text
stringlengths
56
1.16k
[2023-09-02 23:16:54,317::train::INFO] [train] Iter 15280 | loss 2.7552 | loss(rot) 1.9632 | loss(pos) 0.3476 | loss(seq) 0.4444 | grad 3.5695 | lr 0.0010 | time_forward 4.3440 | time_backward 5.8300
[2023-09-02 23:16:57,219::train::INFO] [train] Iter 15281 | loss 1.3245 | loss(rot) 1.1908 | loss(pos) 0.0848 | loss(seq) 0.0489 | grad 6.7895 | lr 0.0010 | time_forward 1.3530 | time_backward 1.5460
[2023-09-02 23:17:09,710::train::INFO] [train] Iter 15282 | loss 1.4244 | loss(rot) 0.6180 | loss(pos) 0.2330 | loss(seq) 0.5734 | grad 4.0514 | lr 0.0010 | time_forward 4.2500 | time_backward 8.2370
[2023-09-02 23:17:12,696::train::INFO] [train] Iter 15283 | loss 0.6876 | loss(rot) 0.3117 | loss(pos) 0.2856 | loss(seq) 0.0903 | grad 2.6489 | lr 0.0010 | time_forward 1.3000 | time_backward 1.6830
[2023-09-02 23:17:23,775::train::INFO] [train] Iter 15284 | loss 1.6820 | loss(rot) 1.5257 | loss(pos) 0.1316 | loss(seq) 0.0247 | grad 5.5198 | lr 0.0010 | time_forward 4.3790 | time_backward 6.6780
[2023-09-02 23:17:32,033::train::INFO] [train] Iter 15285 | loss 2.2559 | loss(rot) 1.7216 | loss(pos) 0.1520 | loss(seq) 0.3823 | grad 9.7807 | lr 0.0010 | time_forward 3.5180 | time_backward 4.7350
[2023-09-02 23:17:42,252::train::INFO] [train] Iter 15286 | loss 0.8872 | loss(rot) 0.1744 | loss(pos) 0.4408 | loss(seq) 0.2720 | grad 3.6293 | lr 0.0010 | time_forward 4.4470 | time_backward 5.7690
[2023-09-02 23:17:53,159::train::INFO] [train] Iter 15287 | loss 1.3465 | loss(rot) 0.5308 | loss(pos) 0.2078 | loss(seq) 0.6079 | grad 3.6029 | lr 0.0010 | time_forward 4.4190 | time_backward 6.4840
[2023-09-02 23:17:55,641::train::INFO] [train] Iter 15288 | loss 1.0860 | loss(rot) 0.2359 | loss(pos) 0.2009 | loss(seq) 0.6491 | grad 2.7628 | lr 0.0010 | time_forward 1.1420 | time_backward 1.3350
[2023-09-02 23:18:05,695::train::INFO] [train] Iter 15289 | loss 1.4261 | loss(rot) 0.2962 | loss(pos) 0.8134 | loss(seq) 0.3164 | grad 4.6482 | lr 0.0010 | time_forward 4.2520 | time_backward 5.7990
[2023-09-02 23:18:08,680::train::INFO] [train] Iter 15290 | loss 1.6408 | loss(rot) 1.1684 | loss(pos) 0.1403 | loss(seq) 0.3320 | grad 4.7083 | lr 0.0010 | time_forward 1.3960 | time_backward 1.5840
[2023-09-02 23:18:17,586::train::INFO] [train] Iter 15291 | loss 1.7752 | loss(rot) 1.6215 | loss(pos) 0.1403 | loss(seq) 0.0134 | grad 5.1865 | lr 0.0010 | time_forward 3.6210 | time_backward 5.2530
[2023-09-02 23:18:20,523::train::INFO] [train] Iter 15292 | loss 2.0515 | loss(rot) 1.4490 | loss(pos) 0.1820 | loss(seq) 0.4204 | grad 4.2405 | lr 0.0010 | time_forward 1.3670 | time_backward 1.5660
[2023-09-02 23:18:30,020::train::INFO] [train] Iter 15293 | loss 2.0267 | loss(rot) 1.7880 | loss(pos) 0.2286 | loss(seq) 0.0102 | grad 5.7237 | lr 0.0010 | time_forward 3.9770 | time_backward 5.5170
