text
stringlengths 56
1.16k
|
---|
[2023-09-02 21:09:49,285::train::INFO] [train] Iter 14281 | loss 2.8459 | loss(rot) 0.0798 | loss(pos) 2.7631 | loss(seq) 0.0030 | grad 7.2144 | lr 0.0010 | time_forward 1.2890 | time_backward 1.4650 |
[2023-09-02 21:09:57,874::train::INFO] [train] Iter 14282 | loss 1.8269 | loss(rot) 0.8867 | loss(pos) 0.4879 | loss(seq) 0.4522 | grad 4.0128 | lr 0.0010 | time_forward 3.6550 | time_backward 4.9300 |
[2023-09-02 21:10:06,972::train::INFO] [train] Iter 14283 | loss 1.8192 | loss(rot) 1.3183 | loss(pos) 0.1764 | loss(seq) 0.3246 | grad 5.2000 | lr 0.0010 | time_forward 3.6550 | time_backward 5.4400 |
[2023-09-02 21:10:09,917::train::INFO] [train] Iter 14284 | loss 1.9351 | loss(rot) 1.4246 | loss(pos) 0.3021 | loss(seq) 0.2084 | grad 5.5133 | lr 0.0010 | time_forward 1.4330 | time_backward 1.5080 |
[2023-09-02 21:10:13,401::train::INFO] [train] Iter 14285 | loss 1.4665 | loss(rot) 0.5725 | loss(pos) 0.4516 | loss(seq) 0.4424 | grad 5.0587 | lr 0.0010 | time_forward 1.5820 | time_backward 1.8980 |
[2023-09-02 21:10:23,078::train::INFO] [train] Iter 14286 | loss 2.2489 | loss(rot) 2.0144 | loss(pos) 0.2280 | loss(seq) 0.0065 | grad 5.6447 | lr 0.0010 | time_forward 3.9690 | time_backward 5.7040 |
[2023-09-02 21:10:25,851::train::INFO] [train] Iter 14287 | loss 1.2972 | loss(rot) 1.0290 | loss(pos) 0.2515 | loss(seq) 0.0168 | grad 6.7289 | lr 0.0010 | time_forward 1.2790 | time_backward 1.4900 |
[2023-09-02 21:10:33,942::train::INFO] [train] Iter 14288 | loss 1.8594 | loss(rot) 0.4953 | loss(pos) 0.6458 | loss(seq) 0.7182 | grad 5.3065 | lr 0.0010 | time_forward 3.3910 | time_backward 4.6960 |
[2023-09-02 21:10:42,923::train::INFO] [train] Iter 14289 | loss 0.9882 | loss(rot) 0.1542 | loss(pos) 0.8286 | loss(seq) 0.0054 | grad 6.1777 | lr 0.0010 | time_forward 3.7000 | time_backward 5.2780 |
[2023-09-02 21:10:45,715::train::INFO] [train] Iter 14290 | loss 1.4797 | loss(rot) 1.3451 | loss(pos) 0.1016 | loss(seq) 0.0330 | grad 5.4874 | lr 0.0010 | time_forward 1.3030 | time_backward 1.4850 |
[2023-09-02 21:10:53,270::train::INFO] [train] Iter 14291 | loss 1.4687 | loss(rot) 1.2175 | loss(pos) 0.0782 | loss(seq) 0.1730 | grad 7.7842 | lr 0.0010 | time_forward 3.1000 | time_backward 4.4520 |
[2023-09-02 21:11:02,470::train::INFO] [train] Iter 14292 | loss 1.9324 | loss(rot) 1.0016 | loss(pos) 0.3737 | loss(seq) 0.5571 | grad 3.0373 | lr 0.0010 | time_forward 3.7960 | time_backward 5.3990 |
[2023-09-02 21:11:13,135::train::INFO] [train] Iter 14293 | loss 0.4417 | loss(rot) 0.0735 | loss(pos) 0.3495 | loss(seq) 0.0187 | grad 3.4042 | lr 0.0010 | time_forward 4.2430 | time_backward 6.4180 |
[2023-09-02 21:11:23,644::train::INFO] [train] Iter 14294 | loss 1.3327 | loss(rot) 0.8435 | loss(pos) 0.2291 | loss(seq) 0.2601 | grad 3.9098 | lr 0.0010 | time_forward 4.4200 | time_backward 6.0860 |
