text
stringlengths 56
1.16k
|
---|
[2023-09-02 22:38:48,916::train::INFO] [train] Iter 14981 | loss 1.5521 | loss(rot) 0.7689 | loss(pos) 0.2914 | loss(seq) 0.4917 | grad 6.3515 | lr 0.0010 | time_forward 1.4110 | time_backward 1.4320 |
[2023-09-02 22:38:51,124::train::INFO] [train] Iter 14982 | loss 1.4109 | loss(rot) 0.5154 | loss(pos) 0.4001 | loss(seq) 0.4954 | grad 3.1953 | lr 0.0010 | time_forward 1.0270 | time_backward 1.1780 |
[2023-09-02 22:39:01,154::train::INFO] [train] Iter 14983 | loss 1.9497 | loss(rot) 0.9562 | loss(pos) 0.4472 | loss(seq) 0.5463 | grad 5.8406 | lr 0.0010 | time_forward 4.0390 | time_backward 5.9880 |
[2023-09-02 22:39:10,851::train::INFO] [train] Iter 14984 | loss 1.9647 | loss(rot) 0.0943 | loss(pos) 1.8686 | loss(seq) 0.0017 | grad 5.9126 | lr 0.0010 | time_forward 4.0410 | time_backward 5.6520 |
[2023-09-02 22:39:13,301::train::INFO] [train] Iter 14985 | loss 2.1457 | loss(rot) 1.2484 | loss(pos) 0.2484 | loss(seq) 0.6489 | grad 4.5745 | lr 0.0010 | time_forward 1.1710 | time_backward 1.2750 |
[2023-09-02 22:39:20,010::train::INFO] [train] Iter 14986 | loss 1.2674 | loss(rot) 0.6855 | loss(pos) 0.1773 | loss(seq) 0.4046 | grad 6.5546 | lr 0.0010 | time_forward 2.7970 | time_backward 3.9080 |
[2023-09-02 22:39:30,127::train::INFO] [train] Iter 14987 | loss 1.4602 | loss(rot) 1.0959 | loss(pos) 0.1391 | loss(seq) 0.2252 | grad 5.3795 | lr 0.0010 | time_forward 4.0950 | time_backward 6.0180 |
[2023-09-02 22:39:40,490::train::INFO] [train] Iter 14988 | loss 1.9170 | loss(rot) 1.1209 | loss(pos) 0.2354 | loss(seq) 0.5608 | grad 6.4740 | lr 0.0010 | time_forward 4.2360 | time_backward 6.1070 |
[2023-09-02 22:39:43,190::train::INFO] [train] Iter 14989 | loss 1.0376 | loss(rot) 0.8936 | loss(pos) 0.1291 | loss(seq) 0.0148 | grad 9.8382 | lr 0.0010 | time_forward 1.2700 | time_backward 1.4270 |
[2023-09-02 22:39:52,130::train::INFO] [train] Iter 14990 | loss 1.9179 | loss(rot) 1.1170 | loss(pos) 0.2904 | loss(seq) 0.5104 | grad 4.3608 | lr 0.0010 | time_forward 3.8410 | time_backward 5.0690 |
[2023-09-02 22:39:57,825::train::INFO] [train] Iter 14991 | loss 1.8242 | loss(rot) 1.5278 | loss(pos) 0.2768 | loss(seq) 0.0196 | grad 8.2267 | lr 0.0010 | time_forward 2.4140 | time_backward 3.2770 |
[2023-09-02 22:40:06,308::train::INFO] [train] Iter 14992 | loss 1.5044 | loss(rot) 0.8016 | loss(pos) 0.2207 | loss(seq) 0.4821 | grad 4.6747 | lr 0.0010 | time_forward 3.5050 | time_backward 4.9760 |
[2023-09-02 22:40:14,381::train::INFO] [train] Iter 14993 | loss 1.2275 | loss(rot) 0.1548 | loss(pos) 0.8808 | loss(seq) 0.1919 | grad 5.2939 | lr 0.0010 | time_forward 3.3390 | time_backward 4.7310 |
[2023-09-02 22:40:17,128::train::INFO] [train] Iter 14994 | loss 1.0055 | loss(rot) 0.7747 | loss(pos) 0.2015 | loss(seq) 0.0292 | grad 4.9586 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4900 |