[2023-09-02 23:18:43,382::train::INFO] [train] Iter 15294 | loss 0.7217 | loss(rot) 0.3117 | loss(pos) 0.1186 | loss(seq) 0.2914 | grad 3.1195 | lr 0.0010 | time_forward 7.3130 | time_backward 6.0460
[2023-09-02 23:18:56,140::train::INFO] [train] Iter 15295 | loss 1.4217 | loss(rot) 0.5928 | loss(pos) 0.2843 | loss(seq) 0.5446 | grad 4.5648 | lr 0.0010 | time_forward 5.8000 | time_backward 6.9540
[2023-09-02 23:19:05,836::train::INFO] [train] Iter 15296 | loss 1.9866 | loss(rot) 1.8488 | loss(pos) 0.1221 | loss(seq) 0.0158 | grad 9.8544 | lr 0.0010 | time_forward 4.1230 | time_backward 5.5680
[2023-09-02 23:19:09,992::train::INFO] [train] Iter 15297 | loss 0.8810 | loss(rot) 0.3765 | loss(pos) 0.2731 | loss(seq) 0.2313 | grad 3.8439 | lr 0.0010 | time_forward 2.5420 | time_backward 1.6100
[2023-09-02 23:19:21,309::train::INFO] [train] Iter 15298 | loss 0.7720 | loss(rot) 0.6235 | loss(pos) 0.0902 | loss(seq) 0.0584 | grad 6.2151 | lr 0.0010 | time_forward 4.8070 | time_backward 6.5070
[2023-09-02 23:19:32,396::train::INFO] [train] Iter 15299 | loss 1.7983 | loss(rot) 0.9910 | loss(pos) 0.2899 | loss(seq) 0.5174 | grad 3.5142 | lr 0.0010 | time_forward 4.6320 | time_backward 6.4500
[2023-09-02 23:19:41,070::train::INFO] [train] Iter 15300 | loss 1.5999 | loss(rot) 1.2930 | loss(pos) 0.1001 | loss(seq) 0.2067 | grad 11.7257 | lr 0.0010 | time_forward 4.0900 | time_backward 4.5800
[2023-09-02 23:19:51,988::train::INFO] [train] Iter 15301 | loss 0.9163 | loss(rot) 0.2002 | loss(pos) 0.6819 | loss(seq) 0.0343 | grad 4.1908 | lr 0.0010 | time_forward 4.3810 | time_backward 6.5330
[2023-09-02 23:19:54,995::train::INFO] [train] Iter 15302 | loss 1.1165 | loss(rot) 0.9984 | loss(pos) 0.1182 | loss(seq) 0.0000 | grad 22.1315 | lr 0.0010 | time_forward 1.4060 | time_backward 1.5980
[2023-09-02 23:20:05,522::train::INFO] [train] Iter 15303 | loss 2.6348 | loss(rot) 2.3659 | loss(pos) 0.2022 | loss(seq) 0.0668 | grad 3.7035 | lr 0.0010 | time_forward 4.3330 | time_backward 6.1910
[2023-09-02 23:20:14,364::train::INFO] [train] Iter 15304 | loss 1.7552 | loss(rot) 0.6189 | loss(pos) 1.0863 | loss(seq) 0.0499 | grad 4.4018 | lr 0.0010 | time_forward 3.6640 | time_backward 5.1740
[2023-09-02 23:20:25,441::train::INFO] [train] Iter 15305 | loss 2.3526 | loss(rot) 2.1193 | loss(pos) 0.1449 | loss(seq) 0.0884 | grad 11.5297 | lr 0.0010 | time_forward 4.6040 | time_backward 6.4700
[2023-09-02 23:20:28,425::train::INFO] [train] Iter 15306 | loss 1.6185 | loss(rot) 0.0464 | loss(pos) 1.5645 | loss(seq) 0.0075 | grad 8.8916 | lr 0.0010 | time_forward 1.3650 | time_backward 1.6140
[2023-09-02 23:20:37,742::train::INFO] [train] Iter 15307 | loss 1.7606 | loss(rot) 0.1826 | loss(pos) 1.1426 | loss(seq) 0.4355 | grad 8.4713 | lr 0.0010 | time_forward 3.8790 | time_backward 5.4170
