text
stringlengths
56
1.16k
[2023-09-02 22:51:01,282::train::INFO] [train] Iter 15080 | loss 1.6375 | loss(rot) 1.4219 | loss(pos) 0.0907 | loss(seq) 0.1249 | grad 6.6782 | lr 0.0010 | time_forward 1.2990 | time_backward 1.5910
[2023-09-02 22:51:04,320::train::INFO] [train] Iter 15081 | loss 1.1392 | loss(rot) 0.9009 | loss(pos) 0.1479 | loss(seq) 0.0903 | grad 3.5066 | lr 0.0010 | time_forward 1.3660 | time_backward 1.5760
[2023-09-02 22:51:14,026::train::INFO] [train] Iter 15082 | loss 0.5846 | loss(rot) 0.0989 | loss(pos) 0.4703 | loss(seq) 0.0155 | grad 3.0440 | lr 0.0010 | time_forward 4.0980 | time_backward 5.6050
[2023-09-02 22:51:16,935::train::INFO] [train] Iter 15083 | loss 1.2516 | loss(rot) 0.3030 | loss(pos) 0.8065 | loss(seq) 0.1421 | grad 5.6775 | lr 0.0010 | time_forward 1.3160 | time_backward 1.5890
[2023-09-02 22:51:27,759::train::INFO] [train] Iter 15084 | loss 0.9906 | loss(rot) 0.3691 | loss(pos) 0.5295 | loss(seq) 0.0920 | grad 3.5494 | lr 0.0010 | time_forward 4.3460 | time_backward 6.4750
[2023-09-02 22:51:37,784::train::INFO] [train] Iter 15085 | loss 1.7973 | loss(rot) 0.0128 | loss(pos) 1.7839 | loss(seq) 0.0005 | grad 4.9478 | lr 0.0010 | time_forward 4.0960 | time_backward 5.9250
[2023-09-02 22:51:46,730::train::INFO] [train] Iter 15086 | loss 2.4567 | loss(rot) 1.6720 | loss(pos) 0.2691 | loss(seq) 0.5156 | grad 3.8100 | lr 0.0010 | time_forward 3.7370 | time_backward 5.2070
[2023-09-02 22:51:49,617::train::INFO] [train] Iter 15087 | loss 1.1041 | loss(rot) 0.3975 | loss(pos) 0.6638 | loss(seq) 0.0428 | grad 2.8761 | lr 0.0010 | time_forward 1.3570 | time_backward 1.5270
[2023-09-02 22:52:00,871::train::INFO] [train] Iter 15088 | loss 1.7891 | loss(rot) 1.6290 | loss(pos) 0.0550 | loss(seq) 0.1051 | grad 3.3281 | lr 0.0010 | time_forward 4.6750 | time_backward 6.5480
[2023-09-02 22:52:03,790::train::INFO] [train] Iter 15089 | loss 0.6773 | loss(rot) 0.0664 | loss(pos) 0.5966 | loss(seq) 0.0144 | grad 5.6587 | lr 0.0010 | time_forward 1.3210 | time_backward 1.5940
[2023-09-02 22:52:13,348::train::INFO] [train] Iter 15090 | loss 1.3507 | loss(rot) 0.6757 | loss(pos) 0.2183 | loss(seq) 0.4567 | grad 3.6373 | lr 0.0010 | time_forward 4.0460 | time_backward 5.5100
[2023-09-02 22:52:16,227::train::INFO] [train] Iter 15091 | loss 1.4850 | loss(rot) 0.7123 | loss(pos) 0.2257 | loss(seq) 0.5470 | grad 3.8777 | lr 0.0010 | time_forward 1.3410 | time_backward 1.5350
[2023-09-02 22:52:25,400::train::INFO] [train] Iter 15092 | loss 2.7764 | loss(rot) 2.3536 | loss(pos) 0.1740 | loss(seq) 0.2487 | grad 5.7068 | lr 0.0010 | time_forward 3.8260 | time_backward 5.3430
[2023-09-02 22:52:36,075::train::INFO] [train] Iter 15093 | loss 1.5182 | loss(rot) 0.5527 | loss(pos) 0.4301 | loss(seq) 0.5355 | grad 3.8400 | lr 0.0010 | time_forward 4.2380 | time_backward 6.4320
