text
stringlengths 56
1.16k
|
---|
[2023-09-02 20:15:54,523::train::INFO] [train] Iter 13882 | loss 0.7482 | loss(rot) 0.6485 | loss(pos) 0.0985 | loss(seq) 0.0012 | grad 4.6170 | lr 0.0010 | time_forward 3.3740 | time_backward 4.6480 |
[2023-09-02 20:16:04,788::train::INFO] [train] Iter 13883 | loss 0.5010 | loss(rot) 0.0673 | loss(pos) 0.4097 | loss(seq) 0.0240 | grad 4.5575 | lr 0.0010 | time_forward 4.1450 | time_backward 6.1150 |
[2023-09-02 20:16:07,592::train::INFO] [train] Iter 13884 | loss 1.4057 | loss(rot) 1.1685 | loss(pos) 0.1297 | loss(seq) 0.1075 | grad 4.6514 | lr 0.0010 | time_forward 1.3150 | time_backward 1.4860 |
[2023-09-02 20:16:16,199::train::INFO] [train] Iter 13885 | loss 1.8598 | loss(rot) 1.7181 | loss(pos) 0.0756 | loss(seq) 0.0662 | grad 6.0440 | lr 0.0010 | time_forward 3.7160 | time_backward 4.8880 |
[2023-09-02 20:16:24,314::train::INFO] [train] Iter 13886 | loss 1.2261 | loss(rot) 0.8932 | loss(pos) 0.0477 | loss(seq) 0.2851 | grad 5.9903 | lr 0.0010 | time_forward 3.5010 | time_backward 4.6110 |
[2023-09-02 20:16:32,341::train::INFO] [train] Iter 13887 | loss 2.7842 | loss(rot) 2.5931 | loss(pos) 0.0955 | loss(seq) 0.0956 | grad 6.1135 | lr 0.0010 | time_forward 3.1850 | time_backward 4.8380 |
[2023-09-02 20:16:40,350::train::INFO] [train] Iter 13888 | loss 1.5932 | loss(rot) 1.4102 | loss(pos) 0.1745 | loss(seq) 0.0085 | grad 13.6453 | lr 0.0010 | time_forward 3.5610 | time_backward 4.4430 |
[2023-09-02 20:16:42,832::train::INFO] [train] Iter 13889 | loss 1.9080 | loss(rot) 0.0447 | loss(pos) 1.8565 | loss(seq) 0.0067 | grad 6.1419 | lr 0.0010 | time_forward 1.1480 | time_backward 1.3290 |
[2023-09-02 20:16:45,530::train::INFO] [train] Iter 13890 | loss 1.5291 | loss(rot) 0.3736 | loss(pos) 0.9674 | loss(seq) 0.1881 | grad 12.0056 | lr 0.0010 | time_forward 1.2540 | time_backward 1.4320 |
[2023-09-02 20:18:59,522::train::INFO] [train] Iter 13891 | loss 1.6157 | loss(rot) 1.3673 | loss(pos) 0.2423 | loss(seq) 0.0061 | grad 11.1585 | lr 0.0010 | time_forward 120.9970 | time_backward 12.9900 |
[2023-09-02 20:19:21,179::train::INFO] [train] Iter 13892 | loss 0.9630 | loss(rot) 0.2992 | loss(pos) 0.2433 | loss(seq) 0.4205 | grad 3.1452 | lr 0.0010 | time_forward 16.7000 | time_backward 4.9530 |
[2023-09-02 20:20:03,386::train::INFO] [train] Iter 13893 | loss 1.8116 | loss(rot) 1.6061 | loss(pos) 0.0824 | loss(seq) 0.1231 | grad 4.8966 | lr 0.0010 | time_forward 34.1710 | time_backward 8.0320 |
[2023-09-02 20:20:11,690::train::INFO] [train] Iter 13894 | loss 1.3109 | loss(rot) 0.4475 | loss(pos) 0.3600 | loss(seq) 0.5034 | grad 4.2378 | lr 0.0010 | time_forward 3.7090 | time_backward 4.5910 |
[2023-09-02 20:20:23,388::train::INFO] [train] Iter 13895 | loss 1.1639 | loss(rot) 0.6786 | loss(pos) 0.2033 | loss(seq) 0.2820 | grad 3.0881 | lr 0.0010 | time_forward 5.6490 | time_backward 6.0460 |