[2023-09-02 23:20:40,737::train::INFO] [train] Iter 15308 | loss 1.9861 | loss(rot) 0.9809 | loss(pos) 0.4642 | loss(seq) 0.5411 | grad 4.3357 | lr 0.0010 | time_forward 1.3640 | time_backward 1.6270
[2023-09-02 23:20:51,587::train::INFO] [train] Iter 15309 | loss 0.4991 | loss(rot) 0.0663 | loss(pos) 0.4083 | loss(seq) 0.0246 | grad 3.7597 | lr 0.0010 | time_forward 4.5630 | time_backward 6.2840
[2023-09-02 23:21:00,800::train::INFO] [train] Iter 15310 | loss 1.1793 | loss(rot) 0.0403 | loss(pos) 1.1299 | loss(seq) 0.0091 | grad 4.8975 | lr 0.0010 | time_forward 3.9200 | time_backward 5.2890
[2023-09-02 23:21:10,754::train::INFO] [train] Iter 15311 | loss 1.1895 | loss(rot) 0.8975 | loss(pos) 0.0984 | loss(seq) 0.1936 | grad 6.3663 | lr 0.0010 | time_forward 4.2140 | time_backward 5.7370
[2023-09-02 23:21:21,484::train::INFO] [train] Iter 15312 | loss 2.0352 | loss(rot) 1.8018 | loss(pos) 0.1235 | loss(seq) 0.1099 | grad 3.7805 | lr 0.0010 | time_forward 4.4250 | time_backward 6.2990
[2023-09-02 23:21:31,367::train::INFO] [train] Iter 15313 | loss 1.1993 | loss(rot) 0.5447 | loss(pos) 0.4378 | loss(seq) 0.2169 | grad 5.3251 | lr 0.0010 | time_forward 4.1630 | time_backward 5.7170
[2023-09-02 23:21:41,076::train::INFO] [train] Iter 15314 | loss 0.8835 | loss(rot) 0.3695 | loss(pos) 0.4720 | loss(seq) 0.0420 | grad 4.1328 | lr 0.0010 | time_forward 4.0780 | time_backward 5.6290
[2023-09-02 23:21:52,081::train::INFO] [train] Iter 15315 | loss 2.1497 | loss(rot) 0.1246 | loss(pos) 2.0236 | loss(seq) 0.0015 | grad 7.4476 | lr 0.0010 | time_forward 4.5160 | time_backward 6.4850
[2023-09-02 23:21:54,990::train::INFO] [train] Iter 15316 | loss 1.3641 | loss(rot) 1.1640 | loss(pos) 0.0924 | loss(seq) 0.1077 | grad 4.7911 | lr 0.0010 | time_forward 1.3520 | time_backward 1.5540
[2023-09-02 23:21:57,602::train::INFO] [train] Iter 15317 | loss 1.9235 | loss(rot) 0.5901 | loss(pos) 0.8179 | loss(seq) 0.5155 | grad 4.5223 | lr 0.0010 | time_forward 1.2170 | time_backward 1.3910
[2023-09-02 23:22:04,431::train::INFO] [train] Iter 15318 | loss 2.0422 | loss(rot) 1.4767 | loss(pos) 0.1393 | loss(seq) 0.4262 | grad 10.8014 | lr 0.0010 | time_forward 2.8000 | time_backward 4.0250
[2023-09-02 23:22:10,788::train::INFO] [train] Iter 15319 | loss 1.9991 | loss(rot) 1.0478 | loss(pos) 0.4393 | loss(seq) 0.5121 | grad 3.3058 | lr 0.0010 | time_forward 2.6470 | time_backward 3.7060
[2023-09-02 23:22:23,176::train::INFO] [train] Iter 15320 | loss 1.7326 | loss(rot) 1.0104 | loss(pos) 0.2571 | loss(seq) 0.4651 | grad 4.0783 | lr 0.0010 | time_forward 5.8110 | time_backward 6.5710
[2023-09-02 23:22:30,812::train::INFO] [train] Iter 15321 | loss 3.0405 | loss(rot) 0.2277 | loss(pos) 2.8109 | loss(seq) 0.0018 | grad 12.3326 | lr 0.0010 | time_forward 3.1710 | time_backward 4.4620
[2023-09-02 23:22:39,726::train::INFO] [train] Iter 15322 | loss 1.2223 | loss(rot) 0.4852 | loss(pos) 0.2940 | loss(seq) 0.4430 | grad 4.5627 | lr 0.0010 | time_forward 3.7810 | time_backward 5.1290
