text
stringlengths
56
1.16k
[2023-09-02 21:33:37,632::train::INFO] [train] Iter 14481 | loss 1.8281 | loss(rot) 0.8322 | loss(pos) 0.3266 | loss(seq) 0.6694 | grad 4.1481 | lr 0.0010 | time_forward 4.0310 | time_backward 5.9860
[2023-09-02 21:33:48,100::train::INFO] [train] Iter 14482 | loss 0.9197 | loss(rot) 0.5917 | loss(pos) 0.0977 | loss(seq) 0.2302 | grad 3.2926 | lr 0.0010 | time_forward 4.0380 | time_backward 6.4270
[2023-09-02 21:34:01,088::train::INFO] [train] Iter 14483 | loss 2.0663 | loss(rot) 1.7433 | loss(pos) 0.1381 | loss(seq) 0.1849 | grad 5.1633 | lr 0.0010 | time_forward 5.7370 | time_backward 7.2490
[2023-09-02 21:34:04,819::train::INFO] [train] Iter 14484 | loss 1.2488 | loss(rot) 0.2555 | loss(pos) 0.6345 | loss(seq) 0.3588 | grad 3.3198 | lr 0.0010 | time_forward 1.7000 | time_backward 2.0280
[2023-09-02 21:34:14,245::train::INFO] [train] Iter 14485 | loss 0.7803 | loss(rot) 0.2587 | loss(pos) 0.3103 | loss(seq) 0.2113 | grad 2.9600 | lr 0.0010 | time_forward 3.8860 | time_backward 5.5370
[2023-09-02 21:34:24,334::train::INFO] [train] Iter 14486 | loss 1.7262 | loss(rot) 1.4415 | loss(pos) 0.2846 | loss(seq) 0.0000 | grad 8.0107 | lr 0.0010 | time_forward 3.9680 | time_backward 6.1180
[2023-09-02 21:34:27,082::train::INFO] [train] Iter 14487 | loss 0.9226 | loss(rot) 0.6153 | loss(pos) 0.0942 | loss(seq) 0.2131 | grad 4.0452 | lr 0.0010 | time_forward 1.2390 | time_backward 1.5050
[2023-09-02 21:34:29,982::train::INFO] [train] Iter 14488 | loss 1.3617 | loss(rot) 0.7322 | loss(pos) 0.1854 | loss(seq) 0.4442 | grad 5.6595 | lr 0.0010 | time_forward 1.4120 | time_backward 1.4840
[2023-09-02 21:34:33,248::train::INFO] [train] Iter 14489 | loss 1.4741 | loss(rot) 0.5382 | loss(pos) 0.2254 | loss(seq) 0.7105 | grad 3.6778 | lr 0.0010 | time_forward 1.5540 | time_backward 1.7080
[2023-09-02 21:34:40,984::train::INFO] [train] Iter 14490 | loss 4.6439 | loss(rot) 0.0117 | loss(pos) 4.6317 | loss(seq) 0.0005 | grad 15.7135 | lr 0.0010 | time_forward 3.1110 | time_backward 4.6200
[2023-09-02 21:34:53,135::train::INFO] [train] Iter 14491 | loss 1.7721 | loss(rot) 1.0311 | loss(pos) 0.3276 | loss(seq) 0.4135 | grad 3.5596 | lr 0.0010 | time_forward 5.3380 | time_backward 6.7280
[2023-09-02 21:35:02,550::train::INFO] [train] Iter 14492 | loss 1.7064 | loss(rot) 0.4081 | loss(pos) 0.7395 | loss(seq) 0.5588 | grad 7.7991 | lr 0.0010 | time_forward 4.2240 | time_backward 5.1880
[2023-09-02 21:35:05,262::train::INFO] [train] Iter 14493 | loss 1.0454 | loss(rot) 0.9390 | loss(pos) 0.1053 | loss(seq) 0.0012 | grad 4.2422 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4540
[2023-09-02 21:35:08,008::train::INFO] [train] Iter 14494 | loss 0.7629 | loss(rot) 0.4547 | loss(pos) 0.1094 | loss(seq) 0.1987 | grad 3.6489 | lr 0.0010 | time_forward 1.3000 | time_backward 1.4430
