text
stringlengths
56
1.16k
[2023-09-02 20:30:58,016::train::INFO] [train] Iter 13982 | loss 2.2657 | loss(rot) 2.1320 | loss(pos) 0.1249 | loss(seq) 0.0088 | grad 4.7425 | lr 0.0010 | time_forward 4.0970 | time_backward 6.4640
[2023-09-02 20:31:08,337::train::INFO] [train] Iter 13983 | loss 2.0690 | loss(rot) 1.8346 | loss(pos) 0.0891 | loss(seq) 0.1453 | grad 5.7411 | lr 0.0010 | time_forward 4.0280 | time_backward 6.2890
[2023-09-02 20:31:18,398::train::INFO] [train] Iter 13984 | loss 2.5309 | loss(rot) 2.0530 | loss(pos) 0.2601 | loss(seq) 0.2177 | grad 6.4258 | lr 0.0010 | time_forward 4.1990 | time_backward 5.8590
[2023-09-02 20:31:21,146::train::INFO] [train] Iter 13985 | loss 1.3118 | loss(rot) 0.6236 | loss(pos) 0.2188 | loss(seq) 0.4694 | grad 5.1878 | lr 0.0010 | time_forward 1.2530 | time_backward 1.4910
[2023-09-02 20:31:31,145::train::INFO] [train] Iter 13986 | loss 2.8921 | loss(rot) 1.9837 | loss(pos) 0.3297 | loss(seq) 0.5787 | grad 5.1508 | lr 0.0010 | time_forward 4.1910 | time_backward 5.8060
[2023-09-02 20:31:41,470::train::INFO] [train] Iter 13987 | loss 1.6195 | loss(rot) 0.1705 | loss(pos) 1.2743 | loss(seq) 0.1747 | grad 4.7926 | lr 0.0010 | time_forward 4.2160 | time_backward 6.1050
[2023-09-02 20:31:50,882::train::INFO] [train] Iter 13988 | loss 2.8498 | loss(rot) 2.4639 | loss(pos) 0.1533 | loss(seq) 0.2326 | grad 4.6688 | lr 0.0010 | time_forward 4.0610 | time_backward 5.3490
[2023-09-02 20:32:00,488::train::INFO] [train] Iter 13989 | loss 1.2218 | loss(rot) 1.0836 | loss(pos) 0.1363 | loss(seq) 0.0019 | grad 9.1136 | lr 0.0010 | time_forward 4.0540 | time_backward 5.5470
[2023-09-02 20:32:09,577::train::INFO] [train] Iter 13990 | loss 3.8352 | loss(rot) 0.0348 | loss(pos) 3.8004 | loss(seq) 0.0000 | grad 7.4036 | lr 0.0010 | time_forward 3.7910 | time_backward 5.2950
[2023-09-02 20:32:20,058::train::INFO] [train] Iter 13991 | loss 1.6372 | loss(rot) 0.9415 | loss(pos) 0.1988 | loss(seq) 0.4969 | grad 4.7423 | lr 0.0010 | time_forward 4.3650 | time_backward 6.1120
[2023-09-02 20:32:22,354::train::INFO] [train] Iter 13992 | loss 1.6986 | loss(rot) 0.7279 | loss(pos) 0.3187 | loss(seq) 0.6520 | grad 4.4300 | lr 0.0010 | time_forward 1.0690 | time_backward 1.2100
[2023-09-02 20:32:32,687::train::INFO] [train] Iter 13993 | loss 1.7724 | loss(rot) 1.6915 | loss(pos) 0.0681 | loss(seq) 0.0128 | grad 4.0338 | lr 0.0010 | time_forward 4.2220 | time_backward 6.1080
[2023-09-02 20:32:34,988::train::INFO] [train] Iter 13994 | loss 1.9178 | loss(rot) 0.9564 | loss(pos) 0.4222 | loss(seq) 0.5392 | grad 4.1006 | lr 0.0010 | time_forward 1.0710 | time_backward 1.2260
[2023-09-02 20:32:43,499::train::INFO] [train] Iter 13995 | loss 1.6605 | loss(rot) 1.4671 | loss(pos) 0.0794 | loss(seq) 0.1140 | grad 6.3089 | lr 0.0010 | time_forward 3.5830 | time_backward 4.9250
