text
stringlengths 56
1.16k
|
---|
[2023-09-02 21:46:37,903::train::INFO] [train] Iter 14581 | loss 1.6283 | loss(rot) 1.3694 | loss(pos) 0.1057 | loss(seq) 0.1532 | grad 4.9896 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4850 |
[2023-09-02 21:46:46,568::train::INFO] [train] Iter 14582 | loss 1.0375 | loss(rot) 0.3055 | loss(pos) 0.5023 | loss(seq) 0.2296 | grad 3.7243 | lr 0.0010 | time_forward 3.5940 | time_backward 5.0680 |
[2023-09-02 21:46:55,270::train::INFO] [train] Iter 14583 | loss 2.0885 | loss(rot) 1.1299 | loss(pos) 0.1949 | loss(seq) 0.7637 | grad 5.7015 | lr 0.0010 | time_forward 3.6780 | time_backward 5.0200 |
[2023-09-02 21:46:57,557::train::INFO] [train] Iter 14584 | loss 1.6331 | loss(rot) 0.9285 | loss(pos) 0.2306 | loss(seq) 0.4740 | grad 5.4143 | lr 0.0010 | time_forward 1.0660 | time_backward 1.2180 |
[2023-09-02 21:47:00,272::train::INFO] [train] Iter 14585 | loss 1.9262 | loss(rot) 1.1334 | loss(pos) 0.6864 | loss(seq) 0.1064 | grad 5.4188 | lr 0.0010 | time_forward 1.2760 | time_backward 1.4360 |
[2023-09-02 21:47:03,657::train::INFO] [train] Iter 14586 | loss 2.4497 | loss(rot) 2.1815 | loss(pos) 0.2682 | loss(seq) 0.0000 | grad 4.8767 | lr 0.0010 | time_forward 1.4670 | time_backward 1.9140 |
[2023-09-02 21:47:06,830::train::INFO] [train] Iter 14587 | loss 2.1585 | loss(rot) 1.2016 | loss(pos) 0.6441 | loss(seq) 0.3128 | grad 6.3204 | lr 0.0010 | time_forward 1.3790 | time_backward 1.7900 |
[2023-09-02 21:47:17,075::train::INFO] [train] Iter 14588 | loss 1.5905 | loss(rot) 1.2318 | loss(pos) 0.2451 | loss(seq) 0.1136 | grad 4.8041 | lr 0.0010 | time_forward 4.2890 | time_backward 5.9520 |
[2023-09-02 21:47:19,797::train::INFO] [train] Iter 14589 | loss 1.1557 | loss(rot) 0.9824 | loss(pos) 0.0635 | loss(seq) 0.1099 | grad 3.7534 | lr 0.0010 | time_forward 1.2440 | time_backward 1.4740 |
[2023-09-02 21:47:22,583::train::INFO] [train] Iter 14590 | loss 1.3373 | loss(rot) 0.3849 | loss(pos) 0.3771 | loss(seq) 0.5753 | grad 3.8953 | lr 0.0010 | time_forward 1.3160 | time_backward 1.4670 |
[2023-09-02 21:47:25,141::train::INFO] [train] Iter 14591 | loss 1.1358 | loss(rot) 0.5010 | loss(pos) 0.3347 | loss(seq) 0.3001 | grad 4.7272 | lr 0.0010 | time_forward 1.2310 | time_backward 1.3230 |
[2023-09-02 21:47:27,545::train::INFO] [train] Iter 14592 | loss 1.1885 | loss(rot) 0.5587 | loss(pos) 0.2060 | loss(seq) 0.4238 | grad 3.7260 | lr 0.0010 | time_forward 1.0970 | time_backward 1.2880 |
[2023-09-02 21:47:30,660::train::INFO] [train] Iter 14593 | loss 0.9248 | loss(rot) 0.6586 | loss(pos) 0.2399 | loss(seq) 0.0262 | grad 7.3987 | lr 0.0010 | time_forward 1.5350 | time_backward 1.5770 |
[2023-09-02 21:47:39,021::train::INFO] [train] Iter 14594 | loss 1.6166 | loss(rot) 0.7983 | loss(pos) 0.3599 | loss(seq) 0.4584 | grad 5.6033 | lr 0.0010 | time_forward 3.5630 | time_backward 4.7730 |
