text
stringlengths
56
1.16k
[2023-09-02 22:11:29,103::train::INFO] [train] Iter 14781 | loss 0.8462 | loss(rot) 0.3793 | loss(pos) 0.1914 | loss(seq) 0.2755 | grad 3.8116 | lr 0.0010 | time_forward 3.5140 | time_backward 4.9460
[2023-09-02 22:11:39,209::train::INFO] [train] Iter 14782 | loss 0.9541 | loss(rot) 0.2498 | loss(pos) 0.5985 | loss(seq) 0.1058 | grad 3.9235 | lr 0.0010 | time_forward 4.0740 | time_backward 6.0290
[2023-09-02 22:11:48,567::train::INFO] [train] Iter 14783 | loss 1.0423 | loss(rot) 0.0676 | loss(pos) 0.9562 | loss(seq) 0.0185 | grad 4.3384 | lr 0.0010 | time_forward 3.8280 | time_backward 5.5260
[2023-09-02 22:11:58,685::train::INFO] [train] Iter 14784 | loss 1.2334 | loss(rot) 0.1475 | loss(pos) 1.0694 | loss(seq) 0.0165 | grad 2.9854 | lr 0.0010 | time_forward 4.1820 | time_backward 5.9320
[2023-09-02 22:12:00,990::train::INFO] [train] Iter 14785 | loss 2.0150 | loss(rot) 1.3012 | loss(pos) 0.3035 | loss(seq) 0.4103 | grad 5.0038 | lr 0.0010 | time_forward 1.0270 | time_backward 1.2740
[2023-09-02 22:12:09,606::train::INFO] [train] Iter 14786 | loss 2.1139 | loss(rot) 1.5380 | loss(pos) 0.2753 | loss(seq) 0.3006 | grad 6.2431 | lr 0.0010 | time_forward 3.4360 | time_backward 5.1780
[2023-09-02 22:12:20,086::train::INFO] [train] Iter 14787 | loss 1.7883 | loss(rot) 1.3123 | loss(pos) 0.0882 | loss(seq) 0.3878 | grad 4.3546 | lr 0.0010 | time_forward 4.2800 | time_backward 6.1970
[2023-09-02 22:12:28,014::train::INFO] [train] Iter 14788 | loss 0.7437 | loss(rot) 0.5704 | loss(pos) 0.1087 | loss(seq) 0.0645 | grad 8.9173 | lr 0.0010 | time_forward 3.3110 | time_backward 4.6130
[2023-09-02 22:12:36,716::train::INFO] [train] Iter 14789 | loss 2.1004 | loss(rot) 1.5225 | loss(pos) 0.2328 | loss(seq) 0.3451 | grad 3.3058 | lr 0.0010 | time_forward 3.6410 | time_backward 5.0570
[2023-09-02 22:12:45,131::train::INFO] [train] Iter 14790 | loss 0.6789 | loss(rot) 0.3889 | loss(pos) 0.1313 | loss(seq) 0.1588 | grad 3.1350 | lr 0.0010 | time_forward 3.4610 | time_backward 4.9500
[2023-09-02 22:12:55,604::train::INFO] [train] Iter 14791 | loss 1.8143 | loss(rot) 1.4611 | loss(pos) 0.1737 | loss(seq) 0.1796 | grad 9.9978 | lr 0.0010 | time_forward 3.9880 | time_backward 6.4830
[2023-09-02 22:13:04,236::train::INFO] [train] Iter 14792 | loss 0.9416 | loss(rot) 0.2159 | loss(pos) 0.6847 | loss(seq) 0.0410 | grad 5.0490 | lr 0.0010 | time_forward 3.6340 | time_backward 4.9940
[2023-09-02 22:13:11,898::train::INFO] [train] Iter 14793 | loss 0.8826 | loss(rot) 0.2949 | loss(pos) 0.1243 | loss(seq) 0.4634 | grad 3.2072 | lr 0.0010 | time_forward 3.1270 | time_backward 4.5320
[2023-09-02 22:13:20,481::train::INFO] [train] Iter 14794 | loss 2.0661 | loss(rot) 0.0306 | loss(pos) 2.0344 | loss(seq) 0.0011 | grad 6.1221 | lr 0.0010 | time_forward 3.4650 | time_backward 5.1140