[2023-09-02 21:11:26,037::train::INFO] [train] Iter 14295 | loss 1.5465 | loss(rot) 1.2652 | loss(pos) 0.0866 | loss(seq) 0.1947 | grad 4.6204 | lr 0.0010 | time_forward 1.1040 | time_backward 1.2840 |
[2023-09-02 21:11:34,374::train::INFO] [train] Iter 14296 | loss 1.7882 | loss(rot) 0.5186 | loss(pos) 1.2583 | loss(seq) 0.0113 | grad 9.0115 | lr 0.0010 | time_forward 3.5660 | time_backward 4.7670 |
[2023-09-02 21:11:43,787::train::INFO] [train] Iter 14297 | loss 3.8253 | loss(rot) 0.0165 | loss(pos) 3.8081 | loss(seq) 0.0006 | grad 7.7265 | lr 0.0010 | time_forward 4.0430 | time_backward 5.3660 |
[2023-09-02 21:11:52,956::train::INFO] [train] Iter 14298 | loss 2.5448 | loss(rot) 0.0369 | loss(pos) 2.5079 | loss(seq) 0.0000 | grad 7.7619 | lr 0.0010 | time_forward 3.7800 | time_backward 5.3850 |
[2023-09-02 21:11:55,724::train::INFO] [train] Iter 14299 | loss 1.4395 | loss(rot) 0.0384 | loss(pos) 0.9206 | loss(seq) 0.4805 | grad 5.9200 | lr 0.0010 | time_forward 1.3040 | time_backward 1.4610 |
[2023-09-02 21:12:04,592::train::INFO] [train] Iter 14300 | loss 0.7861 | loss(rot) 0.4209 | loss(pos) 0.2597 | loss(seq) 0.1054 | grad 2.9518 | lr 0.0010 | time_forward 3.7480 | time_backward 5.1170 |
[2023-09-02 21:12:12,484::train::INFO] [train] Iter 14301 | loss 1.6199 | loss(rot) 1.2367 | loss(pos) 0.1713 | loss(seq) 0.2119 | grad 4.1263 | lr 0.0010 | time_forward 3.2350 | time_backward 4.6540 |
[2023-09-02 21:12:21,147::train::INFO] [train] Iter 14302 | loss 1.1202 | loss(rot) 0.5445 | loss(pos) 0.1593 | loss(seq) 0.4164 | grad 7.3371 | lr 0.0010 | time_forward 3.5670 | time_backward 5.0930 |
[2023-09-02 21:12:23,965::train::INFO] [train] Iter 14303 | loss 1.7677 | loss(rot) 1.4874 | loss(pos) 0.2200 | loss(seq) 0.0603 | grad 6.2922 | lr 0.0010 | time_forward 1.2700 | time_backward 1.5440 |
[2023-09-02 21:12:34,640::train::INFO] [train] Iter 14304 | loss 1.2615 | loss(rot) 0.4332 | loss(pos) 0.2904 | loss(seq) 0.5378 | grad 4.3565 | lr 0.0010 | time_forward 4.2830 | time_backward 6.3890 |
[2023-09-02 21:12:42,598::train::INFO] [train] Iter 14305 | loss 0.9363 | loss(rot) 0.8646 | loss(pos) 0.0607 | loss(seq) 0.0110 | grad 5.4329 | lr 0.0010 | time_forward 3.3030 | time_backward 4.6520 |
[2023-09-02 21:12:45,414::train::INFO] [train] Iter 14306 | loss 2.0005 | loss(rot) 0.5505 | loss(pos) 0.9206 | loss(seq) 0.5294 | grad 7.0221 | lr 0.0010 | time_forward 1.3040 | time_backward 1.5080 |
[2023-09-02 21:12:48,945::train::INFO] [train] Iter 14307 | loss 3.3901 | loss(rot) 2.1710 | loss(pos) 0.6796 | loss(seq) 0.5395 | grad 4.2884 | lr 0.0010 | time_forward 1.5230 | time_backward 2.0040 |
[2023-09-02 21:12:57,575::train::INFO] [train] Iter 14308 | loss 1.8032 | loss(rot) 1.5467 | loss(pos) 0.2564 | loss(seq) 0.0001 | grad 6.4960 | lr 0.0010 | time_forward 3.6040 | time_backward 5.0220 |
[2023-09-02 21:13:06,344::train::INFO] [train] Iter 14309 | loss 2.6268 | loss(rot) 2.2477 | loss(pos) 0.2217 | loss(seq) 0.1575 | grad 4.5796 | lr 0.0010 | time_forward 3.7490 | time_backward 5.0150 |