[2023-09-02 21:47:42,306::train::INFO] [train] Iter 14595 | loss 2.1158 | loss(rot) 1.9493 | loss(pos) 0.1506 | loss(seq) 0.0159 | grad 3.7301 | lr 0.0010 | time_forward 1.4010 | time_backward 1.8520 |
[2023-09-02 21:47:44,937::train::INFO] [train] Iter 14596 | loss 1.0202 | loss(rot) 0.3072 | loss(pos) 0.3301 | loss(seq) 0.3828 | grad 4.0513 | lr 0.0010 | time_forward 1.2190 | time_backward 1.4090 |
[2023-09-02 21:47:52,451::train::INFO] [train] Iter 14597 | loss 1.1450 | loss(rot) 0.8614 | loss(pos) 0.2263 | loss(seq) 0.0572 | grad 6.0492 | lr 0.0010 | time_forward 3.1940 | time_backward 4.3070 |
[2023-09-02 21:48:01,807::train::INFO] [train] Iter 14598 | loss 1.8649 | loss(rot) 0.9573 | loss(pos) 0.2682 | loss(seq) 0.6394 | grad 3.0429 | lr 0.0010 | time_forward 3.9500 | time_backward 5.4040 |
[2023-09-02 21:48:04,488::train::INFO] [train] Iter 14599 | loss 1.5645 | loss(rot) 0.5839 | loss(pos) 0.4639 | loss(seq) 0.5167 | grad 4.4248 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4180 |
[2023-09-02 21:48:14,443::train::INFO] [train] Iter 14600 | loss 2.1962 | loss(rot) 1.8756 | loss(pos) 0.3193 | loss(seq) 0.0012 | grad 6.9552 | lr 0.0010 | time_forward 4.1110 | time_backward 5.8410 |
[2023-09-02 21:48:24,237::train::INFO] [train] Iter 14601 | loss 1.3862 | loss(rot) 1.1411 | loss(pos) 0.1025 | loss(seq) 0.1427 | grad 5.4279 | lr 0.0010 | time_forward 3.8780 | time_backward 5.9120 |
[2023-09-02 21:48:34,130::train::INFO] [train] Iter 14602 | loss 2.2647 | loss(rot) 1.7365 | loss(pos) 0.1351 | loss(seq) 0.3930 | grad 4.2109 | lr 0.0010 | time_forward 3.9050 | time_backward 5.9620 |
[2023-09-02 21:48:41,563::train::INFO] [train] Iter 14603 | loss 1.0186 | loss(rot) 0.8327 | loss(pos) 0.1364 | loss(seq) 0.0496 | grad 5.5650 | lr 0.0010 | time_forward 3.1050 | time_backward 4.3240 |
[2023-09-02 21:48:44,258::train::INFO] [train] Iter 14604 | loss 1.7262 | loss(rot) 1.3030 | loss(pos) 0.1043 | loss(seq) 0.3189 | grad 21.5970 | lr 0.0010 | time_forward 1.2730 | time_backward 1.4190 |
[2023-09-02 21:48:46,703::train::INFO] [train] Iter 14605 | loss 1.7330 | loss(rot) 0.4342 | loss(pos) 0.8992 | loss(seq) 0.3995 | grad 7.4901 | lr 0.0010 | time_forward 1.1650 | time_backward 1.2760 |
[2023-09-02 21:48:56,575::train::INFO] [train] Iter 14606 | loss 1.5211 | loss(rot) 1.3337 | loss(pos) 0.1870 | loss(seq) 0.0003 | grad 7.9806 | lr 0.0010 | time_forward 4.0380 | time_backward 5.8310 |
[2023-09-02 21:48:59,287::train::INFO] [train] Iter 14607 | loss 1.8214 | loss(rot) 1.1866 | loss(pos) 0.2829 | loss(seq) 0.3519 | grad 4.7041 | lr 0.0010 | time_forward 1.2480 | time_backward 1.4490 |
[2023-09-02 21:49:02,015::train::INFO] [train] Iter 14608 | loss 0.7711 | loss(rot) 0.6277 | loss(pos) 0.1269 | loss(seq) 0.0165 | grad 4.8476 | lr 0.0010 | time_forward 1.2480 | time_backward 1.4580 |
[2023-09-02 21:49:10,872::train::INFO] [train] Iter 14609 | loss 1.4975 | loss(rot) 1.0582 | loss(pos) 0.1983 | loss(seq) 0.2410 | grad 8.1082 | lr 0.0010 | time_forward 3.7630 | time_backward 5.0900 |
