text
stringlengths
56
1.16k
[2023-09-02 20:44:13,069::train::INFO] [train] Iter 14081 | loss 1.3833 | loss(rot) 1.1872 | loss(pos) 0.1264 | loss(seq) 0.0696 | grad 6.4993 | lr 0.0010 | time_forward 1.3100 | time_backward 1.4980
[2023-09-02 20:44:22,817::train::INFO] [train] Iter 14082 | loss 3.0841 | loss(rot) 2.1803 | loss(pos) 0.4838 | loss(seq) 0.4200 | grad 4.3783 | lr 0.0010 | time_forward 4.0670 | time_backward 5.6770
[2023-09-02 20:44:32,585::train::INFO] [train] Iter 14083 | loss 0.9087 | loss(rot) 0.7298 | loss(pos) 0.1788 | loss(seq) 0.0001 | grad 4.1536 | lr 0.0010 | time_forward 4.0810 | time_backward 5.6850
[2023-09-02 20:44:35,153::train::INFO] [train] Iter 14084 | loss 1.4426 | loss(rot) 1.2837 | loss(pos) 0.1559 | loss(seq) 0.0030 | grad 5.2154 | lr 0.0010 | time_forward 1.1810 | time_backward 1.3830
[2023-09-02 20:44:45,755::train::INFO] [train] Iter 14085 | loss 1.2945 | loss(rot) 0.5403 | loss(pos) 0.2812 | loss(seq) 0.4730 | grad 2.7215 | lr 0.0010 | time_forward 4.3380 | time_backward 6.2480
[2023-09-02 20:44:55,576::train::INFO] [train] Iter 14086 | loss 2.3348 | loss(rot) 2.1278 | loss(pos) 0.2070 | loss(seq) 0.0000 | grad 4.5897 | lr 0.0010 | time_forward 4.1240 | time_backward 5.6930
[2023-09-02 20:44:58,312::train::INFO] [train] Iter 14087 | loss 1.9130 | loss(rot) 1.0387 | loss(pos) 0.3608 | loss(seq) 0.5135 | grad 4.7015 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4790
[2023-09-02 20:45:09,089::train::INFO] [train] Iter 14088 | loss 2.0396 | loss(rot) 1.8192 | loss(pos) 0.1966 | loss(seq) 0.0239 | grad 5.3082 | lr 0.0010 | time_forward 4.4900 | time_backward 6.2830
[2023-09-02 20:45:11,873::train::INFO] [train] Iter 14089 | loss 1.4655 | loss(rot) 0.1282 | loss(pos) 1.1743 | loss(seq) 0.1630 | grad 5.5874 | lr 0.0010 | time_forward 1.2920 | time_backward 1.4880
[2023-09-02 20:45:22,984::train::INFO] [train] Iter 14090 | loss 1.9653 | loss(rot) 1.0168 | loss(pos) 0.3055 | loss(seq) 0.6430 | grad 4.6390 | lr 0.0010 | time_forward 4.3410 | time_backward 6.7340
[2023-09-02 20:45:33,363::train::INFO] [train] Iter 14091 | loss 1.9097 | loss(rot) 0.8874 | loss(pos) 0.4432 | loss(seq) 0.5791 | grad 4.0482 | lr 0.0010 | time_forward 4.1620 | time_backward 6.2130
[2023-09-02 20:45:43,984::train::INFO] [train] Iter 14092 | loss 1.0039 | loss(rot) 0.4695 | loss(pos) 0.2488 | loss(seq) 0.2856 | grad 3.5662 | lr 0.0010 | time_forward 4.2720 | time_backward 6.3430
[2023-09-02 20:45:46,357::train::INFO] [train] Iter 14093 | loss 1.8289 | loss(rot) 1.2698 | loss(pos) 0.1382 | loss(seq) 0.4209 | grad 3.4752 | lr 0.0010 | time_forward 1.0960 | time_backward 1.2710
[2023-09-02 20:45:56,722::train::INFO] [train] Iter 14094 | loss 1.9575 | loss(rot) 1.6041 | loss(pos) 0.1223 | loss(seq) 0.2310 | grad 4.7459 | lr 0.0010 | time_forward 4.1780 | time_backward 6.1590