[2023-09-02 22:52:38,985::train::INFO] [train] Iter 15094 | loss 0.9003 | loss(rot) 0.7151 | loss(pos) 0.1832 | loss(seq) 0.0020 | grad 5.4396 | lr 0.0010 | time_forward 1.3210 | time_backward 1.5830
[2023-09-02 22:52:49,123::train::INFO] [train] Iter 15095 | loss 1.3069 | loss(rot) 0.5165 | loss(pos) 0.2391 | loss(seq) 0.5513 | grad 3.9158 | lr 0.0010 | time_forward 4.2070 | time_backward 5.9260
[2023-09-02 22:52:57,346::train::INFO] [train] Iter 15096 | loss 1.6567 | loss(rot) 0.1234 | loss(pos) 0.8008 | loss(seq) 0.7325 | grad 5.5989 | lr 0.0010 | time_forward 3.4990 | time_backward 4.7210
[2023-09-02 22:53:09,319::train::INFO] [train] Iter 15097 | loss 2.1068 | loss(rot) 1.3642 | loss(pos) 0.2757 | loss(seq) 0.4668 | grad 4.8743 | lr 0.0010 | time_forward 4.7930 | time_backward 7.1760
[2023-09-02 22:53:19,724::train::INFO] [train] Iter 15098 | loss 0.7973 | loss(rot) 0.0895 | loss(pos) 0.6914 | loss(seq) 0.0164 | grad 3.4507 | lr 0.0010 | time_forward 4.6870 | time_backward 5.7140
[2023-09-02 22:53:22,731::train::INFO] [train] Iter 15099 | loss 1.8067 | loss(rot) 1.1958 | loss(pos) 0.1818 | loss(seq) 0.4290 | grad 3.9813 | lr 0.0010 | time_forward 1.3990 | time_backward 1.6060
[2023-09-02 22:53:33,464::train::INFO] [train] Iter 15100 | loss 0.8268 | loss(rot) 0.3390 | loss(pos) 0.1584 | loss(seq) 0.3295 | grad 4.3800 | lr 0.0010 | time_forward 4.3510 | time_backward 6.2940
[2023-09-02 22:53:37,177::train::INFO] [train] Iter 15101 | loss 1.3442 | loss(rot) 0.5988 | loss(pos) 0.3712 | loss(seq) 0.3743 | grad 3.1270 | lr 0.0010 | time_forward 1.6210 | time_backward 2.0860
[2023-09-02 22:53:49,210::train::INFO] [train] Iter 15102 | loss 1.2221 | loss(rot) 0.8174 | loss(pos) 0.0911 | loss(seq) 0.3136 | grad 4.6705 | lr 0.0010 | time_forward 6.1390 | time_backward 5.8640
[2023-09-02 22:53:59,477::train::INFO] [train] Iter 15103 | loss 1.7199 | loss(rot) 1.2021 | loss(pos) 0.0989 | loss(seq) 0.4190 | grad 5.5498 | lr 0.0010 | time_forward 4.0230 | time_backward 6.2400
[2023-09-02 22:54:02,382::train::INFO] [train] Iter 15104 | loss 2.3222 | loss(rot) 2.1576 | loss(pos) 0.0949 | loss(seq) 0.0697 | grad 3.7851 | lr 0.0010 | time_forward 1.3340 | time_backward 1.5670
[2023-09-02 22:54:05,366::train::INFO] [train] Iter 15105 | loss 1.7423 | loss(rot) 1.3337 | loss(pos) 0.0843 | loss(seq) 0.3243 | grad 16.2688 | lr 0.0010 | time_forward 1.3820 | time_backward 1.6000
[2023-09-02 22:54:14,571::train::INFO] [train] Iter 15106 | loss 1.2520 | loss(rot) 1.0132 | loss(pos) 0.1223 | loss(seq) 0.1164 | grad 4.5841 | lr 0.0010 | time_forward 3.8410 | time_backward 5.3600
[2023-09-02 22:54:25,559::train::INFO] [train] Iter 15107 | loss 1.0737 | loss(rot) 0.1611 | loss(pos) 0.8934 | loss(seq) 0.0192 | grad 4.4818 | lr 0.0010 | time_forward 4.9280 | time_backward 6.0570