[2023-09-02 21:35:18,843::train::INFO] [train] Iter 14495 | loss 2.4526 | loss(rot) 2.1920 | loss(pos) 0.2605 | loss(seq) 0.0000 | grad 4.8111 | lr 0.0010 | time_forward 5.2570 | time_backward 5.5740
[2023-09-02 21:35:27,645::train::INFO] [train] Iter 14496 | loss 1.1622 | loss(rot) 0.7416 | loss(pos) 0.1188 | loss(seq) 0.3019 | grad 4.8209 | lr 0.0010 | time_forward 3.5970 | time_backward 5.2010
[2023-09-02 21:35:35,808::train::INFO] [train] Iter 14497 | loss 1.6089 | loss(rot) 0.8108 | loss(pos) 0.2434 | loss(seq) 0.5547 | grad 5.7016 | lr 0.0010 | time_forward 3.3390 | time_backward 4.8190
[2023-09-02 21:35:44,506::train::INFO] [train] Iter 14498 | loss 2.4793 | loss(rot) 0.0272 | loss(pos) 2.4514 | loss(seq) 0.0006 | grad 5.4351 | lr 0.0010 | time_forward 3.7530 | time_backward 4.9410
[2023-09-02 21:35:54,173::train::INFO] [train] Iter 14499 | loss 1.7230 | loss(rot) 1.5150 | loss(pos) 0.2080 | loss(seq) 0.0000 | grad 5.4022 | lr 0.0010 | time_forward 3.9190 | time_backward 5.7450
[2023-09-02 21:36:04,983::train::INFO] [train] Iter 14500 | loss 2.4074 | loss(rot) 1.4040 | loss(pos) 0.5666 | loss(seq) 0.4368 | grad 3.9404 | lr 0.0010 | time_forward 4.7060 | time_backward 6.0990
[2023-09-02 21:36:13,963::train::INFO] [train] Iter 14501 | loss 1.5958 | loss(rot) 1.0791 | loss(pos) 0.0859 | loss(seq) 0.4308 | grad 3.8595 | lr 0.0010 | time_forward 3.9420 | time_backward 5.0340
[2023-09-02 21:36:23,369::train::INFO] [train] Iter 14502 | loss 1.3325 | loss(rot) 1.2744 | loss(pos) 0.0493 | loss(seq) 0.0088 | grad 11.5530 | lr 0.0010 | time_forward 3.9910 | time_backward 5.4110
[2023-09-02 21:36:32,994::train::INFO] [train] Iter 14503 | loss 1.9269 | loss(rot) 0.0210 | loss(pos) 1.9040 | loss(seq) 0.0019 | grad 6.0805 | lr 0.0010 | time_forward 4.0430 | time_backward 5.5780
[2023-09-02 21:36:42,098::train::INFO] [train] Iter 14504 | loss 2.1027 | loss(rot) 2.0288 | loss(pos) 0.0559 | loss(seq) 0.0180 | grad 3.4891 | lr 0.0010 | time_forward 3.9960 | time_backward 5.1040
[2023-09-02 21:36:45,182::train::INFO] [train] Iter 14505 | loss 1.7152 | loss(rot) 0.8289 | loss(pos) 0.7960 | loss(seq) 0.0903 | grad 5.2620 | lr 0.0010 | time_forward 1.5230 | time_backward 1.5570
[2023-09-02 21:36:55,432::train::INFO] [train] Iter 14506 | loss 0.9563 | loss(rot) 0.3348 | loss(pos) 0.5525 | loss(seq) 0.0691 | grad 5.0888 | lr 0.0010 | time_forward 4.5730 | time_backward 5.6730
[2023-09-02 21:37:05,612::train::INFO] [train] Iter 14507 | loss 0.8363 | loss(rot) 0.1310 | loss(pos) 0.6830 | loss(seq) 0.0223 | grad 4.7606 | lr 0.0010 | time_forward 4.4540 | time_backward 5.7220
[2023-09-02 21:37:16,059::train::INFO] [train] Iter 14508 | loss 1.4058 | loss(rot) 0.5386 | loss(pos) 0.8612 | loss(seq) 0.0060 | grad 3.0686 | lr 0.0010 | time_forward 4.1960 | time_backward 6.2480