[2023-09-02 20:46:06,258::train::INFO] [train] Iter 14095 | loss 1.7008 | loss(rot) 1.2256 | loss(pos) 0.1592 | loss(seq) 0.3161 | grad 5.3512 | lr 0.0010 | time_forward 3.9810 | time_backward 5.5510
[2023-09-02 20:46:16,062::train::INFO] [train] Iter 14096 | loss 1.2105 | loss(rot) 1.1262 | loss(pos) 0.0812 | loss(seq) 0.0031 | grad 3.9489 | lr 0.0010 | time_forward 4.0870 | time_backward 5.7140
[2023-09-02 20:46:23,840::train::INFO] [train] Iter 14097 | loss 0.6872 | loss(rot) 0.4696 | loss(pos) 0.1799 | loss(seq) 0.0377 | grad 4.3493 | lr 0.0010 | time_forward 3.2100 | time_backward 4.5650
[2023-09-02 20:46:32,454::train::INFO] [train] Iter 14098 | loss 1.9312 | loss(rot) 1.6732 | loss(pos) 0.1404 | loss(seq) 0.1176 | grad 4.6810 | lr 0.0010 | time_forward 3.5450 | time_backward 5.0660
[2023-09-02 20:46:41,876::train::INFO] [train] Iter 14099 | loss 1.9773 | loss(rot) 1.8841 | loss(pos) 0.0931 | loss(seq) 0.0000 | grad 5.4916 | lr 0.0010 | time_forward 4.2450 | time_backward 5.1730
[2023-09-02 20:46:51,031::train::INFO] [train] Iter 14100 | loss 1.2050 | loss(rot) 0.8382 | loss(pos) 0.0973 | loss(seq) 0.2695 | grad 4.1478 | lr 0.0010 | time_forward 3.8410 | time_backward 5.3110
[2023-09-02 20:47:00,992::train::INFO] [train] Iter 14101 | loss 1.2361 | loss(rot) 0.6701 | loss(pos) 0.0892 | loss(seq) 0.4768 | grad 4.2934 | lr 0.0010 | time_forward 4.0440 | time_backward 5.9130
[2023-09-02 20:47:10,646::train::INFO] [train] Iter 14102 | loss 1.3170 | loss(rot) 0.8818 | loss(pos) 0.1293 | loss(seq) 0.3059 | grad 6.6028 | lr 0.0010 | time_forward 4.0950 | time_backward 5.5550
[2023-09-02 20:47:19,384::train::INFO] [train] Iter 14103 | loss 1.4847 | loss(rot) 0.6988 | loss(pos) 0.3515 | loss(seq) 0.4343 | grad 5.0908 | lr 0.0010 | time_forward 3.5450 | time_backward 5.1890
[2023-09-02 20:47:22,287::train::INFO] [train] Iter 14104 | loss 1.3862 | loss(rot) 0.5363 | loss(pos) 0.1915 | loss(seq) 0.6584 | grad 4.8678 | lr 0.0010 | time_forward 1.3610 | time_backward 1.5370
[2023-09-02 20:47:33,191::train::INFO] [train] Iter 14105 | loss 1.0639 | loss(rot) 0.4484 | loss(pos) 0.1165 | loss(seq) 0.4990 | grad 4.0071 | lr 0.0010 | time_forward 4.4430 | time_backward 6.4590
[2023-09-02 20:47:35,556::train::INFO] [train] Iter 14106 | loss 1.9947 | loss(rot) 1.4267 | loss(pos) 0.2326 | loss(seq) 0.3354 | grad 5.6806 | lr 0.0010 | time_forward 1.0790 | time_backward 1.2820
[2023-09-02 20:47:38,384::train::INFO] [train] Iter 14107 | loss 1.5748 | loss(rot) 1.3531 | loss(pos) 0.2031 | loss(seq) 0.0185 | grad 5.7906 | lr 0.0010 | time_forward 1.2290 | time_backward 1.5950
[2023-09-02 20:47:48,347::train::INFO] [train] Iter 14108 | loss 1.2560 | loss(rot) 0.0616 | loss(pos) 1.1884 | loss(seq) 0.0061 | grad 5.2444 | lr 0.0010 | time_forward 4.1890 | time_backward 5.7700