[2023-09-02 20:32:53,692::train::INFO] [train] Iter 13996 | loss 1.8686 | loss(rot) 1.5592 | loss(pos) 0.0670 | loss(seq) 0.2423 | grad 4.8864 | lr 0.0010 | time_forward 4.1040 | time_backward 6.0850
[2023-09-02 20:33:03,580::train::INFO] [train] Iter 13997 | loss 1.1586 | loss(rot) 0.6160 | loss(pos) 0.1719 | loss(seq) 0.3707 | grad 3.7701 | lr 0.0010 | time_forward 4.0940 | time_backward 5.7910
[2023-09-02 20:33:13,763::train::INFO] [train] Iter 13998 | loss 1.7300 | loss(rot) 0.1531 | loss(pos) 1.2757 | loss(seq) 0.3012 | grad 6.6570 | lr 0.0010 | time_forward 4.1140 | time_backward 6.0660
[2023-09-02 20:33:16,458::train::INFO] [train] Iter 13999 | loss 2.6012 | loss(rot) 2.1739 | loss(pos) 0.1205 | loss(seq) 0.3067 | grad 3.8614 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4400
[2023-09-02 20:33:19,262::train::INFO] [train] Iter 14000 | loss 0.8882 | loss(rot) 0.2983 | loss(pos) 0.1548 | loss(seq) 0.4352 | grad 3.0972 | lr 0.0010 | time_forward 1.3000 | time_backward 1.5010
[2023-09-02 20:33:56,223::train::INFO] [val] Iter 14000 | loss 1.8942 | loss(rot) 1.2802 | loss(pos) 0.4406 | loss(seq) 0.1735
[2023-09-02 20:34:06,995::train::INFO] [train] Iter 14001 | loss 1.5581 | loss(rot) 0.2509 | loss(pos) 1.0963 | loss(seq) 0.2109 | grad 6.5627 | lr 0.0010 | time_forward 4.1190 | time_backward 6.2490
[2023-09-02 20:34:09,685::train::INFO] [train] Iter 14002 | loss 2.0340 | loss(rot) 1.1938 | loss(pos) 0.2490 | loss(seq) 0.5912 | grad 3.9746 | lr 0.0010 | time_forward 1.2510 | time_backward 1.4360
[2023-09-02 20:34:18,621::train::INFO] [train] Iter 14003 | loss 1.2079 | loss(rot) 0.6141 | loss(pos) 0.5448 | loss(seq) 0.0490 | grad 5.4329 | lr 0.0010 | time_forward 3.7230 | time_backward 5.2090
[2023-09-02 20:34:21,259::train::INFO] [train] Iter 14004 | loss 1.5686 | loss(rot) 0.5476 | loss(pos) 0.7404 | loss(seq) 0.2805 | grad 5.3240 | lr 0.0010 | time_forward 1.2440 | time_backward 1.3900
[2023-09-02 20:34:24,113::train::INFO] [train] Iter 14005 | loss 1.0002 | loss(rot) 0.3044 | loss(pos) 0.2304 | loss(seq) 0.4653 | grad 3.5954 | lr 0.0010 | time_forward 1.3430 | time_backward 1.5070
[2023-09-02 20:34:33,003::train::INFO] [train] Iter 14006 | loss 1.9999 | loss(rot) 1.7306 | loss(pos) 0.2625 | loss(seq) 0.0068 | grad 11.7254 | lr 0.0010 | time_forward 3.7750 | time_backward 5.1110
[2023-09-02 20:34:43,109::train::INFO] [train] Iter 14007 | loss 2.3555 | loss(rot) 2.2312 | loss(pos) 0.1194 | loss(seq) 0.0049 | grad 3.6969 | lr 0.0010 | time_forward 4.3220 | time_backward 5.7800
[2023-09-02 20:34:45,758::train::INFO] [train] Iter 14008 | loss 1.5997 | loss(rot) 0.5678 | loss(pos) 0.5768 | loss(seq) 0.4550 | grad 5.5729 | lr 0.0010 | time_forward 1.2340 | time_backward 1.4130
[2023-09-02 20:34:48,210::train::INFO] [train] Iter 14009 | loss 2.3726 | loss(rot) 2.1456 | loss(pos) 0.1982 | loss(seq) 0.0289 | grad 9.0105 | lr 0.0010 | time_forward 1.1860 | time_backward 1.2620