[2023-09-02 21:37:26,370::train::INFO] [train] Iter 14509 | loss 1.7973 | loss(rot) 0.0542 | loss(pos) 1.7399 | loss(seq) 0.0032 | grad 4.8138 | lr 0.0010 | time_forward 4.4000 | time_backward 5.8950
[2023-09-02 21:37:35,564::train::INFO] [train] Iter 14510 | loss 1.3597 | loss(rot) 0.0380 | loss(pos) 1.3134 | loss(seq) 0.0082 | grad 5.3276 | lr 0.0010 | time_forward 3.9550 | time_backward 5.2350
[2023-09-02 21:37:44,679::train::INFO] [train] Iter 14511 | loss 1.8891 | loss(rot) 0.0607 | loss(pos) 1.3782 | loss(seq) 0.4501 | grad 7.9907 | lr 0.0010 | time_forward 3.8290 | time_backward 5.2830
[2023-09-02 21:37:47,599::train::INFO] [train] Iter 14512 | loss 1.9823 | loss(rot) 1.3575 | loss(pos) 0.6197 | loss(seq) 0.0051 | grad 11.7210 | lr 0.0010 | time_forward 1.3760 | time_backward 1.5400
[2023-09-02 21:37:56,096::train::INFO] [train] Iter 14513 | loss 0.9292 | loss(rot) 0.2415 | loss(pos) 0.5560 | loss(seq) 0.1318 | grad 7.3857 | lr 0.0010 | time_forward 3.5430 | time_backward 4.9510
[2023-09-02 21:38:04,393::train::INFO] [train] Iter 14514 | loss 0.8122 | loss(rot) 0.2865 | loss(pos) 0.3693 | loss(seq) 0.1563 | grad 7.2998 | lr 0.0010 | time_forward 3.4760 | time_backward 4.8180
[2023-09-02 21:38:14,798::train::INFO] [train] Iter 14515 | loss 0.4770 | loss(rot) 0.0611 | loss(pos) 0.4007 | loss(seq) 0.0152 | grad 4.2795 | lr 0.0010 | time_forward 4.6100 | time_backward 5.7920
[2023-09-02 21:38:17,590::train::INFO] [train] Iter 14516 | loss 0.8557 | loss(rot) 0.1625 | loss(pos) 0.6431 | loss(seq) 0.0501 | grad 6.6715 | lr 0.0010 | time_forward 1.3260 | time_backward 1.4470
[2023-09-02 21:38:27,424::train::INFO] [train] Iter 14517 | loss 1.6144 | loss(rot) 0.1866 | loss(pos) 1.1425 | loss(seq) 0.2853 | grad 6.1142 | lr 0.0010 | time_forward 4.0500 | time_backward 5.7810
[2023-09-02 21:38:37,039::train::INFO] [train] Iter 14518 | loss 1.6759 | loss(rot) 0.9100 | loss(pos) 0.2977 | loss(seq) 0.4682 | grad 3.9466 | lr 0.0010 | time_forward 4.0780 | time_backward 5.5340
[2023-09-02 21:38:39,868::train::INFO] [train] Iter 14519 | loss 1.6642 | loss(rot) 0.9653 | loss(pos) 0.1559 | loss(seq) 0.5429 | grad 3.8379 | lr 0.0010 | time_forward 1.3180 | time_backward 1.5070
[2023-09-02 21:38:42,301::train::INFO] [train] Iter 14520 | loss 1.6424 | loss(rot) 0.8002 | loss(pos) 0.2946 | loss(seq) 0.5476 | grad 4.0502 | lr 0.0010 | time_forward 1.1820 | time_backward 1.2480
[2023-09-02 21:38:52,752::train::INFO] [train] Iter 14521 | loss 2.1668 | loss(rot) 1.7962 | loss(pos) 0.3703 | loss(seq) 0.0003 | grad 6.6184 | lr 0.0010 | time_forward 4.3960 | time_backward 6.0360
[2023-09-02 21:39:02,249::train::INFO] [train] Iter 14522 | loss 0.8768 | loss(rot) 0.2593 | loss(pos) 0.3384 | loss(seq) 0.2791 | grad 3.2974 | lr 0.0010 | time_forward 4.0910 | time_backward 5.4030
[2023-09-02 21:39:05,826::train::INFO] [train] Iter 14523 | loss 1.2652 | loss(rot) 0.1340 | loss(pos) 0.9863 | loss(seq) 0.1449 | grad 2.9310 | lr 0.0010 | time_forward 1.5000 | time_backward 2.0730