[2023-09-02 22:40:26,958::train::INFO] [train] Iter 14995 | loss 3.6927 | loss(rot) 0.1589 | loss(pos) 3.5332 | loss(seq) 0.0006 | grad 12.6023 | lr 0.0010 | time_forward 4.0850 | time_backward 5.7420 |
[2023-09-02 22:40:29,742::train::INFO] [train] Iter 14996 | loss 1.0207 | loss(rot) 0.5161 | loss(pos) 0.0623 | loss(seq) 0.4423 | grad 3.8200 | lr 0.0010 | time_forward 1.2810 | time_backward 1.4990 |
[2023-09-02 22:40:39,115::train::INFO] [train] Iter 14997 | loss 0.8824 | loss(rot) 0.4633 | loss(pos) 0.0750 | loss(seq) 0.3441 | grad 3.3360 | lr 0.0010 | time_forward 3.8620 | time_backward 5.5090 |
[2023-09-02 22:40:48,538::train::INFO] [train] Iter 14998 | loss 0.6208 | loss(rot) 0.3456 | loss(pos) 0.2109 | loss(seq) 0.0643 | grad 3.7834 | lr 0.0010 | time_forward 3.8690 | time_backward 5.5500 |
[2023-09-02 22:40:55,992::train::INFO] [train] Iter 14999 | loss 1.4116 | loss(rot) 0.5184 | loss(pos) 0.5353 | loss(seq) 0.3579 | grad 6.3290 | lr 0.0010 | time_forward 3.0850 | time_backward 4.3650 |
[2023-09-02 22:41:02,785::train::INFO] [train] Iter 15000 | loss 1.0552 | loss(rot) 0.3034 | loss(pos) 0.1599 | loss(seq) 0.5919 | grad 3.0860 | lr 0.0010 | time_forward 2.8190 | time_backward 3.9700 |
[2023-09-02 22:41:40,330::train::INFO] [val] Iter 15000 | loss 1.7391 | loss(rot) 1.1180 | loss(pos) 0.4308 | loss(seq) 0.1904 |
[2023-09-02 22:41:43,982::train::INFO] [train] Iter 15001 | loss 1.3438 | loss(rot) 0.2119 | loss(pos) 1.0704 | loss(seq) 0.0615 | grad 4.5402 | lr 0.0010 | time_forward 1.4440 | time_backward 1.7480 |
[2023-09-02 22:41:54,753::train::INFO] [train] Iter 15002 | loss 2.4766 | loss(rot) 1.6524 | loss(pos) 0.3193 | loss(seq) 0.5049 | grad 5.0609 | lr 0.0010 | time_forward 3.8870 | time_backward 6.8790 |
[2023-09-02 22:42:06,534::train::INFO] [train] Iter 15003 | loss 0.9729 | loss(rot) 0.1842 | loss(pos) 0.4199 | loss(seq) 0.3689 | grad 4.7003 | lr 0.0010 | time_forward 4.7890 | time_backward 6.9860 |
[2023-09-02 22:42:18,904::train::INFO] [train] Iter 15004 | loss 1.4856 | loss(rot) 0.7439 | loss(pos) 0.2387 | loss(seq) 0.5029 | grad 4.2035 | lr 0.0010 | time_forward 5.3640 | time_backward 7.0030 |
[2023-09-02 22:42:29,441::train::INFO] [train] Iter 15005 | loss 0.7013 | loss(rot) 0.1748 | loss(pos) 0.3735 | loss(seq) 0.1531 | grad 4.7554 | lr 0.0010 | time_forward 4.3180 | time_backward 6.2140 |
[2023-09-02 22:42:40,254::train::INFO] [train] Iter 15006 | loss 1.1474 | loss(rot) 0.2747 | loss(pos) 0.4207 | loss(seq) 0.4520 | grad 4.4955 | lr 0.0010 | time_forward 5.1210 | time_backward 5.6860 |
[2023-09-02 22:42:50,747::train::INFO] [train] Iter 15007 | loss 1.3160 | loss(rot) 0.5450 | loss(pos) 0.4020 | loss(seq) 0.3689 | grad 4.0950 | lr 0.0010 | time_forward 4.0860 | time_backward 6.4040 |
[2023-09-02 22:42:53,712::train::INFO] [train] Iter 15008 | loss 1.1619 | loss(rot) 0.9624 | loss(pos) 0.1624 | loss(seq) 0.0371 | grad 6.0544 | lr 0.0010 | time_forward 1.3660 | time_backward 1.5800 |