[2023-09-02 22:54:28,588::train::INFO] [train] Iter 15108 | loss 1.9541 | loss(rot) 1.7698 | loss(pos) 0.1840 | loss(seq) 0.0003 | grad 8.9242 | lr 0.0010 | time_forward 1.4580 | time_backward 1.5660
[2023-09-02 22:54:38,467::train::INFO] [train] Iter 15109 | loss 1.0976 | loss(rot) 0.5568 | loss(pos) 0.3621 | loss(seq) 0.1787 | grad 5.6216 | lr 0.0010 | time_forward 3.9910 | time_backward 5.8830
[2023-09-02 22:54:49,940::train::INFO] [train] Iter 15110 | loss 1.5357 | loss(rot) 0.7585 | loss(pos) 0.2217 | loss(seq) 0.5555 | grad 4.0259 | lr 0.0010 | time_forward 4.5530 | time_backward 6.9160
[2023-09-02 22:55:00,911::train::INFO] [train] Iter 15111 | loss 2.0401 | loss(rot) 1.5282 | loss(pos) 0.1287 | loss(seq) 0.3833 | grad 4.3577 | lr 0.0010 | time_forward 4.4790 | time_backward 6.4880
[2023-09-02 22:55:04,121::train::INFO] [train] Iter 15112 | loss 1.1824 | loss(rot) 0.6143 | loss(pos) 0.4354 | loss(seq) 0.1327 | grad 3.9671 | lr 0.0010 | time_forward 1.6240 | time_backward 1.5820
[2023-09-02 22:55:14,288::train::INFO] [train] Iter 15113 | loss 1.0434 | loss(rot) 0.4915 | loss(pos) 0.1866 | loss(seq) 0.3654 | grad 4.0757 | lr 0.0010 | time_forward 4.2870 | time_backward 5.8750
[2023-09-02 22:55:22,725::train::INFO] [train] Iter 15114 | loss 1.3936 | loss(rot) 0.9508 | loss(pos) 0.1146 | loss(seq) 0.3282 | grad 6.4162 | lr 0.0010 | time_forward 3.6310 | time_backward 4.8020
[2023-09-02 22:55:33,764::train::INFO] [train] Iter 15115 | loss 1.1295 | loss(rot) 0.1564 | loss(pos) 0.9606 | loss(seq) 0.0124 | grad 4.2893 | lr 0.0010 | time_forward 4.4140 | time_backward 6.6190
[2023-09-02 22:55:44,607::train::INFO] [train] Iter 15116 | loss 1.3147 | loss(rot) 0.0646 | loss(pos) 1.2488 | loss(seq) 0.0014 | grad 4.4303 | lr 0.0010 | time_forward 4.5910 | time_backward 6.2260
[2023-09-02 22:55:54,128::train::INFO] [train] Iter 15117 | loss 1.3642 | loss(rot) 0.4937 | loss(pos) 0.2849 | loss(seq) 0.5856 | grad 5.6112 | lr 0.0010 | time_forward 4.0650 | time_backward 5.4530
[2023-09-02 22:56:03,757::train::INFO] [train] Iter 15118 | loss 1.0233 | loss(rot) 0.2669 | loss(pos) 0.4575 | loss(seq) 0.2989 | grad 4.5616 | lr 0.0010 | time_forward 4.0040 | time_backward 5.6200
[2023-09-02 22:56:06,550::train::INFO] [train] Iter 15119 | loss 1.9893 | loss(rot) 1.1089 | loss(pos) 0.2552 | loss(seq) 0.6252 | grad 6.7960 | lr 0.0010 | time_forward 1.3070 | time_backward 1.4820
[2023-09-02 22:56:09,665::train::INFO] [train] Iter 15120 | loss 0.8768 | loss(rot) 0.6030 | loss(pos) 0.1746 | loss(seq) 0.0991 | grad 5.5471 | lr 0.0010 | time_forward 1.4350 | time_backward 1.6570
[2023-09-02 22:56:20,810::train::INFO] [train] Iter 15121 | loss 1.8528 | loss(rot) 0.8968 | loss(pos) 0.4377 | loss(seq) 0.5183 | grad 4.1355 | lr 0.0010 | time_forward 4.7580 | time_backward 6.3840
[2023-09-02 22:56:30,465::train::INFO] [train] Iter 15122 | loss 1.1102 | loss(rot) 0.5883 | loss(pos) 0.2386 | loss(seq) 0.2834 | grad 5.5927 | lr 0.0010 | time_forward 4.1020 | time_backward 5.5490