[2023-09-02 21:39:16,134::train::INFO] [train] Iter 14524 | loss 2.0481 | loss(rot) 0.4989 | loss(pos) 0.6826 | loss(seq) 0.8666 | grad 4.1738 | lr 0.0010 | time_forward 4.1850 | time_backward 6.1200
[2023-09-02 21:39:26,250::train::INFO] [train] Iter 14525 | loss 1.5020 | loss(rot) 1.1839 | loss(pos) 0.1748 | loss(seq) 0.1432 | grad 6.7319 | lr 0.0010 | time_forward 4.0820 | time_backward 6.0290
[2023-09-02 21:39:36,570::train::INFO] [train] Iter 14526 | loss 1.6328 | loss(rot) 1.3308 | loss(pos) 0.1746 | loss(seq) 0.1274 | grad 4.0531 | lr 0.0010 | time_forward 4.2070 | time_backward 6.1100
[2023-09-02 21:39:39,441::train::INFO] [train] Iter 14527 | loss 1.3968 | loss(rot) 0.4643 | loss(pos) 0.2131 | loss(seq) 0.7195 | grad 3.7246 | lr 0.0010 | time_forward 1.3360 | time_backward 1.5310
[2023-09-02 21:39:48,590::train::INFO] [train] Iter 14528 | loss 1.4949 | loss(rot) 1.2867 | loss(pos) 0.1036 | loss(seq) 0.1046 | grad 8.8779 | lr 0.0010 | time_forward 3.8610 | time_backward 5.2850
[2023-09-02 21:39:58,086::train::INFO] [train] Iter 14529 | loss 1.2850 | loss(rot) 0.1466 | loss(pos) 0.6693 | loss(seq) 0.4691 | grad 5.5182 | lr 0.0010 | time_forward 3.9610 | time_backward 5.5300
[2023-09-02 21:40:08,481::train::INFO] [train] Iter 14530 | loss 1.8078 | loss(rot) 1.6425 | loss(pos) 0.1319 | loss(seq) 0.0334 | grad 4.2345 | lr 0.0010 | time_forward 4.1620 | time_backward 6.2290
[2023-09-02 21:40:19,015::train::INFO] [train] Iter 14531 | loss 1.2810 | loss(rot) 0.7263 | loss(pos) 0.0867 | loss(seq) 0.4680 | grad 4.7224 | lr 0.0010 | time_forward 4.4080 | time_backward 6.1220
[2023-09-02 21:40:30,149::train::INFO] [train] Iter 14532 | loss 1.6982 | loss(rot) 1.4922 | loss(pos) 0.2060 | loss(seq) 0.0000 | grad 4.7026 | lr 0.0010 | time_forward 4.7220 | time_backward 6.4030
[2023-09-02 21:40:39,977::train::INFO] [train] Iter 14533 | loss 1.8898 | loss(rot) 0.7236 | loss(pos) 0.7352 | loss(seq) 0.4310 | grad 3.5964 | lr 0.0010 | time_forward 4.4210 | time_backward 5.4010
[2023-09-02 21:40:48,614::train::INFO] [train] Iter 14534 | loss 1.1483 | loss(rot) 0.0204 | loss(pos) 1.1279 | loss(seq) 0.0000 | grad 4.9103 | lr 0.0010 | time_forward 3.6970 | time_backward 4.9360
[2023-09-02 21:40:55,312::train::INFO] [train] Iter 14535 | loss 2.3833 | loss(rot) 1.3635 | loss(pos) 0.4775 | loss(seq) 0.5424 | grad 4.3363 | lr 0.0010 | time_forward 3.0610 | time_backward 3.6330
[2023-09-02 21:41:03,403::train::INFO] [train] Iter 14536 | loss 1.4367 | loss(rot) 0.9452 | loss(pos) 0.1091 | loss(seq) 0.3824 | grad 3.8221 | lr 0.0010 | time_forward 3.6600 | time_backward 4.4270
[2023-09-02 21:41:17,547::train::INFO] [train] Iter 14537 | loss 2.2412 | loss(rot) 1.8587 | loss(pos) 0.2557 | loss(seq) 0.1268 | grad 3.6676 | lr 0.0010 | time_forward 7.9190 | time_backward 6.2220
