0010 | time_forward 3.3780 | time_backward 5.0500
[2023-09-03 00:14:48,955::train::INFO] [train] Iter 15731 | loss 1.3871 | loss(rot) 1.1060 | loss(pos) 0.0622 | loss(seq) 0.2188 | grad 4.7491 | lr 0.0010 | time_forward 3.6530 | time_backward 5.4130
[2023-09-03 00:14:57,956::train::INFO] [train] Iter 15732 | loss 1.5302 | loss(rot) 0.7791 | loss(pos) 0.3598 | loss(seq) 0.3913 | grad 3.3985 | lr 0.0010 | time_forward 3.5490 | time_backward 5.4470
[2023-09-03 00:15:05,350::train::INFO] [train] Iter 15733 | loss 0.8911 | loss(rot) 0.7066 | loss(pos) 0.1730 | loss(seq) 0.0115 | grad 4.9678 | lr 0.0010 | time_forward 2.9120 | time_backward 4.4780
[2023-09-03 00:15:12,031::train::INFO] [train] Iter 15734 | loss 1.5731 | loss(rot) 0.8977 | loss(pos) 0.1758 | loss(seq) 0.4996 | grad 4.0843 | lr 0.0010 | time_forward 2.8650 | time_backward 3.8130
[2023-09-03 00:15:20,934::train::INFO] [train] Iter 15735 | loss 1.2174 | loss(rot) 0.6112 | loss(pos) 0.3937 | loss(seq) 0.2125 | grad 5.0794 | lr 0.0010 | time_forward 3.7000 | time_backward 5.2000
[2023-09-03 00:15:29,801::train::INFO] [train] Iter 15736 | loss 1.6739 | loss(rot) 1.5609 | loss(pos) 0.0761 | loss(seq) 0.0368 | grad 5.0235 | lr 0.0010 | time_forward 3.7920 | time_backward 5.0700
[2023-09-03 00:15:37,278::train::INFO] [train] Iter 15737 | loss 2.2955 | loss(rot) 1.6169 | loss(pos) 0.3624 | loss(seq) 0.3162 | grad 5.1447 | lr 0.0010 | time_forward 2.9520 | time_backward 4.5200
[2023-09-03 00:15:47,591::train::INFO] [train] Iter 15738 | loss 2.1386 | loss(rot) 0.7524 | loss(pos) 0.8043 | loss(seq) 0.5820 | grad 5.6263 | lr 0.0010 | time_forward 5.0300 | time_backward 5.2790
[2023-09-03 00:15:50,022::train::INFO] [train] Iter 15739 | loss 1.5537 | loss(rot) 0.5958 | loss(pos) 0.6312 | loss(seq) 0.3267 | grad 6.1151 | lr 0.0010 | time_forward 1.0860 | time_backward 1.3420
[2023-09-03 00:15:53,699::train::INFO] [train] Iter 15740 | loss 1.8110 | loss(rot) 1.0475 | loss(pos) 0.2669 | loss(seq) 0.4966 | grad 3.3938 | lr 0.0010 | time_forward 1.5310 | time_backward 2.1420
[2023-09-03 00:16:03,743::train::INFO] [train] Iter 15741 | loss 0.7858 | loss(rot) 0.0508 | loss(pos) 0.7256 | loss(seq) 0.0094 | grad 4.6462 | lr 0.0010 | time_forward 4.1730 | time_backward 5.8680
[2023-09-03 00:16:06,374::train::INFO] [train] Iter 15742 | loss 1.6549 | loss(rot) 1.4564 | loss(pos) 0.1863 | loss(seq) 0.0122 | grad 6.6945 | lr 0.0010 | time_forward 1.2160 | time_backward 1.4120
[2023-09-03 00:16:08,941::train::INFO] [train] Iter 15743 | loss 2.1428 | loss(rot) 1.5654 | loss(pos) 0.1896 | loss(seq) 0.3877 | grad 7.3035 | lr 0.0010 | time_forward 1.1780 | time_backward 1.3640
[2023-09-03 00:16:11,411::train::INFO] [train] Iter 15744 | loss 1.1806 | loss(rot) 0.5492 | loss(pos) 0.1284 | loss(seq) 0.5029 | grad 4.7414 | lr 0.0010 | time_forward 1.1600 | time_backward 1.2800
[2023-09-03 00:16:14,190::train::INFO] [train] Iter 15745 | loss 0.9147 | loss(rot) 0.1007 | loss(pos) 0.7870 | loss(seq) 0.0271 | grad 3.5995 | lr 0.0010 | time_forward 1.3100 | time_backward 1.4660
[2023-09-03 00:16:23,656::train::INFO] [train] Iter 15746 | loss 1.1394 | loss(rot) 0.7446 | loss(pos) 0.2937 | loss(seq) 0.1012 | grad 4.2758 | lr 0.0010 | time_forward 3.8360 | time_backward 5.6260
