text
stringlengths
56
1.16k
[2023-09-02 23:43:15,212::train::INFO] [train] Iter 15480 | loss 0.6858 | loss(rot) 0.4524 | loss(pos) 0.1098 | loss(seq) 0.1237 | grad 3.9012 | lr 0.0010 | time_forward 1.3620 | time_backward 1.5660
[2023-09-02 23:43:23,860::train::INFO] [train] Iter 15481 | loss 1.1755 | loss(rot) 1.0944 | loss(pos) 0.0455 | loss(seq) 0.0356 | grad 7.6398 | lr 0.0010 | time_forward 3.6280 | time_backward 5.0160
[2023-09-02 23:43:26,858::train::INFO] [train] Iter 15482 | loss 0.8981 | loss(rot) 0.3547 | loss(pos) 0.2277 | loss(seq) 0.3157 | grad 3.4801 | lr 0.0010 | time_forward 1.4230 | time_backward 1.5710
[2023-09-02 23:43:37,493::train::INFO] [train] Iter 15483 | loss 1.1714 | loss(rot) 0.0136 | loss(pos) 1.1541 | loss(seq) 0.0037 | grad 5.6758 | lr 0.0010 | time_forward 4.2550 | time_backward 6.3760
[2023-09-02 23:43:40,410::train::INFO] [train] Iter 15484 | loss 1.6387 | loss(rot) 0.1055 | loss(pos) 1.2132 | loss(seq) 0.3201 | grad 5.7470 | lr 0.0010 | time_forward 1.3610 | time_backward 1.5500
[2023-09-02 23:43:49,610::train::INFO] [train] Iter 15485 | loss 2.2216 | loss(rot) 1.8253 | loss(pos) 0.1086 | loss(seq) 0.2877 | grad 6.3535 | lr 0.0010 | time_forward 3.9320 | time_backward 5.2630
[2023-09-02 23:43:59,713::train::INFO] [train] Iter 15486 | loss 1.1434 | loss(rot) 0.2843 | loss(pos) 0.3776 | loss(seq) 0.4815 | grad 4.1600 | lr 0.0010 | time_forward 4.1920 | time_backward 5.9070
[2023-09-02 23:44:09,666::train::INFO] [train] Iter 15487 | loss 2.6743 | loss(rot) 1.6513 | loss(pos) 0.4587 | loss(seq) 0.5643 | grad 4.6278 | lr 0.0010 | time_forward 4.1690 | time_backward 5.7800
[2023-09-02 23:44:12,298::train::INFO] [train] Iter 15488 | loss 2.0625 | loss(rot) 1.9409 | loss(pos) 0.0782 | loss(seq) 0.0434 | grad 7.9766 | lr 0.0010 | time_forward 1.2150 | time_backward 1.4140
[2023-09-02 23:44:21,420::train::INFO] [train] Iter 15489 | loss 1.8328 | loss(rot) 1.2984 | loss(pos) 0.1601 | loss(seq) 0.3743 | grad 7.9864 | lr 0.0010 | time_forward 3.8830 | time_backward 5.2040
[2023-09-02 23:44:30,827::train::INFO] [train] Iter 15490 | loss 2.7703 | loss(rot) 2.3697 | loss(pos) 0.3406 | loss(seq) 0.0600 | grad 7.8345 | lr 0.0010 | time_forward 3.9290 | time_backward 5.4740
[2023-09-02 23:44:33,281::train::INFO] [train] Iter 15491 | loss 1.9458 | loss(rot) 1.0936 | loss(pos) 0.3732 | loss(seq) 0.4789 | grad 4.0514 | lr 0.0010 | time_forward 1.1260 | time_backward 1.3240
[2023-09-02 23:44:43,835::train::INFO] [train] Iter 15492 | loss 1.1477 | loss(rot) 0.0932 | loss(pos) 0.8778 | loss(seq) 0.1767 | grad 3.6671 | lr 0.0010 | time_forward 4.2850 | time_backward 6.2540
[2023-09-02 23:44:54,656::train::INFO] [train] Iter 15493 | loss 1.3246 | loss(rot) 1.0169 | loss(pos) 0.1455 | loss(seq) 0.1622 | grad 5.2552 | lr 0.0010 | time_forward 4.3100 | time_backward 6.5070