[2023-09-02 21:41:28,499::train::INFO] [train] Iter 14538 | loss 2.2040 | loss(rot) 2.0669 | loss(pos) 0.1182 | loss(seq) 0.0189 | grad 4.6433 | lr 0.0010 | time_forward 4.3560 | time_backward 6.5930
[2023-09-02 21:41:38,129::train::INFO] [train] Iter 14539 | loss 1.2075 | loss(rot) 0.7477 | loss(pos) 0.0828 | loss(seq) 0.3770 | grad 6.3092 | lr 0.0010 | time_forward 4.0370 | time_backward 5.5900
[2023-09-02 21:41:48,996::train::INFO] [train] Iter 14540 | loss 1.1096 | loss(rot) 0.6353 | loss(pos) 0.2772 | loss(seq) 0.1971 | grad 2.6266 | lr 0.0010 | time_forward 4.3700 | time_backward 6.4930
[2023-09-02 21:41:59,961::train::INFO] [train] Iter 14541 | loss 1.0404 | loss(rot) 0.3915 | loss(pos) 0.5524 | loss(seq) 0.0964 | grad 3.3409 | lr 0.0010 | time_forward 4.5120 | time_backward 6.4490
[2023-09-02 21:42:02,885::train::INFO] [train] Iter 14542 | loss 1.8605 | loss(rot) 1.7690 | loss(pos) 0.0904 | loss(seq) 0.0011 | grad 4.5187 | lr 0.0010 | time_forward 1.3430 | time_backward 1.5770
[2023-09-02 21:42:12,429::train::INFO] [train] Iter 14543 | loss 2.1003 | loss(rot) 1.2273 | loss(pos) 0.2971 | loss(seq) 0.5758 | grad 5.4165 | lr 0.0010 | time_forward 3.9800 | time_backward 5.5610
[2023-09-02 21:42:21,230::train::INFO] [train] Iter 14544 | loss 1.6770 | loss(rot) 1.5074 | loss(pos) 0.1598 | loss(seq) 0.0098 | grad 4.7148 | lr 0.0010 | time_forward 3.5900 | time_backward 5.2060
[2023-09-02 21:42:24,141::train::INFO] [train] Iter 14545 | loss 0.9923 | loss(rot) 0.1576 | loss(pos) 0.7964 | loss(seq) 0.0384 | grad 3.3583 | lr 0.0010 | time_forward 1.2960 | time_backward 1.6110
[2023-09-02 21:42:26,986::train::INFO] [train] Iter 14546 | loss 1.1202 | loss(rot) 0.7102 | loss(pos) 0.0478 | loss(seq) 0.3622 | grad 4.9756 | lr 0.0010 | time_forward 1.3410 | time_backward 1.5010
[2023-09-02 21:42:35,686::train::INFO] [train] Iter 14547 | loss 1.4544 | loss(rot) 0.6816 | loss(pos) 0.2281 | loss(seq) 0.5447 | grad 3.5331 | lr 0.0010 | time_forward 3.6890 | time_backward 5.0050
[2023-09-02 21:42:46,006::train::INFO] [train] Iter 14548 | loss 0.9738 | loss(rot) 0.8557 | loss(pos) 0.0965 | loss(seq) 0.0216 | grad 4.8405 | lr 0.0010 | time_forward 4.0480 | time_backward 6.2680
[2023-09-02 21:42:48,585::train::INFO] [train] Iter 14549 | loss 1.6140 | loss(rot) 0.7995 | loss(pos) 0.1664 | loss(seq) 0.6481 | grad 4.2732 | lr 0.0010 | time_forward 1.1630 | time_backward 1.4120
[2023-09-02 21:42:51,335::train::INFO] [train] Iter 14550 | loss 1.7207 | loss(rot) 1.6318 | loss(pos) 0.0792 | loss(seq) 0.0097 | grad 4.4863 | lr 0.0010 | time_forward 1.2620 | time_backward 1.4660
[2023-09-02 21:42:54,069::train::INFO] [train] Iter 14551 | loss 1.1968 | loss(rot) 0.1255 | loss(pos) 1.0253 | loss(seq) 0.0460 | grad 5.3926 | lr 0.0010 | time_forward 1.2770 | time_backward 1.4540