[2023-09-02 22:42:56,594::train::INFO] [train] Iter 15009 | loss 1.3545 | loss(rot) 0.7945 | loss(pos) 0.1522 | loss(seq) 0.4079 | grad 3.7473 | lr 0.0010 | time_forward 1.3400 | time_backward 1.5380 |
[2023-09-02 22:42:59,404::train::INFO] [train] Iter 15010 | loss 2.1392 | loss(rot) 1.7786 | loss(pos) 0.1176 | loss(seq) 0.2430 | grad 6.6141 | lr 0.0010 | time_forward 1.2750 | time_backward 1.4950 |
[2023-09-02 22:43:08,003::train::INFO] [train] Iter 15011 | loss 2.5143 | loss(rot) 2.2430 | loss(pos) 0.1382 | loss(seq) 0.1331 | grad 3.4521 | lr 0.0010 | time_forward 3.5910 | time_backward 5.0030 |
[2023-09-02 22:43:16,157::train::INFO] [train] Iter 15012 | loss 3.5164 | loss(rot) 2.9660 | loss(pos) 0.3478 | loss(seq) 0.2026 | grad 6.1867 | lr 0.0010 | time_forward 3.1700 | time_backward 4.9800 |
[2023-09-02 22:43:18,699::train::INFO] [train] Iter 15013 | loss 2.2252 | loss(rot) 2.1488 | loss(pos) 0.0610 | loss(seq) 0.0155 | grad 4.6534 | lr 0.0010 | time_forward 1.1960 | time_backward 1.3420 |
[2023-09-02 22:43:21,154::train::INFO] [train] Iter 15014 | loss 1.3887 | loss(rot) 0.3460 | loss(pos) 0.6416 | loss(seq) 0.4011 | grad 3.4913 | lr 0.0010 | time_forward 1.2190 | time_backward 1.2330 |
[2023-09-02 22:43:29,244::train::INFO] [train] Iter 15015 | loss 2.3161 | loss(rot) 2.0383 | loss(pos) 0.1327 | loss(seq) 0.1451 | grad 7.0206 | lr 0.0010 | time_forward 3.3690 | time_backward 4.6940 |
[2023-09-02 22:43:31,946::train::INFO] [train] Iter 15016 | loss 1.0656 | loss(rot) 0.1441 | loss(pos) 0.7280 | loss(seq) 0.1935 | grad 4.5677 | lr 0.0010 | time_forward 1.2460 | time_backward 1.4530 |
[2023-09-02 22:43:33,904::train::INFO] [train] Iter 15017 | loss 2.3984 | loss(rot) 1.4197 | loss(pos) 0.4112 | loss(seq) 0.5676 | grad 4.4525 | lr 0.0010 | time_forward 0.8830 | time_backward 1.0710 |
[2023-09-02 22:43:42,867::train::INFO] [train] Iter 15018 | loss 0.9071 | loss(rot) 0.3116 | loss(pos) 0.1311 | loss(seq) 0.4645 | grad 3.0488 | lr 0.0010 | time_forward 3.7820 | time_backward 5.1780 |
[2023-09-02 22:43:53,403::train::INFO] [train] Iter 15019 | loss 2.2586 | loss(rot) 2.0219 | loss(pos) 0.2355 | loss(seq) 0.0012 | grad 3.9721 | lr 0.0010 | time_forward 4.3360 | time_backward 6.1950 |
[2023-09-02 22:43:56,208::train::INFO] [train] Iter 15020 | loss 0.4867 | loss(rot) 0.1194 | loss(pos) 0.3395 | loss(seq) 0.0277 | grad 3.6251 | lr 0.0010 | time_forward 1.2880 | time_backward 1.5120 |
[2023-09-02 22:44:05,701::train::INFO] [train] Iter 15021 | loss 1.6875 | loss(rot) 1.0365 | loss(pos) 0.2130 | loss(seq) 0.4380 | grad 5.1721 | lr 0.0010 | time_forward 3.9850 | time_backward 5.5040 |
[2023-09-02 22:44:14,296::train::INFO] [train] Iter 15022 | loss 1.2539 | loss(rot) 0.5999 | loss(pos) 0.0971 | loss(seq) 0.5569 | grad 6.2050 | lr 0.0010 | time_forward 3.4720 | time_backward 5.1190 |