[2023-09-02 23:45:03,964::train::INFO] [train] Iter 15494 | loss 1.3723 | loss(rot) 1.1889 | loss(pos) 0.0570 | loss(seq) 0.1265 | grad 5.2720 | lr 0.0010 | time_forward 3.9600 | time_backward 5.3440
[2023-09-02 23:45:14,820::train::INFO] [train] Iter 15495 | loss 1.1887 | loss(rot) 0.6785 | loss(pos) 0.1010 | loss(seq) 0.4092 | grad 3.2689 | lr 0.0010 | time_forward 4.4090 | time_backward 6.4430
[2023-09-02 23:45:25,491::train::INFO] [train] Iter 15496 | loss 1.4061 | loss(rot) 0.5855 | loss(pos) 0.2405 | loss(seq) 0.5802 | grad 3.4220 | lr 0.0010 | time_forward 4.4590 | time_backward 6.1970
[2023-09-02 23:45:36,130::train::INFO] [train] Iter 15497 | loss 1.5876 | loss(rot) 1.3843 | loss(pos) 0.2020 | loss(seq) 0.0013 | grad 7.9450 | lr 0.0010 | time_forward 4.4060 | time_backward 6.2300
[2023-09-02 23:45:45,185::train::INFO] [train] Iter 15498 | loss 1.5905 | loss(rot) 0.8602 | loss(pos) 0.5770 | loss(seq) 0.1533 | grad 5.6135 | lr 0.0010 | time_forward 3.8360 | time_backward 5.2160
[2023-09-02 23:45:48,163::train::INFO] [train] Iter 15499 | loss 1.6571 | loss(rot) 0.0276 | loss(pos) 1.6287 | loss(seq) 0.0007 | grad 8.7143 | lr 0.0010 | time_forward 1.3680 | time_backward 1.6050
[2023-09-02 23:45:57,921::train::INFO] [train] Iter 15500 | loss 2.1104 | loss(rot) 1.0378 | loss(pos) 0.5253 | loss(seq) 0.5472 | grad 4.5632 | lr 0.0010 | time_forward 4.0690 | time_backward 5.6860
[2023-09-02 23:46:08,336::train::INFO] [train] Iter 15501 | loss 1.3129 | loss(rot) 0.5595 | loss(pos) 0.2702 | loss(seq) 0.4831 | grad 2.9140 | lr 0.0010 | time_forward 4.1380 | time_backward 6.2740
[2023-09-02 23:46:16,887::train::INFO] [train] Iter 15502 | loss 2.2383 | loss(rot) 2.0048 | loss(pos) 0.2328 | loss(seq) 0.0007 | grad 5.1818 | lr 0.0010 | time_forward 3.5110 | time_backward 5.0350
[2023-09-02 23:46:26,809::train::INFO] [train] Iter 15503 | loss 0.7742 | loss(rot) 0.3189 | loss(pos) 0.2299 | loss(seq) 0.2255 | grad 3.5329 | lr 0.0010 | time_forward 4.1910 | time_backward 5.7270
[2023-09-02 23:46:29,774::train::INFO] [train] Iter 15504 | loss 0.7623 | loss(rot) 0.2010 | loss(pos) 0.2508 | loss(seq) 0.3104 | grad 3.5760 | lr 0.0010 | time_forward 1.3800 | time_backward 1.5820
[2023-09-02 23:46:39,269::train::INFO] [train] Iter 15505 | loss 0.8505 | loss(rot) 0.0766 | loss(pos) 0.3377 | loss(seq) 0.4362 | grad 4.2732 | lr 0.0010 | time_forward 3.9290 | time_backward 5.5600
[2023-09-02 23:46:42,893::train::INFO] [train] Iter 15506 | loss 1.9025 | loss(rot) 1.1429 | loss(pos) 0.1868 | loss(seq) 0.5728 | grad 2.7220 | lr 0.0010 | time_forward 1.5600 | time_backward 2.0600
[2023-09-02 23:46:53,760::train::INFO] [train] Iter 15507 | loss 1.2157 | loss(rot) 0.4954 | loss(pos) 0.2960 | loss(seq) 0.4243 | grad 4.5937 | lr 0.0010 | time_forward 4.2850 | time_backward 6.5790