[2023-09-02 21:49:20,940::train::INFO] [train] Iter 14610 | loss 1.6879 | loss(rot) 1.4100 | loss(pos) 0.2064 | loss(seq) 0.0714 | grad 3.7587 | lr 0.0010 | time_forward 4.0010 | time_backward 6.0640 |
[2023-09-02 21:49:30,506::train::INFO] [train] Iter 14611 | loss 1.3994 | loss(rot) 0.5209 | loss(pos) 0.4275 | loss(seq) 0.4509 | grad 6.6544 | lr 0.0010 | time_forward 3.9320 | time_backward 5.6270 |
[2023-09-02 21:49:40,593::train::INFO] [train] Iter 14612 | loss 0.7412 | loss(rot) 0.1744 | loss(pos) 0.5240 | loss(seq) 0.0429 | grad 2.9683 | lr 0.0010 | time_forward 4.1970 | time_backward 5.8870 |
[2023-09-02 21:49:43,339::train::INFO] [train] Iter 14613 | loss 1.0122 | loss(rot) 0.8257 | loss(pos) 0.1194 | loss(seq) 0.0671 | grad 7.4590 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4890 |
[2023-09-02 21:49:52,136::train::INFO] [train] Iter 14614 | loss 1.5616 | loss(rot) 1.4115 | loss(pos) 0.1458 | loss(seq) 0.0043 | grad 7.3471 | lr 0.0010 | time_forward 3.6940 | time_backward 5.0990 |
[2023-09-02 21:50:00,686::train::INFO] [train] Iter 14615 | loss 1.7269 | loss(rot) 1.0989 | loss(pos) 0.1529 | loss(seq) 0.4752 | grad 5.1941 | lr 0.0010 | time_forward 3.5850 | time_backward 4.9620 |
[2023-09-02 21:50:10,877::train::INFO] [train] Iter 14616 | loss 0.4533 | loss(rot) 0.0804 | loss(pos) 0.3007 | loss(seq) 0.0722 | grad 3.3254 | lr 0.0010 | time_forward 4.0550 | time_backward 6.1320 |
[2023-09-02 21:50:20,143::train::INFO] [train] Iter 14617 | loss 1.7398 | loss(rot) 1.1556 | loss(pos) 0.1173 | loss(seq) 0.4669 | grad 10.2089 | lr 0.0010 | time_forward 3.8490 | time_backward 5.4140 |
[2023-09-02 21:50:24,836::train::INFO] [train] Iter 14618 | loss 0.6519 | loss(rot) 0.2362 | loss(pos) 0.3727 | loss(seq) 0.0431 | grad 3.4432 | lr 0.0010 | time_forward 1.9770 | time_backward 2.7120 |
[2023-09-02 21:50:35,146::train::INFO] [train] Iter 14619 | loss 1.7355 | loss(rot) 0.9546 | loss(pos) 0.2993 | loss(seq) 0.4815 | grad 4.6953 | lr 0.0010 | time_forward 4.2820 | time_backward 5.9810 |
[2023-09-02 21:50:43,918::train::INFO] [train] Iter 14620 | loss 2.5734 | loss(rot) 1.6132 | loss(pos) 0.4128 | loss(seq) 0.5475 | grad 4.7159 | lr 0.0010 | time_forward 3.6840 | time_backward 5.0840 |
[2023-09-02 21:50:52,690::train::INFO] [train] Iter 14621 | loss 0.6343 | loss(rot) 0.2363 | loss(pos) 0.3056 | loss(seq) 0.0924 | grad 3.9277 | lr 0.0010 | time_forward 3.6840 | time_backward 5.0840 |
[2023-09-02 21:51:01,042::train::INFO] [train] Iter 14622 | loss 1.2724 | loss(rot) 0.8128 | loss(pos) 0.1379 | loss(seq) 0.3217 | grad 4.5135 | lr 0.0010 | time_forward 3.5030 | time_backward 4.8450 |
[2023-09-02 21:51:11,134::train::INFO] [train] Iter 14623 | loss 1.1771 | loss(rot) 0.4040 | loss(pos) 0.3149 | loss(seq) 0.4581 | grad 4.0787 | lr 0.0010 | time_forward 4.0880 | time_backward 6.0000 |