[2023-09-02 21:13:09,070::train::INFO] [train] Iter 14310 | loss 1.1129 | loss(rot) 0.6906 | loss(pos) 0.2589 | loss(seq) 0.1633 | grad 4.6829 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4550 |
[2023-09-02 21:13:11,882::train::INFO] [train] Iter 14311 | loss 1.1706 | loss(rot) 0.9620 | loss(pos) 0.1031 | loss(seq) 0.1055 | grad 4.4472 | lr 0.0010 | time_forward 1.3270 | time_backward 1.4820 |
[2023-09-02 21:13:19,349::train::INFO] [train] Iter 14312 | loss 1.1816 | loss(rot) 0.3215 | loss(pos) 0.5402 | loss(seq) 0.3199 | grad 5.8381 | lr 0.0010 | time_forward 3.0920 | time_backward 4.3710 |
[2023-09-02 21:13:21,698::train::INFO] [train] Iter 14313 | loss 1.3348 | loss(rot) 0.2054 | loss(pos) 1.0716 | loss(seq) 0.0578 | grad 9.4073 | lr 0.0010 | time_forward 1.0870 | time_backward 1.2580 |
[2023-09-02 21:13:24,794::train::INFO] [train] Iter 14314 | loss 1.6842 | loss(rot) 0.9425 | loss(pos) 0.2611 | loss(seq) 0.4806 | grad 5.2150 | lr 0.0010 | time_forward 1.6010 | time_backward 1.4910 |
[2023-09-02 21:13:27,277::train::INFO] [train] Iter 14315 | loss 1.2044 | loss(rot) 0.5099 | loss(pos) 0.4596 | loss(seq) 0.2350 | grad 7.2430 | lr 0.0010 | time_forward 1.1910 | time_backward 1.2900 |
[2023-09-02 21:13:36,554::train::INFO] [train] Iter 14316 | loss 1.4560 | loss(rot) 0.7245 | loss(pos) 0.4895 | loss(seq) 0.2420 | grad 5.0461 | lr 0.0010 | time_forward 3.8620 | time_backward 5.4110 |
[2023-09-02 21:13:44,926::train::INFO] [train] Iter 14317 | loss 1.1199 | loss(rot) 0.2841 | loss(pos) 0.7940 | loss(seq) 0.0419 | grad 4.6354 | lr 0.0010 | time_forward 3.4880 | time_backward 4.8810 |
[2023-09-02 21:13:54,140::train::INFO] [train] Iter 14318 | loss 2.3446 | loss(rot) 1.4751 | loss(pos) 0.3272 | loss(seq) 0.5423 | grad 5.3654 | lr 0.0010 | time_forward 3.8580 | time_backward 5.3530 |
[2023-09-02 21:14:04,359::train::INFO] [train] Iter 14319 | loss 0.8666 | loss(rot) 0.1617 | loss(pos) 0.6374 | loss(seq) 0.0676 | grad 3.8165 | lr 0.0010 | time_forward 4.0450 | time_backward 6.1700 |
[2023-09-02 21:14:14,252::train::INFO] [train] Iter 14320 | loss 1.4251 | loss(rot) 0.4242 | loss(pos) 0.3868 | loss(seq) 0.6141 | grad 4.6850 | lr 0.0010 | time_forward 3.9940 | time_backward 5.8960 |
[2023-09-02 21:14:22,588::train::INFO] [train] Iter 14321 | loss 0.9541 | loss(rot) 0.7343 | loss(pos) 0.2154 | loss(seq) 0.0044 | grad 4.8720 | lr 0.0010 | time_forward 3.4750 | time_backward 4.8570 |
[2023-09-02 21:14:32,537::train::INFO] [train] Iter 14322 | loss 0.9297 | loss(rot) 0.2685 | loss(pos) 0.3180 | loss(seq) 0.3431 | grad 3.1917 | lr 0.0010 | time_forward 3.9780 | time_backward 5.9690 |
[2023-09-02 21:14:40,533::train::INFO] [train] Iter 14323 | loss 1.5602 | loss(rot) 0.7570 | loss(pos) 0.3264 | loss(seq) 0.4768 | grad 6.3615 | lr 0.0010 | time_forward 3.3030 | time_backward 4.6890 |