[2023-09-02 20:47:51,264::train::INFO] [train] Iter 14109 | loss 2.0713 | loss(rot) 1.7438 | loss(pos) 0.1176 | loss(seq) 0.2100 | grad 13.0354 | lr 0.0010 | time_forward 1.3260 | time_backward 1.5880
[2023-09-02 20:48:00,579::train::INFO] [train] Iter 14110 | loss 1.0050 | loss(rot) 0.4693 | loss(pos) 0.1163 | loss(seq) 0.4194 | grad 3.0734 | lr 0.0010 | time_forward 3.9020 | time_backward 5.4090
[2023-09-02 20:48:09,248::train::INFO] [train] Iter 14111 | loss 1.1324 | loss(rot) 1.0123 | loss(pos) 0.1200 | loss(seq) 0.0000 | grad 9.1891 | lr 0.0010 | time_forward 3.5940 | time_backward 5.0500
[2023-09-02 20:48:19,969::train::INFO] [train] Iter 14112 | loss 0.9933 | loss(rot) 0.1997 | loss(pos) 0.6394 | loss(seq) 0.1542 | grad 3.2165 | lr 0.0010 | time_forward 4.4420 | time_backward 6.2750
[2023-09-02 20:48:28,882::train::INFO] [train] Iter 14113 | loss 1.0283 | loss(rot) 0.4981 | loss(pos) 0.1211 | loss(seq) 0.4091 | grad 4.6514 | lr 0.0010 | time_forward 3.7580 | time_backward 5.1510
[2023-09-02 20:48:39,446::train::INFO] [train] Iter 14114 | loss 0.7973 | loss(rot) 0.0732 | loss(pos) 0.7059 | loss(seq) 0.0182 | grad 3.8551 | lr 0.0010 | time_forward 4.2660 | time_backward 6.2940
[2023-09-02 20:48:50,022::train::INFO] [train] Iter 14115 | loss 1.0942 | loss(rot) 0.2571 | loss(pos) 0.5214 | loss(seq) 0.3157 | grad 2.9027 | lr 0.0010 | time_forward 4.2680 | time_backward 6.3040
[2023-09-02 20:48:53,620::train::INFO] [train] Iter 14116 | loss 2.3586 | loss(rot) 1.6826 | loss(pos) 0.2301 | loss(seq) 0.4459 | grad 4.4853 | lr 0.0010 | time_forward 1.4610 | time_backward 2.1330
[2023-09-02 20:49:04,179::train::INFO] [train] Iter 14117 | loss 1.7086 | loss(rot) 1.5566 | loss(pos) 0.1487 | loss(seq) 0.0033 | grad 3.6739 | lr 0.0010 | time_forward 4.4420 | time_backward 6.1140
[2023-09-02 20:49:13,475::train::INFO] [train] Iter 14118 | loss 2.7774 | loss(rot) 2.0218 | loss(pos) 0.2065 | loss(seq) 0.5490 | grad 7.0473 | lr 0.0010 | time_forward 3.8180 | time_backward 5.4720
[2023-09-02 20:49:22,297::train::INFO] [train] Iter 14119 | loss 1.4490 | loss(rot) 1.3467 | loss(pos) 0.1003 | loss(seq) 0.0021 | grad 6.0737 | lr 0.0010 | time_forward 3.7730 | time_backward 5.0460
[2023-09-02 20:49:32,799::train::INFO] [train] Iter 14120 | loss 2.3019 | loss(rot) 2.1468 | loss(pos) 0.1502 | loss(seq) 0.0049 | grad 3.2102 | lr 0.0010 | time_forward 4.2880 | time_backward 6.2100
[2023-09-02 20:49:43,644::train::INFO] [train] Iter 14121 | loss 1.0465 | loss(rot) 0.3420 | loss(pos) 0.5176 | loss(seq) 0.1868 | grad 4.0520 | lr 0.0010 | time_forward 4.7320 | time_backward 6.1110
[2023-09-02 20:49:52,536::train::INFO] [train] Iter 14122 | loss 2.3652 | loss(rot) 1.5423 | loss(pos) 0.3365 | loss(seq) 0.4864 | grad 5.2145 | lr 0.0010 | time_forward 3.6820 | time_backward 5.2060
[2023-09-02 20:50:03,081::train::INFO] [train] Iter 14123 | loss 2.1137 | loss(rot) 1.2861 | loss(pos) 0.2445 | loss(seq) 0.5831 | grad 6.9061 | lr 0.0010 | time_forward 4.4170 | time_backward 6.1240
