text
stringlengths 56
1.16k
|
---|
[2023-09-02 21:58:17,717::train::INFO] [train] Iter 14681 | loss 1.2304 | loss(rot) 1.0530 | loss(pos) 0.1774 | loss(seq) 0.0000 | grad 10.1746 | lr 0.0010 | time_forward 4.0330 | time_backward 5.6470 |
[2023-09-02 21:58:26,302::train::INFO] [train] Iter 14682 | loss 2.0820 | loss(rot) 1.9799 | loss(pos) 0.0972 | loss(seq) 0.0048 | grad 5.4630 | lr 0.0010 | time_forward 3.5720 | time_backward 5.0100 |
[2023-09-02 21:58:29,155::train::INFO] [train] Iter 14683 | loss 1.1625 | loss(rot) 0.3935 | loss(pos) 0.2974 | loss(seq) 0.4716 | grad 4.6176 | lr 0.0010 | time_forward 1.3320 | time_backward 1.5170 |
[2023-09-02 21:58:38,019::train::INFO] [train] Iter 14684 | loss 1.8801 | loss(rot) 1.5587 | loss(pos) 0.1350 | loss(seq) 0.1863 | grad 5.5929 | lr 0.0010 | time_forward 3.6600 | time_backward 5.2000 |
[2023-09-02 21:58:47,167::train::INFO] [train] Iter 14685 | loss 2.4437 | loss(rot) 0.0161 | loss(pos) 2.4264 | loss(seq) 0.0012 | grad 10.7490 | lr 0.0010 | time_forward 3.9520 | time_backward 5.1920 |
[2023-09-02 21:58:57,446::train::INFO] [train] Iter 14686 | loss 2.0224 | loss(rot) 1.3351 | loss(pos) 0.1564 | loss(seq) 0.5309 | grad 4.1720 | lr 0.0010 | time_forward 4.1120 | time_backward 6.1620 |
[2023-09-02 21:59:06,469::train::INFO] [train] Iter 14687 | loss 2.3915 | loss(rot) 2.1390 | loss(pos) 0.1623 | loss(seq) 0.0902 | grad 7.5557 | lr 0.0010 | time_forward 3.6720 | time_backward 5.3470 |
[2023-09-02 21:59:15,065::train::INFO] [train] Iter 14688 | loss 1.1566 | loss(rot) 0.0213 | loss(pos) 1.1238 | loss(seq) 0.0115 | grad 5.1969 | lr 0.0010 | time_forward 3.5730 | time_backward 5.0080 |
[2023-09-02 21:59:23,889::train::INFO] [train] Iter 14689 | loss 0.8479 | loss(rot) 0.1080 | loss(pos) 0.6671 | loss(seq) 0.0728 | grad 5.5103 | lr 0.0010 | time_forward 3.7240 | time_backward 5.0960 |
[2023-09-02 21:59:34,620::train::INFO] [train] Iter 14690 | loss 1.0006 | loss(rot) 0.2850 | loss(pos) 0.3953 | loss(seq) 0.3203 | grad 4.3393 | lr 0.0010 | time_forward 4.1580 | time_backward 6.5700 |
[2023-09-02 21:59:43,510::train::INFO] [train] Iter 14691 | loss 0.9622 | loss(rot) 0.7799 | loss(pos) 0.1104 | loss(seq) 0.0719 | grad 4.1139 | lr 0.0010 | time_forward 3.7790 | time_backward 5.1060 |
[2023-09-02 21:59:54,354::train::INFO] [train] Iter 14692 | loss 1.5088 | loss(rot) 0.0601 | loss(pos) 1.4430 | loss(seq) 0.0058 | grad 6.0410 | lr 0.0010 | time_forward 4.7870 | time_backward 6.0540 |
[2023-09-02 22:00:02,540::train::INFO] [train] Iter 14693 | loss 1.9929 | loss(rot) 0.1664 | loss(pos) 1.8209 | loss(seq) 0.0056 | grad 6.6882 | lr 0.0010 | time_forward 3.3320 | time_backward 4.8510 |
[2023-09-02 22:00:12,368::train::INFO] [train] Iter 14694 | loss 0.8696 | loss(rot) 0.2952 | loss(pos) 0.1880 | loss(seq) 0.3863 | grad 3.4400 | lr 0.0010 | time_forward 4.3590 | time_backward 5.4650 |