[2023-09-02 20:20:33,607::train::INFO] [train] Iter 13896 | loss 1.0960 | loss(rot) 0.4045 | loss(pos) 0.2717 | loss(seq) 0.4199 | grad 3.1482 | lr 0.0010 | time_forward 4.2950 | time_backward 5.9200 |
[2023-09-02 20:20:45,270::train::INFO] [train] Iter 13897 | loss 1.0851 | loss(rot) 0.1789 | loss(pos) 0.7124 | loss(seq) 0.1938 | grad 3.2285 | lr 0.0010 | time_forward 5.2620 | time_backward 6.3980 |
[2023-09-02 20:20:48,410::train::INFO] [train] Iter 13898 | loss 1.2779 | loss(rot) 1.0728 | loss(pos) 0.2050 | loss(seq) 0.0001 | grad 5.6211 | lr 0.0010 | time_forward 1.5080 | time_backward 1.6050 |
[2023-09-02 20:20:50,922::train::INFO] [train] Iter 13899 | loss 1.4269 | loss(rot) 0.6713 | loss(pos) 0.3166 | loss(seq) 0.4389 | grad 5.1871 | lr 0.0010 | time_forward 1.2160 | time_backward 1.2930 |
[2023-09-02 20:21:00,352::train::INFO] [train] Iter 13900 | loss 1.7180 | loss(rot) 1.0683 | loss(pos) 0.2701 | loss(seq) 0.3796 | grad 4.9375 | lr 0.0010 | time_forward 3.9710 | time_backward 5.4560 |
[2023-09-02 20:21:08,201::train::INFO] [train] Iter 13901 | loss 2.4077 | loss(rot) 2.1421 | loss(pos) 0.2654 | loss(seq) 0.0001 | grad 6.5367 | lr 0.0010 | time_forward 3.4280 | time_backward 4.4170 |
[2023-09-02 20:21:10,975::train::INFO] [train] Iter 13902 | loss 1.4785 | loss(rot) 1.2661 | loss(pos) 0.2095 | loss(seq) 0.0029 | grad 5.8553 | lr 0.0010 | time_forward 1.3020 | time_backward 1.4680 |
[2023-09-02 20:21:21,332::train::INFO] [train] Iter 13903 | loss 2.8354 | loss(rot) 2.2862 | loss(pos) 0.2565 | loss(seq) 0.2927 | grad 4.2684 | lr 0.0010 | time_forward 4.2730 | time_backward 6.0800 |
[2023-09-02 20:21:31,857::train::INFO] [train] Iter 13904 | loss 0.7114 | loss(rot) 0.1841 | loss(pos) 0.4934 | loss(seq) 0.0338 | grad 6.0070 | lr 0.0010 | time_forward 4.3190 | time_backward 6.1880 |
[2023-09-02 20:21:42,407::train::INFO] [train] Iter 13905 | loss 0.7175 | loss(rot) 0.5891 | loss(pos) 0.1092 | loss(seq) 0.0192 | grad 5.3150 | lr 0.0010 | time_forward 4.2990 | time_backward 6.2480 |
[2023-09-02 20:21:51,872::train::INFO] [train] Iter 13906 | loss 1.2099 | loss(rot) 0.0286 | loss(pos) 1.1674 | loss(seq) 0.0140 | grad 7.4971 | lr 0.0010 | time_forward 3.9050 | time_backward 5.5550 |
[2023-09-02 20:21:54,642::train::INFO] [train] Iter 13907 | loss 1.4466 | loss(rot) 0.7991 | loss(pos) 0.1567 | loss(seq) 0.4908 | grad 4.7103 | lr 0.0010 | time_forward 1.3190 | time_backward 1.4470 |
[2023-09-02 20:21:57,464::train::INFO] [train] Iter 13908 | loss 2.7463 | loss(rot) 2.6051 | loss(pos) 0.1247 | loss(seq) 0.0165 | grad 7.3054 | lr 0.0010 | time_forward 1.3340 | time_backward 1.4850 |
[2023-09-02 20:22:00,270::train::INFO] [train] Iter 13909 | loss 2.1080 | loss(rot) 2.0496 | loss(pos) 0.0583 | loss(seq) 0.0000 | grad 6.6324 | lr 0.0010 | time_forward 1.3370 | time_backward 1.4660 |