[2023-09-02 22:13:30,705::train::INFO] [train] Iter 14795 | loss 0.5481 | loss(rot) 0.1960 | loss(pos) 0.2692 | loss(seq) 0.0830 | grad 2.4889 | lr 0.0010 | time_forward 4.1490 | time_backward 6.0710
[2023-09-02 22:13:33,480::train::INFO] [train] Iter 14796 | loss 1.6615 | loss(rot) 1.4856 | loss(pos) 0.0993 | loss(seq) 0.0766 | grad 7.1222 | lr 0.0010 | time_forward 1.2700 | time_backward 1.5010
[2023-09-02 22:13:42,013::train::INFO] [train] Iter 14797 | loss 0.6816 | loss(rot) 0.1974 | loss(pos) 0.2731 | loss(seq) 0.2111 | grad 2.5400 | lr 0.0010 | time_forward 3.6400 | time_backward 4.8820
[2023-09-02 22:13:49,709::train::INFO] [train] Iter 14798 | loss 2.0352 | loss(rot) 1.5286 | loss(pos) 0.1456 | loss(seq) 0.3610 | grad 6.6070 | lr 0.0010 | time_forward 3.2080 | time_backward 4.4850
[2023-09-02 22:14:00,201::train::INFO] [train] Iter 14799 | loss 2.0246 | loss(rot) 1.8471 | loss(pos) 0.1775 | loss(seq) 0.0000 | grad 6.3959 | lr 0.0010 | time_forward 4.1990 | time_backward 6.2900
[2023-09-02 22:14:03,004::train::INFO] [train] Iter 14800 | loss 1.6333 | loss(rot) 0.7399 | loss(pos) 0.2255 | loss(seq) 0.6679 | grad 5.4009 | lr 0.0010 | time_forward 1.2700 | time_backward 1.5290
[2023-09-02 22:14:12,836::train::INFO] [train] Iter 14801 | loss 1.4922 | loss(rot) 1.4007 | loss(pos) 0.0437 | loss(seq) 0.0478 | grad 7.9301 | lr 0.0010 | time_forward 4.1220 | time_backward 5.7080
[2023-09-02 22:14:21,328::train::INFO] [train] Iter 14802 | loss 1.2570 | loss(rot) 0.1334 | loss(pos) 0.8166 | loss(seq) 0.3070 | grad 6.2885 | lr 0.0010 | time_forward 3.4890 | time_backward 4.9990
[2023-09-02 22:14:30,949::train::INFO] [train] Iter 14803 | loss 1.0412 | loss(rot) 0.0892 | loss(pos) 0.7181 | loss(seq) 0.2339 | grad 4.0328 | lr 0.0010 | time_forward 3.9610 | time_backward 5.6560
[2023-09-02 22:14:40,572::train::INFO] [train] Iter 14804 | loss 2.7244 | loss(rot) 2.1956 | loss(pos) 0.3196 | loss(seq) 0.2091 | grad 4.6291 | lr 0.0010 | time_forward 4.0800 | time_backward 5.5410
[2023-09-02 22:14:50,664::train::INFO] [train] Iter 14805 | loss 2.2788 | loss(rot) 2.1220 | loss(pos) 0.1568 | loss(seq) 0.0000 | grad 6.9879 | lr 0.0010 | time_forward 4.0430 | time_backward 6.0450
[2023-09-02 22:15:03,472::train::INFO] [train] Iter 14806 | loss 2.0632 | loss(rot) 0.2387 | loss(pos) 1.8228 | loss(seq) 0.0017 | grad 6.2665 | lr 0.0010 | time_forward 7.2940 | time_backward 5.5110
[2023-09-02 22:15:14,409::train::INFO] [train] Iter 14807 | loss 1.2612 | loss(rot) 0.6001 | loss(pos) 0.2343 | loss(seq) 0.4267 | grad 4.3412 | lr 0.0010 | time_forward 4.1950 | time_backward 6.7380
[2023-09-02 22:15:20,302::train::INFO] [train] Iter 14808 | loss 2.3680 | loss(rot) 1.9749 | loss(pos) 0.1552 | loss(seq) 0.2379 | grad 3.8600 | lr 0.0010 | time_forward 2.4750 | time_backward 3.4140