[2023-09-02 22:44:23,428::train::INFO] [train] Iter 15023 | loss 1.1164 | loss(rot) 0.2653 | loss(pos) 0.3177 | loss(seq) 0.5334 | grad 3.4547 | lr 0.0010 | time_forward 3.7300 | time_backward 5.3980 |
[2023-09-02 22:44:26,247::train::INFO] [train] Iter 15024 | loss 1.0817 | loss(rot) 0.5253 | loss(pos) 0.3687 | loss(seq) 0.1877 | grad 3.4429 | lr 0.0010 | time_forward 1.2820 | time_backward 1.5330 |
[2023-09-02 22:44:34,769::train::INFO] [train] Iter 15025 | loss 3.0204 | loss(rot) 2.5187 | loss(pos) 0.1569 | loss(seq) 0.3448 | grad 4.2823 | lr 0.0010 | time_forward 3.4670 | time_backward 5.0530 |
[2023-09-02 22:44:44,955::train::INFO] [train] Iter 15026 | loss 2.5592 | loss(rot) 0.0173 | loss(pos) 2.5418 | loss(seq) 0.0000 | grad 5.4429 | lr 0.0010 | time_forward 4.1700 | time_backward 6.0120 |
[2023-09-02 22:44:47,746::train::INFO] [train] Iter 15027 | loss 1.8698 | loss(rot) 1.0213 | loss(pos) 0.3081 | loss(seq) 0.5404 | grad 3.9838 | lr 0.0010 | time_forward 1.3000 | time_backward 1.4870 |
[2023-09-02 22:44:50,499::train::INFO] [train] Iter 15028 | loss 0.8110 | loss(rot) 0.4366 | loss(pos) 0.2537 | loss(seq) 0.1207 | grad 3.5820 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4820 |
[2023-09-02 22:44:58,820::train::INFO] [train] Iter 15029 | loss 2.3758 | loss(rot) 2.2395 | loss(pos) 0.1265 | loss(seq) 0.0098 | grad 9.0117 | lr 0.0010 | time_forward 3.4560 | time_backward 4.8610 |
[2023-09-02 22:45:08,912::train::INFO] [train] Iter 15030 | loss 1.2086 | loss(rot) 0.4050 | loss(pos) 0.2522 | loss(seq) 0.5514 | grad 3.7427 | lr 0.0010 | time_forward 4.2900 | time_backward 5.7650 |
[2023-09-02 22:45:18,982::train::INFO] [train] Iter 15031 | loss 1.5457 | loss(rot) 0.7247 | loss(pos) 0.3123 | loss(seq) 0.5087 | grad 4.5412 | lr 0.0010 | time_forward 4.0240 | time_backward 6.0420 |
[2023-09-02 22:45:28,351::train::INFO] [train] Iter 15032 | loss 1.0295 | loss(rot) 0.0304 | loss(pos) 0.9973 | loss(seq) 0.0018 | grad 5.0988 | lr 0.0010 | time_forward 3.9370 | time_backward 5.4290 |
[2023-09-02 22:45:30,997::train::INFO] [train] Iter 15033 | loss 0.7355 | loss(rot) 0.5634 | loss(pos) 0.0940 | loss(seq) 0.0780 | grad 3.4837 | lr 0.0010 | time_forward 1.2470 | time_backward 1.3970 |
[2023-09-02 22:45:40,463::train::INFO] [train] Iter 15034 | loss 2.3011 | loss(rot) 1.7455 | loss(pos) 0.1545 | loss(seq) 0.4011 | grad 7.9700 | lr 0.0010 | time_forward 3.9340 | time_backward 5.4940 |
[2023-09-02 22:45:49,945::train::INFO] [train] Iter 15035 | loss 1.4405 | loss(rot) 1.3352 | loss(pos) 0.0887 | loss(seq) 0.0166 | grad 10.2398 | lr 0.0010 | time_forward 3.9430 | time_backward 5.5340 |
[2023-09-02 22:45:53,523::train::INFO] [train] Iter 15036 | loss 1.8506 | loss(rot) 1.3888 | loss(pos) 0.1010 | loss(seq) 0.3608 | grad 4.4928 | lr 0.0010 | time_forward 1.4920 | time_backward 2.0820 |