[2023-09-02 20:22:09,218::train::INFO] [train] Iter 13910 | loss 0.6705 | loss(rot) 0.0231 | loss(pos) 0.6330 | loss(seq) 0.0143 | grad 4.7077 | lr 0.0010 | time_forward 3.7190 | time_backward 5.2240 |
[2023-09-02 20:22:19,774::train::INFO] [train] Iter 13911 | loss 1.8798 | loss(rot) 1.2228 | loss(pos) 0.0984 | loss(seq) 0.5587 | grad 5.3183 | lr 0.0010 | time_forward 4.5220 | time_backward 6.0310 |
[2023-09-02 20:22:29,059::train::INFO] [train] Iter 13912 | loss 2.3017 | loss(rot) 1.9699 | loss(pos) 0.1329 | loss(seq) 0.1989 | grad 3.5884 | lr 0.0010 | time_forward 3.8740 | time_backward 5.4070 |
[2023-09-02 20:22:37,927::train::INFO] [train] Iter 13913 | loss 2.0538 | loss(rot) 1.7824 | loss(pos) 0.1062 | loss(seq) 0.1652 | grad 6.9022 | lr 0.0010 | time_forward 3.6980 | time_backward 5.1560 |
[2023-09-02 20:22:40,798::train::INFO] [train] Iter 13914 | loss 1.2540 | loss(rot) 0.6111 | loss(pos) 0.2074 | loss(seq) 0.4355 | grad 4.4134 | lr 0.0010 | time_forward 1.3780 | time_backward 1.4900 |
[2023-09-02 20:22:43,790::train::INFO] [train] Iter 13915 | loss 0.8892 | loss(rot) 0.1831 | loss(pos) 0.6742 | loss(seq) 0.0318 | grad 4.5408 | lr 0.0010 | time_forward 1.3260 | time_backward 1.5330 |
[2023-09-02 20:22:46,616::train::INFO] [train] Iter 13916 | loss 0.6324 | loss(rot) 0.4732 | loss(pos) 0.0463 | loss(seq) 0.1130 | grad 4.1266 | lr 0.0010 | time_forward 1.2940 | time_backward 1.5070 |
[2023-09-02 20:22:55,696::train::INFO] [train] Iter 13917 | loss 1.2388 | loss(rot) 0.6923 | loss(pos) 0.1221 | loss(seq) 0.4244 | grad 4.9356 | lr 0.0010 | time_forward 3.8690 | time_backward 5.2080 |
[2023-09-02 20:22:58,463::train::INFO] [train] Iter 13918 | loss 1.2175 | loss(rot) 1.1349 | loss(pos) 0.0508 | loss(seq) 0.0318 | grad 4.2239 | lr 0.0010 | time_forward 1.2680 | time_backward 1.4950 |
[2023-09-02 20:23:08,706::train::INFO] [train] Iter 13919 | loss 1.2318 | loss(rot) 0.0644 | loss(pos) 1.1571 | loss(seq) 0.0104 | grad 6.3574 | lr 0.0010 | time_forward 4.0460 | time_backward 6.1620 |
[2023-09-02 20:23:19,048::train::INFO] [train] Iter 13920 | loss 2.4518 | loss(rot) 1.6447 | loss(pos) 0.3275 | loss(seq) 0.4796 | grad 3.4616 | lr 0.0010 | time_forward 4.2760 | time_backward 6.0630 |
[2023-09-02 20:23:29,282::train::INFO] [train] Iter 13921 | loss 1.5853 | loss(rot) 0.8891 | loss(pos) 0.1269 | loss(seq) 0.5692 | grad 6.3236 | lr 0.0010 | time_forward 4.0550 | time_backward 6.1760 |
[2023-09-02 20:23:39,455::train::INFO] [train] Iter 13922 | loss 0.9208 | loss(rot) 0.1186 | loss(pos) 0.7614 | loss(seq) 0.0409 | grad 4.7372 | lr 0.0010 | time_forward 4.0400 | time_backward 6.1290 |
[2023-09-02 20:23:46,743::train::INFO] [train] Iter 13923 | loss 1.1756 | loss(rot) 0.4774 | loss(pos) 0.1686 | loss(seq) 0.5297 | grad 6.3394 | lr 0.0010 | time_forward 3.0210 | time_backward 4.2640 |
[2023-09-02 20:23:57,004::train::INFO] [train] Iter 13924 | loss 2.5065 | loss(rot) 1.9156 | loss(pos) 0.3055 | loss(seq) 0.2854 | grad 4.5780 | lr 0.0010 | time_forward 4.1270 | time_backward 6.1300 |