[2023-09-02 22:00:19,936::train::INFO] [train] Iter 14695 | loss 2.1868 | loss(rot) 1.7851 | loss(pos) 0.0751 | loss(seq) 0.3266 | grad 7.2658 | lr 0.0010 | time_forward 3.1220 | time_backward 4.4430 |
[2023-09-02 22:00:29,441::train::INFO] [train] Iter 14696 | loss 1.4995 | loss(rot) 0.9121 | loss(pos) 0.1042 | loss(seq) 0.4833 | grad 3.9386 | lr 0.0010 | time_forward 3.8680 | time_backward 5.6320 |
[2023-09-02 22:00:38,926::train::INFO] [train] Iter 14697 | loss 0.7752 | loss(rot) 0.4117 | loss(pos) 0.1050 | loss(seq) 0.2585 | grad 3.3020 | lr 0.0010 | time_forward 3.9550 | time_backward 5.5260 |
[2023-09-02 22:00:47,558::train::INFO] [train] Iter 14698 | loss 1.2335 | loss(rot) 0.0332 | loss(pos) 1.1948 | loss(seq) 0.0055 | grad 7.6118 | lr 0.0010 | time_forward 3.5600 | time_backward 5.0680 |
[2023-09-02 22:00:50,207::train::INFO] [train] Iter 14699 | loss 2.1926 | loss(rot) 2.0840 | loss(pos) 0.1085 | loss(seq) 0.0001 | grad 4.4338 | lr 0.0010 | time_forward 1.2210 | time_backward 1.4220 |
[2023-09-02 22:00:57,370::train::INFO] [train] Iter 14700 | loss 1.3193 | loss(rot) 0.7818 | loss(pos) 0.1171 | loss(seq) 0.4205 | grad 4.2637 | lr 0.0010 | time_forward 3.0190 | time_backward 4.1400 |
[2023-09-02 22:01:05,943::train::INFO] [train] Iter 14701 | loss 2.3731 | loss(rot) 2.2405 | loss(pos) 0.1323 | loss(seq) 0.0003 | grad 4.7736 | lr 0.0010 | time_forward 3.5960 | time_backward 4.9730 |
[2023-09-02 22:01:14,407::train::INFO] [train] Iter 14702 | loss 2.2683 | loss(rot) 2.1415 | loss(pos) 0.1112 | loss(seq) 0.0156 | grad 4.8156 | lr 0.0010 | time_forward 3.5900 | time_backward 4.8710 |
[2023-09-02 22:01:22,703::train::INFO] [train] Iter 14703 | loss 2.8196 | loss(rot) 2.1442 | loss(pos) 0.4205 | loss(seq) 0.2549 | grad 7.6931 | lr 0.0010 | time_forward 3.4850 | time_backward 4.8080 |
[2023-09-02 22:01:30,897::train::INFO] [train] Iter 14704 | loss 2.3360 | loss(rot) 1.8835 | loss(pos) 0.2825 | loss(seq) 0.1701 | grad 5.2459 | lr 0.0010 | time_forward 3.3480 | time_backward 4.8430 |
[2023-09-02 22:01:40,293::train::INFO] [train] Iter 14705 | loss 1.6055 | loss(rot) 1.4353 | loss(pos) 0.1465 | loss(seq) 0.0237 | grad 8.5430 | lr 0.0010 | time_forward 3.8840 | time_backward 5.5090 |
[2023-09-02 22:01:50,212::train::INFO] [train] Iter 14706 | loss 1.6424 | loss(rot) 0.6992 | loss(pos) 0.3114 | loss(seq) 0.6318 | grad 3.9267 | lr 0.0010 | time_forward 4.0020 | time_backward 5.9140 |
[2023-09-02 22:01:52,964::train::INFO] [train] Iter 14707 | loss 1.2930 | loss(rot) 0.1827 | loss(pos) 0.4083 | loss(seq) 0.7021 | grad 4.0866 | lr 0.0010 | time_forward 1.2740 | time_backward 1.4740 |
[2023-09-02 22:02:03,176::train::INFO] [train] Iter 14708 | loss 2.0154 | loss(rot) 1.8354 | loss(pos) 0.1800 | loss(seq) 0.0000 | grad 7.4596 | lr 0.0010 | time_forward 4.0610 | time_backward 6.1480 |
[2023-09-02 22:02:13,179::train::INFO] [train] Iter 14709 | loss 1.7578 | loss(rot) 0.8461 | loss(pos) 0.3017 | loss(seq) 0.6099 | grad 6.8312 | lr 0.0010 | time_forward 4.0860 | time_backward 5.9130 |