[2023-09-02 22:15:31,080::train::INFO] [train] Iter 14809 | loss 1.8543 | loss(rot) 0.9316 | loss(pos) 0.4078 | loss(seq) 0.5150 | grad 5.3628 | lr 0.0010 | time_forward 4.2810 | time_backward 6.4930
[2023-09-02 22:15:41,010::train::INFO] [train] Iter 14810 | loss 1.0706 | loss(rot) 0.4996 | loss(pos) 0.1678 | loss(seq) 0.4032 | grad 3.2253 | lr 0.0010 | time_forward 4.0450 | time_backward 5.8810
[2023-09-02 22:15:43,887::train::INFO] [train] Iter 14811 | loss 1.1803 | loss(rot) 0.3956 | loss(pos) 0.3614 | loss(seq) 0.4233 | grad 5.8591 | lr 0.0010 | time_forward 1.3140 | time_backward 1.5610
[2023-09-02 22:15:52,138::train::INFO] [train] Iter 14812 | loss 1.9307 | loss(rot) 1.4645 | loss(pos) 0.1789 | loss(seq) 0.2873 | grad 9.2260 | lr 0.0010 | time_forward 3.4330 | time_backward 4.8140
[2023-09-02 22:16:00,225::train::INFO] [train] Iter 14813 | loss 1.3203 | loss(rot) 0.0212 | loss(pos) 1.2967 | loss(seq) 0.0024 | grad 10.0471 | lr 0.0010 | time_forward 3.3840 | time_backward 4.6990
[2023-09-02 22:16:10,300::train::INFO] [train] Iter 14814 | loss 1.2595 | loss(rot) 0.4954 | loss(pos) 0.2915 | loss(seq) 0.4727 | grad 5.4012 | lr 0.0010 | time_forward 4.0160 | time_backward 6.0570
[2023-09-02 22:16:20,325::train::INFO] [train] Iter 14815 | loss 1.6319 | loss(rot) 0.9594 | loss(pos) 0.2125 | loss(seq) 0.4600 | grad 4.7435 | lr 0.0010 | time_forward 4.0130 | time_backward 6.0060
[2023-09-02 22:16:30,427::train::INFO] [train] Iter 14816 | loss 2.6396 | loss(rot) 2.1656 | loss(pos) 0.2267 | loss(seq) 0.2473 | grad 8.3285 | lr 0.0010 | time_forward 4.1950 | time_backward 5.9040
[2023-09-02 22:16:39,234::train::INFO] [train] Iter 14817 | loss 1.7781 | loss(rot) 1.6782 | loss(pos) 0.0736 | loss(seq) 0.0263 | grad 3.9724 | lr 0.0010 | time_forward 3.6660 | time_backward 5.1380
[2023-09-02 22:16:47,278::train::INFO] [train] Iter 14818 | loss 2.5848 | loss(rot) 1.6065 | loss(pos) 0.3603 | loss(seq) 0.6180 | grad 25.2337 | lr 0.0010 | time_forward 3.3640 | time_backward 4.6770
[2023-09-02 22:16:55,385::train::INFO] [train] Iter 14819 | loss 1.6270 | loss(rot) 1.0208 | loss(pos) 0.2091 | loss(seq) 0.3971 | grad 6.3950 | lr 0.0010 | time_forward 3.3800 | time_backward 4.7230
[2023-09-02 22:16:58,282::train::INFO] [train] Iter 14820 | loss 1.1331 | loss(rot) 0.3224 | loss(pos) 0.3890 | loss(seq) 0.4218 | grad 4.7344 | lr 0.0010 | time_forward 1.4810 | time_backward 1.4130
[2023-09-02 22:17:08,190::train::INFO] [train] Iter 14821 | loss 0.8451 | loss(rot) 0.4488 | loss(pos) 0.1284 | loss(seq) 0.2679 | grad 3.0414 | lr 0.0010 | time_forward 4.1060 | time_backward 5.7980
[2023-09-02 22:17:17,325::train::INFO] [train] Iter 14822 | loss 1.1918 | loss(rot) 0.9015 | loss(pos) 0.0796 | loss(seq) 0.2107 | grad 7.5570 | lr 0.0010 | time_forward 3.8510 | time_backward 5.2800
[2023-09-02 22:17:25,435::train::INFO] [train] Iter 14823 | loss 1.1210 | loss(rot) 0.0853 | loss(pos) 0.7946 | loss(seq) 0.2411 | grad 7.4719 | lr 0.0010 | time_forward 3.4270 | time_backward 4.6790