[2023-09-02 20:23:59,793::train::INFO] [train] Iter 13925 | loss 1.0063 | loss(rot) 0.4561 | loss(pos) 0.1546 | loss(seq) 0.3956 | grad 5.0471 | lr 0.0010 | time_forward 1.2780 | time_backward 1.5070 |
[2023-09-02 20:24:10,186::train::INFO] [train] Iter 13926 | loss 1.4761 | loss(rot) 0.7897 | loss(pos) 0.1251 | loss(seq) 0.5614 | grad 3.5121 | lr 0.0010 | time_forward 4.2640 | time_backward 5.9920 |
[2023-09-02 20:24:19,311::train::INFO] [train] Iter 13927 | loss 1.1240 | loss(rot) 0.4684 | loss(pos) 0.2967 | loss(seq) 0.3589 | grad 2.9163 | lr 0.0010 | time_forward 3.8840 | time_backward 5.2380 |
[2023-09-02 20:24:26,068::train::INFO] [train] Iter 13928 | loss 0.8537 | loss(rot) 0.2338 | loss(pos) 0.5701 | loss(seq) 0.0498 | grad 4.4191 | lr 0.0010 | time_forward 2.7780 | time_backward 3.9740 |
[2023-09-02 20:24:35,711::train::INFO] [train] Iter 13929 | loss 2.2865 | loss(rot) 2.0668 | loss(pos) 0.1317 | loss(seq) 0.0881 | grad 6.7102 | lr 0.0010 | time_forward 3.9830 | time_backward 5.6570 |
[2023-09-02 20:24:45,736::train::INFO] [train] Iter 13930 | loss 1.6223 | loss(rot) 1.4632 | loss(pos) 0.1584 | loss(seq) 0.0006 | grad 4.2481 | lr 0.0010 | time_forward 4.0950 | time_backward 5.9270 |
[2023-09-02 20:24:48,457::train::INFO] [train] Iter 13931 | loss 1.4282 | loss(rot) 0.7007 | loss(pos) 0.2655 | loss(seq) 0.4621 | grad 3.1821 | lr 0.0010 | time_forward 1.2800 | time_backward 1.4160 |
[2023-09-02 20:24:57,190::train::INFO] [train] Iter 13932 | loss 2.8494 | loss(rot) 1.6495 | loss(pos) 0.6658 | loss(seq) 0.5340 | grad 7.8195 | lr 0.0010 | time_forward 3.7470 | time_backward 4.9820 |
[2023-09-02 20:24:59,865::train::INFO] [train] Iter 13933 | loss 1.9817 | loss(rot) 0.3246 | loss(pos) 0.8707 | loss(seq) 0.7863 | grad 5.5327 | lr 0.0010 | time_forward 1.2400 | time_backward 1.4320 |
[2023-09-02 20:25:08,254::train::INFO] [train] Iter 13934 | loss 1.5248 | loss(rot) 0.7256 | loss(pos) 0.5049 | loss(seq) 0.2942 | grad 6.8354 | lr 0.0010 | time_forward 3.5260 | time_backward 4.8600 |
[2023-09-02 20:25:11,021::train::INFO] [train] Iter 13935 | loss 1.6421 | loss(rot) 0.6522 | loss(pos) 0.2430 | loss(seq) 0.7469 | grad 3.6606 | lr 0.0010 | time_forward 1.2950 | time_backward 1.4690 |
[2023-09-02 20:25:17,828::train::INFO] [train] Iter 13936 | loss 1.8598 | loss(rot) 1.3407 | loss(pos) 0.1054 | loss(seq) 0.4137 | grad 13.0104 | lr 0.0010 | time_forward 2.9470 | time_backward 3.8560 |
[2023-09-02 20:25:27,143::train::INFO] [train] Iter 13937 | loss 0.5180 | loss(rot) 0.1362 | loss(pos) 0.3006 | loss(seq) 0.0812 | grad 4.1135 | lr 0.0010 | time_forward 3.8810 | time_backward 5.4300 |
[2023-09-02 20:25:37,447::train::INFO] [train] Iter 13938 | loss 2.2223 | loss(rot) 2.0074 | loss(pos) 0.1401 | loss(seq) 0.0749 | grad 4.8743 | lr 0.0010 | time_forward 4.2060 | time_backward 6.0950 |