[2023-09-02 23:22:42,389::train::INFO] [train] Iter 15323 | loss 1.5522 | loss(rot) 0.8650 | loss(pos) 0.1654 | loss(seq) 0.5218 | grad 3.6668 | lr 0.0010 | time_forward 1.2100 | time_backward 1.4490
[2023-09-02 23:22:50,804::train::INFO] [train] Iter 15324 | loss 2.7236 | loss(rot) 0.0204 | loss(pos) 2.7006 | loss(seq) 0.0026 | grad 9.1595 | lr 0.0010 | time_forward 3.4790 | time_backward 4.9320
[2023-09-02 23:22:58,925::train::INFO] [train] Iter 15325 | loss 0.6523 | loss(rot) 0.0686 | loss(pos) 0.5644 | loss(seq) 0.0193 | grad 4.5545 | lr 0.0010 | time_forward 3.2940 | time_backward 4.8230
[2023-09-02 23:23:01,703::train::INFO] [train] Iter 15326 | loss 0.7352 | loss(rot) 0.1167 | loss(pos) 0.5661 | loss(seq) 0.0524 | grad 4.9469 | lr 0.0010 | time_forward 1.2610 | time_backward 1.5140
[2023-09-02 23:23:04,507::train::INFO] [train] Iter 15327 | loss 1.8331 | loss(rot) 0.0702 | loss(pos) 1.7476 | loss(seq) 0.0154 | grad 5.1843 | lr 0.0010 | time_forward 1.2770 | time_backward 1.5250
[2023-09-02 23:23:13,344::train::INFO] [train] Iter 15328 | loss 1.3760 | loss(rot) 0.4799 | loss(pos) 0.4970 | loss(seq) 0.3991 | grad 6.6815 | lr 0.0010 | time_forward 3.6850 | time_backward 5.1490
[2023-09-02 23:23:22,767::train::INFO] [train] Iter 15329 | loss 1.0344 | loss(rot) 0.0416 | loss(pos) 0.9812 | loss(seq) 0.0117 | grad 5.7237 | lr 0.0010 | time_forward 3.8780 | time_backward 5.5410
[2023-09-02 23:23:32,914::train::INFO] [train] Iter 15330 | loss 0.9120 | loss(rot) 0.2715 | loss(pos) 0.5935 | loss(seq) 0.0470 | grad 4.1269 | lr 0.0010 | time_forward 4.0230 | time_backward 6.1200
[2023-09-02 23:23:40,458::train::INFO] [train] Iter 15331 | loss 1.0669 | loss(rot) 0.4420 | loss(pos) 0.2491 | loss(seq) 0.3758 | grad 5.5942 | lr 0.0010 | time_forward 3.1090 | time_backward 4.4310
[2023-09-02 23:23:49,325::train::INFO] [train] Iter 15332 | loss 1.7073 | loss(rot) 0.8335 | loss(pos) 0.3147 | loss(seq) 0.5591 | grad 6.2155 | lr 0.0010 | time_forward 3.6280 | time_backward 5.2360
[2023-09-02 23:23:59,293::train::INFO] [train] Iter 15333 | loss 2.0307 | loss(rot) 1.0203 | loss(pos) 0.3621 | loss(seq) 0.6484 | grad 3.1972 | lr 0.0010 | time_forward 3.9170 | time_backward 6.0470
[2023-09-02 23:24:09,228::train::INFO] [train] Iter 15334 | loss 2.1169 | loss(rot) 1.4705 | loss(pos) 0.2130 | loss(seq) 0.4334 | grad 5.1092 | lr 0.0010 | time_forward 3.9610 | time_backward 5.9710
[2023-09-02 23:24:18,483::train::INFO] [train] Iter 15335 | loss 2.3147 | loss(rot) 2.1764 | loss(pos) 0.1383 | loss(seq) 0.0000 | grad 5.6819 | lr 0.0010 | time_forward 3.8000 | time_backward 5.4520
[2023-09-02 23:24:20,805::train::INFO] [train] Iter 15336 | loss 1.3437 | loss(rot) 0.6579 | loss(pos) 0.2182 | loss(seq) 0.4676 | grad 3.8250 | lr 0.0010 | time_forward 1.0410 | time_backward 1.2780