[2023-09-02 22:17:34,803::train::INFO] [train] Iter 14824 | loss 1.4537 | loss(rot) 1.2710 | loss(pos) 0.0557 | loss(seq) 0.1271 | grad 4.1160 | lr 0.0010 | time_forward 3.8980 | time_backward 5.4670
[2023-09-02 22:17:43,164::train::INFO] [train] Iter 14825 | loss 3.0687 | loss(rot) 0.0426 | loss(pos) 3.0232 | loss(seq) 0.0029 | grad 16.1172 | lr 0.0010 | time_forward 3.5040 | time_backward 4.8520
[2023-09-02 22:17:49,892::train::INFO] [train] Iter 14826 | loss 1.9166 | loss(rot) 1.6294 | loss(pos) 0.1630 | loss(seq) 0.1242 | grad 4.0027 | lr 0.0010 | time_forward 2.8350 | time_backward 3.8890
[2023-09-02 22:17:58,639::train::INFO] [train] Iter 14827 | loss 2.6112 | loss(rot) 1.6767 | loss(pos) 0.3818 | loss(seq) 0.5526 | grad 3.6646 | lr 0.0010 | time_forward 3.7040 | time_backward 5.0390
[2023-09-02 22:18:07,454::train::INFO] [train] Iter 14828 | loss 0.9822 | loss(rot) 0.6497 | loss(pos) 0.2446 | loss(seq) 0.0879 | grad 6.5210 | lr 0.0010 | time_forward 3.7050 | time_backward 5.1070
[2023-09-02 22:18:17,593::train::INFO] [train] Iter 14829 | loss 2.1636 | loss(rot) 2.0126 | loss(pos) 0.1387 | loss(seq) 0.0124 | grad 5.0326 | lr 0.0010 | time_forward 3.9800 | time_backward 6.1540
[2023-09-02 22:18:27,650::train::INFO] [train] Iter 14830 | loss 1.6405 | loss(rot) 0.7291 | loss(pos) 0.4536 | loss(seq) 0.4579 | grad 4.5307 | lr 0.0010 | time_forward 4.0530 | time_backward 6.0000
[2023-09-02 22:18:37,643::train::INFO] [train] Iter 14831 | loss 1.5115 | loss(rot) 1.1189 | loss(pos) 0.2226 | loss(seq) 0.1700 | grad 4.9775 | lr 0.0010 | time_forward 4.0510 | time_backward 5.9390
[2023-09-02 22:18:46,344::train::INFO] [train] Iter 14832 | loss 1.0697 | loss(rot) 0.8918 | loss(pos) 0.1414 | loss(seq) 0.0364 | grad 4.4484 | lr 0.0010 | time_forward 3.6610 | time_backward 5.0370
[2023-09-02 22:18:49,068::train::INFO] [train] Iter 14833 | loss 1.1454 | loss(rot) 0.1960 | loss(pos) 0.6292 | loss(seq) 0.3202 | grad 4.2167 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4340
[2023-09-02 22:18:59,026::train::INFO] [train] Iter 14834 | loss 2.0563 | loss(rot) 1.5592 | loss(pos) 0.4972 | loss(seq) 0.0000 | grad 4.3899 | lr 0.0010 | time_forward 4.1100 | time_backward 5.8450
[2023-09-02 22:19:08,241::train::INFO] [train] Iter 14835 | loss 1.2281 | loss(rot) 0.5882 | loss(pos) 0.1812 | loss(seq) 0.4587 | grad 5.5567 | lr 0.0010 | time_forward 3.8480 | time_backward 5.3640
[2023-09-02 22:19:18,531::train::INFO] [train] Iter 14836 | loss 2.0625 | loss(rot) 0.4466 | loss(pos) 0.9632 | loss(seq) 0.6526 | grad 7.3623 | lr 0.0010 | time_forward 4.1760 | time_backward 6.1110
[2023-09-02 22:19:27,065::train::INFO] [train] Iter 14837 | loss 1.8721 | loss(rot) 0.9534 | loss(pos) 0.3017 | loss(seq) 0.6170 | grad 5.6971 | lr 0.0010 | time_forward 3.6360 | time_backward 4.8940