[2023-09-02 20:25:47,766::train::INFO] [train] Iter 13939 | loss 2.1967 | loss(rot) 1.5947 | loss(pos) 0.1343 | loss(seq) 0.4676 | grad 4.2140 | lr 0.0010 | time_forward 4.1820 | time_backward 6.1330 |
[2023-09-02 20:25:56,694::train::INFO] [train] Iter 13940 | loss 1.7120 | loss(rot) 1.0746 | loss(pos) 0.2436 | loss(seq) 0.3937 | grad 5.6851 | lr 0.0010 | time_forward 3.8010 | time_backward 5.1230 |
[2023-09-02 20:26:05,535::train::INFO] [train] Iter 13941 | loss 0.6404 | loss(rot) 0.2550 | loss(pos) 0.2848 | loss(seq) 0.1006 | grad 3.4579 | lr 0.0010 | time_forward 3.7430 | time_backward 5.0940 |
[2023-09-02 20:26:14,234::train::INFO] [train] Iter 13942 | loss 0.6439 | loss(rot) 0.0639 | loss(pos) 0.5608 | loss(seq) 0.0192 | grad 3.2815 | lr 0.0010 | time_forward 3.6630 | time_backward 5.0330 |
[2023-09-02 20:26:24,526::train::INFO] [train] Iter 13943 | loss 3.4102 | loss(rot) 2.6721 | loss(pos) 0.3945 | loss(seq) 0.3436 | grad 5.1707 | lr 0.0010 | time_forward 4.2710 | time_backward 6.0180 |
[2023-09-02 20:26:34,734::train::INFO] [train] Iter 13944 | loss 2.2493 | loss(rot) 1.4585 | loss(pos) 0.2840 | loss(seq) 0.5069 | grad 4.0781 | lr 0.0010 | time_forward 4.3600 | time_backward 5.8440 |
[2023-09-02 20:26:37,498::train::INFO] [train] Iter 13945 | loss 1.2635 | loss(rot) 1.0355 | loss(pos) 0.1412 | loss(seq) 0.0868 | grad 4.5202 | lr 0.0010 | time_forward 1.2840 | time_backward 1.4760 |
[2023-09-02 20:26:46,567::train::INFO] [train] Iter 13946 | loss 2.9950 | loss(rot) 2.7727 | loss(pos) 0.1617 | loss(seq) 0.0606 | grad 5.5721 | lr 0.0010 | time_forward 3.8220 | time_backward 5.2450 |
[2023-09-02 20:26:49,183::train::INFO] [train] Iter 13947 | loss 2.0356 | loss(rot) 1.8775 | loss(pos) 0.0779 | loss(seq) 0.0802 | grad 8.1901 | lr 0.0010 | time_forward 1.1200 | time_backward 1.2010 |
[2023-09-02 20:26:51,990::train::INFO] [train] Iter 13948 | loss 1.2872 | loss(rot) 0.7810 | loss(pos) 0.0952 | loss(seq) 0.4110 | grad 4.2988 | lr 0.0010 | time_forward 1.3200 | time_backward 1.4850 |
[2023-09-02 20:27:00,715::train::INFO] [train] Iter 13949 | loss 2.7951 | loss(rot) 2.6141 | loss(pos) 0.1809 | loss(seq) 0.0000 | grad 3.8101 | lr 0.0010 | time_forward 3.6590 | time_backward 4.9870 |
[2023-09-02 20:27:03,424::train::INFO] [train] Iter 13950 | loss 1.4427 | loss(rot) 0.8003 | loss(pos) 0.1541 | loss(seq) 0.4884 | grad 4.1382 | lr 0.0010 | time_forward 1.2670 | time_backward 1.4400 |
[2023-09-02 20:27:13,628::train::INFO] [train] Iter 13951 | loss 1.5097 | loss(rot) 1.3832 | loss(pos) 0.1044 | loss(seq) 0.0221 | grad 4.8050 | lr 0.0010 | time_forward 4.1400 | time_backward 6.0600 |
[2023-09-02 20:27:16,115::train::INFO] [train] Iter 13952 | loss 2.2195 | loss(rot) 1.9819 | loss(pos) 0.0939 | loss(seq) 0.1436 | grad 5.2173 | lr 0.0010 | time_forward 1.1920 | time_backward 1.2910 |
[2023-09-02 20:27:18,553::train::INFO] [train] Iter 13953 | loss 0.9833 | loss(rot) 0.4401 | loss(pos) 0.1200 | loss(seq) 0.4233 | grad 3.9038 | lr 0.0010 | time_forward 1.1610 | time_backward 1.2740 |