[2023-09-02 20:34:50,918::train::INFO] [train] Iter 14010 | loss 1.3714 | loss(rot) 1.1664 | loss(pos) 0.1566 | loss(seq) 0.0483 | grad 7.6142 | lr 0.0010 | time_forward 1.2550 | time_backward 1.4240
[2023-09-02 20:34:57,462::train::INFO] [train] Iter 14011 | loss 1.1331 | loss(rot) 0.4523 | loss(pos) 0.2749 | loss(seq) 0.4059 | grad 4.7964 | lr 0.0010 | time_forward 2.6860 | time_backward 3.8280
[2023-09-02 20:35:06,136::train::INFO] [train] Iter 14012 | loss 1.4645 | loss(rot) 0.9414 | loss(pos) 0.1805 | loss(seq) 0.3425 | grad 4.9932 | lr 0.0010 | time_forward 3.6120 | time_backward 5.0580
[2023-09-02 20:35:08,869::train::INFO] [train] Iter 14013 | loss 1.2121 | loss(rot) 0.5401 | loss(pos) 0.4354 | loss(seq) 0.2366 | grad 4.3614 | lr 0.0010 | time_forward 1.2620 | time_backward 1.4680
[2023-09-02 20:35:17,659::train::INFO] [train] Iter 14014 | loss 0.7068 | loss(rot) 0.1765 | loss(pos) 0.4973 | loss(seq) 0.0329 | grad 4.3435 | lr 0.0010 | time_forward 3.7640 | time_backward 5.0220
[2023-09-02 20:35:27,058::train::INFO] [train] Iter 14015 | loss 1.0529 | loss(rot) 0.3897 | loss(pos) 0.2637 | loss(seq) 0.3995 | grad 4.0695 | lr 0.0010 | time_forward 3.8700 | time_backward 5.5260
[2023-09-02 20:35:36,386::train::INFO] [train] Iter 14016 | loss 2.1036 | loss(rot) 1.2987 | loss(pos) 0.3402 | loss(seq) 0.4647 | grad 3.5437 | lr 0.0010 | time_forward 3.8310 | time_backward 5.4940
[2023-09-02 20:35:45,683::train::INFO] [train] Iter 14017 | loss 0.8640 | loss(rot) 0.4196 | loss(pos) 0.2375 | loss(seq) 0.2069 | grad 2.8066 | lr 0.0010 | time_forward 3.8630 | time_backward 5.4300
[2023-09-02 20:35:48,428::train::INFO] [train] Iter 14018 | loss 1.1221 | loss(rot) 0.4987 | loss(pos) 0.1443 | loss(seq) 0.4791 | grad 3.8783 | lr 0.0010 | time_forward 1.2810 | time_backward 1.4620
[2023-09-02 20:35:51,557::train::INFO] [train] Iter 14019 | loss 2.0284 | loss(rot) 0.9607 | loss(pos) 0.4743 | loss(seq) 0.5934 | grad 3.6943 | lr 0.0010 | time_forward 1.4020 | time_backward 1.7240
[2023-09-02 20:35:54,265::train::INFO] [train] Iter 14020 | loss 2.5680 | loss(rot) 1.7987 | loss(pos) 0.3231 | loss(seq) 0.4463 | grad 4.2755 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4350
[2023-09-02 20:35:56,575::train::INFO] [train] Iter 14021 | loss 2.0649 | loss(rot) 1.5931 | loss(pos) 0.2902 | loss(seq) 0.1816 | grad 4.8649 | lr 0.0010 | time_forward 1.0780 | time_backward 1.2280
[2023-09-02 20:36:06,680::train::INFO] [train] Iter 14022 | loss 1.3371 | loss(rot) 0.2858 | loss(pos) 0.6865 | loss(seq) 0.3649 | grad 5.2211 | lr 0.0010 | time_forward 4.0290 | time_backward 6.0730
[2023-09-02 20:36:14,930::train::INFO] [train] Iter 14023 | loss 1.2985 | loss(rot) 1.0278 | loss(pos) 0.0730 | loss(seq) 0.1977 | grad 6.2877 | lr 0.0010 | time_forward 3.4150 | time_backward 4.8310