[2023-09-02 22:56:39,779::train::INFO] [train] Iter 15123 | loss 0.6815 | loss(rot) 0.2372 | loss(pos) 0.3880 | loss(seq) 0.0563 | grad 4.9661 | lr 0.0010 | time_forward 4.0230 | time_backward 5.2850
[2023-09-02 22:56:42,431::train::INFO] [train] Iter 15124 | loss 1.2831 | loss(rot) 0.8699 | loss(pos) 0.1013 | loss(seq) 0.3119 | grad 5.8239 | lr 0.0010 | time_forward 1.3530 | time_backward 1.2950
[2023-09-02 22:56:51,589::train::INFO] [train] Iter 15125 | loss 0.9258 | loss(rot) 0.2487 | loss(pos) 0.2174 | loss(seq) 0.4597 | grad 4.1752 | lr 0.0010 | time_forward 3.8110 | time_backward 5.3440
[2023-09-02 22:57:02,795::train::INFO] [train] Iter 15126 | loss 1.4760 | loss(rot) 0.9073 | loss(pos) 0.1679 | loss(seq) 0.4008 | grad 3.5235 | lr 0.0010 | time_forward 4.4720 | time_backward 6.7300
[2023-09-02 22:57:13,877::train::INFO] [train] Iter 15127 | loss 1.2252 | loss(rot) 0.4145 | loss(pos) 0.3365 | loss(seq) 0.4742 | grad 3.7097 | lr 0.0010 | time_forward 4.3500 | time_backward 6.7290
[2023-09-02 22:57:23,673::train::INFO] [train] Iter 15128 | loss 1.1064 | loss(rot) 0.9189 | loss(pos) 0.0713 | loss(seq) 0.1163 | grad 6.4390 | lr 0.0010 | time_forward 4.1780 | time_backward 5.6140
[2023-09-02 22:57:35,451::train::INFO] [train] Iter 15129 | loss 1.7766 | loss(rot) 1.0703 | loss(pos) 0.3618 | loss(seq) 0.3445 | grad 5.9199 | lr 0.0010 | time_forward 4.3600 | time_backward 7.4160
[2023-09-02 22:57:45,911::train::INFO] [train] Iter 15130 | loss 0.6465 | loss(rot) 0.2589 | loss(pos) 0.1564 | loss(seq) 0.2312 | grad 2.3475 | lr 0.0010 | time_forward 4.4020 | time_backward 6.0530
[2023-09-02 22:57:54,753::train::INFO] [train] Iter 15131 | loss 1.3251 | loss(rot) 0.5111 | loss(pos) 0.2163 | loss(seq) 0.5976 | grad 11.6969 | lr 0.0010 | time_forward 3.7920 | time_backward 5.0470
[2023-09-02 22:57:57,970::train::INFO] [train] Iter 15132 | loss 1.1633 | loss(rot) 0.4654 | loss(pos) 0.2494 | loss(seq) 0.4485 | grad 4.5826 | lr 0.0010 | time_forward 1.5680 | time_backward 1.6450
[2023-09-02 22:58:00,555::train::INFO] [train] Iter 15133 | loss 1.9349 | loss(rot) 0.0395 | loss(pos) 1.8883 | loss(seq) 0.0071 | grad 9.6611 | lr 0.0010 | time_forward 1.2110 | time_backward 1.3700
[2023-09-02 22:58:10,724::train::INFO] [train] Iter 15134 | loss 1.7556 | loss(rot) 1.5375 | loss(pos) 0.1330 | loss(seq) 0.0851 | grad 3.9774 | lr 0.0010 | time_forward 4.6020 | time_backward 5.5630
[2023-09-02 22:58:13,218::train::INFO] [train] Iter 15135 | loss 1.4909 | loss(rot) 1.0062 | loss(pos) 0.1138 | loss(seq) 0.3710 | grad 3.8396 | lr 0.0010 | time_forward 1.1570 | time_backward 1.3320
[2023-09-02 22:58:23,849::train::INFO] [train] Iter 15136 | loss 1.4162 | loss(rot) 1.1889 | loss(pos) 0.1974 | loss(seq) 0.0300 | grad 5.7529 | lr 0.0010 | time_forward 4.3900 | time_backward 6.2370