[2023-09-02 21:51:13,814::train::INFO] [train] Iter 14624 | loss 1.2228 | loss(rot) 0.4820 | loss(pos) 0.2209 | loss(seq) 0.5198 | grad 4.0253 | lr 0.0010 | time_forward 1.2180 | time_backward 1.4590 |
[2023-09-02 21:51:22,683::train::INFO] [train] Iter 14625 | loss 2.1237 | loss(rot) 0.3467 | loss(pos) 1.7737 | loss(seq) 0.0032 | grad 4.9170 | lr 0.0010 | time_forward 3.7610 | time_backward 5.0900 |
[2023-09-02 21:51:30,013::train::INFO] [train] Iter 14626 | loss 0.5942 | loss(rot) 0.1376 | loss(pos) 0.4382 | loss(seq) 0.0184 | grad 3.8018 | lr 0.0010 | time_forward 3.0290 | time_backward 4.2970 |
[2023-09-02 21:51:32,313::train::INFO] [train] Iter 14627 | loss 1.2193 | loss(rot) 0.8537 | loss(pos) 0.0746 | loss(seq) 0.2910 | grad 4.7035 | lr 0.0010 | time_forward 1.0720 | time_backward 1.2240 |
[2023-09-02 21:51:35,057::train::INFO] [train] Iter 14628 | loss 1.3399 | loss(rot) 0.2954 | loss(pos) 1.0295 | loss(seq) 0.0150 | grad 6.5519 | lr 0.0010 | time_forward 1.2880 | time_backward 1.4520 |
[2023-09-02 21:51:44,950::train::INFO] [train] Iter 14629 | loss 1.7870 | loss(rot) 1.6510 | loss(pos) 0.1360 | loss(seq) 0.0000 | grad 4.4038 | lr 0.0010 | time_forward 4.0900 | time_backward 5.8000 |
[2023-09-02 21:51:54,921::train::INFO] [train] Iter 14630 | loss 0.6997 | loss(rot) 0.2024 | loss(pos) 0.4078 | loss(seq) 0.0895 | grad 2.8600 | lr 0.0010 | time_forward 4.0640 | time_backward 5.9040 |
[2023-09-02 21:52:05,040::train::INFO] [train] Iter 14631 | loss 1.6399 | loss(rot) 0.8103 | loss(pos) 0.4348 | loss(seq) 0.3947 | grad 5.5106 | lr 0.0010 | time_forward 4.1050 | time_backward 6.0100 |
[2023-09-02 21:52:14,907::train::INFO] [train] Iter 14632 | loss 1.6170 | loss(rot) 1.4052 | loss(pos) 0.2118 | loss(seq) 0.0000 | grad 3.7590 | lr 0.0010 | time_forward 4.0290 | time_backward 5.8350 |
[2023-09-02 21:52:17,633::train::INFO] [train] Iter 14633 | loss 0.6933 | loss(rot) 0.3601 | loss(pos) 0.2265 | loss(seq) 0.1067 | grad 4.1119 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4420 |
[2023-09-02 21:52:27,609::train::INFO] [train] Iter 14634 | loss 2.1476 | loss(rot) 1.2894 | loss(pos) 0.3317 | loss(seq) 0.5265 | grad 4.5428 | lr 0.0010 | time_forward 4.1240 | time_backward 5.8490 |
[2023-09-02 21:52:35,530::train::INFO] [train] Iter 14635 | loss 2.5084 | loss(rot) 1.3529 | loss(pos) 0.6894 | loss(seq) 0.4661 | grad 9.8090 | lr 0.0010 | time_forward 3.3050 | time_backward 4.6120 |
[2023-09-02 21:52:38,198::train::INFO] [train] Iter 14636 | loss 1.2397 | loss(rot) 0.0919 | loss(pos) 1.1328 | loss(seq) 0.0151 | grad 8.5997 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4260 |
[2023-09-02 21:52:40,950::train::INFO] [train] Iter 14637 | loss 1.1478 | loss(rot) 0.9330 | loss(pos) 0.2147 | loss(seq) 0.0001 | grad 12.4263 | lr 0.0010 | time_forward 1.2490 | time_backward 1.4730 |