[2023-09-02 20:27:21,229::train::INFO] [train] Iter 13954 | loss 1.0046 | loss(rot) 0.7385 | loss(pos) 0.1313 | loss(seq) 0.1348 | grad 3.6547 | lr 0.0010 | time_forward 1.2440 | time_backward 1.4290 |
[2023-09-02 20:27:29,284::train::INFO] [train] Iter 13955 | loss 1.1154 | loss(rot) 0.7098 | loss(pos) 0.1564 | loss(seq) 0.2492 | grad 4.5849 | lr 0.0010 | time_forward 3.3790 | time_backward 4.6720 |
[2023-09-02 20:27:34,157::train::INFO] [train] Iter 13956 | loss 2.0138 | loss(rot) 0.0076 | loss(pos) 2.0062 | loss(seq) 0.0000 | grad 7.7490 | lr 0.0010 | time_forward 2.1550 | time_backward 2.7150 |
[2023-09-02 20:27:35,893::train::INFO] [train] Iter 13957 | loss 2.2767 | loss(rot) 0.7297 | loss(pos) 1.4711 | loss(seq) 0.0759 | grad 11.8775 | lr 0.0010 | time_forward 0.8080 | time_backward 0.9240 |
[2023-09-02 20:27:46,748::train::INFO] [train] Iter 13958 | loss 2.8488 | loss(rot) 2.3544 | loss(pos) 0.2541 | loss(seq) 0.2403 | grad 7.4816 | lr 0.0010 | time_forward 4.6360 | time_backward 6.1450 |
[2023-09-02 20:27:56,056::train::INFO] [train] Iter 13959 | loss 1.8428 | loss(rot) 1.3781 | loss(pos) 0.1229 | loss(seq) 0.3419 | grad 9.3204 | lr 0.0010 | time_forward 3.9580 | time_backward 5.3460 |
[2023-09-02 20:28:02,217::train::INFO] [train] Iter 13960 | loss 1.3898 | loss(rot) 1.0502 | loss(pos) 0.1094 | loss(seq) 0.2302 | grad 5.4944 | lr 0.0010 | time_forward 2.6890 | time_backward 3.4690 |
[2023-09-02 20:28:10,069::train::INFO] [train] Iter 13961 | loss 1.4375 | loss(rot) 0.4488 | loss(pos) 0.7842 | loss(seq) 0.2045 | grad 3.4634 | lr 0.0010 | time_forward 3.2240 | time_backward 4.6250 |
[2023-09-02 20:28:19,125::train::INFO] [train] Iter 13962 | loss 1.4294 | loss(rot) 1.2295 | loss(pos) 0.1799 | loss(seq) 0.0200 | grad 7.0541 | lr 0.0010 | time_forward 3.6820 | time_backward 5.3710 |
[2023-09-02 20:28:22,018::train::INFO] [train] Iter 13963 | loss 1.9030 | loss(rot) 0.0393 | loss(pos) 1.8604 | loss(seq) 0.0033 | grad 9.1117 | lr 0.0010 | time_forward 1.3270 | time_backward 1.5620 |
[2023-09-02 20:28:30,407::train::INFO] [train] Iter 13964 | loss 1.2553 | loss(rot) 0.6884 | loss(pos) 0.1284 | loss(seq) 0.4385 | grad 3.9468 | lr 0.0010 | time_forward 3.8150 | time_backward 4.5710 |
[2023-09-02 20:28:33,477::train::INFO] [train] Iter 13965 | loss 1.4680 | loss(rot) 0.8120 | loss(pos) 0.1858 | loss(seq) 0.4701 | grad 4.8634 | lr 0.0010 | time_forward 1.5540 | time_backward 1.5120 |
[2023-09-02 20:28:43,339::train::INFO] [train] Iter 13966 | loss 1.5305 | loss(rot) 0.8083 | loss(pos) 0.2175 | loss(seq) 0.5047 | grad 5.9898 | lr 0.0010 | time_forward 4.3290 | time_backward 5.5300 |
[2023-09-02 20:28:46,163::train::INFO] [train] Iter 13967 | loss 1.8350 | loss(rot) 1.2241 | loss(pos) 0.1298 | loss(seq) 0.4810 | grad 4.1584 | lr 0.0010 | time_forward 1.2620 | time_backward 1.5580 |