[2023-09-02 22:58:33,463::train::INFO] [train] Iter 15137 | loss 0.9322 | loss(rot) 0.2241 | loss(pos) 0.4481 | loss(seq) 0.2600 | grad 3.9410 | lr 0.0010 | time_forward 4.0610 | time_backward 5.5490
[2023-09-02 22:58:36,421::train::INFO] [train] Iter 15138 | loss 1.0193 | loss(rot) 0.8202 | loss(pos) 0.0826 | loss(seq) 0.1165 | grad 4.3627 | lr 0.0010 | time_forward 1.3590 | time_backward 1.5940
[2023-09-02 22:58:47,211::train::INFO] [train] Iter 15139 | loss 1.0599 | loss(rot) 0.5682 | loss(pos) 0.1174 | loss(seq) 0.3744 | grad 2.9433 | lr 0.0010 | time_forward 4.3880 | time_backward 6.3990
[2023-09-02 22:58:56,627::train::INFO] [train] Iter 15140 | loss 1.4410 | loss(rot) 0.3026 | loss(pos) 0.5313 | loss(seq) 0.6070 | grad 4.0230 | lr 0.0010 | time_forward 3.9590 | time_backward 5.4500
[2023-09-02 22:59:05,974::train::INFO] [train] Iter 15141 | loss 1.7151 | loss(rot) 1.5397 | loss(pos) 0.1399 | loss(seq) 0.0355 | grad 5.5097 | lr 0.0010 | time_forward 3.8500 | time_backward 5.4930
[2023-09-02 22:59:15,583::train::INFO] [train] Iter 15142 | loss 2.2020 | loss(rot) 2.0853 | loss(pos) 0.0542 | loss(seq) 0.0625 | grad 10.5731 | lr 0.0010 | time_forward 4.0250 | time_backward 5.5790
[2023-09-02 22:59:24,432::train::INFO] [train] Iter 15143 | loss 2.4146 | loss(rot) 1.9883 | loss(pos) 0.0779 | loss(seq) 0.3484 | grad 6.9149 | lr 0.0010 | time_forward 3.7160 | time_backward 5.1290
[2023-09-02 22:59:33,957::train::INFO] [train] Iter 15144 | loss 2.3695 | loss(rot) 1.7093 | loss(pos) 0.1471 | loss(seq) 0.5131 | grad 11.6602 | lr 0.0010 | time_forward 4.0340 | time_backward 5.4880
[2023-09-02 22:59:45,005::train::INFO] [train] Iter 15145 | loss 0.9029 | loss(rot) 0.8095 | loss(pos) 0.0866 | loss(seq) 0.0068 | grad 4.8330 | lr 0.0010 | time_forward 4.4850 | time_backward 6.5580
[2023-09-02 22:59:48,040::train::INFO] [train] Iter 15146 | loss 1.7298 | loss(rot) 0.8482 | loss(pos) 0.3162 | loss(seq) 0.5653 | grad 3.9566 | lr 0.0010 | time_forward 1.4090 | time_backward 1.6190
[2023-09-02 22:59:58,840::train::INFO] [train] Iter 15147 | loss 1.1161 | loss(rot) 0.8791 | loss(pos) 0.2277 | loss(seq) 0.0093 | grad 5.1393 | lr 0.0010 | time_forward 4.4900 | time_backward 6.3040
[2023-09-02 23:00:10,089::train::INFO] [train] Iter 15148 | loss 1.9745 | loss(rot) 0.0897 | loss(pos) 1.8831 | loss(seq) 0.0016 | grad 5.5921 | lr 0.0010 | time_forward 4.4150 | time_backward 6.8290
[2023-09-02 23:00:13,044::train::INFO] [train] Iter 15149 | loss 1.2445 | loss(rot) 0.8906 | loss(pos) 0.0845 | loss(seq) 0.2695 | grad 6.4700 | lr 0.0010 | time_forward 1.3480 | time_backward 1.6040
[2023-09-02 23:00:15,372::train::INFO] [train] Iter 15150 | loss 1.0134 | loss(rot) 0.2781 | loss(pos) 0.1419 | loss(seq) 0.5934 | grad 3.3339 | lr 0.0010 | time_forward 1.1500 | time_backward 1.1740