[2023-09-02 20:50:09,679::train::INFO] [train] Iter 14124 | loss 2.1792 | loss(rot) 2.1041 | loss(pos) 0.0683 | loss(seq) 0.0068 | grad 3.0313 | lr 0.0010 | time_forward 2.9260 | time_backward 3.6690
[2023-09-02 20:50:18,686::train::INFO] [train] Iter 14125 | loss 1.0558 | loss(rot) 0.3913 | loss(pos) 0.4405 | loss(seq) 0.2240 | grad 3.4533 | lr 0.0010 | time_forward 3.7920 | time_backward 5.1960
[2023-09-02 20:50:25,592::train::INFO] [train] Iter 14126 | loss 1.4730 | loss(rot) 0.7757 | loss(pos) 0.1518 | loss(seq) 0.5455 | grad 8.1937 | lr 0.0010 | time_forward 3.0040 | time_backward 3.8990
[2023-09-02 20:50:35,405::train::INFO] [train] Iter 14127 | loss 0.6761 | loss(rot) 0.1024 | loss(pos) 0.5509 | loss(seq) 0.0228 | grad 3.9427 | lr 0.0010 | time_forward 4.0170 | time_backward 5.7930
[2023-09-02 20:50:38,190::train::INFO] [train] Iter 14128 | loss 1.1428 | loss(rot) 0.4963 | loss(pos) 0.1192 | loss(seq) 0.5272 | grad 2.8754 | lr 0.0010 | time_forward 1.2970 | time_backward 1.4850
[2023-09-02 20:50:48,519::train::INFO] [train] Iter 14129 | loss 1.7386 | loss(rot) 1.3140 | loss(pos) 0.1373 | loss(seq) 0.2873 | grad 4.0685 | lr 0.0010 | time_forward 4.1450 | time_backward 6.1510
[2023-09-02 20:50:57,292::train::INFO] [train] Iter 14130 | loss 2.5145 | loss(rot) 2.2825 | loss(pos) 0.1249 | loss(seq) 0.1071 | grad 4.6007 | lr 0.0010 | time_forward 3.6490 | time_backward 5.1210
[2023-09-02 20:50:59,676::train::INFO] [train] Iter 14131 | loss 2.0433 | loss(rot) 1.9136 | loss(pos) 0.1075 | loss(seq) 0.0222 | grad 5.3762 | lr 0.0010 | time_forward 1.1140 | time_backward 1.2680
[2023-09-02 20:51:10,470::train::INFO] [train] Iter 14132 | loss 1.2133 | loss(rot) 0.5344 | loss(pos) 0.1211 | loss(seq) 0.5578 | grad 4.3632 | lr 0.0010 | time_forward 4.3670 | time_backward 6.4230
[2023-09-02 20:51:13,362::train::INFO] [train] Iter 14133 | loss 1.6578 | loss(rot) 0.8178 | loss(pos) 0.3748 | loss(seq) 0.4651 | grad 3.9090 | lr 0.0010 | time_forward 1.3290 | time_backward 1.5450
[2023-09-02 20:51:22,433::train::INFO] [train] Iter 14134 | loss 0.9976 | loss(rot) 0.5331 | loss(pos) 0.2073 | loss(seq) 0.2572 | grad 4.2953 | lr 0.0010 | time_forward 3.7880 | time_backward 5.2800
[2023-09-02 20:51:31,398::train::INFO] [train] Iter 14135 | loss 1.6208 | loss(rot) 0.2003 | loss(pos) 1.3842 | loss(seq) 0.0363 | grad 5.2659 | lr 0.0010 | time_forward 3.7450 | time_backward 5.2160
[2023-09-02 20:51:41,367::train::INFO] [train] Iter 14136 | loss 2.5442 | loss(rot) 1.9653 | loss(pos) 0.1442 | loss(seq) 0.4347 | grad 3.5944 | lr 0.0010 | time_forward 4.1680 | time_backward 5.7960
[2023-09-02 20:51:50,400::train::INFO] [train] Iter 14137 | loss 0.8389 | loss(rot) 0.0403 | loss(pos) 0.7933 | loss(seq) 0.0053 | grad 5.5745 | lr 0.0010 | time_forward 3.8340 | time_backward 5.1950