[2023-09-02 23:47:03,220::train::INFO] [train] Iter 15508 | loss 1.2782 | loss(rot) 0.1161 | loss(pos) 0.8278 | loss(seq) 0.3342 | grad 5.7383 | lr 0.0010 | time_forward 3.9350 | time_backward 5.5210
[2023-09-02 23:47:06,206::train::INFO] [train] Iter 15509 | loss 1.0515 | loss(rot) 0.4394 | loss(pos) 0.1563 | loss(seq) 0.4558 | grad 2.9928 | lr 0.0010 | time_forward 1.3880 | time_backward 1.5950
[2023-09-02 23:47:13,306::train::INFO] [train] Iter 15510 | loss 1.0346 | loss(rot) 0.5818 | loss(pos) 0.0966 | loss(seq) 0.3562 | grad 4.6059 | lr 0.0010 | time_forward 2.9000 | time_backward 4.1950
[2023-09-02 23:47:22,449::train::INFO] [train] Iter 15511 | loss 2.1065 | loss(rot) 1.1549 | loss(pos) 0.4803 | loss(seq) 0.4712 | grad 6.0142 | lr 0.0010 | time_forward 3.7760 | time_backward 5.3630
[2023-09-02 23:47:25,396::train::INFO] [train] Iter 15512 | loss 2.3659 | loss(rot) 1.6451 | loss(pos) 0.2530 | loss(seq) 0.4679 | grad 3.6980 | lr 0.0010 | time_forward 1.3730 | time_backward 1.5700
[2023-09-02 23:47:34,675::train::INFO] [train] Iter 15513 | loss 1.4231 | loss(rot) 0.6948 | loss(pos) 0.1533 | loss(seq) 0.5750 | grad 4.0606 | lr 0.0010 | time_forward 3.7750 | time_backward 5.5010
[2023-09-02 23:47:42,359::train::INFO] [train] Iter 15514 | loss 1.9603 | loss(rot) 1.8260 | loss(pos) 0.1070 | loss(seq) 0.0272 | grad 8.4937 | lr 0.0010 | time_forward 3.2190 | time_backward 4.4620
[2023-09-02 23:47:52,173::train::INFO] [train] Iter 15515 | loss 2.3584 | loss(rot) 1.5014 | loss(pos) 0.2859 | loss(seq) 0.5710 | grad 4.4440 | lr 0.0010 | time_forward 4.1300 | time_backward 5.6800
[2023-09-02 23:47:55,843::train::INFO] [train] Iter 15516 | loss 1.2923 | loss(rot) 0.5664 | loss(pos) 0.3158 | loss(seq) 0.4100 | grad 3.1256 | lr 0.0010 | time_forward 1.5330 | time_backward 2.1330
[2023-09-02 23:48:06,509::train::INFO] [train] Iter 15517 | loss 1.4508 | loss(rot) 1.2794 | loss(pos) 0.1617 | loss(seq) 0.0097 | grad 3.4282 | lr 0.0010 | time_forward 4.3360 | time_backward 6.3270
[2023-09-02 23:48:15,678::train::INFO] [train] Iter 15518 | loss 1.5547 | loss(rot) 1.4427 | loss(pos) 0.0791 | loss(seq) 0.0329 | grad 4.4703 | lr 0.0010 | time_forward 3.8420 | time_backward 5.3070
[2023-09-02 23:48:26,140::train::INFO] [train] Iter 15519 | loss 2.2064 | loss(rot) 1.9189 | loss(pos) 0.1852 | loss(seq) 0.1023 | grad 4.5246 | lr 0.0010 | time_forward 4.2820 | time_backward 6.1770
[2023-09-02 23:48:34,888::train::INFO] [train] Iter 15520 | loss 2.6462 | loss(rot) 2.4778 | loss(pos) 0.1281 | loss(seq) 0.0403 | grad 5.1310 | lr 0.0010 | time_forward 3.6160 | time_backward 5.1290
[2023-09-02 23:48:43,976::train::INFO] [train] Iter 15521 | loss 0.9131 | loss(rot) 0.4323 | loss(pos) 0.0735 | loss(seq) 0.4073 | grad 3.0815 | lr 0.0010 | time_forward 3.7390 | time_backward 5.3440
[2023-09-02 23:48:46,902::train::INFO] [train] Iter 15522 | loss 1.9619 | loss(rot) 1.7570 | loss(pos) 0.0989 | loss(seq) 0.1060 | grad 5.6680 | lr 0.0010 | time_forward 1.3350 | time_backward 1.5870