[2023-09-02 20:36:23,769::train::INFO] [train] Iter 14024 | loss 2.1301 | loss(rot) 1.5781 | loss(pos) 0.1410 | loss(seq) 0.4110 | grad 4.4334 | lr 0.0010 | time_forward 3.6560 | time_backward 5.1790
[2023-09-02 20:36:26,544::train::INFO] [train] Iter 14025 | loss 1.0691 | loss(rot) 0.3996 | loss(pos) 0.3658 | loss(seq) 0.3038 | grad 3.9647 | lr 0.0010 | time_forward 1.2470 | time_backward 1.5240
[2023-09-02 20:36:35,456::train::INFO] [train] Iter 14026 | loss 1.9638 | loss(rot) 1.1510 | loss(pos) 0.3215 | loss(seq) 0.4913 | grad 5.2470 | lr 0.0010 | time_forward 3.7450 | time_backward 5.1640
[2023-09-02 20:36:44,288::train::INFO] [train] Iter 14027 | loss 1.1806 | loss(rot) 0.8001 | loss(pos) 0.1110 | loss(seq) 0.2695 | grad 4.2183 | lr 0.0010 | time_forward 3.6400 | time_backward 5.1900
[2023-09-02 20:36:53,623::train::INFO] [train] Iter 14028 | loss 1.0405 | loss(rot) 0.0728 | loss(pos) 0.9622 | loss(seq) 0.0056 | grad 8.1639 | lr 0.0010 | time_forward 3.8340 | time_backward 5.4970
[2023-09-02 20:37:02,937::train::INFO] [train] Iter 14029 | loss 2.0799 | loss(rot) 1.4219 | loss(pos) 0.2058 | loss(seq) 0.4522 | grad 4.4928 | lr 0.0010 | time_forward 3.8330 | time_backward 5.4770
[2023-09-02 20:37:11,689::train::INFO] [train] Iter 14030 | loss 1.3778 | loss(rot) 0.7773 | loss(pos) 0.1693 | loss(seq) 0.4312 | grad 3.9651 | lr 0.0010 | time_forward 3.6320 | time_backward 5.1170
[2023-09-02 20:37:21,167::train::INFO] [train] Iter 14031 | loss 0.7762 | loss(rot) 0.1946 | loss(pos) 0.5440 | loss(seq) 0.0376 | grad 3.9434 | lr 0.0010 | time_forward 3.9060 | time_backward 5.5680
[2023-09-02 20:37:31,279::train::INFO] [train] Iter 14032 | loss 4.6127 | loss(rot) 0.0185 | loss(pos) 4.5942 | loss(seq) 0.0000 | grad 12.9191 | lr 0.0010 | time_forward 4.0010 | time_backward 6.1070
[2023-09-02 20:37:33,655::train::INFO] [train] Iter 14033 | loss 2.5289 | loss(rot) 1.3221 | loss(pos) 0.5198 | loss(seq) 0.6870 | grad 4.4681 | lr 0.0010 | time_forward 1.1110 | time_backward 1.2490
[2023-09-02 20:37:42,934::train::INFO] [train] Iter 14034 | loss 4.1498 | loss(rot) 0.0244 | loss(pos) 4.1254 | loss(seq) 0.0000 | grad 15.2607 | lr 0.0010 | time_forward 3.9270 | time_backward 5.3490
[2023-09-02 20:37:45,668::train::INFO] [train] Iter 14035 | loss 1.0147 | loss(rot) 0.3527 | loss(pos) 0.3968 | loss(seq) 0.2653 | grad 4.7765 | lr 0.0010 | time_forward 1.2780 | time_backward 1.4520
[2023-09-02 20:37:57,034::train::INFO] [train] Iter 14036 | loss 1.5322 | loss(rot) 0.6230 | loss(pos) 0.2264 | loss(seq) 0.6829 | grad 3.2110 | lr 0.0010 | time_forward 4.3160 | time_backward 7.0480
[2023-09-02 20:38:08,041::train::INFO] [train] Iter 14037 | loss 1.8305 | loss(rot) 1.4275 | loss(pos) 0.1312 | loss(seq) 0.2719 | grad 6.8773 | lr 0.0010 | time_forward 4.4690 | time_backward 6.5340