[2023-09-02 22:02:15,989::train::INFO] [train] Iter 14710 | loss 1.3114 | loss(rot) 1.1732 | loss(pos) 0.1082 | loss(seq) 0.0300 | grad 6.6688 | lr 0.0010 | time_forward 1.2820 | time_backward 1.5250 |
[2023-09-02 22:02:26,249::train::INFO] [train] Iter 14711 | loss 1.8192 | loss(rot) 1.3911 | loss(pos) 0.0994 | loss(seq) 0.3286 | grad 6.3448 | lr 0.0010 | time_forward 4.1020 | time_backward 6.1540 |
[2023-09-02 22:02:34,490::train::INFO] [train] Iter 14712 | loss 1.3940 | loss(rot) 0.7400 | loss(pos) 0.1053 | loss(seq) 0.5487 | grad 9.0154 | lr 0.0010 | time_forward 3.4240 | time_backward 4.8140 |
[2023-09-02 22:02:40,993::train::INFO] [train] Iter 14713 | loss 1.9115 | loss(rot) 1.7834 | loss(pos) 0.1113 | loss(seq) 0.0168 | grad 5.2920 | lr 0.0010 | time_forward 2.7260 | time_backward 3.7730 |
[2023-09-02 22:02:50,075::train::INFO] [train] Iter 14714 | loss 1.5858 | loss(rot) 0.1102 | loss(pos) 1.4575 | loss(seq) 0.0182 | grad 10.2538 | lr 0.0010 | time_forward 3.9500 | time_backward 5.1280 |
[2023-09-02 22:02:58,485::train::INFO] [train] Iter 14715 | loss 1.5436 | loss(rot) 1.3657 | loss(pos) 0.1772 | loss(seq) 0.0006 | grad 4.7543 | lr 0.0010 | time_forward 3.5910 | time_backward 4.8150 |
[2023-09-02 22:03:06,783::train::INFO] [train] Iter 14716 | loss 1.6190 | loss(rot) 0.0384 | loss(pos) 1.5758 | loss(seq) 0.0048 | grad 7.5660 | lr 0.0010 | time_forward 3.4730 | time_backward 4.8210 |
[2023-09-02 22:03:16,204::train::INFO] [train] Iter 14717 | loss 2.4089 | loss(rot) 1.3274 | loss(pos) 0.5887 | loss(seq) 0.4927 | grad 3.5964 | lr 0.0010 | time_forward 3.9120 | time_backward 5.5060 |
[2023-09-02 22:03:18,949::train::INFO] [train] Iter 14718 | loss 0.9533 | loss(rot) 0.4185 | loss(pos) 0.1283 | loss(seq) 0.4065 | grad 3.7331 | lr 0.0010 | time_forward 1.2560 | time_backward 1.4860 |
[2023-09-02 22:03:22,448::train::INFO] [train] Iter 14719 | loss 2.0636 | loss(rot) 0.9723 | loss(pos) 0.6186 | loss(seq) 0.4726 | grad 4.6899 | lr 0.0010 | time_forward 1.4710 | time_backward 2.0250 |
[2023-09-02 22:03:31,091::train::INFO] [train] Iter 14720 | loss 1.8446 | loss(rot) 0.0740 | loss(pos) 1.5083 | loss(seq) 0.2623 | grad 6.1538 | lr 0.0010 | time_forward 3.6090 | time_backward 5.0310 |
[2023-09-02 22:03:41,237::train::INFO] [train] Iter 14721 | loss 1.4900 | loss(rot) 0.7749 | loss(pos) 0.2868 | loss(seq) 0.4283 | grad 4.1092 | lr 0.0010 | time_forward 4.1570 | time_backward 5.9860 |
[2023-09-02 22:03:50,466::train::INFO] [train] Iter 14722 | loss 1.1462 | loss(rot) 0.4183 | loss(pos) 0.1409 | loss(seq) 0.5870 | grad 3.9394 | lr 0.0010 | time_forward 3.9170 | time_backward 5.2950 |
[2023-09-02 22:03:53,166::train::INFO] [train] Iter 14723 | loss 1.1751 | loss(rot) 0.4933 | loss(pos) 0.2612 | loss(seq) 0.4206 | grad 3.5168 | lr 0.0010 | time_forward 1.2630 | time_backward 1.4340 |