[2023-09-02 20:28:55,093::train::INFO] [train] Iter 13968 | loss 1.1346 | loss(rot) 0.7490 | loss(pos) 0.1250 | loss(seq) 0.2606 | grad 5.2740 | lr 0.0010 | time_forward 3.7780 | time_backward 5.1490 |
[2023-09-02 20:29:05,234::train::INFO] [train] Iter 13969 | loss 1.9487 | loss(rot) 1.6827 | loss(pos) 0.2659 | loss(seq) 0.0000 | grad 3.7542 | lr 0.0010 | time_forward 4.1540 | time_backward 5.9840 |
[2023-09-02 20:29:15,643::train::INFO] [train] Iter 13970 | loss 2.6823 | loss(rot) 1.7188 | loss(pos) 0.4278 | loss(seq) 0.5357 | grad 4.2976 | lr 0.0010 | time_forward 4.1870 | time_backward 6.2180 |
[2023-09-02 20:29:26,064::train::INFO] [train] Iter 13971 | loss 1.7769 | loss(rot) 0.8311 | loss(pos) 0.3405 | loss(seq) 0.6053 | grad 4.5846 | lr 0.0010 | time_forward 4.3420 | time_backward 6.0760 |
[2023-09-02 20:29:34,585::train::INFO] [train] Iter 13972 | loss 2.1446 | loss(rot) 1.8585 | loss(pos) 0.2680 | loss(seq) 0.0181 | grad 6.7421 | lr 0.0010 | time_forward 3.6160 | time_backward 4.9010 |
[2023-09-02 20:29:37,369::train::INFO] [train] Iter 13973 | loss 0.8171 | loss(rot) 0.2436 | loss(pos) 0.1762 | loss(seq) 0.3974 | grad 2.8841 | lr 0.0010 | time_forward 1.2570 | time_backward 1.5230 |
[2023-09-02 20:29:47,665::train::INFO] [train] Iter 13974 | loss 1.8444 | loss(rot) 1.5278 | loss(pos) 0.2744 | loss(seq) 0.0422 | grad 6.6259 | lr 0.0010 | time_forward 4.3430 | time_backward 5.9500 |
[2023-09-02 20:29:58,076::train::INFO] [train] Iter 13975 | loss 2.0569 | loss(rot) 1.9227 | loss(pos) 0.0668 | loss(seq) 0.0674 | grad 4.5311 | lr 0.0010 | time_forward 4.1100 | time_backward 6.2970 |
[2023-09-02 20:30:07,436::train::INFO] [train] Iter 13976 | loss 2.7789 | loss(rot) 2.5873 | loss(pos) 0.1917 | loss(seq) 0.0000 | grad 5.9606 | lr 0.0010 | time_forward 4.0020 | time_backward 5.3340 |
[2023-09-02 20:30:15,653::train::INFO] [train] Iter 13977 | loss 1.4047 | loss(rot) 1.1183 | loss(pos) 0.0481 | loss(seq) 0.2384 | grad 5.6717 | lr 0.0010 | time_forward 3.4290 | time_backward 4.7840 |
[2023-09-02 20:30:24,912::train::INFO] [train] Iter 13978 | loss 1.1455 | loss(rot) 0.2630 | loss(pos) 0.6831 | loss(seq) 0.1995 | grad 2.4932 | lr 0.0010 | time_forward 3.8970 | time_backward 5.3580 |
[2023-09-02 20:30:34,252::train::INFO] [train] Iter 13979 | loss 1.1546 | loss(rot) 0.9963 | loss(pos) 0.1204 | loss(seq) 0.0379 | grad 4.2162 | lr 0.0010 | time_forward 3.9470 | time_backward 5.3890 |
[2023-09-02 20:30:36,930::train::INFO] [train] Iter 13980 | loss 1.6839 | loss(rot) 1.4001 | loss(pos) 0.2666 | loss(seq) 0.0171 | grad 5.1339 | lr 0.0010 | time_forward 1.2520 | time_backward 1.4230 |
[2023-09-02 20:30:47,451::train::INFO] [train] Iter 13981 | loss 0.9958 | loss(rot) 0.0896 | loss(pos) 0.8934 | loss(seq) 0.0128 | grad 4.4142 | lr 0.0010 | time_forward 4.1960 | time_backward 6.3210 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.