[2023-09-02 20:38:18,286::train::INFO] [train] Iter 14038 | loss 1.9912 | loss(rot) 1.6823 | loss(pos) 0.3090 | loss(seq) 0.0000 | grad 5.4343 | lr 0.0010 | time_forward 4.2630 | time_backward 5.9790
[2023-09-02 20:38:27,862::train::INFO] [train] Iter 14039 | loss 1.7985 | loss(rot) 1.6721 | loss(pos) 0.1263 | loss(seq) 0.0000 | grad 6.9936 | lr 0.0010 | time_forward 3.9950 | time_backward 5.5760
[2023-09-02 20:38:35,630::train::INFO] [train] Iter 14040 | loss 1.2753 | loss(rot) 0.3158 | loss(pos) 0.7716 | loss(seq) 0.1879 | grad 5.3827 | lr 0.0010 | time_forward 3.2180 | time_backward 4.5460
[2023-09-02 20:38:38,634::train::INFO] [train] Iter 14041 | loss 0.8440 | loss(rot) 0.3023 | loss(pos) 0.4940 | loss(seq) 0.0477 | grad 6.4958 | lr 0.0010 | time_forward 1.3820 | time_backward 1.6180
[2023-09-02 20:38:41,533::train::INFO] [train] Iter 14042 | loss 1.4595 | loss(rot) 1.0574 | loss(pos) 0.4020 | loss(seq) 0.0001 | grad 5.8748 | lr 0.0010 | time_forward 1.3260 | time_backward 1.5690
[2023-09-02 20:38:52,390::train::INFO] [train] Iter 14043 | loss 2.2931 | loss(rot) 2.0321 | loss(pos) 0.2589 | loss(seq) 0.0021 | grad 5.0660 | lr 0.0010 | time_forward 4.3080 | time_backward 6.5460
[2023-09-02 20:39:02,861::train::INFO] [train] Iter 14044 | loss 1.9777 | loss(rot) 0.0695 | loss(pos) 1.9059 | loss(seq) 0.0023 | grad 6.4016 | lr 0.0010 | time_forward 4.5460 | time_backward 5.9210
[2023-09-02 20:39:13,784::train::INFO] [train] Iter 14045 | loss 2.2765 | loss(rot) 2.0392 | loss(pos) 0.2366 | loss(seq) 0.0007 | grad 4.2216 | lr 0.0010 | time_forward 4.4990 | time_backward 6.4210
[2023-09-02 20:39:23,205::train::INFO] [train] Iter 14046 | loss 0.8349 | loss(rot) 0.6818 | loss(pos) 0.1511 | loss(seq) 0.0020 | grad 4.5045 | lr 0.0010 | time_forward 3.9520 | time_backward 5.4620
[2023-09-02 20:39:34,018::train::INFO] [train] Iter 14047 | loss 1.2582 | loss(rot) 0.5287 | loss(pos) 0.2440 | loss(seq) 0.4855 | grad 3.5240 | lr 0.0010 | time_forward 4.3790 | time_backward 6.4310
[2023-09-02 20:39:36,842::train::INFO] [train] Iter 14048 | loss 1.0582 | loss(rot) 0.9450 | loss(pos) 0.1111 | loss(seq) 0.0020 | grad 5.1583 | lr 0.0010 | time_forward 1.2930 | time_backward 1.5270
[2023-09-02 20:39:44,408::train::INFO] [train] Iter 14049 | loss 1.7706 | loss(rot) 1.1674 | loss(pos) 0.2329 | loss(seq) 0.3703 | grad 4.0905 | lr 0.0010 | time_forward 3.1670 | time_backward 4.3960
[2023-09-02 20:39:54,410::train::INFO] [train] Iter 14050 | loss 2.2119 | loss(rot) 2.0014 | loss(pos) 0.1597 | loss(seq) 0.0509 | grad 4.9024 | lr 0.0010 | time_forward 4.0490 | time_backward 5.9490
[2023-09-02 20:39:56,936::train::INFO] [train] Iter 14051 | loss 1.7866 | loss(rot) 1.7074 | loss(pos) 0.0761 | loss(seq) 0.0031 | grad 3.8697 | lr 0.0010 | time_forward 1.1970 | time_backward 1.3270