[2023-09-03 00:16:33,235::train::INFO] [train] Iter 15747 | loss 2.0702 | loss(rot) 1.8314 | loss(pos) 0.1561 | loss(seq) 0.0827 | grad 5.5121 | lr 0.0010 | time_forward 3.7890 | time_backward 5.7860
[2023-09-03 00:16:36,025::train::INFO] [train] Iter 15748 | loss 1.3109 | loss(rot) 0.6220 | loss(pos) 0.1726 | loss(seq) 0.5162 | grad 4.3246 | lr 0.0010 | time_forward 1.2630 | time_backward 1.5240
[2023-09-03 00:16:38,824::train::INFO] [train] Iter 15749 | loss 0.8918 | loss(rot) 0.7217 | loss(pos) 0.1697 | loss(seq) 0.0003 | grad 9.3407 | lr 0.0010 | time_forward 1.2850 | time_backward 1.5100
[2023-09-03 00:16:41,750::train::INFO] [train] Iter 15750 | loss 1.1130 | loss(rot) 0.9573 | loss(pos) 0.1255 | loss(seq) 0.0302 | grad 5.0859 | lr 0.0010 | time_forward 1.3320 | time_backward 1.5910
[2023-09-03 00:16:51,573::train::INFO] [train] Iter 15751 | loss 1.3702 | loss(rot) 1.0457 | loss(pos) 0.1191 | loss(seq) 0.2054 | grad 4.8784 | lr 0.0010 | time_forward 3.9840 | time_backward 5.8360
[2023-09-03 00:17:00,459::train::INFO] [train] Iter 15752 | loss 0.9860 | loss(rot) 0.8331 | loss(pos) 0.0515 | loss(seq) 0.1014 | grad 4.8166 | lr 0.0010 | time_forward 3.7040 | time_backward 5.1790
[2023-09-03 00:17:11,278::train::INFO] [train] Iter 15753 | loss 1.1255 | loss(rot) 0.3823 | loss(pos) 0.6856 | loss(seq) 0.0576 | grad 5.8267 | lr 0.0010 | time_forward 4.0640 | time_backward 6.7510
[2023-09-03 00:17:20,920::train::INFO] [train] Iter 15754 | loss 1.2091 | loss(rot) 1.0879 | loss(pos) 0.1181 | loss(seq) 0.0031 | grad 3.3791 | lr 0.0010 | time_forward 4.1300 | time_backward 5.5070
[2023-09-03 00:17:29,856::train::INFO] [train] Iter 15755 | loss 1.3191 | loss(rot) 1.0572 | loss(pos) 0.0953 | loss(seq) 0.1665 | grad 13.1924 | lr 0.0010 | time_forward 3.7360 | time_backward 5.1850
[2023-09-03 00:17:37,962::train::INFO] [train] Iter 15756 | loss 0.5146 | loss(rot) 0.3671 | loss(pos) 0.1004 | loss(seq) 0.0471 | grad 4.2724 | lr 0.0010 | time_forward 3.3320 | time_backward 4.7710
[2023-09-03 00:17:47,783::train::INFO] [train] Iter 15757 | loss 2.2119 | loss(rot) 1.2153 | loss(pos) 0.4600 | loss(seq) 0.5366 | grad 3.8115 | lr 0.0010 | time_forward 3.8120 | time_backward 6.0060
[2023-09-03 00:17:51,171::train::INFO] [train] Iter 15758 | loss 1.3050 | loss(rot) 0.1322 | loss(pos) 1.1625 | loss(seq) 0.0103 | grad 5.7293 | lr 0.0010 | time_forward 1.5210 | time_backward 1.8610
[2023-09-03 00:18:01,210::train::INFO] [train] Iter 15759 | loss 2.1191 | loss(rot) 1.1889 | loss(pos) 0.4576 | loss(seq) 0.4726 | grad 5.8233 | lr 0.0010 | time_forward 3.8770 | time_backward 6.1470
[2023-09-03 00:18:09,962::train::INFO] [train] Iter 15760 | loss 1.2692 | loss(rot) 0.4864 | loss(pos) 0.3784 | loss(seq) 0.4043 | grad 3.9854 | lr 0.0010 | time_forward 3.6300 | time_backward 5.1150
[2023-09-03 00:18:18,804::train::INFO] [train] Iter 15761 | loss 1.7882 | loss(rot) 0.9838 | loss(pos) 0.5843 | loss(seq) 0.2200 | grad 6.4817 | lr 0.0010 | time_forward 3.7420 | time_backward 5.0950
[2023-09-03 00:18:21,422::train::INFO] [train] Iter 15762 | loss 1.2815 | loss(rot) 0.5014 | loss(pos) 0.2681 | loss(seq) 0.5121 | grad 5.3663 | lr 0.0010 | time_forward 1.2640 | time_backward 1.3500
[2023-09-03 00:18:23,829::train::INFO] [train] Iter 15763 | loss 1.1138 | loss(rot) 0.3957 | loss(pos) 0.1998 | loss(seq) 0.5183 | grad 3.9040 | lr 0.0010 | time_forward 1.0930 | time_backward 1.3110