[2023-09-02 23:24:23,382::train::INFO] [train] Iter 15337 | loss 1.7975 | loss(rot) 0.3318 | loss(pos) 1.0220 | loss(seq) 0.4436 | grad 7.5780 | lr 0.0010 | time_forward 1.1940 | time_backward 1.3560
[2023-09-02 23:24:32,656::train::INFO] [train] Iter 15338 | loss 1.1820 | loss(rot) 0.9091 | loss(pos) 0.2725 | loss(seq) 0.0003 | grad 4.5200 | lr 0.0010 | time_forward 3.8560 | time_backward 5.3850
[2023-09-02 23:24:42,078::train::INFO] [train] Iter 15339 | loss 2.1695 | loss(rot) 1.9921 | loss(pos) 0.1388 | loss(seq) 0.0386 | grad 7.4338 | lr 0.0010 | time_forward 3.8970 | time_backward 5.5210
[2023-09-02 23:24:52,644::train::INFO] [train] Iter 15340 | loss 1.9777 | loss(rot) 1.2924 | loss(pos) 0.1915 | loss(seq) 0.4938 | grad 7.3203 | lr 0.0010 | time_forward 3.9000 | time_backward 6.6620
[2023-09-02 23:25:03,346::train::INFO] [train] Iter 15341 | loss 1.1923 | loss(rot) 0.5792 | loss(pos) 0.2974 | loss(seq) 0.3156 | grad 3.3756 | lr 0.0010 | time_forward 4.2090 | time_backward 6.4900
[2023-09-02 23:25:05,183::train::INFO] [train] Iter 15342 | loss 2.4373 | loss(rot) 1.8121 | loss(pos) 0.2752 | loss(seq) 0.3501 | grad 5.0788 | lr 0.0010 | time_forward 0.8140 | time_backward 1.0190
[2023-09-02 23:25:15,588::train::INFO] [train] Iter 15343 | loss 1.2491 | loss(rot) 1.0120 | loss(pos) 0.1046 | loss(seq) 0.1326 | grad 6.2281 | lr 0.0010 | time_forward 4.0030 | time_backward 6.4000
[2023-09-02 23:25:25,206::train::INFO] [train] Iter 15344 | loss 1.6707 | loss(rot) 0.8351 | loss(pos) 0.1509 | loss(seq) 0.6847 | grad 6.3802 | lr 0.0010 | time_forward 3.8750 | time_backward 5.7390
[2023-09-02 23:25:36,114::train::INFO] [train] Iter 15345 | loss 1.1247 | loss(rot) 0.1049 | loss(pos) 0.9895 | loss(seq) 0.0303 | grad 5.2024 | lr 0.0010 | time_forward 4.5440 | time_backward 6.3600
[2023-09-02 23:25:46,215::train::INFO] [train] Iter 15346 | loss 2.4834 | loss(rot) 1.9847 | loss(pos) 0.1858 | loss(seq) 0.3128 | grad 5.5542 | lr 0.0010 | time_forward 4.1540 | time_backward 5.9430
[2023-09-02 23:25:48,895::train::INFO] [train] Iter 15347 | loss 1.3915 | loss(rot) 0.6341 | loss(pos) 0.3037 | loss(seq) 0.4537 | grad 3.6042 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4230
[2023-09-02 23:25:51,803::train::INFO] [train] Iter 15348 | loss 1.8880 | loss(rot) 1.6474 | loss(pos) 0.0904 | loss(seq) 0.1502 | grad 8.0041 | lr 0.0010 | time_forward 1.3520 | time_backward 1.5520
[2023-09-02 23:26:01,396::train::INFO] [train] Iter 15349 | loss 1.3140 | loss(rot) 1.1251 | loss(pos) 0.1858 | loss(seq) 0.0032 | grad 4.3100 | lr 0.0010 | time_forward 4.0900 | time_backward 5.4970
[2023-09-02 23:26:10,634::train::INFO] [train] Iter 15350 | loss 0.8221 | loss(rot) 0.0799 | loss(pos) 0.7141 | loss(seq) 0.0281 | grad 6.7528 | lr 0.0010 | time_forward 3.9000 | time_backward 5.3330