[2023-09-02 21:14:50,469::train::INFO] [train] Iter 14324 | loss 1.9651 | loss(rot) 1.8192 | loss(pos) 0.1336 | loss(seq) 0.0124 | grad 7.6995 | lr 0.0010 | time_forward 4.2180 | time_backward 5.7150 |
[2023-09-02 21:15:00,664::train::INFO] [train] Iter 14325 | loss 1.9066 | loss(rot) 1.6983 | loss(pos) 0.2076 | loss(seq) 0.0007 | grad 5.5800 | lr 0.0010 | time_forward 4.1540 | time_backward 6.0370 |
[2023-09-02 21:15:07,666::train::INFO] [train] Iter 14326 | loss 0.8541 | loss(rot) 0.3636 | loss(pos) 0.1124 | loss(seq) 0.3781 | grad 4.5591 | lr 0.0010 | time_forward 2.9950 | time_backward 4.0040 |
[2023-09-02 21:15:17,396::train::INFO] [train] Iter 14327 | loss 1.7419 | loss(rot) 1.6253 | loss(pos) 0.1119 | loss(seq) 0.0046 | grad 4.4093 | lr 0.0010 | time_forward 4.0060 | time_backward 5.7210 |
[2023-09-02 21:15:23,265::train::INFO] [train] Iter 14328 | loss 1.4415 | loss(rot) 1.2856 | loss(pos) 0.1441 | loss(seq) 0.0118 | grad 7.0231 | lr 0.0010 | time_forward 2.4950 | time_backward 3.3540 |
[2023-09-02 21:15:26,582::train::INFO] [train] Iter 14329 | loss 1.6119 | loss(rot) 0.1033 | loss(pos) 1.5035 | loss(seq) 0.0051 | grad 3.9762 | lr 0.0010 | time_forward 1.3930 | time_backward 1.9200 |
[2023-09-02 21:15:29,204::train::INFO] [train] Iter 14330 | loss 1.4385 | loss(rot) 0.8253 | loss(pos) 0.1756 | loss(seq) 0.4377 | grad 5.0491 | lr 0.0010 | time_forward 1.2270 | time_backward 1.3910 |
[2023-09-02 21:15:37,867::train::INFO] [train] Iter 14331 | loss 1.3496 | loss(rot) 1.0688 | loss(pos) 0.0733 | loss(seq) 0.2076 | grad 4.5039 | lr 0.0010 | time_forward 3.7110 | time_backward 4.9480 |
[2023-09-02 21:15:45,887::train::INFO] [train] Iter 14332 | loss 2.3768 | loss(rot) 1.9012 | loss(pos) 0.1962 | loss(seq) 0.2794 | grad 4.0099 | lr 0.0010 | time_forward 3.3480 | time_backward 4.6690 |
[2023-09-02 21:15:55,059::train::INFO] [train] Iter 14333 | loss 1.5709 | loss(rot) 1.2486 | loss(pos) 0.1045 | loss(seq) 0.2179 | grad 5.7067 | lr 0.0010 | time_forward 3.9160 | time_backward 5.2530 |
[2023-09-02 21:15:57,725::train::INFO] [train] Iter 14334 | loss 0.7413 | loss(rot) 0.3500 | loss(pos) 0.1304 | loss(seq) 0.2609 | grad 3.8759 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4070 |
[2023-09-02 21:16:05,167::train::INFO] [train] Iter 14335 | loss 1.7392 | loss(rot) 1.5110 | loss(pos) 0.1259 | loss(seq) 0.1024 | grad 7.8076 | lr 0.0010 | time_forward 3.1940 | time_backward 4.2450 |
[2023-09-02 21:16:12,586::train::INFO] [train] Iter 14336 | loss 1.8908 | loss(rot) 1.7323 | loss(pos) 0.1296 | loss(seq) 0.0288 | grad 8.2299 | lr 0.0010 | time_forward 3.1310 | time_backward 4.2840 |
[2023-09-02 21:16:20,935::train::INFO] [train] Iter 14337 | loss 1.6638 | loss(rot) 1.3459 | loss(pos) 0.3146 | loss(seq) 0.0034 | grad 5.3202 | lr 0.0010 | time_forward 3.4750 | time_backward 4.8720 |