[2023-09-02 22:04:01,226::train::INFO] [train] Iter 14724 | loss 1.5532 | loss(rot) 1.4309 | loss(pos) 0.1223 | loss(seq) 0.0000 | grad 4.6156 | lr 0.0010 | time_forward 3.3720 | time_backward 4.6840 |
[2023-09-02 22:04:04,592::train::INFO] [train] Iter 14725 | loss 2.3074 | loss(rot) 1.5223 | loss(pos) 0.3658 | loss(seq) 0.4192 | grad 5.2879 | lr 0.0010 | time_forward 1.4440 | time_backward 1.9200 |
[2023-09-02 22:04:14,528::train::INFO] [train] Iter 14726 | loss 1.4227 | loss(rot) 0.9325 | loss(pos) 0.4330 | loss(seq) 0.0572 | grad 7.3428 | lr 0.0010 | time_forward 4.0480 | time_backward 5.8840 |
[2023-09-02 22:04:23,764::train::INFO] [train] Iter 14727 | loss 2.3470 | loss(rot) 0.2149 | loss(pos) 2.1262 | loss(seq) 0.0059 | grad 12.0744 | lr 0.0010 | time_forward 3.9090 | time_backward 5.3240 |
[2023-09-02 22:04:32,013::train::INFO] [train] Iter 14728 | loss 1.9663 | loss(rot) 1.7891 | loss(pos) 0.1772 | loss(seq) 0.0000 | grad 5.1632 | lr 0.0010 | time_forward 3.4780 | time_backward 4.7670 |
[2023-09-02 22:04:39,142::train::INFO] [train] Iter 14729 | loss 0.9385 | loss(rot) 0.4025 | loss(pos) 0.2996 | loss(seq) 0.2364 | grad 5.1475 | lr 0.0010 | time_forward 2.9960 | time_backward 4.1300 |
[2023-09-02 22:04:41,825::train::INFO] [train] Iter 14730 | loss 1.3050 | loss(rot) 0.9512 | loss(pos) 0.2473 | loss(seq) 0.1065 | grad 4.8696 | lr 0.0010 | time_forward 1.2390 | time_backward 1.4400 |
[2023-09-02 22:04:49,966::train::INFO] [train] Iter 14731 | loss 1.5441 | loss(rot) 1.4012 | loss(pos) 0.1274 | loss(seq) 0.0154 | grad 8.2548 | lr 0.0010 | time_forward 3.4220 | time_backward 4.7150 |
[2023-09-02 22:04:58,587::train::INFO] [train] Iter 14732 | loss 0.6901 | loss(rot) 0.1660 | loss(pos) 0.4002 | loss(seq) 0.1239 | grad 5.6349 | lr 0.0010 | time_forward 3.5440 | time_backward 5.0730 |
[2023-09-02 22:05:07,355::train::INFO] [train] Iter 14733 | loss 1.4370 | loss(rot) 0.0876 | loss(pos) 0.8242 | loss(seq) 0.5253 | grad 5.9334 | lr 0.0010 | time_forward 3.7310 | time_backward 5.0340 |
[2023-09-02 22:05:17,664::train::INFO] [train] Iter 14734 | loss 2.0303 | loss(rot) 1.3621 | loss(pos) 0.2106 | loss(seq) 0.4576 | grad 4.0404 | lr 0.0010 | time_forward 4.2720 | time_backward 6.0330 |
[2023-09-02 22:05:26,692::train::INFO] [train] Iter 14735 | loss 1.9396 | loss(rot) 1.8261 | loss(pos) 0.0471 | loss(seq) 0.0664 | grad 5.8980 | lr 0.0010 | time_forward 3.8420 | time_backward 5.1830 |
[2023-09-02 22:05:36,048::train::INFO] [train] Iter 14736 | loss 2.3323 | loss(rot) 2.1913 | loss(pos) 0.1279 | loss(seq) 0.0131 | grad 4.1061 | lr 0.0010 | time_forward 3.8590 | time_backward 5.4930 |
[2023-09-02 22:05:46,064::train::INFO] [train] Iter 14737 | loss 0.8574 | loss(rot) 0.4421 | loss(pos) 0.3580 | loss(seq) 0.0574 | grad 4.1780 | lr 0.0010 | time_forward 4.0530 | time_backward 5.9590 |