[2023-09-02 23:26:19,830::train::INFO] [train] Iter 15351 | loss 2.2877 | loss(rot) 1.7089 | loss(pos) 0.1720 | loss(seq) 0.4068 | grad 8.0127 | lr 0.0010 | time_forward 3.6850 | time_backward 5.5080
[2023-09-02 23:26:30,558::train::INFO] [train] Iter 15352 | loss 2.6980 | loss(rot) 0.0298 | loss(pos) 2.6676 | loss(seq) 0.0006 | grad 5.7787 | lr 0.0010 | time_forward 4.3640 | time_backward 6.3610
[2023-09-02 23:26:39,244::train::INFO] [train] Iter 15353 | loss 1.8329 | loss(rot) 0.0518 | loss(pos) 1.7736 | loss(seq) 0.0074 | grad 7.3872 | lr 0.0010 | time_forward 3.6680 | time_backward 5.0140
[2023-09-02 23:26:49,694::train::INFO] [train] Iter 15354 | loss 1.0347 | loss(rot) 0.3018 | loss(pos) 0.2763 | loss(seq) 0.4566 | grad 3.6596 | lr 0.0010 | time_forward 4.0200 | time_backward 6.4270
[2023-09-02 23:27:00,322::train::INFO] [train] Iter 15355 | loss 1.3940 | loss(rot) 1.1627 | loss(pos) 0.1132 | loss(seq) 0.1181 | grad 7.1726 | lr 0.0010 | time_forward 4.2920 | time_backward 6.3320
[2023-09-02 23:27:02,860::train::INFO] [train] Iter 15356 | loss 1.9236 | loss(rot) 1.8174 | loss(pos) 0.0834 | loss(seq) 0.0229 | grad 3.7900 | lr 0.0010 | time_forward 1.1370 | time_backward 1.3950
[2023-09-02 23:27:13,892::train::INFO] [train] Iter 15357 | loss 1.3029 | loss(rot) 1.1421 | loss(pos) 0.1586 | loss(seq) 0.0022 | grad 6.7815 | lr 0.0010 | time_forward 4.3510 | time_backward 6.6780
[2023-09-02 23:27:24,623::train::INFO] [train] Iter 15358 | loss 1.5627 | loss(rot) 0.8779 | loss(pos) 0.2017 | loss(seq) 0.4831 | grad 5.1637 | lr 0.0010 | time_forward 4.4460 | time_backward 6.2820
[2023-09-02 23:27:35,534::train::INFO] [train] Iter 15359 | loss 2.2346 | loss(rot) 0.1361 | loss(pos) 2.0977 | loss(seq) 0.0008 | grad 6.5038 | lr 0.0010 | time_forward 4.3390 | time_backward 6.5670
[2023-09-02 23:27:43,754::train::INFO] [train] Iter 15360 | loss 2.4561 | loss(rot) 1.7071 | loss(pos) 0.3071 | loss(seq) 0.4418 | grad 6.0449 | lr 0.0010 | time_forward 3.4400 | time_backward 4.7750
[2023-09-02 23:27:47,599::train::INFO] [train] Iter 15361 | loss 1.0568 | loss(rot) 0.1357 | loss(pos) 0.8722 | loss(seq) 0.0489 | grad 3.6873 | lr 0.0010 | time_forward 1.6810 | time_backward 2.1610
[2023-09-02 23:27:50,551::train::INFO] [train] Iter 15362 | loss 1.1724 | loss(rot) 0.7181 | loss(pos) 0.3652 | loss(seq) 0.0892 | grad 4.8579 | lr 0.0010 | time_forward 1.3380 | time_backward 1.6090
[2023-09-02 23:28:00,234::train::INFO] [train] Iter 15363 | loss 1.8694 | loss(rot) 1.0616 | loss(pos) 0.2814 | loss(seq) 0.5263 | grad 4.5010 | lr 0.0010 | time_forward 4.0980 | time_backward 5.5820
[2023-09-02 23:28:02,749::train::INFO] [train] Iter 15364 | loss 1.5206 | loss(rot) 1.2740 | loss(pos) 0.2465 | loss(seq) 0.0000 | grad 4.0012 | lr 0.0010 | time_forward 1.1730 | time_backward 1.3380
[2023-09-02 23:28:13,848::train::INFO] [train] Iter 15365 | loss 1.8204 | loss(rot) 0.9132 | loss(pos) 0.4172 | loss(seq) 0.4900 | grad 3.9117 | lr 0.0010 | time_forward 4.6170 | time_backward 6.4790