[2023-09-02 20:39:59,714::train::INFO] [train] Iter 14052 | loss 1.6203 | loss(rot) 1.0216 | loss(pos) 0.2830 | loss(seq) 0.3156 | grad 4.6574 | lr 0.0010 | time_forward 1.2750 | time_backward 1.5000
[2023-09-02 20:40:08,282::train::INFO] [train] Iter 14053 | loss 1.3860 | loss(rot) 0.0925 | loss(pos) 1.2701 | loss(seq) 0.0233 | grad 5.6601 | lr 0.0010 | time_forward 3.5660 | time_backward 4.9980
[2023-09-02 20:40:11,659::train::INFO] [train] Iter 14054 | loss 1.8619 | loss(rot) 1.1702 | loss(pos) 0.1966 | loss(seq) 0.4951 | grad 7.6917 | lr 0.0010 | time_forward 1.4470 | time_backward 1.9270
[2023-09-02 20:40:20,996::train::INFO] [train] Iter 14055 | loss 1.3923 | loss(rot) 0.9322 | loss(pos) 0.1844 | loss(seq) 0.2757 | grad 7.5056 | lr 0.0010 | time_forward 3.8670 | time_backward 5.4680
[2023-09-02 20:40:30,361::train::INFO] [train] Iter 14056 | loss 0.7638 | loss(rot) 0.1715 | loss(pos) 0.5090 | loss(seq) 0.0833 | grad 5.2284 | lr 0.0010 | time_forward 3.8540 | time_backward 5.5080
[2023-09-02 20:40:40,711::train::INFO] [train] Iter 14057 | loss 1.2973 | loss(rot) 0.3511 | loss(pos) 0.5073 | loss(seq) 0.4389 | grad 5.5742 | lr 0.0010 | time_forward 4.1000 | time_backward 6.2470
[2023-09-02 20:40:51,581::train::INFO] [train] Iter 14058 | loss 2.3902 | loss(rot) 2.0667 | loss(pos) 0.2286 | loss(seq) 0.0949 | grad 8.9630 | lr 0.0010 | time_forward 4.3590 | time_backward 6.5070
[2023-09-02 20:40:59,755::train::INFO] [train] Iter 14059 | loss 1.3177 | loss(rot) 0.8687 | loss(pos) 0.0990 | loss(seq) 0.3500 | grad 6.4936 | lr 0.0010 | time_forward 3.5890 | time_backward 4.5820
[2023-09-02 20:41:09,612::train::INFO] [train] Iter 14060 | loss 1.3553 | loss(rot) 0.7780 | loss(pos) 0.2003 | loss(seq) 0.3769 | grad 3.3768 | lr 0.0010 | time_forward 4.0460 | time_backward 5.8080
[2023-09-02 20:41:20,455::train::INFO] [train] Iter 14061 | loss 2.1872 | loss(rot) 1.5102 | loss(pos) 0.4210 | loss(seq) 0.2560 | grad 4.5429 | lr 0.0010 | time_forward 4.5210 | time_backward 6.3180
[2023-09-02 20:41:31,223::train::INFO] [train] Iter 14062 | loss 1.8251 | loss(rot) 1.0274 | loss(pos) 0.2267 | loss(seq) 0.5710 | grad 5.1403 | lr 0.0010 | time_forward 4.2600 | time_backward 6.5040
[2023-09-02 20:41:41,955::train::INFO] [train] Iter 14063 | loss 1.9487 | loss(rot) 0.9996 | loss(pos) 0.3108 | loss(seq) 0.6382 | grad 3.7215 | lr 0.0010 | time_forward 4.4400 | time_backward 6.2880
[2023-09-02 20:41:52,682::train::INFO] [train] Iter 14064 | loss 1.1617 | loss(rot) 0.6959 | loss(pos) 0.1997 | loss(seq) 0.2662 | grad 4.5338 | lr 0.0010 | time_forward 4.2720 | time_backward 6.4510
[2023-09-02 20:42:03,146::train::INFO] [train] Iter 14065 | loss 1.7412 | loss(rot) 0.1238 | loss(pos) 1.6043 | loss(seq) 0.0130 | grad 8.5300 | lr 0.0010 | time_forward 4.2220 | time_backward 6.2390
[2023-09-02 20:42:13,495::train::INFO] [train] Iter 14066 | loss 0.8970 | loss(rot) 0.2610 | loss(pos) 0.5930 | loss(seq) 0.0430 | grad 4.2828 | lr 0.0010 | time_forward 4.2420 | time_backward 6.1040