[2023-09-02 22:45:56,522::train::INFO] [train] Iter 15037 | loss 1.0795 | loss(rot) 0.0799 | loss(pos) 0.9925 | loss(seq) 0.0071 | grad 7.0400 | lr 0.0010 | time_forward 1.4020 | time_backward 1.5940 |
[2023-09-02 22:45:59,485::train::INFO] [train] Iter 15038 | loss 1.0429 | loss(rot) 0.3567 | loss(pos) 0.1698 | loss(seq) 0.5164 | grad 4.4429 | lr 0.0010 | time_forward 1.3440 | time_backward 1.5820 |
[2023-09-02 22:46:09,907::train::INFO] [train] Iter 15039 | loss 1.6941 | loss(rot) 0.9643 | loss(pos) 0.1724 | loss(seq) 0.5573 | grad 4.7036 | lr 0.0010 | time_forward 4.4040 | time_backward 6.0130 |
[2023-09-02 22:46:21,406::train::INFO] [train] Iter 15040 | loss 2.0462 | loss(rot) 1.9857 | loss(pos) 0.0575 | loss(seq) 0.0030 | grad 4.2662 | lr 0.0010 | time_forward 4.6870 | time_backward 6.8050 |
[2023-09-02 22:46:24,347::train::INFO] [train] Iter 15041 | loss 1.0202 | loss(rot) 0.0835 | loss(pos) 0.9189 | loss(seq) 0.0177 | grad 6.9608 | lr 0.0010 | time_forward 1.3520 | time_backward 1.5860 |
[2023-09-02 22:46:33,652::train::INFO] [train] Iter 15042 | loss 1.0448 | loss(rot) 0.4092 | loss(pos) 0.5307 | loss(seq) 0.1049 | grad 4.3615 | lr 0.0010 | time_forward 3.7960 | time_backward 5.5050 |
[2023-09-02 22:46:36,549::train::INFO] [train] Iter 15043 | loss 1.1077 | loss(rot) 0.4497 | loss(pos) 0.1319 | loss(seq) 0.5262 | grad 4.0590 | lr 0.0010 | time_forward 1.3420 | time_backward 1.5500 |
[2023-09-02 22:46:47,588::train::INFO] [train] Iter 15044 | loss 1.5679 | loss(rot) 1.4630 | loss(pos) 0.0586 | loss(seq) 0.0462 | grad 4.7746 | lr 0.0010 | time_forward 4.6590 | time_backward 6.3760 |
[2023-09-02 22:46:50,520::train::INFO] [train] Iter 15045 | loss 1.0224 | loss(rot) 0.0359 | loss(pos) 0.9801 | loss(seq) 0.0064 | grad 5.8501 | lr 0.0010 | time_forward 1.4080 | time_backward 1.5210 |
[2023-09-02 22:46:59,406::train::INFO] [train] Iter 15046 | loss 2.3912 | loss(rot) 1.5194 | loss(pos) 0.4562 | loss(seq) 0.4156 | grad 5.1470 | lr 0.0010 | time_forward 3.6680 | time_backward 5.2130 |
[2023-09-02 22:47:09,377::train::INFO] [train] Iter 15047 | loss 1.3091 | loss(rot) 0.4634 | loss(pos) 0.3705 | loss(seq) 0.4752 | grad 5.1881 | lr 0.0010 | time_forward 4.2220 | time_backward 5.7450 |
[2023-09-02 22:47:18,298::train::INFO] [train] Iter 15048 | loss 1.4847 | loss(rot) 1.3686 | loss(pos) 0.0996 | loss(seq) 0.0165 | grad 6.3169 | lr 0.0010 | time_forward 3.6890 | time_backward 5.2270 |
[2023-09-02 22:47:27,968::train::INFO] [train] Iter 15049 | loss 1.2738 | loss(rot) 1.0547 | loss(pos) 0.2179 | loss(seq) 0.0012 | grad 5.4500 | lr 0.0010 | time_forward 4.0940 | time_backward 5.5730 |
[2023-09-02 22:47:30,922::train::INFO] [train] Iter 15050 | loss 0.9320 | loss(rot) 0.3695 | loss(pos) 0.3023 | loss(seq) 0.2603 | grad 6.6941 | lr 0.0010 | time_forward 1.3370 | time_backward 1.6140 |
[2023-09-02 22:47:41,829::train::INFO] [train] Iter 15051 | loss 2.3161 | loss(rot) 2.1813 | loss(pos) 0.1102 | loss(seq) 0.0247 | grad 3.5266 | lr 0.0010 | time_forward 4.4780 | time_backward 6.4240 |