[2023-09-02 23:00:31,549::train::INFO] [train] Iter 15151 | loss 2.5374 | loss(rot) 2.2315 | loss(pos) 0.1751 | loss(seq) 0.1308 | grad 4.5765 | lr 0.0010 | time_forward 6.5090 | time_backward 9.6660
[2023-09-02 23:00:34,670::train::INFO] [train] Iter 15152 | loss 1.6342 | loss(rot) 0.5927 | loss(pos) 0.5175 | loss(seq) 0.5240 | grad 5.9866 | lr 0.0010 | time_forward 1.4280 | time_backward 1.6840
[2023-09-02 23:00:42,592::train::INFO] [train] Iter 15153 | loss 1.6426 | loss(rot) 1.4752 | loss(pos) 0.1174 | loss(seq) 0.0501 | grad 7.5125 | lr 0.0010 | time_forward 3.3030 | time_backward 4.6150
[2023-09-02 23:00:52,382::train::INFO] [train] Iter 15154 | loss 0.9945 | loss(rot) 0.3386 | loss(pos) 0.5607 | loss(seq) 0.0952 | grad 2.6507 | lr 0.0010 | time_forward 4.0110 | time_backward 5.7740
[2023-09-02 23:01:03,059::train::INFO] [train] Iter 15155 | loss 0.7251 | loss(rot) 0.0655 | loss(pos) 0.6471 | loss(seq) 0.0125 | grad 3.3581 | lr 0.0010 | time_forward 4.4000 | time_backward 6.2730
[2023-09-02 23:01:06,002::train::INFO] [train] Iter 15156 | loss 2.0463 | loss(rot) 1.5336 | loss(pos) 0.1042 | loss(seq) 0.4085 | grad 5.4736 | lr 0.0010 | time_forward 1.3930 | time_backward 1.5480
[2023-09-02 23:01:08,802::train::INFO] [train] Iter 15157 | loss 1.5576 | loss(rot) 1.0950 | loss(pos) 0.1621 | loss(seq) 0.3005 | grad 5.6922 | lr 0.0010 | time_forward 1.3120 | time_backward 1.4850
[2023-09-02 23:01:18,777::train::INFO] [train] Iter 15158 | loss 1.1997 | loss(rot) 0.4056 | loss(pos) 0.3326 | loss(seq) 0.4615 | grad 6.7149 | lr 0.0010 | time_forward 4.5050 | time_backward 5.4660
[2023-09-02 23:01:21,250::train::INFO] [train] Iter 15159 | loss 0.8385 | loss(rot) 0.6941 | loss(pos) 0.1437 | loss(seq) 0.0007 | grad 5.2746 | lr 0.0010 | time_forward 1.1380 | time_backward 1.3320
[2023-09-02 23:01:31,937::train::INFO] [train] Iter 15160 | loss 1.7892 | loss(rot) 1.5406 | loss(pos) 0.2485 | loss(seq) 0.0001 | grad 5.1964 | lr 0.0010 | time_forward 4.2740 | time_backward 6.4090
[2023-09-02 23:01:43,383::train::INFO] [train] Iter 15161 | loss 1.6076 | loss(rot) 0.3815 | loss(pos) 0.9162 | loss(seq) 0.3099 | grad 5.2157 | lr 0.0010 | time_forward 4.8430 | time_backward 6.5990
[2023-09-02 23:01:46,394::train::INFO] [train] Iter 15162 | loss 1.0743 | loss(rot) 0.2842 | loss(pos) 0.3166 | loss(seq) 0.4735 | grad 4.6481 | lr 0.0010 | time_forward 1.3640 | time_backward 1.6430
[2023-09-02 23:01:52,639::train::INFO] [train] Iter 15163 | loss 0.9948 | loss(rot) 0.4930 | loss(pos) 0.2062 | loss(seq) 0.2957 | grad 4.6494 | lr 0.0010 | time_forward 2.6130 | time_backward 3.6280
[2023-09-02 23:02:01,481::train::INFO] [train] Iter 15164 | loss 1.4204 | loss(rot) 1.2966 | loss(pos) 0.0431 | loss(seq) 0.0808 | grad 5.5101 | lr 0.0010 | time_forward 3.6490 | time_backward 5.1900
[2023-09-02 23:02:09,486::train::INFO] [train] Iter 15165 | loss 1.5751 | loss(rot) 1.3431 | loss(pos) 0.2320 | loss(seq) 0.0000 | grad 4.8455 | lr 0.0010 | time_forward 3.3610 | time_backward 4.6390