[2023-09-02 22:19:34,594::train::INFO] [train] Iter 14838 | loss 1.3468 | loss(rot) 0.4366 | loss(pos) 0.6466 | loss(seq) 0.2636 | grad 6.7138 | lr 0.0010 | time_forward 3.1550 | time_backward 4.3710
[2023-09-02 22:19:43,031::train::INFO] [train] Iter 14839 | loss 1.4854 | loss(rot) 1.3437 | loss(pos) 0.1022 | loss(seq) 0.0396 | grad 7.3851 | lr 0.0010 | time_forward 3.5280 | time_backward 4.9050
[2023-09-02 22:19:45,730::train::INFO] [train] Iter 14840 | loss 1.5223 | loss(rot) 0.4505 | loss(pos) 0.6580 | loss(seq) 0.4138 | grad 7.1058 | lr 0.0010 | time_forward 1.2870 | time_backward 1.4100
[2023-09-02 22:19:55,081::train::INFO] [train] Iter 14841 | loss 0.9139 | loss(rot) 0.7482 | loss(pos) 0.1433 | loss(seq) 0.0224 | grad 6.0874 | lr 0.0010 | time_forward 4.0090 | time_backward 5.3380
[2023-09-02 22:20:03,916::train::INFO] [train] Iter 14842 | loss 1.1331 | loss(rot) 0.5897 | loss(pos) 0.1212 | loss(seq) 0.4222 | grad 4.0662 | lr 0.0010 | time_forward 3.7080 | time_backward 5.1240
[2023-09-02 22:20:06,611::train::INFO] [train] Iter 14843 | loss 1.3632 | loss(rot) 0.9135 | loss(pos) 0.1904 | loss(seq) 0.2593 | grad 8.1939 | lr 0.0010 | time_forward 1.2610 | time_backward 1.4300
[2023-09-02 22:20:09,403::train::INFO] [train] Iter 14844 | loss 1.3576 | loss(rot) 0.2972 | loss(pos) 0.4410 | loss(seq) 0.6194 | grad 5.3339 | lr 0.0010 | time_forward 1.2970 | time_backward 1.4920
[2023-09-02 22:20:11,884::train::INFO] [train] Iter 14845 | loss 1.2621 | loss(rot) 0.4406 | loss(pos) 0.2987 | loss(seq) 0.5228 | grad 4.9588 | lr 0.0010 | time_forward 1.2010 | time_backward 1.2770
[2023-09-02 22:20:17,516::train::INFO] [train] Iter 14846 | loss 1.9202 | loss(rot) 0.8611 | loss(pos) 0.3607 | loss(seq) 0.6983 | grad 6.0488 | lr 0.0010 | time_forward 2.3750 | time_backward 3.2220
[2023-09-02 22:20:25,700::train::INFO] [train] Iter 14847 | loss 2.5609 | loss(rot) 1.6828 | loss(pos) 0.3088 | loss(seq) 0.5693 | grad 3.8904 | lr 0.0010 | time_forward 3.4000 | time_backward 4.7820
[2023-09-02 22:20:32,164::train::INFO] [train] Iter 14848 | loss 1.1475 | loss(rot) 0.4112 | loss(pos) 0.5391 | loss(seq) 0.1972 | grad 5.0699 | lr 0.0010 | time_forward 2.7500 | time_backward 3.7100
[2023-09-02 22:20:40,972::train::INFO] [train] Iter 14849 | loss 0.7698 | loss(rot) 0.1238 | loss(pos) 0.6124 | loss(seq) 0.0336 | grad 4.3257 | lr 0.0010 | time_forward 3.7030 | time_backward 5.1010
[2023-09-02 22:20:49,393::train::INFO] [train] Iter 14850 | loss 1.4497 | loss(rot) 0.6420 | loss(pos) 0.3301 | loss(seq) 0.4777 | grad 3.9126 | lr 0.0010 | time_forward 3.4940 | time_backward 4.9240
[2023-09-02 22:20:52,088::train::INFO] [train] Iter 14851 | loss 0.8907 | loss(rot) 0.2551 | loss(pos) 0.4123 | loss(seq) 0.2233 | grad 4.3925 | lr 0.0010 | time_forward 1.2470 | time_backward 1.4430