[2023-09-02 20:42:23,039::train::INFO] [train] Iter 14067 | loss 1.5275 | loss(rot) 0.0667 | loss(pos) 1.4456 | loss(seq) 0.0152 | grad 8.3040 | lr 0.0010 | time_forward 4.0940 | time_backward 5.4470
[2023-09-02 20:42:33,536::train::INFO] [train] Iter 14068 | loss 1.6868 | loss(rot) 0.6574 | loss(pos) 0.2726 | loss(seq) 0.7568 | grad 5.1955 | lr 0.0010 | time_forward 4.2190 | time_backward 6.2710
[2023-09-02 20:42:36,368::train::INFO] [train] Iter 14069 | loss 0.6877 | loss(rot) 0.2291 | loss(pos) 0.2286 | loss(seq) 0.2300 | grad 2.9013 | lr 0.0010 | time_forward 1.2870 | time_backward 1.5380
[2023-09-02 20:42:45,484::train::INFO] [train] Iter 14070 | loss 1.2568 | loss(rot) 1.0694 | loss(pos) 0.1719 | loss(seq) 0.0155 | grad 4.0491 | lr 0.0010 | time_forward 3.8980 | time_backward 5.2120
[2023-09-02 20:42:54,491::train::INFO] [train] Iter 14071 | loss 0.8891 | loss(rot) 0.7480 | loss(pos) 0.1391 | loss(seq) 0.0021 | grad 5.2802 | lr 0.0010 | time_forward 3.8260 | time_backward 5.1770
[2023-09-02 20:43:05,869::train::INFO] [train] Iter 14072 | loss 2.6063 | loss(rot) 2.1968 | loss(pos) 0.3840 | loss(seq) 0.0255 | grad 5.9208 | lr 0.0010 | time_forward 4.1810 | time_backward 7.1910
[2023-09-02 20:43:08,710::train::INFO] [train] Iter 14073 | loss 0.8997 | loss(rot) 0.4061 | loss(pos) 0.2427 | loss(seq) 0.2509 | grad 5.1719 | lr 0.0010 | time_forward 1.3210 | time_backward 1.4970
[2023-09-02 20:43:19,587::train::INFO] [train] Iter 14074 | loss 0.8439 | loss(rot) 0.2242 | loss(pos) 0.3281 | loss(seq) 0.2917 | grad 3.2895 | lr 0.0010 | time_forward 4.3770 | time_backward 6.4590
[2023-09-02 20:43:27,405::train::INFO] [train] Iter 14075 | loss 1.8412 | loss(rot) 1.2558 | loss(pos) 0.1675 | loss(seq) 0.4179 | grad 4.0946 | lr 0.0010 | time_forward 3.3300 | time_backward 4.4850
[2023-09-02 20:43:38,086::train::INFO] [train] Iter 14076 | loss 2.4006 | loss(rot) 1.8852 | loss(pos) 0.2042 | loss(seq) 0.3112 | grad 4.2679 | lr 0.0010 | time_forward 4.4500 | time_backward 6.2280
[2023-09-02 20:43:47,297::train::INFO] [train] Iter 14077 | loss 1.4807 | loss(rot) 1.2418 | loss(pos) 0.2389 | loss(seq) 0.0000 | grad 6.0102 | lr 0.0010 | time_forward 3.8910 | time_backward 5.3170
[2023-09-02 20:43:52,137::train::INFO] [train] Iter 14078 | loss 2.0425 | loss(rot) 1.9038 | loss(pos) 0.1358 | loss(seq) 0.0029 | grad 5.4245 | lr 0.0010 | time_forward 2.1680 | time_backward 2.6680
[2023-09-02 20:44:01,531::train::INFO] [train] Iter 14079 | loss 0.6518 | loss(rot) 0.4762 | loss(pos) 0.0498 | loss(seq) 0.1257 | grad 3.4583 | lr 0.0010 | time_forward 3.8770 | time_backward 5.5130
[2023-09-02 20:44:10,228::train::INFO] [train] Iter 14080 | loss 1.1696 | loss(rot) 0.1576 | loss(pos) 0.9595 | loss(seq) 0.0524 | grad 3.1303 | lr 0.0010 | time_forward 3.5340 | time_backward 5.1590