[2023-09-02 22:05:54,523::train::INFO] [train] Iter 14738 | loss 0.8956 | loss(rot) 0.4079 | loss(pos) 0.3467 | loss(seq) 0.1410 | grad 2.9028 | lr 0.0010 | time_forward 3.5530 | time_backward 4.9020 |
[2023-09-02 22:06:04,668::train::INFO] [train] Iter 14739 | loss 2.3290 | loss(rot) 2.1176 | loss(pos) 0.2014 | loss(seq) 0.0100 | grad 4.5178 | lr 0.0010 | time_forward 4.0620 | time_backward 6.0790 |
[2023-09-02 22:06:14,846::train::INFO] [train] Iter 14740 | loss 1.6902 | loss(rot) 1.3020 | loss(pos) 0.2084 | loss(seq) 0.1798 | grad 13.1980 | lr 0.0010 | time_forward 4.0240 | time_backward 6.1500 |
[2023-09-02 22:06:17,620::train::INFO] [train] Iter 14741 | loss 1.1128 | loss(rot) 0.3244 | loss(pos) 0.3751 | loss(seq) 0.4133 | grad 4.6061 | lr 0.0010 | time_forward 1.2910 | time_backward 1.4790 |
[2023-09-02 22:06:26,347::train::INFO] [train] Iter 14742 | loss 0.7101 | loss(rot) 0.5522 | loss(pos) 0.1086 | loss(seq) 0.0493 | grad 5.0847 | lr 0.0010 | time_forward 3.6150 | time_backward 5.1080 |
[2023-09-02 22:06:36,400::train::INFO] [train] Iter 14743 | loss 1.7955 | loss(rot) 1.6120 | loss(pos) 0.1747 | loss(seq) 0.0088 | grad 3.6095 | lr 0.0010 | time_forward 4.1930 | time_backward 5.8570 |
[2023-09-02 22:06:39,071::train::INFO] [train] Iter 14744 | loss 1.1198 | loss(rot) 0.9994 | loss(pos) 0.0704 | loss(seq) 0.0500 | grad 5.0379 | lr 0.0010 | time_forward 1.2270 | time_backward 1.4400 |
[2023-09-02 22:06:48,121::train::INFO] [train] Iter 14745 | loss 1.2766 | loss(rot) 1.0575 | loss(pos) 0.2160 | loss(seq) 0.0030 | grad 6.1131 | lr 0.0010 | time_forward 3.7800 | time_backward 4.9620 |
[2023-09-02 22:06:56,973::train::INFO] [train] Iter 14746 | loss 0.7261 | loss(rot) 0.4843 | loss(pos) 0.0920 | loss(seq) 0.1497 | grad 3.2840 | lr 0.0010 | time_forward 3.6860 | time_backward 5.1630 |
[2023-09-02 22:07:05,175::train::INFO] [train] Iter 14747 | loss 0.8407 | loss(rot) 0.0367 | loss(pos) 0.4304 | loss(seq) 0.3735 | grad 4.2288 | lr 0.0010 | time_forward 3.3560 | time_backward 4.8430 |
[2023-09-02 22:07:07,911::train::INFO] [train] Iter 14748 | loss 0.8836 | loss(rot) 0.7454 | loss(pos) 0.0727 | loss(seq) 0.0654 | grad 4.4052 | lr 0.0010 | time_forward 1.2620 | time_backward 1.4710 |
[2023-09-02 22:07:10,687::train::INFO] [train] Iter 14749 | loss 1.0551 | loss(rot) 0.6427 | loss(pos) 0.1170 | loss(seq) 0.2954 | grad 4.2590 | lr 0.0010 | time_forward 1.2710 | time_backward 1.5020 |
[2023-09-02 22:07:20,988::train::INFO] [train] Iter 14750 | loss 1.9609 | loss(rot) 1.8347 | loss(pos) 0.1255 | loss(seq) 0.0007 | grad 6.2168 | lr 0.0010 | time_forward 4.3160 | time_backward 5.9820 |
[2023-09-02 22:07:31,465::train::INFO] [train] Iter 14751 | loss 1.2130 | loss(rot) 1.0378 | loss(pos) 0.1752 | loss(seq) 0.0000 | grad 6.4566 | lr 0.0010 | time_forward 4.2870 | time_backward 6.1870 |
[2023-09-02 22:07:34,209::train::INFO] [train] Iter 14752 | loss 2.2916 | loss(rot) 0.0164 | loss(pos) 2.2745 | loss(seq) 0.0007 | grad 6.4774 | lr 0.0010 | time_forward 1.2810 | time_backward 1.4590 |