[2023-09-02 23:28:24,897::train::INFO] [train] Iter 15366 | loss 3.1761 | loss(rot) 0.0153 | loss(pos) 3.1608 | loss(seq) 0.0000 | grad 11.7122 | lr 0.0010 | time_forward 4.4020 | time_backward 6.6430
[2023-09-02 23:28:27,824::train::INFO] [train] Iter 15367 | loss 0.9682 | loss(rot) 0.7859 | loss(pos) 0.1261 | loss(seq) 0.0563 | grad 4.8938 | lr 0.0010 | time_forward 1.3210 | time_backward 1.6030
[2023-09-02 23:28:30,830::train::INFO] [train] Iter 15368 | loss 2.6527 | loss(rot) 2.0340 | loss(pos) 0.1612 | loss(seq) 0.4575 | grad 4.8677 | lr 0.0010 | time_forward 1.3950 | time_backward 1.6080
[2023-09-02 23:28:33,776::train::INFO] [train] Iter 15369 | loss 1.2390 | loss(rot) 0.4764 | loss(pos) 0.5727 | loss(seq) 0.1898 | grad 4.6364 | lr 0.0010 | time_forward 1.4030 | time_backward 1.5390
[2023-09-02 23:28:41,725::train::INFO] [train] Iter 15370 | loss 1.6102 | loss(rot) 0.7790 | loss(pos) 0.2786 | loss(seq) 0.5525 | grad 4.8876 | lr 0.0010 | time_forward 3.3960 | time_backward 4.5500
[2023-09-02 23:28:44,660::train::INFO] [train] Iter 15371 | loss 2.1234 | loss(rot) 0.9029 | loss(pos) 0.6791 | loss(seq) 0.5413 | grad 6.5096 | lr 0.0010 | time_forward 1.3490 | time_backward 1.5800
[2023-09-02 23:28:54,245::train::INFO] [train] Iter 15372 | loss 2.4589 | loss(rot) 0.0606 | loss(pos) 2.3971 | loss(seq) 0.0012 | grad 11.0636 | lr 0.0010 | time_forward 3.9830 | time_backward 5.5970
[2023-09-02 23:29:02,202::train::INFO] [train] Iter 15373 | loss 1.6814 | loss(rot) 0.9453 | loss(pos) 0.2084 | loss(seq) 0.5278 | grad 3.7239 | lr 0.0010 | time_forward 3.2480 | time_backward 4.7050
[2023-09-02 23:29:05,182::train::INFO] [train] Iter 15374 | loss 2.4556 | loss(rot) 1.7802 | loss(pos) 0.1896 | loss(seq) 0.4859 | grad 7.5063 | lr 0.0010 | time_forward 1.3980 | time_backward 1.5770
[2023-09-02 23:29:13,851::train::INFO] [train] Iter 15375 | loss 1.3441 | loss(rot) 0.7095 | loss(pos) 0.1493 | loss(seq) 0.4853 | grad 6.2629 | lr 0.0010 | time_forward 3.6310 | time_backward 5.0340
[2023-09-02 23:29:21,967::train::INFO] [train] Iter 15376 | loss 2.2414 | loss(rot) 1.7677 | loss(pos) 0.3101 | loss(seq) 0.1635 | grad 5.0412 | lr 0.0010 | time_forward 3.3640 | time_backward 4.7480
[2023-09-02 23:29:32,871::train::INFO] [train] Iter 15377 | loss 1.0843 | loss(rot) 0.2850 | loss(pos) 0.3805 | loss(seq) 0.4188 | grad 4.7992 | lr 0.0010 | time_forward 4.2620 | time_backward 6.6380
[2023-09-02 23:29:43,810::train::INFO] [train] Iter 15378 | loss 1.5367 | loss(rot) 1.3524 | loss(pos) 0.1635 | loss(seq) 0.0208 | grad 4.6551 | lr 0.0010 | time_forward 4.4430 | time_backward 6.4910
[2023-09-02 23:29:54,752::train::INFO] [train] Iter 15379 | loss 2.6082 | loss(rot) 2.4367 | loss(pos) 0.1531 | loss(seq) 0.0184 | grad 4.9418 | lr 0.0010 | time_forward 4.5090 | time_backward 6.4290