[2023-09-02 22:20:58,118::train::INFO] [train] Iter 14852 | loss 1.4974 | loss(rot) 0.8112 | loss(pos) 0.2491 | loss(seq) 0.4371 | grad 7.6823 | lr 0.0010 | time_forward 2.5870 | time_backward 3.4390
[2023-09-02 22:21:06,755::train::INFO] [train] Iter 14853 | loss 1.8824 | loss(rot) 1.5838 | loss(pos) 0.2036 | loss(seq) 0.0949 | grad 7.2592 | lr 0.0010 | time_forward 3.5880 | time_backward 5.0470
[2023-09-02 22:21:16,967::train::INFO] [train] Iter 14854 | loss 1.7097 | loss(rot) 1.3764 | loss(pos) 0.2956 | loss(seq) 0.0377 | grad 5.8434 | lr 0.0010 | time_forward 4.1210 | time_backward 6.0870
[2023-09-02 22:21:24,528::train::INFO] [train] Iter 14855 | loss 0.7495 | loss(rot) 0.0304 | loss(pos) 0.7126 | loss(seq) 0.0065 | grad 4.8778 | lr 0.0010 | time_forward 3.1410 | time_backward 4.4150
[2023-09-02 22:21:33,299::train::INFO] [train] Iter 14856 | loss 0.9466 | loss(rot) 0.0461 | loss(pos) 0.8964 | loss(seq) 0.0040 | grad 6.2466 | lr 0.0010 | time_forward 3.6350 | time_backward 5.1320
[2023-09-02 22:21:43,597::train::INFO] [train] Iter 14857 | loss 1.1237 | loss(rot) 0.0751 | loss(pos) 1.0395 | loss(seq) 0.0091 | grad 5.8170 | lr 0.0010 | time_forward 4.1570 | time_backward 6.1390
[2023-09-02 22:21:50,434::train::INFO] [train] Iter 14858 | loss 1.5545 | loss(rot) 0.9130 | loss(pos) 0.1870 | loss(seq) 0.4545 | grad 5.4225 | lr 0.0010 | time_forward 2.9240 | time_backward 3.9080
[2023-09-02 22:21:59,094::train::INFO] [train] Iter 14859 | loss 1.4101 | loss(rot) 0.9674 | loss(pos) 0.1508 | loss(seq) 0.2919 | grad 4.5260 | lr 0.0010 | time_forward 3.6850 | time_backward 4.9710
[2023-09-02 22:22:06,295::train::INFO] [train] Iter 14860 | loss 2.1141 | loss(rot) 1.6909 | loss(pos) 0.0836 | loss(seq) 0.3396 | grad 3.8778 | lr 0.0010 | time_forward 3.0530 | time_backward 4.1440
[2023-09-02 22:22:15,083::train::INFO] [train] Iter 14861 | loss 1.5627 | loss(rot) 1.2183 | loss(pos) 0.1511 | loss(seq) 0.1933 | grad 7.6211 | lr 0.0010 | time_forward 3.6960 | time_backward 5.0890
[2023-09-02 22:22:22,383::train::INFO] [train] Iter 14862 | loss 1.9277 | loss(rot) 1.1196 | loss(pos) 0.2053 | loss(seq) 0.6029 | grad 4.5603 | lr 0.0010 | time_forward 3.0310 | time_backward 4.2660
[2023-09-02 22:22:32,243::train::INFO] [train] Iter 14863 | loss 1.0820 | loss(rot) 0.1573 | loss(pos) 0.8850 | loss(seq) 0.0397 | grad 5.4603 | lr 0.0010 | time_forward 4.7560 | time_backward 5.1000
[2023-09-02 22:22:41,698::train::INFO] [train] Iter 14864 | loss 1.8249 | loss(rot) 1.6705 | loss(pos) 0.1456 | loss(seq) 0.0088 | grad 5.6275 | lr 0.0010 | time_forward 4.0290 | time_backward 5.4230
[2023-09-02 22:22:51,972::train::INFO] [train] Iter 14865 | loss 2.3693 | loss(rot) 1.0053 | loss(pos) 0.8083 | loss(seq) 0.5557 | grad 6.6234 | lr 0.0010 | time_forward 4.2020 | time_backward 6.0680
[2023-09-02 22:23:00,745::train::INFO] [train] Iter 14866 | loss 2.6848 | loss(rot) 2.1775 | loss(pos) 0.2510 | loss(seq) 0.2563 | grad 4.9550 | lr 0.0010 | time_forward 3.6660 | time_backward 5.1050