[2023-09-02 22:47:50,316::train::INFO] [train] Iter 15052 | loss 1.1817 | loss(rot) 0.6618 | loss(pos) 0.2656 | loss(seq) 0.2543 | grad 4.6089 | lr 0.0010 | time_forward 3.5170 | time_backward 4.9660 |
[2023-09-02 22:48:01,357::train::INFO] [train] Iter 15053 | loss 1.1718 | loss(rot) 0.9839 | loss(pos) 0.0849 | loss(seq) 0.1030 | grad 4.8336 | lr 0.0010 | time_forward 4.3940 | time_backward 6.6430 |
[2023-09-02 22:48:04,293::train::INFO] [train] Iter 15054 | loss 1.5312 | loss(rot) 0.7820 | loss(pos) 0.3594 | loss(seq) 0.3898 | grad 4.2584 | lr 0.0010 | time_forward 1.3110 | time_backward 1.6220 |
[2023-09-02 22:48:12,951::train::INFO] [train] Iter 15055 | loss 2.8484 | loss(rot) 2.1068 | loss(pos) 0.1995 | loss(seq) 0.5421 | grad 4.2308 | lr 0.0010 | time_forward 3.6200 | time_backward 5.0340 |
[2023-09-02 22:48:15,836::train::INFO] [train] Iter 15056 | loss 1.2758 | loss(rot) 0.8563 | loss(pos) 0.0963 | loss(seq) 0.3231 | grad 5.4640 | lr 0.0010 | time_forward 1.3510 | time_backward 1.5300 |
[2023-09-02 22:48:18,738::train::INFO] [train] Iter 15057 | loss 1.6013 | loss(rot) 1.2282 | loss(pos) 0.1131 | loss(seq) 0.2599 | grad 11.4028 | lr 0.0010 | time_forward 1.3680 | time_backward 1.5300 |
[2023-09-02 22:48:21,697::train::INFO] [train] Iter 15058 | loss 1.4060 | loss(rot) 1.2176 | loss(pos) 0.1518 | loss(seq) 0.0366 | grad 6.4072 | lr 0.0010 | time_forward 1.4090 | time_backward 1.5470 |
[2023-09-02 22:48:24,625::train::INFO] [train] Iter 15059 | loss 1.1538 | loss(rot) 0.7404 | loss(pos) 0.1533 | loss(seq) 0.2600 | grad 5.4064 | lr 0.0010 | time_forward 1.3740 | time_backward 1.5490 |
[2023-09-02 22:48:28,230::train::INFO] [train] Iter 15060 | loss 1.6106 | loss(rot) 1.2044 | loss(pos) 0.1393 | loss(seq) 0.2670 | grad 10.5602 | lr 0.0010 | time_forward 1.5600 | time_backward 1.5910 |
[2023-09-02 22:48:30,773::train::INFO] [train] Iter 15061 | loss 2.1108 | loss(rot) 1.9808 | loss(pos) 0.1300 | loss(seq) 0.0000 | grad 7.7337 | lr 0.0010 | time_forward 1.2020 | time_backward 1.3370 |
[2023-09-02 22:48:41,659::train::INFO] [train] Iter 15062 | loss 2.0340 | loss(rot) 1.3104 | loss(pos) 0.2594 | loss(seq) 0.4643 | grad 5.8915 | lr 0.0010 | time_forward 4.5020 | time_backward 6.3620 |
[2023-09-02 22:48:45,165::train::INFO] [train] Iter 15063 | loss 2.0279 | loss(rot) 1.8798 | loss(pos) 0.0878 | loss(seq) 0.0603 | grad 4.2419 | lr 0.0010 | time_forward 1.5000 | time_backward 2.0030 |
[2023-09-02 22:48:53,108::train::INFO] [train] Iter 15064 | loss 0.6153 | loss(rot) 0.1347 | loss(pos) 0.4515 | loss(seq) 0.0291 | grad 5.1125 | lr 0.0010 | time_forward 3.3250 | time_backward 4.6140 |
[2023-09-02 22:49:02,663::train::INFO] [train] Iter 15065 | loss 1.5202 | loss(rot) 0.6357 | loss(pos) 0.5538 | loss(seq) 0.3307 | grad 5.7513 | lr 0.0010 | time_forward 3.9920 | time_backward 5.5590 |