[2023-09-02 21:43:04,394::train::INFO] [train] Iter 14552 | loss 1.6777 | loss(rot) 1.2117 | loss(pos) 0.1547 | loss(seq) 0.3113 | grad 6.4130 | lr 0.0010 | time_forward 4.1930 | time_backward 6.1280
[2023-09-02 21:43:12,919::train::INFO] [train] Iter 14553 | loss 1.4704 | loss(rot) 0.8001 | loss(pos) 0.2371 | loss(seq) 0.4332 | grad 4.2660 | lr 0.0010 | time_forward 3.5600 | time_backward 4.9610
[2023-09-02 21:43:19,757::train::INFO] [train] Iter 14554 | loss 2.0802 | loss(rot) 1.5830 | loss(pos) 0.1299 | loss(seq) 0.3673 | grad 4.6339 | lr 0.0010 | time_forward 2.9210 | time_backward 3.9150
[2023-09-02 21:43:22,517::train::INFO] [train] Iter 14555 | loss 1.4802 | loss(rot) 1.3433 | loss(pos) 0.1368 | loss(seq) 0.0001 | grad 13.7047 | lr 0.0010 | time_forward 1.2940 | time_backward 1.4620
[2023-09-02 21:43:30,510::train::INFO] [train] Iter 14556 | loss 5.0138 | loss(rot) 0.2746 | loss(pos) 4.7392 | loss(seq) 0.0000 | grad 11.5135 | lr 0.0010 | time_forward 3.4140 | time_backward 4.5770
[2023-09-02 21:43:39,058::train::INFO] [train] Iter 14557 | loss 0.7339 | loss(rot) 0.2683 | loss(pos) 0.1743 | loss(seq) 0.2913 | grad 2.2544 | lr 0.0010 | time_forward 3.7680 | time_backward 4.7760
[2023-09-02 21:43:48,945::train::INFO] [train] Iter 14558 | loss 1.5666 | loss(rot) 1.3991 | loss(pos) 0.1673 | loss(seq) 0.0001 | grad 3.6169 | lr 0.0010 | time_forward 4.0650 | time_backward 5.8190
[2023-09-02 21:43:57,376::train::INFO] [train] Iter 14559 | loss 2.9245 | loss(rot) 2.6113 | loss(pos) 0.1432 | loss(seq) 0.1700 | grad 7.3210 | lr 0.0010 | time_forward 3.5110 | time_backward 4.9160
[2023-09-02 21:44:07,671::train::INFO] [train] Iter 14560 | loss 1.2267 | loss(rot) 0.6795 | loss(pos) 0.1435 | loss(seq) 0.4038 | grad 4.7708 | lr 0.0010 | time_forward 4.0850 | time_backward 6.2070
[2023-09-02 21:44:17,906::train::INFO] [train] Iter 14561 | loss 1.9666 | loss(rot) 1.7301 | loss(pos) 0.1421 | loss(seq) 0.0944 | grad 4.7062 | lr 0.0010 | time_forward 4.0690 | time_backward 6.1630
[2023-09-02 21:44:27,829::train::INFO] [train] Iter 14562 | loss 2.1188 | loss(rot) 1.5134 | loss(pos) 0.1903 | loss(seq) 0.4151 | grad 4.8242 | lr 0.0010 | time_forward 3.9910 | time_backward 5.9290
[2023-09-02 21:44:38,109::train::INFO] [train] Iter 14563 | loss 2.6684 | loss(rot) 2.5254 | loss(pos) 0.1144 | loss(seq) 0.0286 | grad 5.6840 | lr 0.0010 | time_forward 4.2330 | time_backward 6.0430
[2023-09-02 21:44:46,284::train::INFO] [train] Iter 14564 | loss 0.8084 | loss(rot) 0.0876 | loss(pos) 0.6886 | loss(seq) 0.0322 | grad 3.5719 | lr 0.0010 | time_forward 3.3600 | time_backward 4.8120
[2023-09-02 21:44:49,006::train::INFO] [train] Iter 14565 | loss 1.7218 | loss(rot) 0.0596 | loss(pos) 1.3940 | loss(seq) 0.2682 | grad 7.9076 | lr 0.0010 | time_forward 1.2810 | time_backward 1.4380
[2023-09-02 21:44:51,338::train::INFO] [train] Iter 14566 | loss 0.8545 | loss(rot) 0.2296 | loss(pos) 0.4328 | loss(seq) 0.1922 | grad 4.6507 | lr 0.0010 | time_forward 1.0980 | time_backward 1.2300