[2023-09-02 22:07:43,344::train::INFO] [train] Iter 14753 | loss 0.9705 | loss(rot) 0.8727 | loss(pos) 0.0472 | loss(seq) 0.0506 | grad 6.8791 | lr 0.0010 | time_forward 3.8250 | time_backward 5.3060 |
[2023-09-02 22:07:50,248::train::INFO] [train] Iter 14754 | loss 2.0636 | loss(rot) 1.6460 | loss(pos) 0.2394 | loss(seq) 0.1782 | grad 9.8508 | lr 0.0010 | time_forward 2.8700 | time_backward 4.0300 |
[2023-09-02 22:07:59,142::train::INFO] [train] Iter 14755 | loss 0.4905 | loss(rot) 0.1104 | loss(pos) 0.3567 | loss(seq) 0.0235 | grad 4.2315 | lr 0.0010 | time_forward 3.7130 | time_backward 5.1770 |
[2023-09-02 22:08:08,660::train::INFO] [train] Iter 14756 | loss 0.9453 | loss(rot) 0.1013 | loss(pos) 0.8201 | loss(seq) 0.0239 | grad 5.6512 | lr 0.0010 | time_forward 3.9560 | time_backward 5.5590 |
[2023-09-02 22:08:18,969::train::INFO] [train] Iter 14757 | loss 1.8231 | loss(rot) 0.7684 | loss(pos) 0.3577 | loss(seq) 0.6971 | grad 4.8564 | lr 0.0010 | time_forward 4.3200 | time_backward 5.9850 |
[2023-09-02 22:08:27,081::train::INFO] [train] Iter 14758 | loss 1.4727 | loss(rot) 1.3268 | loss(pos) 0.0620 | loss(seq) 0.0839 | grad 4.5819 | lr 0.0010 | time_forward 3.3260 | time_backward 4.7820 |
[2023-09-02 22:08:35,606::train::INFO] [train] Iter 14759 | loss 2.7831 | loss(rot) 1.4628 | loss(pos) 0.7043 | loss(seq) 0.6159 | grad 7.8346 | lr 0.0010 | time_forward 3.5240 | time_backward 4.9970 |
[2023-09-02 22:08:43,995::train::INFO] [train] Iter 14760 | loss 2.2192 | loss(rot) 1.9080 | loss(pos) 0.1020 | loss(seq) 0.2092 | grad 7.7037 | lr 0.0010 | time_forward 3.4020 | time_backward 4.9840 |
[2023-09-02 22:08:52,535::train::INFO] [train] Iter 14761 | loss 1.4290 | loss(rot) 1.2695 | loss(pos) 0.1594 | loss(seq) 0.0000 | grad 5.1542 | lr 0.0010 | time_forward 3.5310 | time_backward 5.0050 |
[2023-09-02 22:09:02,367::train::INFO] [train] Iter 14762 | loss 1.0732 | loss(rot) 0.8905 | loss(pos) 0.1695 | loss(seq) 0.0131 | grad 8.8544 | lr 0.0010 | time_forward 3.9450 | time_backward 5.8840 |
[2023-09-02 22:09:11,479::train::INFO] [train] Iter 14763 | loss 0.9492 | loss(rot) 0.4625 | loss(pos) 0.4105 | loss(seq) 0.0762 | grad 5.4412 | lr 0.0010 | time_forward 3.7570 | time_backward 5.3530 |
[2023-09-02 22:09:13,980::train::INFO] [train] Iter 14764 | loss 1.7891 | loss(rot) 1.4143 | loss(pos) 0.1250 | loss(seq) 0.2498 | grad 7.6426 | lr 0.0010 | time_forward 1.1940 | time_backward 1.2960 |
[2023-09-02 22:09:23,097::train::INFO] [train] Iter 14765 | loss 0.9397 | loss(rot) 0.2482 | loss(pos) 0.5307 | loss(seq) 0.1608 | grad 5.3445 | lr 0.0010 | time_forward 3.8140 | time_backward 5.2780 |
[2023-09-02 22:09:25,634::train::INFO] [train] Iter 14766 | loss 2.5816 | loss(rot) 2.3710 | loss(pos) 0.1868 | loss(seq) 0.0238 | grad 5.2982 | lr 0.0010 | time_forward 1.1600 | time_backward 1.3730 |