[2023-09-02 21:52:51,060::train::INFO] [train] Iter 14638 | loss 1.6991 | loss(rot) 1.0643 | loss(pos) 0.1512 | loss(seq) 0.4835 | grad 6.0186 | lr 0.0010 | time_forward 4.0650 | time_backward 6.0420 |
[2023-09-02 21:52:54,537::train::INFO] [train] Iter 14639 | loss 1.4278 | loss(rot) 1.1019 | loss(pos) 0.2033 | loss(seq) 0.1226 | grad 5.0596 | lr 0.0010 | time_forward 1.4200 | time_backward 2.0550 |
[2023-09-02 21:53:02,971::train::INFO] [train] Iter 14640 | loss 2.6068 | loss(rot) 2.2746 | loss(pos) 0.3301 | loss(seq) 0.0021 | grad 3.4345 | lr 0.0010 | time_forward 3.5560 | time_backward 4.8740 |
[2023-09-02 21:53:05,883::train::INFO] [train] Iter 14641 | loss 1.3535 | loss(rot) 0.2126 | loss(pos) 0.3782 | loss(seq) 0.7626 | grad 3.2511 | lr 0.0010 | time_forward 1.3650 | time_backward 1.5440 |
[2023-09-02 21:53:15,929::train::INFO] [train] Iter 14642 | loss 1.3156 | loss(rot) 0.5130 | loss(pos) 0.3102 | loss(seq) 0.4925 | grad 4.4232 | lr 0.0010 | time_forward 4.0500 | time_backward 5.9930 |
[2023-09-02 21:53:18,680::train::INFO] [train] Iter 14643 | loss 1.1068 | loss(rot) 1.0095 | loss(pos) 0.0802 | loss(seq) 0.0171 | grad 3.7413 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4970 |
[2023-09-02 21:53:27,200::train::INFO] [train] Iter 14644 | loss 1.0482 | loss(rot) 0.8825 | loss(pos) 0.0990 | loss(seq) 0.0668 | grad 7.3495 | lr 0.0010 | time_forward 3.6330 | time_backward 4.8830 |
[2023-09-02 21:53:29,919::train::INFO] [train] Iter 14645 | loss 1.8694 | loss(rot) 0.9037 | loss(pos) 0.2304 | loss(seq) 0.7353 | grad 3.4565 | lr 0.0010 | time_forward 1.2450 | time_backward 1.4710 |
[2023-09-02 21:53:39,266::train::INFO] [train] Iter 14646 | loss 1.4123 | loss(rot) 0.6726 | loss(pos) 0.3433 | loss(seq) 0.3964 | grad 4.0844 | lr 0.0010 | time_forward 3.9080 | time_backward 5.4350 |
[2023-09-02 21:53:49,323::train::INFO] [train] Iter 14647 | loss 0.9088 | loss(rot) 0.2739 | loss(pos) 0.6051 | loss(seq) 0.0298 | grad 2.5687 | lr 0.0010 | time_forward 4.1850 | time_backward 5.8690 |
[2023-09-02 21:53:59,561::train::INFO] [train] Iter 14648 | loss 1.5020 | loss(rot) 0.4263 | loss(pos) 0.3915 | loss(seq) 0.6842 | grad 4.7134 | lr 0.0010 | time_forward 4.1920 | time_backward 6.0420 |
[2023-09-02 21:54:07,780::train::INFO] [train] Iter 14649 | loss 1.0949 | loss(rot) 0.4370 | loss(pos) 0.3679 | loss(seq) 0.2901 | grad 4.1297 | lr 0.0010 | time_forward 3.4300 | time_backward 4.7850 |
[2023-09-02 21:54:16,782::train::INFO] [train] Iter 14650 | loss 2.2475 | loss(rot) 1.2096 | loss(pos) 0.6758 | loss(seq) 0.3621 | grad 4.3626 | lr 0.0010 | time_forward 3.7090 | time_backward 5.2890 |
[2023-09-02 21:54:25,442::train::INFO] [train] Iter 14651 | loss 3.7391 | loss(rot) 0.0209 | loss(pos) 3.7182 | loss(seq) 0.0000 | grad 8.8180 | lr 0.0010 | time_forward 3.5810 | time_backward 5.0750 |
[2023-09-02 21:54:34,110::train::INFO] [train] Iter 14652 | loss 1.3653 | loss(rot) 1.0739 | loss(pos) 0.0838 | loss(seq) 0.2077 | grad 4.3929 | lr 0.0010 | time_forward 3.5340 | time_backward 5.1320 |