[2023-09-02 23:48:56,713::train::INFO] [train] Iter 15523 | loss 1.1453 | loss(rot) 0.1252 | loss(pos) 0.7880 | loss(seq) 0.2320 | grad 3.7669 | lr 0.0010 | time_forward 4.0650 | time_backward 5.7430
[2023-09-02 23:49:04,356::train::INFO] [train] Iter 15524 | loss 0.8791 | loss(rot) 0.4936 | loss(pos) 0.2030 | loss(seq) 0.1826 | grad 6.4990 | lr 0.0010 | time_forward 3.1600 | time_backward 4.4790
[2023-09-02 23:49:13,756::train::INFO] [train] Iter 15525 | loss 2.8692 | loss(rot) 1.8737 | loss(pos) 0.5477 | loss(seq) 0.4478 | grad 4.6589 | lr 0.0010 | time_forward 3.8360 | time_backward 5.5590
[2023-09-02 23:49:24,652::train::INFO] [train] Iter 15526 | loss 2.0896 | loss(rot) 1.1965 | loss(pos) 0.3690 | loss(seq) 0.5241 | grad 3.7272 | lr 0.0010 | time_forward 4.4850 | time_backward 6.4070
[2023-09-02 23:49:27,576::train::INFO] [train] Iter 15527 | loss 1.7315 | loss(rot) 0.9439 | loss(pos) 0.3138 | loss(seq) 0.4738 | grad 5.0648 | lr 0.0010 | time_forward 1.3410 | time_backward 1.5790
[2023-09-02 23:49:30,104::train::INFO] [train] Iter 15528 | loss 1.0747 | loss(rot) 0.1219 | loss(pos) 0.3185 | loss(seq) 0.6343 | grad 3.5614 | lr 0.0010 | time_forward 1.1730 | time_backward 1.3520
[2023-09-02 23:49:32,515::train::INFO] [train] Iter 15529 | loss 1.5944 | loss(rot) 1.3444 | loss(pos) 0.1673 | loss(seq) 0.0827 | grad 4.5885 | lr 0.0010 | time_forward 1.1380 | time_backward 1.2690
[2023-09-02 23:49:42,024::train::INFO] [train] Iter 15530 | loss 3.8404 | loss(rot) 0.4682 | loss(pos) 2.9386 | loss(seq) 0.4337 | grad 7.1038 | lr 0.0010 | time_forward 4.1130 | time_backward 5.3700
[2023-09-02 23:49:44,926::train::INFO] [train] Iter 15531 | loss 1.4069 | loss(rot) 0.5377 | loss(pos) 0.5095 | loss(seq) 0.3598 | grad 5.5276 | lr 0.0010 | time_forward 1.3360 | time_backward 1.5630
[2023-09-02 23:49:47,877::train::INFO] [train] Iter 15532 | loss 0.9423 | loss(rot) 0.7029 | loss(pos) 0.0942 | loss(seq) 0.1452 | grad 4.2258 | lr 0.0010 | time_forward 1.3920 | time_backward 1.5560
[2023-09-02 23:49:58,620::train::INFO] [train] Iter 15533 | loss 1.2636 | loss(rot) 0.5965 | loss(pos) 0.1965 | loss(seq) 0.4705 | grad 3.2703 | lr 0.0010 | time_forward 4.2830 | time_backward 6.4540
[2023-09-02 23:50:01,260::train::INFO] [train] Iter 15534 | loss 1.5888 | loss(rot) 0.9341 | loss(pos) 0.3532 | loss(seq) 0.3015 | grad 5.6813 | lr 0.0010 | time_forward 1.3060 | time_backward 1.3310
[2023-09-02 23:50:09,356::train::INFO] [train] Iter 15535 | loss 0.8282 | loss(rot) 0.6780 | loss(pos) 0.1146 | loss(seq) 0.0355 | grad 6.7654 | lr 0.0010 | time_forward 3.3360 | time_backward 4.7410
[2023-09-02 23:50:18,108::train::INFO] [train] Iter 15536 | loss 0.9126 | loss(rot) 0.6465 | loss(pos) 0.0535 | loss(seq) 0.2126 | grad 3.7848 | lr 0.0010 | time_forward 3.6480 | time_backward 5.0980