[2023-09-02 21:16:30,198::train::INFO] [train] Iter 14338 | loss 2.7794 | loss(rot) 1.8934 | loss(pos) 0.2946 | loss(seq) 0.5913 | grad 3.1232 | lr 0.0010 | time_forward 3.8570 | time_backward 5.4010 |
[2023-09-02 21:16:32,878::train::INFO] [train] Iter 14339 | loss 2.4875 | loss(rot) 2.1709 | loss(pos) 0.2904 | loss(seq) 0.0262 | grad 5.4476 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4100 |
[2023-09-02 21:16:42,828::train::INFO] [train] Iter 14340 | loss 1.5753 | loss(rot) 1.2847 | loss(pos) 0.0626 | loss(seq) 0.2280 | grad 4.4380 | lr 0.0010 | time_forward 3.9770 | time_backward 5.9300 |
[2023-09-02 21:16:45,491::train::INFO] [train] Iter 14341 | loss 1.5405 | loss(rot) 0.6319 | loss(pos) 0.2274 | loss(seq) 0.6813 | grad 4.5394 | lr 0.0010 | time_forward 1.2470 | time_backward 1.4130 |
[2023-09-02 21:16:55,549::train::INFO] [train] Iter 14342 | loss 1.5022 | loss(rot) 0.5293 | loss(pos) 0.3071 | loss(seq) 0.6657 | grad 3.8330 | lr 0.0010 | time_forward 4.0710 | time_backward 5.9830 |
[2023-09-02 21:17:03,795::train::INFO] [train] Iter 14343 | loss 1.0537 | loss(rot) 0.5240 | loss(pos) 0.1196 | loss(seq) 0.4101 | grad 4.7319 | lr 0.0010 | time_forward 3.4590 | time_backward 4.7830 |
[2023-09-02 21:17:06,045::train::INFO] [train] Iter 14344 | loss 1.4211 | loss(rot) 0.4781 | loss(pos) 0.9078 | loss(seq) 0.0352 | grad 4.4009 | lr 0.0010 | time_forward 1.0430 | time_backward 1.2040 |
[2023-09-02 21:17:08,693::train::INFO] [train] Iter 14345 | loss 1.3482 | loss(rot) 0.5271 | loss(pos) 0.4625 | loss(seq) 0.3586 | grad 3.2490 | lr 0.0010 | time_forward 1.2380 | time_backward 1.4070 |
[2023-09-02 21:17:17,113::train::INFO] [train] Iter 14346 | loss 1.5595 | loss(rot) 0.8398 | loss(pos) 0.1222 | loss(seq) 0.5976 | grad 4.9616 | lr 0.0010 | time_forward 3.5470 | time_backward 4.8500 |
[2023-09-02 21:17:19,743::train::INFO] [train] Iter 14347 | loss 1.5986 | loss(rot) 1.1861 | loss(pos) 0.0933 | loss(seq) 0.3192 | grad 3.8099 | lr 0.0010 | time_forward 1.2370 | time_backward 1.3900 |
[2023-09-02 21:17:27,741::train::INFO] [train] Iter 14348 | loss 1.1409 | loss(rot) 0.6868 | loss(pos) 0.0802 | loss(seq) 0.3739 | grad 8.2012 | lr 0.0010 | time_forward 3.3310 | time_backward 4.6330 |
[2023-09-02 21:17:36,132::train::INFO] [train] Iter 14349 | loss 1.2790 | loss(rot) 0.4234 | loss(pos) 0.3827 | loss(seq) 0.4730 | grad 5.1329 | lr 0.0010 | time_forward 3.5950 | time_backward 4.7930 |
[2023-09-02 21:17:44,942::train::INFO] [train] Iter 14350 | loss 1.8596 | loss(rot) 0.8031 | loss(pos) 0.4359 | loss(seq) 0.6207 | grad 5.9701 | lr 0.0010 | time_forward 3.7090 | time_backward 5.0980 |
[2023-09-02 21:17:54,194::train::INFO] [train] Iter 14351 | loss 2.1765 | loss(rot) 1.8909 | loss(pos) 0.1791 | loss(seq) 0.1066 | grad 4.5033 | lr 0.0010 | time_forward 3.8870 | time_backward 5.3620 |
[2023-09-02 21:18:01,783::train::INFO] [train] Iter 14352 | loss 1.3526 | loss(rot) 0.5815 | loss(pos) 0.4209 | loss(seq) 0.3502 | grad 4.0884 | lr 0.0010 | time_forward 3.2900 | time_backward 4.2950 |