[2023-09-03 00:18:26,818::train::INFO] [train] Iter 15764 | loss 2.4473 | loss(rot) 2.0808 | loss(pos) 0.1596 | loss(seq) 0.2069 | grad 3.6558 | lr 0.0010 | time_forward 1.4370 | time_backward 1.5480
[2023-09-03 00:18:29,752::train::INFO] [train] Iter 15765 | loss 2.0344 | loss(rot) 0.0657 | loss(pos) 1.9668 | loss(seq) 0.0019 | grad 7.5737 | lr 0.0010 | time_forward 1.4070 | time_backward 1.5250
[2023-09-03 00:18:40,489::train::INFO] [train] Iter 15766 | loss 1.1007 | loss(rot) 0.5130 | loss(pos) 0.1570 | loss(seq) 0.4307 | grad 3.4783 | lr 0.0010 | time_forward 4.5400 | time_backward 6.1920
[2023-09-03 00:18:43,500::train::INFO] [train] Iter 15767 | loss 1.8233 | loss(rot) 0.8156 | loss(pos) 0.4253 | loss(seq) 0.5825 | grad 7.1369 | lr 0.0010 | time_forward 1.3950 | time_backward 1.6130
[2023-09-03 00:18:52,938::train::INFO] [train] Iter 15768 | loss 4.7094 | loss(rot) 0.0509 | loss(pos) 4.6585 | loss(seq) 0.0000 | grad 16.8471 | lr 0.0010 | time_forward 3.7230 | time_backward 5.7120
[2023-09-03 00:19:03,039::train::INFO] [train] Iter 15769 | loss 1.2567 | loss(rot) 0.4129 | loss(pos) 0.5598 | loss(seq) 0.2840 | grad 4.2353 | lr 0.0010 | time_forward 3.8600 | time_backward 6.2380
[2023-09-03 00:19:10,660::train::INFO] [train] Iter 15770 | loss 0.7430 | loss(rot) 0.5140 | loss(pos) 0.1942 | loss(seq) 0.0348 | grad 5.1459 | lr 0.0010 | time_forward 3.1890 | time_backward 4.4280
[2023-09-03 00:19:20,509::train::INFO] [train] Iter 15771 | loss 1.3152 | loss(rot) 0.0886 | loss(pos) 1.0309 | loss(seq) 0.1957 | grad 6.0212 | lr 0.0010 | time_forward 4.1400 | time_backward 5.7050
[2023-09-03 00:19:29,476::train::INFO] [train] Iter 15772 | loss 1.9614 | loss(rot) 1.7982 | loss(pos) 0.1628 | loss(seq) 0.0003 | grad 5.3449 | lr 0.0010 | time_forward 3.9220 | time_backward 5.0420
[2023-09-03 00:19:37,162::train::INFO] [train] Iter 15773 | loss 0.6802 | loss(rot) 0.5218 | loss(pos) 0.1082 | loss(seq) 0.0502 | grad 5.4163 | lr 0.0010 | time_forward 3.2010 | time_backward 4.4800
[2023-09-03 00:19:45,990::train::INFO] [train] Iter 15774 | loss 0.7837 | loss(rot) 0.2124 | loss(pos) 0.2758 | loss(seq) 0.2956 | grad 4.2224 | lr 0.0010 | time_forward 3.4610 | time_backward 5.3620
[2023-09-03 00:19:56,178::train::INFO] [train] Iter 15775 | loss 2.2461 | loss(rot) 1.2565 | loss(pos) 0.3947 | loss(seq) 0.5950 | grad 4.7246 | lr 0.0010 | time_forward 4.0470 | time_backward 6.1380
[2023-09-03 00:20:06,171::train::INFO] [train] Iter 15776 | loss 0.8405 | loss(rot) 0.5752 | loss(pos) 0.2652 | loss(seq) 0.0000 | grad 4.8112 | lr 0.0010 | time_forward 3.7470 | time_backward 6.2390
[2023-09-03 00:20:14,838::train::INFO] [train] Iter 15777 | loss 1.7731 | loss(rot) 1.6568 | loss(pos) 0.1163 | loss(seq) 0.0000 | grad 5.5001 | lr 0.0010 | time_forward 3.4010 | time_backward 5.2610
[2023-09-03 00:20:25,314::train::INFO] [train] Iter 15778 | loss 1.8445 | loss(rot) 1.6851 | loss(pos) 0.1229 | loss(seq) 0.0365 | grad 7.7593 | lr 0.0010 | time_forward 4.2780 | time_backward 6.1940
[2023-09-03 00:20:28,236::train::INFO] [train] Iter 15779 | loss 2.5115 | loss(rot) 2.2235 | loss(pos) 0.2832 | loss(seq) 0.0048 | grad 4.2938 | lr 0.0010 | time_forward 1.3190 | time_backward 1.6010