[2023-09-02 22:09:34,071::train::INFO] [train] Iter 14767 | loss 1.5116 | loss(rot) 1.1929 | loss(pos) 0.1103 | loss(seq) 0.2084 | grad 8.5418 | lr 0.0010 | time_forward 3.3880 | time_backward 5.0260 |
[2023-09-02 22:09:44,571::train::INFO] [train] Iter 14768 | loss 0.7586 | loss(rot) 0.1546 | loss(pos) 0.2799 | loss(seq) 0.3240 | grad 4.2151 | lr 0.0010 | time_forward 4.1250 | time_backward 6.3700 |
[2023-09-02 22:09:53,584::train::INFO] [train] Iter 14769 | loss 1.5511 | loss(rot) 0.8927 | loss(pos) 0.2819 | loss(seq) 0.3765 | grad 4.9785 | lr 0.0010 | time_forward 3.6760 | time_backward 5.3330 |
[2023-09-02 22:09:56,406::train::INFO] [train] Iter 14770 | loss 1.7711 | loss(rot) 0.3619 | loss(pos) 0.6738 | loss(seq) 0.7354 | grad 5.4185 | lr 0.0010 | time_forward 1.2830 | time_backward 1.5350 |
[2023-09-02 22:10:06,733::train::INFO] [train] Iter 14771 | loss 2.7610 | loss(rot) 2.6283 | loss(pos) 0.1328 | loss(seq) 0.0000 | grad 5.4744 | lr 0.0010 | time_forward 4.0550 | time_backward 6.2680 |
[2023-09-02 22:10:16,631::train::INFO] [train] Iter 14772 | loss 1.4518 | loss(rot) 0.9313 | loss(pos) 0.0981 | loss(seq) 0.4225 | grad 4.1250 | lr 0.0010 | time_forward 3.9640 | time_backward 5.9300 |
[2023-09-02 22:10:25,323::train::INFO] [train] Iter 14773 | loss 2.0926 | loss(rot) 1.9251 | loss(pos) 0.1673 | loss(seq) 0.0001 | grad 4.9221 | lr 0.0010 | time_forward 3.5390 | time_backward 5.1500 |
[2023-09-02 22:10:34,028::train::INFO] [train] Iter 14774 | loss 2.9191 | loss(rot) 2.4545 | loss(pos) 0.2376 | loss(seq) 0.2269 | grad 4.2769 | lr 0.0010 | time_forward 3.6030 | time_backward 5.0980 |
[2023-09-02 22:10:43,980::train::INFO] [train] Iter 14775 | loss 1.6733 | loss(rot) 0.8585 | loss(pos) 0.3245 | loss(seq) 0.4903 | grad 4.5002 | lr 0.0010 | time_forward 4.0310 | time_backward 5.9170 |
[2023-09-02 22:10:52,043::train::INFO] [train] Iter 14776 | loss 2.1743 | loss(rot) 1.6921 | loss(pos) 0.1656 | loss(seq) 0.3166 | grad 5.1274 | lr 0.0010 | time_forward 3.4780 | time_backward 4.5810 |
[2023-09-02 22:10:59,306::train::INFO] [train] Iter 14777 | loss 1.8678 | loss(rot) 1.5039 | loss(pos) 0.0835 | loss(seq) 0.2803 | grad 5.5790 | lr 0.0010 | time_forward 3.0460 | time_backward 4.2140 |
[2023-09-02 22:11:07,875::train::INFO] [train] Iter 14778 | loss 1.9881 | loss(rot) 1.8936 | loss(pos) 0.0914 | loss(seq) 0.0031 | grad 4.1684 | lr 0.0010 | time_forward 3.6200 | time_backward 4.9450 |
[2023-09-02 22:11:17,854::train::INFO] [train] Iter 14779 | loss 1.9632 | loss(rot) 0.0719 | loss(pos) 1.3655 | loss(seq) 0.5258 | grad 6.2487 | lr 0.0010 | time_forward 4.1010 | time_backward 5.8750 |
[2023-09-02 22:11:20,638::train::INFO] [train] Iter 14780 | loss 2.1262 | loss(rot) 1.4103 | loss(pos) 0.1441 | loss(seq) 0.5718 | grad 4.3616 | lr 0.0010 | time_forward 1.3220 | time_backward 1.4580 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.