[2023-09-02 21:18:11,902::train::INFO] [train] Iter 14353 | loss 1.3394 | loss(rot) 0.6914 | loss(pos) 0.2965 | loss(seq) 0.3515 | grad 3.9836 | lr 0.0010 | time_forward 4.1370 | time_backward 5.9780 |
[2023-09-02 21:18:20,561::train::INFO] [train] Iter 14354 | loss 1.3078 | loss(rot) 0.7518 | loss(pos) 0.0649 | loss(seq) 0.4910 | grad 2.9535 | lr 0.0010 | time_forward 3.6360 | time_backward 5.0190 |
[2023-09-02 21:18:30,395::train::INFO] [train] Iter 14355 | loss 1.6892 | loss(rot) 0.7563 | loss(pos) 0.4635 | loss(seq) 0.4694 | grad 5.9985 | lr 0.0010 | time_forward 4.0250 | time_backward 5.8050 |
[2023-09-02 21:18:37,860::train::INFO] [train] Iter 14356 | loss 1.2910 | loss(rot) 0.1673 | loss(pos) 1.1156 | loss(seq) 0.0081 | grad 5.4856 | lr 0.0010 | time_forward 3.1370 | time_backward 4.3240 |
[2023-09-02 21:18:40,172::train::INFO] [train] Iter 14357 | loss 2.3006 | loss(rot) 1.6520 | loss(pos) 0.1837 | loss(seq) 0.4648 | grad 6.9250 | lr 0.0010 | time_forward 1.1030 | time_backward 1.2050 |
[2023-09-02 21:18:42,960::train::INFO] [train] Iter 14358 | loss 1.6778 | loss(rot) 0.6520 | loss(pos) 0.9721 | loss(seq) 0.0537 | grad 6.8695 | lr 0.0010 | time_forward 1.3580 | time_backward 1.4260 |
[2023-09-02 21:18:52,259::train::INFO] [train] Iter 14359 | loss 1.5863 | loss(rot) 0.7891 | loss(pos) 0.2055 | loss(seq) 0.5918 | grad 4.8830 | lr 0.0010 | time_forward 3.9040 | time_backward 5.3900 |
[2023-09-02 21:18:54,632::train::INFO] [train] Iter 14360 | loss 1.4628 | loss(rot) 1.1258 | loss(pos) 0.2347 | loss(seq) 0.1022 | grad 6.8029 | lr 0.0010 | time_forward 1.1390 | time_backward 1.2320 |
[2023-09-02 21:19:04,763::train::INFO] [train] Iter 14361 | loss 1.8635 | loss(rot) 1.1538 | loss(pos) 0.2259 | loss(seq) 0.4838 | grad 3.9785 | lr 0.0010 | time_forward 4.0590 | time_backward 6.0680 |
[2023-09-02 21:19:11,750::train::INFO] [train] Iter 14362 | loss 1.0986 | loss(rot) 0.9008 | loss(pos) 0.1361 | loss(seq) 0.0617 | grad 4.5621 | lr 0.0010 | time_forward 2.9330 | time_backward 4.0510 |
[2023-09-02 21:19:14,425::train::INFO] [train] Iter 14363 | loss 0.4443 | loss(rot) 0.0665 | loss(pos) 0.3638 | loss(seq) 0.0140 | grad 5.2184 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4120 |
[2023-09-02 21:19:17,131::train::INFO] [train] Iter 14364 | loss 1.0360 | loss(rot) 0.3811 | loss(pos) 0.3760 | loss(seq) 0.2788 | grad 3.9950 | lr 0.0010 | time_forward 1.2780 | time_backward 1.4240 |
[2023-09-02 21:19:26,094::train::INFO] [train] Iter 14365 | loss 2.7885 | loss(rot) 2.5183 | loss(pos) 0.1269 | loss(seq) 0.1433 | grad 5.6157 | lr 0.0010 | time_forward 3.7600 | time_backward 5.1980 |
[2023-09-02 21:19:33,632::train::INFO] [train] Iter 14366 | loss 1.6284 | loss(rot) 1.2251 | loss(pos) 0.1461 | loss(seq) 0.2572 | grad 5.1582 | lr 0.0010 | time_forward 3.1350 | time_backward 4.3810 |