[2023-09-02 23:50:28,172::train::INFO] [train] Iter 15537 | loss 2.0538 | loss(rot) 1.4508 | loss(pos) 0.1505 | loss(seq) 0.4525 | grad 4.3812 | lr 0.0010 | time_forward 4.1990 | time_backward 5.8620
[2023-09-02 23:50:37,024::train::INFO] [train] Iter 15538 | loss 1.5376 | loss(rot) 1.0210 | loss(pos) 0.1004 | loss(seq) 0.4163 | grad 4.8312 | lr 0.0010 | time_forward 3.6910 | time_backward 5.1570
[2023-09-02 23:50:46,595::train::INFO] [train] Iter 15539 | loss 1.1834 | loss(rot) 0.8608 | loss(pos) 0.0612 | loss(seq) 0.2615 | grad 3.5293 | lr 0.0010 | time_forward 4.0740 | time_backward 5.4930
[2023-09-02 23:50:57,285::train::INFO] [train] Iter 15540 | loss 1.7113 | loss(rot) 1.4596 | loss(pos) 0.2516 | loss(seq) 0.0000 | grad 3.7573 | lr 0.0010 | time_forward 4.4930 | time_backward 6.1920
[2023-09-02 23:51:08,287::train::INFO] [train] Iter 15541 | loss 1.0063 | loss(rot) 0.5936 | loss(pos) 0.1236 | loss(seq) 0.2891 | grad 4.8526 | lr 0.0010 | time_forward 4.4880 | time_backward 6.5100
[2023-09-02 23:51:11,218::train::INFO] [train] Iter 15542 | loss 1.1605 | loss(rot) 0.5686 | loss(pos) 0.1389 | loss(seq) 0.4529 | grad 4.2397 | lr 0.0010 | time_forward 1.3240 | time_backward 1.6030
[2023-09-02 23:51:21,908::train::INFO] [train] Iter 15543 | loss 1.0986 | loss(rot) 0.4070 | loss(pos) 0.3290 | loss(seq) 0.3626 | grad 3.2369 | lr 0.0010 | time_forward 4.4270 | time_backward 6.2590
[2023-09-02 23:51:25,476::train::INFO] [train] Iter 15544 | loss 0.9540 | loss(rot) 0.3372 | loss(pos) 0.2978 | loss(seq) 0.3190 | grad 3.2455 | lr 0.0010 | time_forward 1.5110 | time_backward 2.0520
[2023-09-02 23:51:29,051::train::INFO] [train] Iter 15545 | loss 1.7547 | loss(rot) 1.5967 | loss(pos) 0.1487 | loss(seq) 0.0094 | grad 4.1266 | lr 0.0010 | time_forward 1.5140 | time_backward 2.0560
[2023-09-02 23:51:36,116::train::INFO] [train] Iter 15546 | loss 0.9846 | loss(rot) 0.6584 | loss(pos) 0.0842 | loss(seq) 0.2420 | grad 3.3211 | lr 0.0010 | time_forward 2.9300 | time_backward 4.1320
[2023-09-02 23:51:45,250::train::INFO] [train] Iter 15547 | loss 0.4830 | loss(rot) 0.0933 | loss(pos) 0.3188 | loss(seq) 0.0709 | grad 3.9070 | lr 0.0010 | time_forward 3.8360 | time_backward 5.2940
[2023-09-02 23:51:56,224::train::INFO] [train] Iter 15548 | loss 1.7769 | loss(rot) 1.5462 | loss(pos) 0.1348 | loss(seq) 0.0959 | grad 4.2711 | lr 0.0010 | time_forward 4.6880 | time_backward 6.2830
[2023-09-02 23:52:05,885::train::INFO] [train] Iter 15549 | loss 1.5446 | loss(rot) 1.4452 | loss(pos) 0.0963 | loss(seq) 0.0031 | grad 7.4753 | lr 0.0010 | time_forward 4.0360 | time_backward 5.6210
[2023-09-02 23:52:08,844::train::INFO] [train] Iter 15550 | loss 1.3318 | loss(rot) 1.0328 | loss(pos) 0.0596 | loss(seq) 0.2394 | grad 3.7732 | lr 0.0010 | time_forward 1.3370 | time_backward 1.6180