[2023-09-02 20:51:53,179::train::INFO] [train] Iter 14138 | loss 0.9906 | loss(rot) 0.8362 | loss(pos) 0.1329 | loss(seq) 0.0214 | grad 4.1427 | lr 0.0010 | time_forward 1.2850 | time_backward 1.4900
[2023-09-02 20:51:59,534::train::INFO] [train] Iter 14139 | loss 2.0448 | loss(rot) 1.3407 | loss(pos) 0.1776 | loss(seq) 0.5266 | grad 3.3250 | lr 0.0010 | time_forward 2.7490 | time_backward 3.6020
[2023-09-02 20:52:08,415::train::INFO] [train] Iter 14140 | loss 2.0511 | loss(rot) 0.9498 | loss(pos) 0.4363 | loss(seq) 0.6650 | grad 6.3645 | lr 0.0010 | time_forward 3.6480 | time_backward 5.2300
[2023-09-02 20:52:15,629::train::INFO] [train] Iter 14141 | loss 2.4578 | loss(rot) 1.5422 | loss(pos) 0.4416 | loss(seq) 0.4740 | grad 4.7440 | lr 0.0010 | time_forward 2.9680 | time_backward 4.2420
[2023-09-02 20:52:24,392::train::INFO] [train] Iter 14142 | loss 3.2894 | loss(rot) 2.5322 | loss(pos) 0.3334 | loss(seq) 0.4238 | grad 6.6210 | lr 0.0010 | time_forward 3.5520 | time_backward 5.2070
[2023-09-02 20:52:33,792::train::INFO] [train] Iter 14143 | loss 1.6092 | loss(rot) 0.0341 | loss(pos) 1.5719 | loss(seq) 0.0032 | grad 8.0409 | lr 0.0010 | time_forward 3.8940 | time_backward 5.5020
[2023-09-02 20:52:42,782::train::INFO] [train] Iter 14144 | loss 1.3367 | loss(rot) 0.9290 | loss(pos) 0.4058 | loss(seq) 0.0019 | grad 16.8906 | lr 0.0010 | time_forward 3.8010 | time_backward 5.1850
[2023-09-02 20:52:52,849::train::INFO] [train] Iter 14145 | loss 2.1772 | loss(rot) 0.0346 | loss(pos) 2.1414 | loss(seq) 0.0012 | grad 9.9382 | lr 0.0010 | time_forward 4.2580 | time_backward 5.8050
[2023-09-02 20:53:03,598::train::INFO] [train] Iter 14146 | loss 1.1272 | loss(rot) 0.1815 | loss(pos) 0.6269 | loss(seq) 0.3188 | grad 5.2494 | lr 0.0010 | time_forward 4.4630 | time_backward 6.2820
[2023-09-02 20:53:06,368::train::INFO] [train] Iter 14147 | loss 0.9160 | loss(rot) 0.1851 | loss(pos) 0.4358 | loss(seq) 0.2950 | grad 5.6549 | lr 0.0010 | time_forward 1.2900 | time_backward 1.4770
[2023-09-02 20:53:08,742::train::INFO] [train] Iter 14148 | loss 2.1072 | loss(rot) 0.3695 | loss(pos) 1.7358 | loss(seq) 0.0019 | grad 10.4573 | lr 0.0010 | time_forward 1.1200 | time_backward 1.2500
[2023-09-02 20:53:18,750::train::INFO] [train] Iter 14149 | loss 1.0352 | loss(rot) 0.3703 | loss(pos) 0.1614 | loss(seq) 0.5035 | grad 4.1220 | lr 0.0010 | time_forward 4.1470 | time_backward 5.8580
[2023-09-02 20:53:29,634::train::INFO] [train] Iter 14150 | loss 1.2168 | loss(rot) 0.5035 | loss(pos) 0.2839 | loss(seq) 0.4294 | grad 6.9409 | lr 0.0010 | time_forward 4.3820 | time_backward 6.4980
[2023-09-02 20:53:40,251::train::INFO] [train] Iter 14151 | loss 2.0655 | loss(rot) 1.1975 | loss(pos) 0.5641 | loss(seq) 0.3040 | grad 8.4218 | lr 0.0010 | time_forward 4.2100 | time_backward 6.4030