[2023-09-02 22:49:05,572::train::INFO] [train] Iter 15066 | loss 0.9580 | loss(rot) 0.4950 | loss(pos) 0.1314 | loss(seq) 0.3316 | grad 7.7380 | lr 0.0010 | time_forward 1.3350 | time_backward 1.5710 |
[2023-09-02 22:49:16,673::train::INFO] [train] Iter 15067 | loss 1.5400 | loss(rot) 0.7569 | loss(pos) 0.3311 | loss(seq) 0.4519 | grad 2.7202 | lr 0.0010 | time_forward 4.5470 | time_backward 6.5490 |
[2023-09-02 22:49:27,456::train::INFO] [train] Iter 15068 | loss 1.6513 | loss(rot) 1.0398 | loss(pos) 0.1172 | loss(seq) 0.4943 | grad 5.4940 | lr 0.0010 | time_forward 4.3250 | time_backward 6.4540 |
[2023-09-02 22:49:36,821::train::INFO] [train] Iter 15069 | loss 1.0854 | loss(rot) 0.3681 | loss(pos) 0.2459 | loss(seq) 0.4714 | grad 4.5128 | lr 0.0010 | time_forward 3.9920 | time_backward 5.3690 |
[2023-09-02 22:49:45,732::train::INFO] [train] Iter 15070 | loss 0.6793 | loss(rot) 0.3349 | loss(pos) 0.2908 | loss(seq) 0.0537 | grad 4.8561 | lr 0.0010 | time_forward 3.6690 | time_backward 5.2370 |
[2023-09-02 22:49:56,530::train::INFO] [train] Iter 15071 | loss 1.9605 | loss(rot) 1.2847 | loss(pos) 0.2032 | loss(seq) 0.4726 | grad 3.3633 | lr 0.0010 | time_forward 4.2900 | time_backward 6.5040 |
[2023-09-02 22:49:59,472::train::INFO] [train] Iter 15072 | loss 0.5630 | loss(rot) 0.2196 | loss(pos) 0.3142 | loss(seq) 0.0292 | grad 3.5680 | lr 0.0010 | time_forward 1.3580 | time_backward 1.5800 |
[2023-09-02 22:50:10,341::train::INFO] [train] Iter 15073 | loss 1.2443 | loss(rot) 0.5095 | loss(pos) 0.3330 | loss(seq) 0.4017 | grad 3.1691 | lr 0.0010 | time_forward 4.3240 | time_backward 6.5410 |
[2023-09-02 22:50:13,218::train::INFO] [train] Iter 15074 | loss 0.7295 | loss(rot) 0.1105 | loss(pos) 0.5935 | loss(seq) 0.0255 | grad 4.3197 | lr 0.0010 | time_forward 1.3160 | time_backward 1.5570 |
[2023-09-02 22:50:24,087::train::INFO] [train] Iter 15075 | loss 0.2891 | loss(rot) 0.1135 | loss(pos) 0.1390 | loss(seq) 0.0366 | grad 2.4157 | lr 0.0010 | time_forward 4.2780 | time_backward 6.5880 |
[2023-09-02 22:50:35,254::train::INFO] [train] Iter 15076 | loss 0.7504 | loss(rot) 0.1324 | loss(pos) 0.5989 | loss(seq) 0.0191 | grad 4.2353 | lr 0.0010 | time_forward 4.7030 | time_backward 6.4620 |
[2023-09-02 22:50:44,600::train::INFO] [train] Iter 15077 | loss 0.8920 | loss(rot) 0.7156 | loss(pos) 0.1716 | loss(seq) 0.0048 | grad 4.5097 | lr 0.0010 | time_forward 4.0390 | time_backward 5.3030 |
[2023-09-02 22:50:47,410::train::INFO] [train] Iter 15078 | loss 2.6378 | loss(rot) 1.7958 | loss(pos) 0.3455 | loss(seq) 0.4965 | grad 2.9226 | lr 0.0010 | time_forward 1.3410 | time_backward 1.4640 |
[2023-09-02 22:50:58,388::train::INFO] [train] Iter 15079 | loss 1.0475 | loss(rot) 0.3338 | loss(pos) 0.5283 | loss(seq) 0.1854 | grad 3.4380 | lr 0.0010 | time_forward 4.4340 | time_backward 6.5400 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.