[2023-09-02 21:44:57,962::train::INFO] [train] Iter 14567 | loss 0.8176 | loss(rot) 0.1094 | loss(pos) 0.6580 | loss(seq) 0.0502 | grad 4.1671 | lr 0.0010 | time_forward 2.8490 | time_backward 3.7720
[2023-09-02 21:45:07,993::train::INFO] [train] Iter 14568 | loss 1.6014 | loss(rot) 0.8552 | loss(pos) 0.3576 | loss(seq) 0.3886 | grad 3.1379 | lr 0.0010 | time_forward 4.2780 | time_backward 5.7480
[2023-09-02 21:45:10,727::train::INFO] [train] Iter 14569 | loss 1.6221 | loss(rot) 1.0440 | loss(pos) 0.4758 | loss(seq) 0.1023 | grad 5.7117 | lr 0.0010 | time_forward 1.2640 | time_backward 1.4670
[2023-09-02 21:45:19,442::train::INFO] [train] Iter 14570 | loss 2.8325 | loss(rot) 1.9519 | loss(pos) 0.2858 | loss(seq) 0.5949 | grad 4.2859 | lr 0.0010 | time_forward 3.7190 | time_backward 4.9920
[2023-09-02 21:45:29,513::train::INFO] [train] Iter 14571 | loss 2.1226 | loss(rot) 1.4098 | loss(pos) 0.3492 | loss(seq) 0.3636 | grad 3.8534 | lr 0.0010 | time_forward 4.2340 | time_backward 5.8330
[2023-09-02 21:45:38,662::train::INFO] [train] Iter 14572 | loss 0.9621 | loss(rot) 0.2098 | loss(pos) 0.2765 | loss(seq) 0.4758 | grad 3.4463 | lr 0.0010 | time_forward 4.0730 | time_backward 5.0720
[2023-09-02 21:45:41,435::train::INFO] [train] Iter 14573 | loss 1.5448 | loss(rot) 0.7571 | loss(pos) 0.2228 | loss(seq) 0.5649 | grad 4.2632 | lr 0.0010 | time_forward 1.2640 | time_backward 1.5060
[2023-09-02 21:45:50,774::train::INFO] [train] Iter 14574 | loss 2.2859 | loss(rot) 1.4671 | loss(pos) 0.3615 | loss(seq) 0.4573 | grad 6.5194 | lr 0.0010 | time_forward 3.9880 | time_backward 5.3480
[2023-09-02 21:45:53,606::train::INFO] [train] Iter 14575 | loss 0.8364 | loss(rot) 0.3488 | loss(pos) 0.2715 | loss(seq) 0.2161 | grad 3.6220 | lr 0.0010 | time_forward 1.2930 | time_backward 1.5350
[2023-09-02 21:46:03,728::train::INFO] [train] Iter 14576 | loss 1.0315 | loss(rot) 0.5972 | loss(pos) 0.1457 | loss(seq) 0.2887 | grad 3.6772 | lr 0.0010 | time_forward 4.1220 | time_backward 5.9970
[2023-09-02 21:46:12,452::train::INFO] [train] Iter 14577 | loss 1.1594 | loss(rot) 0.8571 | loss(pos) 0.1070 | loss(seq) 0.1953 | grad 10.0148 | lr 0.0010 | time_forward 3.6430 | time_backward 5.0770
[2023-09-02 21:46:15,855::train::INFO] [train] Iter 14578 | loss 2.0788 | loss(rot) 1.7897 | loss(pos) 0.0968 | loss(seq) 0.1922 | grad 7.2696 | lr 0.0010 | time_forward 1.4490 | time_backward 1.9500
[2023-09-02 21:46:25,095::train::INFO] [train] Iter 14579 | loss 0.7108 | loss(rot) 0.2902 | loss(pos) 0.0567 | loss(seq) 0.3639 | grad 3.0375 | lr 0.0010 | time_forward 4.0190 | time_backward 5.2180
[2023-09-02 21:46:35,128::train::INFO] [train] Iter 14580 | loss 1.9172 | loss(rot) 1.2060 | loss(pos) 0.2396 | loss(seq) 0.4715 | grad 4.3604 | lr 0.0010 | time_forward 4.0940 | time_backward 5.9360