[2023-09-02 23:52:16,995::train::INFO] [train] Iter 15551 | loss 1.1891 | loss(rot) 0.3559 | loss(pos) 0.7531 | loss(seq) 0.0800 | grad 5.4941 | lr 0.0010 | time_forward 3.4940 | time_backward 4.6530
[2023-09-02 23:52:27,909::train::INFO] [train] Iter 15552 | loss 1.3672 | loss(rot) 0.6900 | loss(pos) 0.2837 | loss(seq) 0.3936 | grad 3.2289 | lr 0.0010 | time_forward 4.4580 | time_backward 6.4520
[2023-09-02 23:52:38,770::train::INFO] [train] Iter 15553 | loss 1.5630 | loss(rot) 1.4549 | loss(pos) 0.0789 | loss(seq) 0.0292 | grad 10.0883 | lr 0.0010 | time_forward 4.4550 | time_backward 6.3980
[2023-09-02 23:52:41,718::train::INFO] [train] Iter 15554 | loss 1.2918 | loss(rot) 0.4755 | loss(pos) 0.4256 | loss(seq) 0.3907 | grad 4.9568 | lr 0.0010 | time_forward 1.3610 | time_backward 1.5820
[2023-09-02 23:52:52,209::train::INFO] [train] Iter 15555 | loss 0.6712 | loss(rot) 0.2226 | loss(pos) 0.3376 | loss(seq) 0.1110 | grad 3.2570 | lr 0.0010 | time_forward 4.2020 | time_backward 6.2630
[2023-09-02 23:53:01,510::train::INFO] [train] Iter 15556 | loss 1.0592 | loss(rot) 0.6101 | loss(pos) 0.0981 | loss(seq) 0.3510 | grad 4.5291 | lr 0.0010 | time_forward 3.9190 | time_backward 5.3790
[2023-09-02 23:53:04,352::train::INFO] [train] Iter 15557 | loss 0.7889 | loss(rot) 0.1289 | loss(pos) 0.6416 | loss(seq) 0.0184 | grad 4.7980 | lr 0.0010 | time_forward 1.3170 | time_backward 1.5220
[2023-09-02 23:53:13,749::train::INFO] [train] Iter 15558 | loss 1.0995 | loss(rot) 0.5838 | loss(pos) 0.1127 | loss(seq) 0.4030 | grad 5.0322 | lr 0.0010 | time_forward 4.0240 | time_backward 5.3680
[2023-09-02 23:53:23,122::train::INFO] [train] Iter 15559 | loss 2.1270 | loss(rot) 1.4250 | loss(pos) 0.2459 | loss(seq) 0.4561 | grad 5.4374 | lr 0.0010 | time_forward 4.3030 | time_backward 5.0620
[2023-09-02 23:53:26,019::train::INFO] [train] Iter 15560 | loss 1.6187 | loss(rot) 1.3817 | loss(pos) 0.2307 | loss(seq) 0.0063 | grad 7.3159 | lr 0.0010 | time_forward 1.3650 | time_backward 1.5270
[2023-09-02 23:53:34,805::train::INFO] [train] Iter 15561 | loss 1.2803 | loss(rot) 1.1801 | loss(pos) 0.0912 | loss(seq) 0.0090 | grad 5.6373 | lr 0.0010 | time_forward 3.7170 | time_backward 5.0630
[2023-09-02 23:53:44,308::train::INFO] [train] Iter 15562 | loss 1.1062 | loss(rot) 0.3685 | loss(pos) 0.2661 | loss(seq) 0.4716 | grad 5.3714 | lr 0.0010 | time_forward 3.9620 | time_backward 5.5370
[2023-09-02 23:53:54,411::train::INFO] [train] Iter 15563 | loss 0.7138 | loss(rot) 0.0848 | loss(pos) 0.6143 | loss(seq) 0.0147 | grad 5.4972 | lr 0.0010 | time_forward 4.1430 | time_backward 5.9560
[2023-09-02 23:53:58,036::train::INFO] [train] Iter 15564 | loss 2.4788 | loss(rot) 2.3394 | loss(pos) 0.1382 | loss(seq) 0.0012 | grad 15.3599 | lr 0.0010 | time_forward 1.5210 | time_backward 2.1000
[2023-09-02 23:54:00,884::train::INFO] [train] Iter 15565 | loss 1.1198 | loss(rot) 0.4959 | loss(pos) 0.1793 | loss(seq) 0.4447 | grad 5.5912 | lr 0.0010 | time_forward 1.3470 | time_backward 1.4970