[2023-09-02 21:54:44,841::train::INFO] [train] Iter 14653 | loss 1.4735 | loss(rot) 0.0482 | loss(pos) 1.4238 | loss(seq) 0.0015 | grad 5.0586 | lr 0.0010 | time_forward 4.3880 | time_backward 6.3390 |
[2023-09-02 21:54:55,091::train::INFO] [train] Iter 14654 | loss 0.9957 | loss(rot) 0.2012 | loss(pos) 0.7151 | loss(seq) 0.0794 | grad 5.5825 | lr 0.0010 | time_forward 4.1240 | time_backward 6.1230 |
[2023-09-02 21:55:04,053::train::INFO] [train] Iter 14655 | loss 2.2332 | loss(rot) 1.3488 | loss(pos) 0.4288 | loss(seq) 0.4556 | grad 3.7671 | lr 0.0010 | time_forward 3.7330 | time_backward 5.2250 |
[2023-09-02 21:55:06,600::train::INFO] [train] Iter 14656 | loss 1.2579 | loss(rot) 0.7235 | loss(pos) 0.1339 | loss(seq) 0.4006 | grad 4.3884 | lr 0.0010 | time_forward 1.2020 | time_backward 1.3410 |
[2023-09-02 21:55:09,441::train::INFO] [train] Iter 14657 | loss 1.9138 | loss(rot) 1.0586 | loss(pos) 0.4439 | loss(seq) 0.4114 | grad 4.0477 | lr 0.0010 | time_forward 1.3090 | time_backward 1.5010 |
[2023-09-02 21:55:18,526::train::INFO] [train] Iter 14658 | loss 1.2671 | loss(rot) 0.7653 | loss(pos) 0.0927 | loss(seq) 0.4091 | grad 3.6075 | lr 0.0010 | time_forward 3.8050 | time_backward 5.2770 |
[2023-09-02 21:55:27,505::train::INFO] [train] Iter 14659 | loss 2.0565 | loss(rot) 1.6031 | loss(pos) 0.1338 | loss(seq) 0.3196 | grad 5.3311 | lr 0.0010 | time_forward 3.6330 | time_backward 5.3430 |
[2023-09-02 21:55:36,923::train::INFO] [train] Iter 14660 | loss 1.0523 | loss(rot) 0.4762 | loss(pos) 0.2956 | loss(seq) 0.2805 | grad 3.9278 | lr 0.0010 | time_forward 3.8790 | time_backward 5.5360 |
[2023-09-02 21:55:47,471::train::INFO] [train] Iter 14661 | loss 2.2271 | loss(rot) 1.4272 | loss(pos) 0.3525 | loss(seq) 0.4474 | grad 6.4381 | lr 0.0010 | time_forward 4.1800 | time_backward 6.3650 |
[2023-09-02 21:55:56,401::train::INFO] [train] Iter 14662 | loss 1.1939 | loss(rot) 0.6811 | loss(pos) 0.1320 | loss(seq) 0.3808 | grad 4.8583 | lr 0.0010 | time_forward 3.7280 | time_backward 5.1980 |
[2023-09-02 21:56:06,494::train::INFO] [train] Iter 14663 | loss 1.3379 | loss(rot) 0.0228 | loss(pos) 1.3091 | loss(seq) 0.0060 | grad 6.4084 | lr 0.0010 | time_forward 4.0640 | time_backward 6.0260 |
[2023-09-02 21:56:09,346::train::INFO] [train] Iter 14664 | loss 0.7730 | loss(rot) 0.3842 | loss(pos) 0.1317 | loss(seq) 0.2571 | grad 4.0873 | lr 0.0010 | time_forward 1.3480 | time_backward 1.5010 |
[2023-09-02 21:56:19,788::train::INFO] [train] Iter 14665 | loss 2.2278 | loss(rot) 1.7698 | loss(pos) 0.3482 | loss(seq) 0.1098 | grad 5.5792 | lr 0.0010 | time_forward 4.2140 | time_backward 6.2240 |
[2023-09-02 21:56:29,900::train::INFO] [train] Iter 14666 | loss 1.0056 | loss(rot) 0.7038 | loss(pos) 0.1397 | loss(seq) 0.1620 | grad 4.5214 | lr 0.0010 | time_forward 4.0790 | time_backward 6.0290 |