[2023-09-02 21:19:43,793::train::INFO] [train] Iter 14367 | loss 1.5315 | loss(rot) 1.2732 | loss(pos) 0.1147 | loss(seq) 0.1437 | grad 4.1549 | lr 0.0010 | time_forward 4.0950 | time_backward 6.0620 |
[2023-09-02 21:19:54,005::train::INFO] [train] Iter 14368 | loss 2.0817 | loss(rot) 0.0394 | loss(pos) 2.0396 | loss(seq) 0.0027 | grad 6.8383 | lr 0.0010 | time_forward 4.1310 | time_backward 6.0770 |
[2023-09-02 21:19:56,701::train::INFO] [train] Iter 14369 | loss 1.6503 | loss(rot) 0.0262 | loss(pos) 1.6189 | loss(seq) 0.0051 | grad 7.3120 | lr 0.0010 | time_forward 1.2970 | time_backward 1.3950 |
[2023-09-02 21:20:06,709::train::INFO] [train] Iter 14370 | loss 0.7631 | loss(rot) 0.0687 | loss(pos) 0.6793 | loss(seq) 0.0151 | grad 3.9918 | lr 0.0010 | time_forward 4.0930 | time_backward 5.9100 |
[2023-09-02 21:20:09,391::train::INFO] [train] Iter 14371 | loss 1.3283 | loss(rot) 1.1556 | loss(pos) 0.1715 | loss(seq) 0.0012 | grad 3.8615 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4190 |
[2023-09-02 21:20:12,108::train::INFO] [train] Iter 14372 | loss 1.7173 | loss(rot) 1.1423 | loss(pos) 0.2066 | loss(seq) 0.3683 | grad 12.0360 | lr 0.0010 | time_forward 1.2970 | time_backward 1.4170 |
[2023-09-02 21:20:20,472::train::INFO] [train] Iter 14373 | loss 0.3220 | loss(rot) 0.0731 | loss(pos) 0.2220 | loss(seq) 0.0270 | grad 2.3308 | lr 0.0010 | time_forward 3.5490 | time_backward 4.8120 |
[2023-09-02 21:20:30,636::train::INFO] [train] Iter 14374 | loss 0.9389 | loss(rot) 0.3727 | loss(pos) 0.5474 | loss(seq) 0.0188 | grad 5.0991 | lr 0.0010 | time_forward 4.0740 | time_backward 6.0860 |
[2023-09-02 21:20:32,974::train::INFO] [train] Iter 14375 | loss 2.2764 | loss(rot) 0.0282 | loss(pos) 2.2445 | loss(seq) 0.0037 | grad 6.5952 | lr 0.0010 | time_forward 1.0970 | time_backward 1.2380 |
[2023-09-02 21:20:38,673::train::INFO] [train] Iter 14376 | loss 1.5226 | loss(rot) 1.3513 | loss(pos) 0.1713 | loss(seq) 0.0000 | grad 6.2433 | lr 0.0010 | time_forward 2.3610 | time_backward 3.3340 |
[2023-09-02 21:20:41,149::train::INFO] [train] Iter 14377 | loss 1.5616 | loss(rot) 0.9991 | loss(pos) 0.1830 | loss(seq) 0.3795 | grad 5.5867 | lr 0.0010 | time_forward 1.1640 | time_backward 1.3090 |
[2023-09-02 21:20:49,458::train::INFO] [train] Iter 14378 | loss 0.8349 | loss(rot) 0.5413 | loss(pos) 0.0902 | loss(seq) 0.2034 | grad 3.2697 | lr 0.0010 | time_forward 3.4320 | time_backward 4.8730 |
[2023-09-02 21:20:52,140::train::INFO] [train] Iter 14379 | loss 1.3535 | loss(rot) 0.1145 | loss(pos) 1.2297 | loss(seq) 0.0093 | grad 4.8585 | lr 0.0010 | time_forward 1.2590 | time_backward 1.4190 |
[2023-09-02 21:21:01,060::train::INFO] [train] Iter 14380 | loss 1.3168 | loss(rot) 0.4622 | loss(pos) 0.2109 | loss(seq) 0.6436 | grad 3.9129 | lr 0.0010 | time_forward 3.7460 | time_backward 5.1710 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.