[2023-09-02 23:54:10,337::train::INFO] [train] Iter 15566 | loss 1.3485 | loss(rot) 0.7965 | loss(pos) 0.1845 | loss(seq) 0.3676 | grad 2.9567 | lr 0.0010 | time_forward 3.9110 | time_backward 5.5380
[2023-09-02 23:54:20,551::train::INFO] [train] Iter 15567 | loss 1.1994 | loss(rot) 0.4769 | loss(pos) 0.3257 | loss(seq) 0.3968 | grad 4.1004 | lr 0.0010 | time_forward 4.3620 | time_backward 5.8490
[2023-09-02 23:54:29,823::train::INFO] [train] Iter 15568 | loss 1.5364 | loss(rot) 0.7722 | loss(pos) 0.2434 | loss(seq) 0.5209 | grad 4.9088 | lr 0.0010 | time_forward 3.9490 | time_backward 5.3180
[2023-09-02 23:54:40,276::train::INFO] [train] Iter 15569 | loss 0.6680 | loss(rot) 0.5467 | loss(pos) 0.0825 | loss(seq) 0.0387 | grad 3.3002 | lr 0.0010 | time_forward 4.1490 | time_backward 6.3010
[2023-09-02 23:54:48,351::train::INFO] [train] Iter 15570 | loss 1.0437 | loss(rot) 0.5853 | loss(pos) 0.0989 | loss(seq) 0.3595 | grad 3.5279 | lr 0.0010 | time_forward 3.3040 | time_backward 4.7660
[2023-09-02 23:54:51,346::train::INFO] [train] Iter 15571 | loss 1.2147 | loss(rot) 0.0223 | loss(pos) 1.1891 | loss(seq) 0.0033 | grad 6.1709 | lr 0.0010 | time_forward 1.3560 | time_backward 1.6340
[2023-09-02 23:55:01,881::train::INFO] [train] Iter 15572 | loss 1.3246 | loss(rot) 0.5332 | loss(pos) 0.1644 | loss(seq) 0.6270 | grad 4.3131 | lr 0.0010 | time_forward 4.2530 | time_backward 6.2730
[2023-09-02 23:55:09,540::train::INFO] [train] Iter 15573 | loss 1.4630 | loss(rot) 1.1579 | loss(pos) 0.0517 | loss(seq) 0.2533 | grad 5.2765 | lr 0.0010 | time_forward 3.2500 | time_backward 4.4050
[2023-09-02 23:55:19,692::train::INFO] [train] Iter 15574 | loss 1.5416 | loss(rot) 1.2272 | loss(pos) 0.0846 | loss(seq) 0.2298 | grad 2.7256 | lr 0.0010 | time_forward 4.2290 | time_backward 5.9200
[2023-09-02 23:55:28,914::train::INFO] [train] Iter 15575 | loss 1.1270 | loss(rot) 1.0316 | loss(pos) 0.0864 | loss(seq) 0.0090 | grad 8.6573 | lr 0.0010 | time_forward 3.9120 | time_backward 5.3060
[2023-09-02 23:55:31,826::train::INFO] [train] Iter 15576 | loss 0.8065 | loss(rot) 0.7061 | loss(pos) 0.0815 | loss(seq) 0.0189 | grad 6.1113 | lr 0.0010 | time_forward 1.3400 | time_backward 1.5680
[2023-09-02 23:55:43,486::train::INFO] [train] Iter 15577 | loss 3.0639 | loss(rot) 2.0803 | loss(pos) 0.4390 | loss(seq) 0.5446 | grad 5.9253 | lr 0.0010 | time_forward 4.7990 | time_backward 6.8580
[2023-09-02 23:55:46,397::train::INFO] [train] Iter 15578 | loss 1.2498 | loss(rot) 0.2823 | loss(pos) 0.6064 | loss(seq) 0.3611 | grad 4.8096 | lr 0.0010 | time_forward 1.3470 | time_backward 1.5610
[2023-09-02 23:55:49,362::train::INFO] [train] Iter 15579 | loss 0.6870 | loss(rot) 0.5703 | loss(pos) 0.1167 | loss(seq) 0.0000 | grad 3.5043 | lr 0.0010 | time_forward 1.3990 | time_backward 1.5600