[2023-09-02 20:53:47,756::train::INFO] [train] Iter 14152 | loss 1.1987 | loss(rot) 0.5346 | loss(pos) 0.2174 | loss(seq) 0.4467 | grad 6.5955 | lr 0.0010 | time_forward 3.1400 | time_backward 4.3630
[2023-09-02 20:53:54,746::train::INFO] [train] Iter 14153 | loss 0.9380 | loss(rot) 0.1418 | loss(pos) 0.7640 | loss(seq) 0.0321 | grad 6.0367 | lr 0.0010 | time_forward 2.9040 | time_backward 4.0830
[2023-09-02 20:54:01,758::train::INFO] [train] Iter 14154 | loss 1.4040 | loss(rot) 1.1416 | loss(pos) 0.2582 | loss(seq) 0.0042 | grad 5.8575 | lr 0.0010 | time_forward 2.9300 | time_backward 4.0790
[2023-09-02 20:54:11,292::train::INFO] [train] Iter 14155 | loss 1.3987 | loss(rot) 1.0583 | loss(pos) 0.1141 | loss(seq) 0.2262 | grad 6.8700 | lr 0.0010 | time_forward 4.0770 | time_backward 5.4540
[2023-09-02 20:54:20,502::train::INFO] [train] Iter 14156 | loss 2.1784 | loss(rot) 1.6497 | loss(pos) 0.2652 | loss(seq) 0.2635 | grad 7.5795 | lr 0.0010 | time_forward 3.8980 | time_backward 5.3070
[2023-09-02 20:54:23,287::train::INFO] [train] Iter 14157 | loss 2.1214 | loss(rot) 1.5132 | loss(pos) 0.2831 | loss(seq) 0.3251 | grad 5.6750 | lr 0.0010 | time_forward 1.2860 | time_backward 1.4950
[2023-09-02 20:54:32,940::train::INFO] [train] Iter 14158 | loss 0.7732 | loss(rot) 0.1889 | loss(pos) 0.5428 | loss(seq) 0.0415 | grad 4.4398 | lr 0.0010 | time_forward 4.1460 | time_backward 5.5050
[2023-09-02 20:54:42,148::train::INFO] [train] Iter 14159 | loss 0.9340 | loss(rot) 0.2487 | loss(pos) 0.6328 | loss(seq) 0.0525 | grad 6.0519 | lr 0.0010 | time_forward 3.8860 | time_backward 5.3190
[2023-09-02 20:54:45,774::train::INFO] [train] Iter 14160 | loss 2.0675 | loss(rot) 1.2577 | loss(pos) 0.2877 | loss(seq) 0.5221 | grad 4.4012 | lr 0.0010 | time_forward 1.6160 | time_backward 2.0070
[2023-09-02 20:54:54,317::train::INFO] [train] Iter 14161 | loss 1.4716 | loss(rot) 0.5955 | loss(pos) 0.5889 | loss(seq) 0.2872 | grad 4.5841 | lr 0.0010 | time_forward 3.6040 | time_backward 4.9350
[2023-09-02 20:54:57,119::train::INFO] [train] Iter 14162 | loss 3.2248 | loss(rot) 2.5479 | loss(pos) 0.6720 | loss(seq) 0.0048 | grad 6.8140 | lr 0.0010 | time_forward 1.2910 | time_backward 1.5070
[2023-09-02 20:55:06,810::train::INFO] [train] Iter 14163 | loss 1.7587 | loss(rot) 1.0683 | loss(pos) 0.3341 | loss(seq) 0.3562 | grad 7.5481 | lr 0.0010 | time_forward 3.9130 | time_backward 5.7740
[2023-09-02 20:55:13,740::train::INFO] [train] Iter 14164 | loss 2.3701 | loss(rot) 2.2065 | loss(pos) 0.1615 | loss(seq) 0.0022 | grad 5.2269 | lr 0.0010 | time_forward 2.8440 | time_backward 4.0570
[2023-09-02 20:55:22,490::train::INFO] [train] Iter 14165 | loss 2.1723 | loss(rot) 1.2562 | loss(pos) 0.2356 | loss(seq) 0.6805 | grad 5.3271 | lr 0.0010 | time_forward 3.6200 | time_backward 5.1280
[2023-09-02 20:55:25,215::train::INFO] [train] Iter 14166 | loss 1.0910 | loss(rot) 0.9329 | loss(pos) 0.1578 | loss(seq) 0.0003 | grad 7.1031 | lr 0.0010 | time_forward 1.2750 | time_backward 1.4450