[2023-09-02 23:02:12,626::train::INFO] [train] Iter 15166 | loss 3.0606 | loss(rot) 0.0457 | loss(pos) 3.0138 | loss(seq) 0.0011 | grad 17.5812 | lr 0.0010 | time_forward 1.4780 | time_backward 1.6580
[2023-09-02 23:02:23,874::train::INFO] [train] Iter 15167 | loss 0.6288 | loss(rot) 0.0878 | loss(pos) 0.5153 | loss(seq) 0.0257 | grad 4.5725 | lr 0.0010 | time_forward 4.6730 | time_backward 6.5720
[2023-09-02 23:02:26,772::train::INFO] [train] Iter 15168 | loss 2.1529 | loss(rot) 1.7471 | loss(pos) 0.1247 | loss(seq) 0.2811 | grad 4.2498 | lr 0.0010 | time_forward 1.3320 | time_backward 1.5610
[2023-09-02 23:02:35,507::train::INFO] [train] Iter 15169 | loss 1.5724 | loss(rot) 1.4664 | loss(pos) 0.1057 | loss(seq) 0.0003 | grad 18.5646 | lr 0.0010 | time_forward 3.5260 | time_backward 5.2050
[2023-09-02 23:02:38,182::train::INFO] [train] Iter 15170 | loss 2.0370 | loss(rot) 1.2030 | loss(pos) 0.2512 | loss(seq) 0.5828 | grad 4.9784 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4200
[2023-09-02 23:02:41,763::train::INFO] [train] Iter 15171 | loss 1.4251 | loss(rot) 0.2651 | loss(pos) 1.0059 | loss(seq) 0.1540 | grad 3.8043 | lr 0.0010 | time_forward 1.5250 | time_backward 2.0190
[2023-09-02 23:02:52,793::train::INFO] [train] Iter 15172 | loss 2.1195 | loss(rot) 1.8766 | loss(pos) 0.2428 | loss(seq) 0.0001 | grad 3.5367 | lr 0.0010 | time_forward 4.4440 | time_backward 6.5700
[2023-09-02 23:02:55,685::train::INFO] [train] Iter 15173 | loss 1.3714 | loss(rot) 0.3680 | loss(pos) 0.8081 | loss(seq) 0.1953 | grad 4.0088 | lr 0.0010 | time_forward 1.3170 | time_backward 1.5720
[2023-09-02 23:03:05,960::train::INFO] [train] Iter 15174 | loss 1.1131 | loss(rot) 0.8495 | loss(pos) 0.2635 | loss(seq) 0.0001 | grad 3.6044 | lr 0.0010 | time_forward 4.4050 | time_backward 5.8400
[2023-09-02 23:03:08,879::train::INFO] [train] Iter 15175 | loss 1.2436 | loss(rot) 0.3731 | loss(pos) 0.5265 | loss(seq) 0.3439 | grad 5.1297 | lr 0.0010 | time_forward 1.3530 | time_backward 1.5600
[2023-09-02 23:03:11,823::train::INFO] [train] Iter 15176 | loss 0.9688 | loss(rot) 0.5243 | loss(pos) 0.0794 | loss(seq) 0.3650 | grad 3.9021 | lr 0.0010 | time_forward 1.3640 | time_backward 1.5780
[2023-09-02 23:03:21,528::train::INFO] [train] Iter 15177 | loss 2.0489 | loss(rot) 1.9247 | loss(pos) 0.1114 | loss(seq) 0.0128 | grad 4.9368 | lr 0.0010 | time_forward 3.9390 | time_backward 5.7450
[2023-09-02 23:03:31,004::train::INFO] [train] Iter 15178 | loss 2.0765 | loss(rot) 1.8153 | loss(pos) 0.2578 | loss(seq) 0.0035 | grad 4.6725 | lr 0.0010 | time_forward 3.9320 | time_backward 5.5400
[2023-09-02 23:03:41,089::train::INFO] [train] Iter 15179 | loss 1.2335 | loss(rot) 0.4481 | loss(pos) 0.4935 | loss(seq) 0.2919 | grad 4.7123 | lr 0.0010 | time_forward 4.2530 | time_backward 5.8290