[2023-09-02 22:23:11,172::train::INFO] [train] Iter 14867 | loss 2.4165 | loss(rot) 1.7508 | loss(pos) 0.2700 | loss(seq) 0.3957 | grad 3.3056 | lr 0.0010 | time_forward 3.9820 | time_backward 6.4420
[2023-09-02 22:23:21,647::train::INFO] [train] Iter 14868 | loss 2.1418 | loss(rot) 1.4425 | loss(pos) 0.1617 | loss(seq) 0.5376 | grad 3.8082 | lr 0.0010 | time_forward 4.2280 | time_backward 6.2430
[2023-09-02 22:23:32,080::train::INFO] [train] Iter 14869 | loss 1.4374 | loss(rot) 0.3424 | loss(pos) 0.8905 | loss(seq) 0.2045 | grad 4.4805 | lr 0.0010 | time_forward 4.2410 | time_backward 6.1880
[2023-09-02 22:23:34,682::train::INFO] [train] Iter 14870 | loss 2.4082 | loss(rot) 1.6417 | loss(pos) 0.1689 | loss(seq) 0.5975 | grad 5.9761 | lr 0.0010 | time_forward 1.2000 | time_backward 1.3980
[2023-09-02 22:23:44,905::train::INFO] [train] Iter 14871 | loss 1.3997 | loss(rot) 1.1346 | loss(pos) 0.1954 | loss(seq) 0.0698 | grad 6.8811 | lr 0.0010 | time_forward 4.0850 | time_backward 6.0990
[2023-09-02 22:23:47,657::train::INFO] [train] Iter 14872 | loss 2.3061 | loss(rot) 1.8856 | loss(pos) 0.0934 | loss(seq) 0.3271 | grad 5.1573 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4920
[2023-09-02 22:23:56,709::train::INFO] [train] Iter 14873 | loss 1.2698 | loss(rot) 0.7561 | loss(pos) 0.1794 | loss(seq) 0.3342 | grad 23.3899 | lr 0.0010 | time_forward 3.8010 | time_backward 5.2470
[2023-09-02 22:24:06,798::train::INFO] [train] Iter 14874 | loss 1.0008 | loss(rot) 0.4022 | loss(pos) 0.1049 | loss(seq) 0.4937 | grad 3.5843 | lr 0.0010 | time_forward 4.0410 | time_backward 6.0460
[2023-09-02 22:24:16,172::train::INFO] [train] Iter 14875 | loss 1.3394 | loss(rot) 0.7037 | loss(pos) 0.3718 | loss(seq) 0.2639 | grad 5.9938 | lr 0.0010 | time_forward 4.2180 | time_backward 5.1520
[2023-09-02 22:24:25,619::train::INFO] [train] Iter 14876 | loss 1.8117 | loss(rot) 1.0455 | loss(pos) 0.3702 | loss(seq) 0.3960 | grad 3.6125 | lr 0.0010 | time_forward 3.9310 | time_backward 5.5120
[2023-09-02 22:24:35,550::train::INFO] [train] Iter 14877 | loss 1.4310 | loss(rot) 0.9203 | loss(pos) 0.1283 | loss(seq) 0.3824 | grad 3.6561 | lr 0.0010 | time_forward 4.0610 | time_backward 5.8660
[2023-09-02 22:24:44,851::train::INFO] [train] Iter 14878 | loss 2.5092 | loss(rot) 1.8633 | loss(pos) 0.1572 | loss(seq) 0.4887 | grad 3.5768 | lr 0.0010 | time_forward 3.8820 | time_backward 5.4140
[2023-09-02 22:24:54,023::train::INFO] [train] Iter 14879 | loss 1.7201 | loss(rot) 1.3589 | loss(pos) 0.1091 | loss(seq) 0.2521 | grad 5.3006 | lr 0.0010 | time_forward 3.7230 | time_backward 5.4450
[2023-09-02 22:24:57,783::train::INFO] [train] Iter 14880 | loss 2.0019 | loss(rot) 1.8343 | loss(pos) 0.1191 | loss(seq) 0.0485 | grad 4.1660 | lr 0.0010 | time_forward 1.6120 | time_backward 2.1430