[2023-09-02 20:55:35,219::train::INFO] [train] Iter 14167 | loss 1.3386 | loss(rot) 0.7058 | loss(pos) 0.2098 | loss(seq) 0.4229 | grad 4.6288 | lr 0.0010 | time_forward 4.0670 | time_backward 5.9330
[2023-09-02 20:55:46,145::train::INFO] [train] Iter 14168 | loss 2.1948 | loss(rot) 1.4088 | loss(pos) 0.3124 | loss(seq) 0.4736 | grad 5.1233 | lr 0.0010 | time_forward 4.6600 | time_backward 6.2620
[2023-09-02 20:55:48,925::train::INFO] [train] Iter 14169 | loss 0.9266 | loss(rot) 0.6393 | loss(pos) 0.0607 | loss(seq) 0.2267 | grad 4.1560 | lr 0.0010 | time_forward 1.2740 | time_backward 1.5030
[2023-09-02 20:55:57,307::train::INFO] [train] Iter 14170 | loss 1.6441 | loss(rot) 1.1376 | loss(pos) 0.1670 | loss(seq) 0.3395 | grad 4.9359 | lr 0.0010 | time_forward 3.4760 | time_backward 4.9020
[2023-09-02 20:56:00,165::train::INFO] [train] Iter 14171 | loss 1.3950 | loss(rot) 0.3981 | loss(pos) 0.6572 | loss(seq) 0.3397 | grad 5.0568 | lr 0.0010 | time_forward 1.3190 | time_backward 1.5360
[2023-09-02 20:56:09,966::train::INFO] [train] Iter 14172 | loss 2.6529 | loss(rot) 1.9515 | loss(pos) 0.2465 | loss(seq) 0.4548 | grad 4.5772 | lr 0.0010 | time_forward 4.1640 | time_backward 5.6140
[2023-09-02 20:56:18,529::train::INFO] [train] Iter 14173 | loss 2.1766 | loss(rot) 1.8041 | loss(pos) 0.1249 | loss(seq) 0.2475 | grad 9.8002 | lr 0.0010 | time_forward 3.4940 | time_backward 5.0660
[2023-09-02 20:56:28,437::train::INFO] [train] Iter 14174 | loss 1.5174 | loss(rot) 1.1811 | loss(pos) 0.1092 | loss(seq) 0.2271 | grad 4.0956 | lr 0.0010 | time_forward 3.9810 | time_backward 5.9230
[2023-09-02 20:56:39,205::train::INFO] [train] Iter 14175 | loss 1.3733 | loss(rot) 0.9477 | loss(pos) 0.1325 | loss(seq) 0.2931 | grad 4.3019 | lr 0.0010 | time_forward 4.4420 | time_backward 6.3220
[2023-09-02 20:56:48,214::train::INFO] [train] Iter 14176 | loss 1.6968 | loss(rot) 1.3026 | loss(pos) 0.1423 | loss(seq) 0.2518 | grad 6.4123 | lr 0.0010 | time_forward 3.7810 | time_backward 5.2260
[2023-09-02 20:56:58,503::train::INFO] [train] Iter 14177 | loss 3.6797 | loss(rot) 0.2246 | loss(pos) 3.4545 | loss(seq) 0.0006 | grad 11.7373 | lr 0.0010 | time_forward 4.1470 | time_backward 6.1380
[2023-09-02 20:57:08,907::train::INFO] [train] Iter 14178 | loss 1.6104 | loss(rot) 0.7458 | loss(pos) 0.3876 | loss(seq) 0.4769 | grad 4.2293 | lr 0.0010 | time_forward 4.3120 | time_backward 6.0870
[2023-09-02 20:57:11,755::train::INFO] [train] Iter 14179 | loss 1.2662 | loss(rot) 1.0069 | loss(pos) 0.1167 | loss(seq) 0.1426 | grad 8.8470 | lr 0.0010 | time_forward 1.3630 | time_backward 1.4810
[2023-09-02 20:57:22,293::train::INFO] [train] Iter 14180 | loss 1.8322 | loss(rot) 1.1401 | loss(pos) 0.2711 | loss(seq) 0.4211 | grad 7.7804 | lr 0.0010 | time_forward 4.3460 | time_backward 6.1890