[2023-09-02 21:56:40,107::train::INFO] [train] Iter 14667 | loss 0.9523 | loss(rot) 0.7137 | loss(pos) 0.2383 | loss(seq) 0.0003 | grad 6.0669 | lr 0.0010 | time_forward 4.1160 | time_backward 6.0890 |
[2023-09-02 21:56:48,736::train::INFO] [train] Iter 14668 | loss 0.4786 | loss(rot) 0.1387 | loss(pos) 0.1988 | loss(seq) 0.1411 | grad 2.8086 | lr 0.0010 | time_forward 3.5620 | time_backward 5.0640 |
[2023-09-02 21:56:52,216::train::INFO] [train] Iter 14669 | loss 1.0468 | loss(rot) 0.0901 | loss(pos) 0.9399 | loss(seq) 0.0168 | grad 7.0296 | lr 0.0010 | time_forward 1.4340 | time_backward 2.0420 |
[2023-09-02 21:56:54,984::train::INFO] [train] Iter 14670 | loss 2.5981 | loss(rot) 2.4088 | loss(pos) 0.1872 | loss(seq) 0.0021 | grad 10.4682 | lr 0.0010 | time_forward 1.2620 | time_backward 1.5030 |
[2023-09-02 21:57:03,327::train::INFO] [train] Iter 14671 | loss 1.8531 | loss(rot) 1.3942 | loss(pos) 0.1263 | loss(seq) 0.3325 | grad 3.3945 | lr 0.0010 | time_forward 3.4570 | time_backward 4.8830 |
[2023-09-02 21:57:12,201::train::INFO] [train] Iter 14672 | loss 0.8178 | loss(rot) 0.2905 | loss(pos) 0.1796 | loss(seq) 0.3476 | grad 3.4967 | lr 0.0010 | time_forward 3.7070 | time_backward 5.1480 |
[2023-09-02 21:57:21,909::train::INFO] [train] Iter 14673 | loss 1.1235 | loss(rot) 0.9301 | loss(pos) 0.1930 | loss(seq) 0.0003 | grad 6.5542 | lr 0.0010 | time_forward 4.0040 | time_backward 5.7000 |
[2023-09-02 21:57:25,363::train::INFO] [train] Iter 14674 | loss 0.7530 | loss(rot) 0.1238 | loss(pos) 0.6047 | loss(seq) 0.0245 | grad 3.0076 | lr 0.0010 | time_forward 1.4430 | time_backward 2.0080 |
[2023-09-02 21:57:34,072::train::INFO] [train] Iter 14675 | loss 0.9188 | loss(rot) 0.4979 | loss(pos) 0.1094 | loss(seq) 0.3115 | grad 3.6820 | lr 0.0010 | time_forward 3.6960 | time_backward 5.0090 |
[2023-09-02 21:57:43,099::train::INFO] [train] Iter 14676 | loss 1.2149 | loss(rot) 0.7139 | loss(pos) 0.1169 | loss(seq) 0.3840 | grad 6.4259 | lr 0.0010 | time_forward 3.8140 | time_backward 5.2110 |
[2023-09-02 21:57:53,563::train::INFO] [train] Iter 14677 | loss 1.0792 | loss(rot) 0.4137 | loss(pos) 0.3465 | loss(seq) 0.3190 | grad 3.4131 | lr 0.0010 | time_forward 4.2140 | time_backward 6.2470 |
[2023-09-02 21:58:02,250::train::INFO] [train] Iter 14678 | loss 1.0124 | loss(rot) 0.9095 | loss(pos) 0.0719 | loss(seq) 0.0310 | grad 7.3476 | lr 0.0010 | time_forward 3.5640 | time_backward 5.1190 |
[2023-09-02 21:58:05,070::train::INFO] [train] Iter 14679 | loss 1.4783 | loss(rot) 0.8397 | loss(pos) 0.1841 | loss(seq) 0.4545 | grad 4.6730 | lr 0.0010 | time_forward 1.3050 | time_backward 1.5110 |
[2023-09-02 21:58:08,034::train::INFO] [train] Iter 14680 | loss 1.1341 | loss(rot) 0.4067 | loss(pos) 0.3066 | loss(seq) 0.4208 | grad 5.2233 | lr 0.0010 | time_forward 1.3690 | time_backward 1.5910 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.